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Abstract

In this study, we analyze the Genetic Analysis Workshop 18 data to identify the genes and underlying single-
nucleotide polymorphisms on 11 chromosomes that exhibit significant association with systolic blood pressure. We
propose a novel family-based method for rare-variant association detection based on the hierarchical Bayesian
framework. The method controls spurious associations caused by population stratification, and improves the
statistical power to detect not only individual rare variants, but also genes with either continuous or binary
outcomes. Our method utilizes nuclear family information, and takes into account the effects of all single-
nucleotide polymorphisms in a gene, using a hierarchical model. When we apply this method to the genome-wide
Genetic Analysis Workshop 18 data, several genes and single-nucleotide polymorphisms are identified as potentially
related to systolic blood pressure.

Background
Current studies suggest that a large number of common
variants identified in genome-wide association studies
(GWAS) as being associated with various complex
diseases can account for only a small portion of pheno-
type variation [1]. With the advent of next-generation
sequencing, attention has focused on rare variants
(RVs), such as single-nucleotide polymorphisms (SNPs)
with a minor allele frequency (MAF) of less than 1%.
Traditional single-marker methods lose statistical power
for detecting RV association because of their rare occur-
rence. In the last few years, however, a variety of meth-
ods have been developed, including the combined
multivariate and collapsing (CMC) method [2] and the
weighted sum (WS) method [3]. More sophisticated
methods that are robust to different variant effects
include the kernel-based adaptive cluster (KBAC)
method [4], the C-alpha test [5], and the sequence kernel
association test (SKAT) [6].
These methods, however, all assume that individuals

are independently sampled and are, therefore, vulnerable

to the influence of population stratification. Exploring
marker transmission within a family avoids the issues of
population stratification. More important, once anRV
enters a family, it can segregate to other family members
so that copies of the minor allele are enriched in the
data. This could potentially increase the statistical power
of family-based approaches.
Here we propose a novel family-based Bayesian collap-

sing model (FBCM) capable of identifying associations of
RVs and genes with quantitative phenotypes. The method
builds on the hierarchical quantitative transmission dise-
quilibrium test (HQTDT) [7]. Compared to classical statis-
tical methods, the Bayesian framework incorporates prior
information, thereby providing an alternative approach to
situations in which factors affecting the power of the test,
such as the MAF of the SNP, play an important role [8].
We combine HQTDT with the idea of collapsing under a
Bayesian framework. Then we expand the model in a
data-driven manner by utilizing random effects to model
the signals of individual rare variants within a gene.

Methods
Family-based Bayesian collapsing model
Several statistical models based on the Bayesian frame-
work, such as model selection [9] and multiple regression
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[10], have been proposed for RV association detection.
Because of the large scale of model space and matrix cal-
culation, these approaches suffer from impractical com-
putational time if a full joint posterior distribution is
required. Although most Bayesian methods endeavor to
employ various optimization or approximation algo-
rithms to obtain a point estimate, the loss of uncertainty
information on the estimate means the significance of
the estimate cannot be evaluated. In this paper, we pro-
pose a Bayesian model that aims to efficiently generate a
full posterior distribution without the loss of model
space, and is viable for family-based genome-wide asso-
ciation analysis. The central idea comes from collapsing
RVs and modeling their effects using variant-specific ran-
dom effects. In some cases, it is probable that an RV is
enriched in certain pedigrees while being very rare in
others. Thus, among a group of RVs, some can be both
neutral and associated with the phenotype through popu-
lation stratification. To solve this problem, the RVs are
collapsed in 2 orthogonal components to adjust for the
possible population stratification.
Consider a candidate gene that contains Κ diallelic

loci (in this paper, a locus always refers to the location
of a SNP) with MAF less than 1%. Given a set of i= 1,...,
M nuclear families, each of which contains ni siblings so

that the total number of offspring is
∑M

i=1
ni = N, we

define the coded genotypic score Gijk for the jth child in
the ith family as the number of minor alleles at the kth

locus. It is assumed that both parents of each child are
available, and, correspondingly, the genotypic scores of
the parents at the kth locus in the ith family are denoted
by GMik and GFik, respectively, for the mother and
father. Conditional on the parental genotypes, the
expected score for the offspring in the ith family at the

kth locus under mendelian law is GEik =
GMik + GFik

2
.

Furthermore, the deviation of the genotypic score for
the jth child in the ith family at the kth locus, which is
denoted by Dijk, is Gijk− GEik. For technical reasons, we
add a pseudolocus k = 0 and define GEi0 = Dij0 = 0.
When at least 1of the parents carries the copies of
minor alleles at a locus, it is then possible to observe
deviation in offspring at this locus. However, given a
moderate set of variants, it is very unlikely for an indi-
vidual to harbor minor alleles at more than 2 causal
variants. For instance, when MAF is 0.005 and there
are 50 independent causal RVs, the probability of an
individual having minor alleles at more than 2 loci is

1 − 0.9950 − 50 · 0.9949 · 0.01 − 50.49
2

· 0.9948 · 0.012 ≈ 1.38% .

Thus, by taking advantage of the rare occurrence of
copies of minor alleles, for each individual we consider
at most 2 loci that have nonzero deviation in a

candidate gene. These are indexed by rij and sij, which
are defined below.

rij =
{
k, if individual j in family i has deviation at least at 1 locus
0, and the locus with the smallest MAF is indexed by k, otherwise.

sij =
{
k, if individual j in family i has deviation at more than 1 locus
0, and the locus with the second smallest MAF is indexed by k, otherwise.

This method dramatically shortens computational time
by avoiding large-scale matrix computation in Gibbs
sampling. If an individual has nonzero deviation at fewer
than 2 loci, both or sij are 0. Those with the smallest
MAFs are selected if an individual has more than 2 loci
with nonzero deviation. Thus, more emphasis is placed
on those with smaller MAFs because deleterious func-
tional variants tend to have low frequencies [12]. Given
that RVs often do not exhibit strong linkage disequili-
brium (LD) with either rare or common SNPs [11], for a
moderate number of RVs such approximation loses
much less information than do naive collapsing methods.
Moreover, including 2 loci enables the model to detect
the additive effect combination of 2 RVs.
Let yij denote the quantitative phenotype for the jth

child in the ith family. The relationship between the
phenotype and the set of RVs in the candidate gene can
be expressed by a hierarchical model

yij = μ + β1.(αrij .Dijrij + αsij .Dijsij) + β2.(γrij .GEirij + γsij .GEisij) + ϕi + εij (1)

φi ∼ N(0, σ 2
φ )

εij ∼ N(0, σ 2
ε )

rij, sij ε 0, 1, . . . ,K

where µ is the global intercept and εij is the random
error. The genotypic score is decomposed into within-
family and between-family components, and the con-
struction of formula (1) guarantees the orthogonality of
those 2 components. Inference based on b1 provides a
stratification-resistant within-family test, while b2 esti-
mates the genetic effect resulting from stratification. As a
result of the limitation of the sample size for the infer-
ence and the fact that the variance components are not
our major interest in this study, the family-level variable
�i is modeled as a random effect. This enables us to cap-
ture the between-family variance that includes the influ-
ence of the family-specific environmental factor.
The vectors of variant-specific random effects

α̃ = (α0,α1, · · · ,αk) and γ̃ = (γ0, γ1, · · · , γk) modulate
the within-family and between-family global effects b1
and b2, respectively. rij and sij are individual-specific
indices of which elements in α̃ and γ̃ contribute to the
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jth child in the ith family. It is possible that some of the
RVs are neutral, but may be associated with the pheno-
type through population stratification. Ignoring this pos-
sibility will not only inflate the type I error rate, but also
will introduce noise after collapsing. By modeling these
2 situations using α̃ and γ̃ separately, formula (1)
(below) manages to detect the association, accounting
for neutral RVs as well as population stratification.
Although it is less common to observe LD between

RVs compared to common variants, only independent
representative SNPs are selected and included in the
analysis. Because 2 loci at most are taken into account
for each individual, such selection improves the accuracy
and efficiency of the model.

Prior distributions for random effects
The multiplicative relation in the 2 pairs (i.e., b1 and α̃ ,
b2 and γ̃ ) may result in a nonidentifiable model. To
ensure identifiability, α̃ and γ̃ –except for α0 and γ0 ,
which are random effects of the pseudolocus and sampled
from Bern(0)–are selected to be independently sampled
from Bernoulli distributions with hyper-parameters pk and
qk. b1 and b2 are given a noninformative normal prior
distribution with some variance σ 2

β , that is,

αk ∼ Bern(pk), pk ∼ Beta(1, 1)

γk ∼ Bern(qk), qk ∼ Beta(1, 1)

β1 ∼ N(0,α2
β), β2 ∼ N(0,α2

β)

(2)

The kth variant is treated as associated when ak = 1;
otherwise it is neutral. The hyperparameter pk is the
predictor for ak and can be regarded as the probability
of the kth variant being associated. With such a prior
distribution for ak, the model actually selects the opti-
mal group of associated RVs in a data-driven way and
then collapses them together.

Bayesian inference
To investigate the gene-level association, we wish to test
the hypothesis b1 = 0. However, in a Bayesian frame-
work, this hypothesis cannot be evaluated directly
because the posterior distribution of b1 is continuous.
Instead, we can conduct a composite hypothesis test:

H0 : |β1| ≤ ε or
∑K

k=1
αk = 0

H1 : |β1| > ε and
∑K

k=1
αk > 0, (3)

Where ∈ is a small positive number. Although in
principle the choice of ∈ is arbitrary, a too small ∈
might inflate the estimate error resulting from the
numerical approximation. So we set ∈ as 0.2 ∗ σ̂ε ,
where σ̂ε is the estimated standard deviation for

random error. The Bayes factor (BF) is a good way to
summarize the evidence provided by the data in favor of
one statistical model over another while also taking into
account the complexity of a model. Note that the BF
can be expressed using the ratio of the odds of the pos-
terior distribution, which can be obtained approximately
by the Monte Carlo Markov chain (MCMC) method, to
the prior odds. For the prior distribution described
above, the prior odds are calculated as

P(|β1| > ε ∩ ∑K
k=1 αk > 0)

P(|β1| ≤ ε ∪ ∑K
k=1 αk = 0)

=

(1 − erf

(
ε√
2σβ

)
)(1 − 0.5K)

erf

(
ε√
2σβ

) (
1 − 0.5K

)
+ 0.5K

, (5)

where erf (•) is the error function, defined as:

erf (x) =
2√
π

∫ x

0
e−t2dt . Thus, the hybrid BF can be

obtained by

BF (H1 : H0) =
P̂( |β1| > ε ∩ ∑K

k=1 αk > 0|Data)

P̂( |β1| ≤ ε ∪ ∑K
k=1 αk = 0|Data)

/
P( |β1| > ε ∩ ∑K

k=1 αk > 0)

P( |β1| ≤ ε ∪ ∑K
k=1 αk = 0)

BF (H1 : H0) =
P̂ (|β1| > ε|Data)

P̂ (|β1| ≤ ε|Data)
/
P (|β1| > ε)

P (|β1| ≤ ε)
, (5)

where P̂(|β1| > ε ∩
∑K

k=1
αk > 0|Data) and

P̂(|β1| ≤ ε ∪
∑K

k=1
αk = 0|Data) are estimated from

the posterior distribution approximated by the outputs
of the MCMC method. If the BF exceeds a certain
threshold, which is selected through simulations, we
conclude that β1 is significant. Once there is evidence
of a global association, we can further assess the under-
lying RVs by investigating the marginal posterior distri-
bution for ak, k � 1,..., Κ. Note that if we treat ak as a
model indicator, one way to quantify and summarize
the posterior probabilities is to calculate the marginal
BF, which is the ratio of the posterior odds to the prior
odds of the same variable, defined as:

BF(M1(αk 
= 0) : M0(αk = 0)) =
P̂

(
αk 
= 0|y) /P (αk 
= 0)

P̂
(
αk = 0|y) /P (αk = 0)

, (6)

The model is implemented using WinBUGS with
50,000 iterations, and the convergence is checked by
investigating the autocorrelations for all parameters. We
also simulate several chains with different initial values
simultaneously, and evaluate convergence with the
Gelman-Rubin convergence diagnostic tool [13].

Results
Unfortunately, for the Genetic Analysis Workshop (GAW)
18 simulated data, only 275 trios can be incorporated in

He and Pitkäniemi BMC Proceedings 2014, 8(Suppl 1):S37
http://www.biomedcentral.com/1753-6561/8/S1/S37

Page 3 of 7



our analyses, owing to the large number of parents with
missing genotype. Most causal SNPs with MAF less than
0.01 do not present minor alleles in these 275 trios, so
they are not suitable data for testing our method. Conse-
quently, we investigated the performance of FBCM by
generating a variety of simulation scenarios involving dif-
ferent effect sizes and proportions of associated RVs. In
particular, we consider the settings in which 20% to 100%
of RVs are associated. The total number of families, the
offspring in each family, and the total number of RVs are
fixed at 300, 2, and 50, respectively. To generate genotypic
data for each family, a proportion of the RVs are randomly
selected to be causal, represented by an indicator vector r.
Half the RVs are randomly selected to be neutral but are
associated with the phenotype through population stratifi-
cation, represented by an indicator vector s. The genotypic
scores of the parents are independently sampled from
Bern(2 · MAF(k)) for the kth RV, where MAF(k) is fixed
as 0.005 throughout all RVs. Then the genotypes of
children are obtained from parental haplotypes by ran-
dom transmission, denoted by a 2 × 50 matrix G. G is
divided into the expected genotypic score matrix E and
the deviation matrix D for the offspring in a family.

The phenotypes of the 2 sibs in each family are gener-
ated from N(b1 • (D × r) + b2•(E × s), Σ), where b1
is the effect size, b2= 0.5 reflects the effect of popula-

tion stratification, and 
 =
(
2 1
1 2

)
is the covariance

matrix to reflect the family structure. We set the

hyperparameter σ 2
β as 104 and tuned the BF cutoff

equal to 2 so that the type I error rate is controlled
below 0.005. Figure 1 shows the power curves with
b1 = 1 and 1.5.
To evaluate FBCM using real data, the association ana-

lyses are performed by fitting our method to the data
that use the full pedigree structure provided, with the
entry for each variant being the estimated number of
minor alleles carried. Our aim is to identify the genes
and underlying RVs related to systolic blood pressure
(SBP) throughout those 11 chromosomes among the
GAW18 type 2 diabetes families. To better reflect the
association between predisposition to hypertension and
the variants, the highest SBP measured at the 4 examina-
tion points is selected as the phenotype for each indivi-
dual. Log-transformation of the phenotype is performed

Figure 1 Empirical power comparison between different vaules of β1. The red dashed line is the power curve for β1 = 1. The black solid line is the
power curve for β1 = 1.5.
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to fix the skewness of the phenotype distribution. The
age corresponding to the highest measured SBP is
included in our model as a covariate to account for the
significant correlation between age and SBP. Individuals
with any missing data or without parental information
are excluded, leaving 275 trios remaining.
Using the gene information being obtained from

Ensembl (http://www.ensembl.org/index.html), we inves-
tigated the genes on all 11 chromosomes. For each
gene, only variants with MAF of less than 1% within the
boundary of the gene are included in the analyses. The
MAFs are estimated using 959 individuals in the dosage
genotype data. The results are summarized using a
Manhattan plot in Figure 2, which shows the BFs (see
formula (2)) for the 16,759 genes across these 11 chro-
mosomes. Table 1 presents the most significantly asso-
ciated genes, with their BFs, estimated effect sizes,
HUGO Gene Nomenclature Committee (HGNC) sym-
bols (http://www.genenames.org/), and Ensembl gene
IDs. The effect size conveys the estimated magnitude of
the relationship between SBP and the transmission
deviation. Our results show that most genes have BFs of
far less than 1, and given only 275 trios in the analyses
such results are not surprising. However, we still identify
several genes with a BF larger than 2, which is the cut-
off obtained from the simulation. The evidence of the

association is substantial for those BFs between 3 and 10,
based on Jeffery’s grade of evidence [14], which is relatively
subjective because BFs can be sensitive to many factors
such as priors and number of RVs. More precise threshold
values can be determined by permutation within or
between chains in MCMC method. Although the potential
influence of RVs on SBP is elusive, previous studies have
identified a handful of genes with common variants
(MAF>1%) associated with SBP [15]. Our results indicate
that several genes with underlying RVs are potentially
related to SBP and deserve to be further scrutinized.
Next, we investigated the underlying SNPs among the

most related gene, HNRNPA1P13. The most significant
SNPs based on their BFs in formula (3) are listed at the
bottom of Table 1. The MAF information on these SNPs
comes from the 1000 Genomes Project (http://
www.1000genomes.org/). The larger BFs favor the evi-
dence against the null hypothesis and indicate that positive
deviation from the expected number of transmitted minor
alleles drives the effect of the gene, while the BFs much
lower than 1 suggest the effect of the deviation in the
opposite direction. For example, given the effect size of
gene HNRNPA1P13 is 0.43, SNP at position 135765214
with BF 0.00368 indicates that more transmitted copies of
a minor allele from parents are likely to have a negative
impact on the phenotype.

Figure 2 Manhattan plot of BFs in the GAW18 study for the SBP. The horizontal axis shows the chromosomal start positions of the genes.
The vertical axis shows the BFs of the genes.
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Discussion
The FBCM proposed here is a novel statistical method
for analyzing the association of RVs in pedigree data.
The new methodology accounts for potential nonasso-
ciated variants by introducing random effects in a multi-
plicative way to approximate and capture the variant
effects. The FBCM also takes into account situations in
which some pooled variants can be associated with a
phenotype through population stratification. Although
the between-family component in our model can be
integrated into the family-level random effect φi , when
the RV under investigation shows a significant between-
family effect, our model performs better by capturing
this effect to reduce the residual error. The model is
based on the HQTDT, but expands the HQTDT by
incorporating the collapsing information of the deviation
from the expected genotypic score for a group of SNPs
and at the same time maintaining orthogonality. Unlike
the model selection method [9], our model employs ran-
dom effects to predict variant-specific effects based on
data and succeeds in boosting the sensitivity for gene
association detection by collapsing the random effects of
RVs. By taking advantage of the rare occurrence of
minor alleles in an individual, the algorithm considers at
most 2 sites in order to reduce the number of predic-
tors, circumventing the huge computational burden
involved in obtaining the full posterior distribution.
In variant-level analysis, our method improves the

power to detect RV effects. The improvement of statisti-
cal power can be achieved by accounting for the random
effects of all variants in a candidate gene through Gibbs
sampling. Moreover, in the GAW18 data, it has been
shown that the occurrence of a RV tends to be more
common if a family member carries a minor allele. Thus,
the family-based analysis is expected to have more power
than the independent population-based analysis. The
results show that our family-based method is able to
identify both genes and individual SNPs significantly
related to the phenotype, even in RV situations.

Our model can be further expanded in many ways.
The appropriate link functions can be employed to han-
dle other forms of phenotype, such as binary data. In
this study, we focus on families without any missing
data. However, for the trios with missing parental geno-
type information, the genetic score can be decomposed
into between-family and within-family components by
using only sibs genotypes. For the random effect distri-
bution, the Bernoulli distribution is assigned as the prior
distribution for the random effects of individual variants.
For better modeling of the effects of individual variants,
more sophisticated distributions can be employed.

Conclusions
We have demonstrated that a novel FBCM can be
applied to identify associations between RVs and quanti-
tative traits for pedigree data. This method cannot only
detect the gene effect, but can also pinpoint the underly-
ing SNPs. Compared to other methods for handling
RVs, our method based on family data improves statisti-
cal power by collapsing and accounting for all possible
RV effects in a gene with population stratification con-
trolled. Because the method allows for computational
efficiency in obtaining the full posterior distribution, it
is applicable to large-scale association tests. The results
of our genome-wide analyses provide insights into the
potential role of RVs in SBP.
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Table 1 Most significant genes associated with SBP

Chr Ensembl ID
(ENSG00000-)

HGNC symbol BF1 Effect
size

5 213568 HNRNPA1P13 8.52 0.43

19 127529 OR7C2 4.82 −0.24

15 259500 RP11-138E16.2 4.43 −0.32

Gene: HNRNPA1P13

Chr Position BF2 (against
null)

Index SNP MAF

5 135764696 36.84 rs139658064 0.004

5 135765214 0.00368 NA NA
1 BF in formula (2).
2 BF in formula (3).
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