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Bayesian inference of 
physiologically meaningful 
parameters from body sway 
measurements
A. Tietäväinen   1, M. U. Gutmann2, E. Keski-Vakkuri1, J. Corander3,4 & E. Hæggström1

The control of the human body sway by the central nervous system, muscles, and conscious brain is 
of interest since body sway carries information about the physiological status of a person. Several 
models have been proposed to describe body sway in an upright standing position, however, due 
to the statistical intractability of the more realistic models, no formal parameter inference has 
previously been conducted and the expressive power of such models for real human subjects remains 
unknown. Using the latest advances in Bayesian statistical inference for intractable models, we fitted 
a nonlinear control model to posturographic measurements, and we showed that it can accurately 
predict the sway characteristics of both simulated and real subjects. Our method provides a full 
statistical characterization of the uncertainty related to all model parameters as quantified by posterior 
probability density functions, which is useful for comparisons across subjects and test settings. The 
ability to infer intractable control models from sensor data opens new possibilities for monitoring and 
predicting body status in health applications.

Upright stance is inherently unstable due to the physics of an inverted pendulum-like body and due to the internal 
perturbations of an individual, such as noise in afferent (sensory) and efferent (motor) nerve pathways, respira-
tion, and hemodynamics1–4. Balance is controlled by co-operating visual, vestibular, and somatosensory systems. 
The sensory information is integrated in the central nervous system (CNS), which determines the actions needed 
to maintain balance and which commands the musculoskeletal system to execute corrective actions to maintain 
an upright stance.

Factors that affect the CNS and skeletal muscles also influence postural steadiness. Therefore, quantifying 
postural steadiness during upright stance may provide insight into the physiological state of a person. In one 
kind of posturographic measurement a person stands erect on a force plate while the plate measures the net 
center-of-pressure (COP) along the mediolateral (ML) and anteriorposterior (AP) directions. The COP signal is 
closely related to the 2D center-of-mass (COM) signal5, 6, the time-varying vertical projection of the 3D body’s 
center-of-mass. Traditionally COP signals are quantified by statistical sway measures extracted from raw data. 
These measures typically describe mean sway amplitude, velocity, and frequency7. Previously posturographic 
measurements have been used to quantify effects of aging7–9, state of alertness10–12, use of anesthetic drugs13–15, 
and conditions, such as multiple sclerosis16, 17, and Parkinson’s disease18, 19.

Upright stance can be modeled using an inverted pendulum model that depicts the human body as a rigid 
rod pivoting around its floor-anchored end. The pendulum may have either one or more links that depict human 
joints, such as ankles, hips, and knees. A single-link (ankle) model is simple and common, and it can be used to 
describe quiet, upright stance9, 20, 21. Modeling large movements due to i.e. perturbations of voluntary movements 
require two22 (ankle and hip) or more links23, 24. Due to internal and external disturbances, such as gravitation and 
respiration, the pendulum body needs to actively be maintained in an upright position to avoid falls. Two types 
of control exist: the passive controller mimics the effect of tendons and muscle tone that act instantaneously (no 
delay), whereas the active controller mimics actions taken by the CNS, where a time delay is present. The simplest 
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form of control relies on passive ankle stiffness alone where no active control by CNS is present25. However, direct 
measurements on ankle stiffness have shown that passive stiffness alone can not maintain stable posture26–28. 
More recent models feature PID (proportional-integrative-derivative)20, PD (proportional-derivative)21, 22, or 
optimal29 active control together with passive control to maintain balance. These controllers act either continu-
ously20 or intermittently21, 22, that is, only when they are needed. Recently it was shown that a continuous control 
model may predict physiologically unrealistic parameter values, especially too much noise4, 21.

We focus here on the model presented by Asai et al. in 2009 where the body is depicted as a single-link 
inverted pendulum (SLIPM)21. In the Asai model the body is kept upright by an active and a passive PD (propor-
tional, derivative) controller. Whereas the passive controller acts continuously, the active controller acts intermit-
tently. The active control corrects the posture only when necessary, depending on pendulum angle, and angular 
velocity21. The intermittent control employs parameter values that are more physiologically plausible than those 
of earlier models21. The model is described in Fig. 1 and in Section Methods (The control model).

In a realistic characterization of human sway behaviour, the model parameters serve as biomarkers which can 
be interpreted physiologically. In earlier work, Maurer and Peterka measured COP signals and modeled them 
using SLIP model with continuous control20. The authors showed that the control parameters differed between 
young and elderly. However, neither their study nor other related studies did consider formal statistical inference 
since the model properties render likelihood calculations intractable. Consequently, formal statistical quantifi-
cation of model parameters and predictive uncertainty has, to our knowledge, not previously been considered in 
this context.

Bayesian inference provides a principled framework to deduct posterior probabilities of the model parameters 
from the measured data. The likelihood function is a key ingredient for the calculation of the posterior proba-
bilities. However, it is quite common that the likelihood function is unavailable analytically in closed form and 
that accurate numerical approximations are computationally too expensive as well. Markov Chain Monte Carlo 
(MCMC) methods have been developed to address this issue and they have been successfully applied, among 
others, to genetics13–15, infectious disease epidemiology30, 31, and climate research32, 33. However, MCMC methods 
have their limitations and for complex models they “too inefficient by far”34. Approximate Bayesian computa-
tion (ABC) is an alternative inference technique that can be used when other techniques are not applicable. It 
is approximate since it operates on summary statistics of the data rather than the raw data themselves. While 
approximate, it has been shown to produce accurate approximations of the posterior probability distribution as 
compared to those produced by using exact inference methods for tractable models34–36. ABC has rapidly gained 
attention in many of the same application fields as MCMC, such population genetics37 and infectious disease 
epidemiology38, 39, and we use it in this paper for posterior inference. In particular, we show that approximate 
Bayesian computation together with the SLIP model can accurately infer sway characteristics of both simulated 
and real test subjects.

Results
Figure 1 presents the schematic of the Asai 2009 sway model21 that outputs COM signals. Section Methods (The 
control model) presents the details of the model. In this study, we focus on the following five parameters of inter-
est: Active stiffness (P), active damping (D), time delay (Δ), noise (σ), and level of control (CON). These model 
parameters were inferred as described in the Section Methods (Statistical inference of the model parameters). 
Figure 2 shows a COM signal generated by the model and an example of a measured COP signal together with 

Figure 1.  Sway model21. Human body is modelled as a rigid, weightless inverted pendulum with a point mass, 
m, at the height, h, of the body’s center-of-mass (com), rotating around a single link (ankle). The perturbations 
or noise, σ, due to gravitation and internal and external disturbances, such as blood circulation and respiration, 
cause the body to be unstable. Passive (stiffness K, damping B) and active (stiffness P, damping D) control (here 
proportional and derivative controllers) calculate a control torque, Tc, that is needed to counteract the torques 
caused by disturbances and gravitation (Td and Tg). Passive control describes continuous muscle tone, and active 
control –that acts with time delay, Δ,– describes CNS action. Active control is ‘ON’ only when needed, 
according to the magnitude and direction of body angle, θ, and angular velocity, θ . The level of control, CON, 
models this amount or fraction of active torqueing. Finally, s is the Laplace transform variable. Five parameters 
were chosen for the inference: P, D, Δ, σ, and CON. Please see explanations for rest of the parameters in Section 
Methods (The control model).
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its COM signal, computed according to Eq. (9). The measured COM signal follows the general trend of the COP 
signal, but is smoother.

The main results are presented in the following two sections. Section Simulated subjects presents examples of 
simulated and inferred COM signal and summary statistics, examples of marginal posterior probability density 
functions (PDFs) of the parameters of interest, the overall accuracy of the inferences, and finally the sensitivity 
analysis. Section Real subjects presents the same results as Section Simulated subjects but with real subjects. In 
Section Real subjects the level of accuracy of the inferences is quantified by comparing sway measures calculated 
from the original and inferred COM signals, since the true parameter values are unknown.

Simulated subjects.  This section demonstrates that the ABC inference algorithm accurately infers the 
parameters of interest from the Asai 2009 model21 output, using the method described in Section Methods 
(Statistical inference of the model parameters). For this, we created 10 simulated subjects that are described in 
detail in Section Methods (Test subjects and measurements).

Figure 3 presents COM signals from three simulated test subjects. The COM signals were generated with 
different parameter values (“original” COM signals), and with the corresponding parameter values that were 
inferred with SMC-ABC algorithm from the original COM signals (“inferred” COM signals). The inferred COM 
signals are difficult to distinguish from the original COM signals by eye. Lower panels in Fig. 3 present the sum-
mary statistics (amplitude, velocity, and acceleration histograms and spectrum) that were used to compare the 
original COM signals and the inferred COM signals. Figure 3 shows that the summary statistics calculated from 
the original simulated COM signals fit into the 95% CI area of the summary statistics which describe the COM 
signals that were simulated using the inferred parameters.

To further investigate accuracy of the inference, we calculated the posterior mean of the parameter values. The 
true parameter values are presented in Section Methods (Test subjects and measurements). The posterior mean 
values (±SD) for the ten simulated subjects were: P = 146 ± 52 Nm/rad, D = 25 ± 7 Nms/rad, Δ = 0.19 ± 0.07 s, 
σ = 0.21 ± 0.10 Nm, CON = 0.68 ± 0.07. Figure 4 presents an example of marginal PDFs for the five parameters 
and for one simulated test subject (the one presented in the rightmost panel in Fig. 3). Figure 5 shows the true 
parameter values against the inferred posterior mean values for all ten simulated subjects. These figures show 
high correlation between all five true and inferred parameter sets, except for parameter D. Furthermore, the aver-
age error between the true and inferred parameter values, [100% * (Inferred parameter − True parameter)/True 
parameter], confirmed that we were able to infer P, Δ, σ, and CON parameters accurately, but also that we were 
unable to infer D: Perror = −1 ± 4%, Derror = 63 ± 109%, Δerror = −1 ± 15%, σerror = 3 ± 3%, and CON,error = 4 ± 5%. 
However, the higher error observed for D nevertheless had only a minor impact on the predictive accuracy of 
the model considering that the original COM signal summary statistics falls within the 95% CIs of the inferred 
summary statistics (Fig. 3).

Figure 6 shows the results of the sensitivity analysis. The most influential parameters, CON, P, and σ were 
the most accurately inferred, while the least influential parameter D was also the hardest one to infer. To see an 
increase in the discrepancy, the value of D needed to be changed more than rest of the parameters –between 0.1 
and 5 times of its real value (Fig. 6c). In (Fig. 6b–f), the spectrum and the histogram of the amplitude, the velocity, 
or the acceleration is each used one at a time to calculate the summary statistics (see Section Methods: Statistical 
inference of the model parameters). This analysis shows relations between summary statistics and model param-
eters: A change in P was detected by all summary statistics, though most clearly as a change in COM amplitude. 
Especially, too low a P value lead to a rather sudden and significant increase in discrepancy, ρ (Eq. (10)). A change 
in D leads to only a minor change mostly in COM amplitude and frequency, while a change in Δ was most clearly 
seen in COM frequency. A change in σ was detected by all summary statistics, but most clearly in acceleration 
information. Finally, a change in CON was visible in all of the summary statistics.

To understand the relative effects of P and D on the model output, we studied the relative effect of P on correc-
tive torque TC, fP(θ(t − Δ)), compared to that of D, fD(θ (t − Δ)), Eq. (2). The effect of P is ca. 50-times larger than 

Figure 2.  Manifestation of measured COP and COM signals, and of a simulated COM signal. The measured 
COM is calculated from the COP signal using Eq. (9).
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Figure 3.  Simulated COM sway signals (top panel) and corresponding summary statistics (four lowest panels). 
The three columns present three simulated test subjects. The blue COM signals are the original three signals 
that were simulated with known parameter values. The red COM signals were simulated using parameters that 
were sampled from the joint posterior PDFs that were inferred from the original COM signals by the SMC-
ABC algorithm (see Section Methods: Statistical inference of the model parameters). The lower panels show 
the summary statistics: amplitude -, velocity -, and acceleration histograms and spectra. In each panel, the blue 
line is the true summary statistic calculated from the original COM signals (average of the three), and the blue 
shadowed region presents 95% CIs that were calculated from the COM signals simulated using parameters 
that were sampled from the inferred marginal posterior PDFs. Leftmost column: true parameters: m = 54 kg, 
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the effect of D, when the default values of the sway model21 are used (see Section Methods: The control model). 
Even when the value of D was increased to 100 Nms/rad, the effect of P is still ca. 3-times larger than that of D on 
the corrective torque.

Real subjects.  Figure 7 presents the measured and inferred COM signal from three different real subjects. 
As was the case with simulated and inferred COM signals (Fig. 3) the inferred COM signals are difficult to dis-
tinguish from the measured COM signals by eye. The lower panels in Fig. 7 show the summary statistics that are 
used to compare the original COM signals and the inferred COM signals. The summary statistics calculated from 
the measured COM signals fit into the 95% CI area of the summary statistics that describes the COM signals 
that were simulated using the inferred parameters. Figure 8 presents an example of marginal PDFs for the five 
parameters and for one real subject (same subject as in the mid panel in Fig. 7). The posterior mean (±SD) values 
for the 10 real subjects were: P = 156 ± 55 Nm/rad, D = 16 ± 6 Nms/rad, Δ = 0.30 ± 0.02 s, σ = 0.12 ± 0.04 Nm, 
CON = 0.61 ± 0.04.

Since the true parameter values of the real subjects are unknown, we compared sway measures (Eqs (11)–(14) 
and Section Methods: Sway measures) that were calculated using both the measured and inferred COM signals. 
Separate paired t-tests between the measured COM signals (real subjects) and the COM signals that were sim-
ulated using the inferred parameter values showed significant difference between mean acceleration (MA) val-
ues (p < 0.01), but not between mean distance (MD), mean velocity (MV), mean frequency (MF), fuzzy sample 
entropy (FSE), scaling exponent (α), correlation dimension (D2), and largest Lyapunov exponent (λmax) values 
(Table 1). For the latter seven summary statistics the predictive distribution is centered close to the summary 
statistics calculated from the real data.

Discussion
This study was conducted to determine whether a SLIPM model with intermittent control together with approxi-
mate Bayesian computation can infer sway signals and parameters that are plausible for human subjects. Reliable 
inference could thereby result in better understanding of how different physiological conditions alter the way 
balance is maintained.

The performance of the ABC inference approach was quantified for simulated test subjects by calculating the 
fractional error (see Section Methods: Statistics) and the goodness of fit (adjusted R2) between true and estimated 
parameters. Calculating the error between the true and inferred parameter values showed that even though the 
error between P, Δ, σ, and CON on average was less than 5% (standard deviation at most 15%), the error in D 
inference was large, Derror = 63 ± 109%. These results indicate that in case of CON, there might be a small bias 
toward a larger value, which is of negligible practical concern. Our results show that our summary statistics did 
not permit accurate inference of D. However, this did not adversely affect the predictive ability of the inferred 
model. Fitting the estimated parameter values against the true parameter values confirmed the results with frac-
tional errors: the adjusted R2 value for D was only 0.400, while it was 0.765–0.993 with the other parameters 
(Fig. 5). Consequently, it appears that the SMC-ABC inference method together with the chosen summary statis-
tics capture the main features of the simulated COM signals.

Figure 6 presents the results of the sensitivity analysis. While the model contains many parameters, it can well 
be that some of them have a more significant effect on the postural sway than others. (For example, consider a 
model for a ball flying in (thin) air –although the dynamics includes a drag force, in many cases the effect of the 
drag is not very significant compared to other effects, as measurements would indicate.) Indeed, our study sug-
gests that not all model parameters are equally influential on the model output: those parameters that were most 
easily inferable (P, σ, and also CON) had generally most influence on the model output. Importantly, changing the 
D value between 0.5 to 1.5 times of its true value changed the model output only marginally as compared to the 
other model parameters. It is important to note that the sensitivity analysis we performed contained the net result 
of several parts of our method: stochastic variance that depends on e.g. chosen signal length, the chosen summary 
statistics, and the chosen discrepancy value – but not on the optimization part of SMC-ABC.

To further understand the difficulty to infer the D parameter, we compared the relative effects of P and D on 
the model output. These two parameters are similar in the sense that they are both used to maintain the pendulum 
in an upright stance via corrective torque, TC. Since the θ signal is relatively smooth (with 50 Hz sampling fre-
quency), the magnitude of θ is smaller than that of θ. Also, the magnitude of D is smaller than that of P. 
Consequently, the effect of P on the corrective torque is ca. 50-times larger than the effect of D with parameter 
default values (see Section Methods: The control model). Even when the value of D was increased to 100 Nms/rad, 
the effect of P is still ca. 3-times larger than that of D. Therefore, the effect of D – that is weaker yet similar to the 
effect of P – may go unnoticed. Again, it is important to note, that this dominance of P over D is inherent to the 
sway model. Hence, the easiest and perhaps only way to substantially increase the accuracy of inferring D is to 
increase the simulation length which decreases the variance of the summary statistics and the discrepancy value. 
This may, however, not be a viable option since it increases the duration of the posturographic measurements 

h = 0.85 m, P = 124 Nm/rad, D = 8.7 Nms/rad, Δ = 0.16 s, σ = 0.22 Nm, CON = 0.63; estimated parameters: 
P = 119 Nm/rad, D = 24 Nms/rad, Δ = 0.18 s, σ = 0.23 Nm, CON = 0.67. Mid column: true parameters: m = 80 kg, 
h = 0.78 m, P = 128 Nm/rad, D = 37 Nms/rad, Δ = 0.16 s, σ = 0.16 Nm, CON = 0.75; estimated parameters: 
P = 126 Nm/rad, D = 37 Nms/rad, Δ = 0.14 s, σ = 0.16 Nm, CON = 0.82. Rightmost column: true parameters: 
m = 82 kg, h = 0.96 m, P = 237 Nm/rad, D = 29 Nms/rad, Δ = 0.16 s, σ = 0.44 Nm, CON = 0.59; estimated 
parameters: P = 244 Nm/rad, D = 22 Nms/rad, Δ = 0.12 s, σ = 0.45 Nm, CON = 0.59.
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Figure 4.  Marginal posterior probability density functions of the five parameters: (a) Stiffness, P; (b) Damping, 
D; (c) Time delay, Δ; (d) Noise, σ; and (e) Level of control, CON. Vertical lines present true parameter values 
(green, thick), estimated parameter values (green, dotted), 50% CIs (black, solid), and 95% CIs (red, dashed). 
These results are from the same simulated test subject as in the rightmost panel in Fig. 3. The ranges on the 
x-axes correspond to the ranges of the prior distribution.

Figure 5.  Estimated parameters (posterior mean values) against true parameters. The equation for the 
estimated parameters against the true parameters is presented with a blue thin line. The equation should ideally 
be y = x, as indicated with a red thick line. The corresponding adjusted R2 values are shown in the figures.
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beyond reason. Considering both the results of our sensitivity analysis and the intrinsic dominance of P over D, 
the difficulty to accurately infer D may not be surprising.

Since no true parameter values are available for the COM signals for real subjects, the goodness of fit was 
estimated by investigating the differences between sway measures calculated from the real COMs and those cal-
culated from COMs simulated using the inferred parameters. We found that the mean acceleration of the sim-
ulated COM signals exceeded that of the measured COM signals (p < 0.001). The reason for the discrepancy 
regarding the mean acceleration may be that the expected value of this quantity is not a smooth enough function 
of the model parameters. Differences in measured and simulated signals may also be due to reasons related to the 
sway model: First, an accurate replication of nonstationarities in body sway, e.g. voluntary movements or small 
alterations in stance, is challenging. Second, the musculoskeletal model is a simplification of the kinetics of the 
human body; SLIPM presumes only one link, the ankle, to be engaged in the sway. Third, the Asai et al. model 
was constructed using a 60 kg subject with COM height of 1 m, and I = 60 kgm2. Our subjects exhibited great 
inter-individual differences in anthropometrics, which may lead to difficulties in applying (extrapolating) the 
model. However, most sway measures (MD, MV, MF, FSE, α, D2, λmax) showed no difference between measured 
and simulated COM signals. Consequently, it appears that the simulations and inference capture the main fea-
tures of the body sway for most subjects.

Future work should focus on choosing an even faster inference method, e.g. Bayesian optimization for like-
lihood free inference (BOLFI), that was presented by Gutmann and Corander 201640. Further exploration of 
summary statistics could help resolve whether the active damping, D, can be inferred from COM data, and if so, 
find measures that more accurately infer D.

Methods
All signal processing was done in Matlab (R2015a, The MathWorks, Inc., USA). All AP signals were recorded 
using fS = 50 Hz sampling frequency, and set to zero-mean.

The control model.  Figure 1 in the Results Section presents the schematic of the sway model. The sway of an 
upright standing human can be modelled as a single-link inverted pendulum21:

θ = = − + .̈I t T T t T t T t( ) ( ) ( ) ( ) (1)tot g c d

Here I is the moment of inertia of the body (appr. mh2), θ  ̈is the second derivative with respect to time t of the tilt 
angle, θ, Tg is the gravitational torque, Td is the disturbance torque (sensory noise, pulse, hemodynamics), and Tc 

Figure 6.  Sensitivity analysis. (a) The results are averaged (mean discrepancy and 95% CIs) across the 
10 simulated subjects and 100 simulation rounds per subject. All summary statistics are included. (b–f) 
Amplitude-, velocity -, acceleration- histograms, and spectrum used one at the time to form the summary 
statistics. The results are averaged across 1000 simulation rounds of one representative test subject, the subject 
presented in the rightmost panel in Fig. 3. and in Fig. 4. The parameters are (b) stiffness, P, (c) damping, D 
(please note the wider x-axis scale, from 0.1 to 5), (d) time delay, Δ, (e) noise, σ, and (f) level of control, CON. 
Briefly, the steeper the curve the more effectively the summary statistics detects changes in model parameters.
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Figure 7.  Real COM sway signals (top panel) and corresponding summary statistics (lower panels). The three 
columns present three real subjects. The blue COM curves correspond to the measured signals. The red COM 
signals represent values simulated using parameters that were sampled from the joint posterior PDFs that were 
inferred from the measured COM signals by the SMC-ABC algorithm. The lower panels show the summary 
statistics: amplitude -, velocity -, and acceleration histograms and spectra (see Section Methods: Statistical 
inference of the model parameters). In each figure, the blue line is the true summary statistic calculated from 
the original COM signals, and the blue shadowed regions present 95% CIs that were calculated using the COM 
signals that were simulated using parameters that were sampled from the inferred marginal posterior PDFs. The 
mass and estimated height of COM (see Section Methods: The control model) are: leftmost column: m = 68 kg 
and h = 0.80 m; mid column: m = 66 kg and h = 0.89 m; rightmost column: m = 68 kg and h = 0.87 m.
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is the corrective ankle torque that counteracts Tg and Td. By inserting Tg, Tc, and Td into Eq. (1)21, this equation 
becomes a stochastic delay differential equation (SDDE)41, 42:

θ θ θ θ θ θ σξ= − + + − ∆ + − ∆ + ̈I t mgh t K t B t f t f t t( ) ( ) [ ( ) ( ) ( ( )) ( ( ))] ( ), (2)P D

where m is the body mass, g = 9.81 m/s2, h is the distance between 3D center-of-mass and the ankle joint (appr. 
h = 0.55 ∙ hsub − hF, where hsub is the subject’s height and hF = 0.085 m is the coordinate of the ankle joint), and ξ is 
Gaussian noise (zero mean and unit variance). The active and passive PD-controllers’ gain parameters relate to 
the stiffness (P and K), and damping (D and B) of the motion of the modelled subject. The time delay, Δ, describes 
time used to conduct and integrate neural signals, and to initiate muscle contraction. The noise intensity, σ, rep-
resents the subject’s internal perturbations. θ − ∆f t( ( ))P  and θ − ∆f t( ( ))D  are active stiffness and active damp-
ing. The active stiffness and damping are ‘ON’ intermittently (model 4 in Asai et al.21) (Fig. 1, upper left corner):

θ θ

θ θ








− ∆ = − ∆

− ∆ = − ∆ 

f t P t

f t D t

( ( )) ( )

( ( )) ( )
P

D

if θ θ θ− ∆ − ∆ − − ∆ >t t a t( )( ( ) ( )) 0s , and θ θ− ∆ + − ∆ >t t r( ) ( )2 2 2, and.

Figure 8.  Marginal posterior probability density functions for the five parameters (real subject, same one as 
in Fig. 7, mid panel): (a) Stiffness, P; (b) Damping, D; (c) Time delay, Δ; (d) Noise, σ; and (e) Level of control, 
CON. Vertical lines present estimated parameter values (green, dotted), 50% CIs (black, solid), and 95% CIs (red, 
dashed). The ranges on the x-axes correspond to the ranges of the prior distribution.

True Inferred Sig.

MD (mm) 4.6 ± 1.6 4.1 ± 1.1 NS.

MV (mm/s) 2.7 ± 0.4 2.7 ± 0.5 NS.

MA (mm/s2) 8.9 ± 1.8 9.8 ± 2.3 p < 0.01

MF (Hz) 0.11 ± 0.03 0.12 ± 0.03 NS.

FSE 0.12 ± 0.01 0.13 ± 0.02 NS.

α 1.7 ± 0.1 1.7 ± 0.1 NS.

D2 2.3 ± 0.5 2.1 ± 0.5 NS.

λmax 0.59 ± 0.15 0.61 ± 0.16 NS.

Table 1.  Predictive accuracy of the inference with real subjects. Basic sway measures (Eqs (11–(14)) and 
nonlinear sway measures (Section Methods: Sway measures) calculated from real COMs (“True”) and the 
inferred COMs (“Inferred”, e.g. calculated from COM signals that were simulated with the inferred parameters). 
“NS.” means not significant. These results show that the real COMs and the inferred COMs are similar, except 
for their mean acceleration values.
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otherwise. The radius r determines a quiet zone (active control is ‘OFF’) around the equilibrium point (upright 
stance). The slope as determines the level of control, CON, (i.e. fraction of active torqueing in the phase plane, 
AREAON/(AREAON + AREAOFF)), according to CON = 0.5 + atan(−as)/π (Fig. 1A). The default values for the 
parameters from Asai et al.21 are K = 0.8 · mgh Nm/rad, B = 4 Nms/rad, P = 0.25 · mgh Nm/rad, D = 10 Nms/rad, 
Δ = 0.2 s, σ = 0.2 Nm, r = 0.004 rad-rad/s, and CON = 0.62 (as = −0.4).

We first analyze the case when the active control is ‘ON’. By rearranging the terms in Eq. (2), and by trans-
forming the variables into a more convenient form (a = (mgh − K)/I, b = −B/I, c = −P/I, d = −D/I, and e = σ/I), 
Eq. (2) becomes:

θ θ θ θ θ ξ= + + − ∆ + − ∆ + . ̈ t a t b t c t d t e t( ) ( ) ( ) ( ) ( ) ( ) (4)

By converting the second order SDDE into two first order SDDEs one obtains:

θ ω
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where ω is angular velocity. Next, discretizing the pair of equations using the Euler-Maruyama method41, 42 leads 
to:
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Here Θ and Ω are the discretized sway angle and angular velocity, Δt is the time increment (sampling interval, 
in seconds), n is time index, whereas k = Δ/Δt is unitless time delay, ξn are independent normally distributed 
random numbers with zero mean and unit variance. When the active control is ‘OFF’, c = d = 0, and Eqs (4)–(6) 
simplify accordingly.

The initial angle and angular velocity:

η




Θ =
Θ = Ω =− < < − < < 0, (7)k n k n

0

0 0

where η is a uniformly distributed random number between −0.01 and 0.01 radians. The pendulum height h 
and weight m were chosen according to the subject’s height and weight. The passive stiffness and damping were 
constant and chosen according to Asai et al.21: K = 0.8 · mgh Nm/rad and B = 4.0 Nms/rad. Five model parameters 
(P, D, Δ, σ, and CON) were chosen for optimization.

The transformation from θ to COM is:

θ= .COM t h t( ) sin( ( )) (8)

To compare the measured COP signal with the simulated COM two approaches are possible: either one converts 
the simulated COM to COP, which requires numerical differentiation of COM, or one converts the measured 
COP to COM. To avoid complications associated with numerical differentiation of noisy signals we employed the 
latter approach using the Laplace transform5:

=
∆

∗−| ∆ |COM
t

e COP
2

, (9)n

g
h n t

g
h n

where * denotes convolution. The algorithm to implement Eq. (9) is presented by Tossavainen 20066.

Test subjects and measurements.  The employed protocol was accepted by the ethical review board of the 
University of Helsinki, and conducted in accordance with the Declaration of Helsinki. Written informed consent 
was obtained prior to the tests from each subject.

Our cohort comprised 10 subjects (4 males and 6 females, 29 ± 5 years, 68 ± 16 kg, 170 ± 13 cm, BMI 
23 ± 3 kg/m2, no medication or diagnose affecting balance). Their COP signals were recorded with a Nintendo 
Wii Fit balance board43. The subjects stood erect, feet together and hands folded across their chest, looking at a 
marker 70 cm in front of them on a wall. Each measurement comprised three repeats of 60-second trials with a 
30 s pause between each trial. The measurement program –a custom made C# program that uses an open source 
WiiMoteLib-library44 – was run on a PC laptop with Bluetooth® access to the Wii board.

To test the accuracy of the inference, we further simulated 10 test subjects (66 ± 17 kg, 169 ± 12 cm, 
BMI 23 ± 6 kg/m2, P = 146 ± 50 Nm/rad, D = 23 ± 14 Nms/rad, Δ = 0.20 ± 0.06 s, σ = 0.21 ± 0.10 Nm, and 
CON = 0.65 ± 0.05). Height, weight and model parameters were randomly varied, and any test subject that met 
the following criteria were accepted: the maximum sway amplitude was between 10 mm and 50 mm, height was 
between 145 cm and 200 cm, weight was between 40 kg and 110 kg, BMI was between 15 and 35, and the sway 
looked realistic when examined visually.
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Statistical inference of the model parameters.  For Bayesian inference, we needed to specify the prior 
distribution of the parameters. We assumed that they are statistically independent and uniformly distributed on 
the following intervals: [50, 400] Nm/rad for P; [0.05, 50] Nms/rad for D; [0.05, 0.5] s for Δ, [0.05, 0.6] Nm for σ, 
and [50, 100] for CON. The model in our paper is too complex for the likelihood function to be calculated analyt-
ically in closed form, or to be calculated numerically with high accuracy. This prevented us from using standard 
likelihood-based inference methods. Since we can simulate data from the model for any values of the parameters, 
statistical inference can be performed using the approximate Bayesian computation (ABC) approach for intracta-
ble simulator-based models.

In a nutshell, ABC approximates the likelihood function using a discrepancy function that measures the sim-
ilarity between the observed and the simulated data. Parameter values are assigned a large likelihood if they are 
very probable to generate data similar to the observed data. Small likelihoods are assigned if the probability to 
generate similar data is very small. For further information on ABC, we refer the reader to a review paper by 
Lintusaari et al.36.

We followed the common practice in ABC to summarize each data set by lower dimensional summary statis-
tics, and to compute the discrepancy based on the summary statistics rather than the full data45. Studying the sway 
model (Fig. 1 and Eq. (2)) may give an indication on how to choose the summary statistics. Equation (2) contains 
sway angle θ, angular velocity θ, and angular acceleration, θ  ̈that are closely related to the COM signal (Eq. (8)), 
its velocity and acceleration. Stiffness, P, and damping, D are gain parameters that both are part of the corrective 
torque, Tc, that keeps the pendulum upright. Stiffness relates directly to the magnitude of the θ signal (Eq. (3a)): 
the larger the sway amplitude, the larger the corrective movement due to stiffness. Damping relates to the time 
derivative of θ, θ (Eq. (3a)); the larger the θ, the larger the effect of damping on Tc. The level of control, CON, gov-
erns the damping and stiffness parameters, it determines in practice when PD-control is ON. The time delay, Δ, 
impairs the actions of the PD-control by delaying it. Further, σ, is the intensity of the Gaussian noise in the distur-
bance torque, Td. The parameters P, D, CON, and Δ drive the acceleration θ  ̈by coupling to θ and θ terms, and 
characterize the dynamics of the pendulum system (Eq. (2)). Therefore, we anticipate the effect of these parame-
ters to be visible in all three θ, θ, and θ  ̈signals. In contrast, the Gaussian noise term parameterized by the intensity 
σ appears as a driving force, affecting the acceleration θ  ̈directly (Eq. (2)). Therefore, we anticipate the effect of σ 
to be most visible in the θ  ̈signal. Because of these reasons, changes in the model parameters should be visible in 
the COM signal, as well as in its velocity -, acceleration -, and frequency transforms.

Denoting the vector of summary statistics of the observed and simulated data by Фobs and Фsim, respectively, 
the discrepancy ρ was computed as the normalized relative error between them:

∑ρ =
Φ − Φ
Φ + Φ=l

1 ,
(10)i

l
obs sim

obs sim1

where l = 60 is the length of the summary statistics. Let us denote COM signals that are transformed from the 
measured COP signals according to Eq. (9) ‘measured COM signals’. Summary statistics Фobs and Фsim were cal-
culated from both simulated and measured COM signals that were first filtered with a bidirectional FIR filter 
with 10 Hz lowpass cutoff frequency. The absolute value of the COM amplitude, |x|, velocity, fS ∙ |x(i + 1) − x(i)|, 
and acceleration, fs

2 ∙ |[x(i + 2) − x(i + 1)] − [x(i + 1) − x(i)]|, were represented as histograms with 15 bins each. 
Bin boundaries were individually chosen for each subject according to the maximum amplitude, velocity, and 
acceleration values of the three measured COM signals. Matlab’s function ‘pwelch’ was used on the COM signal 
to calculate the power spectral density (PSD). The PSD vector up to 0.7 Hz featured 15 data points and had there-
fore the same weight (importance) as the amplitude, velocity, and acceleration histograms each having 15 bins. 
The bins/PDS values of the three repeated 60 s COM trials were averaged. This kind of vector comprising 60 data 
points was taken as summary statistics to describe each of the data sets.

We used a sequential (population) Monte Carlo implementation of approximate Bayesian computation 
(SMC-ABC)46. In each iteration, the algorithm ran the sway simulation with different candidate parameter val-
ues, calculated the summary statistics Фobs and Фsim, and determined the discrepancy ρ between the observed and 
simulated data set until a preset number of simulations produced discrepancies that were equal or smaller than a 
threshold ε. The corresponding “accepted” parameter values can be shown to be samples from an approximation 
of the posterior distribution of the parameters given the observed data. The point of the SMC-ABC algorithm is 
that the threshold ε is made smaller in each iteration, which makes the approximation more accurate. In the algo-
rithm the candidate parameter values are determined in an adaptive manner based on the samples obtained in 
the previous iteration. In the first iteration, the parameter values are drawn from the prior. We ran the SMC-ABC 
algorithm for seven iterations, accepting 5000 samples per iteration. For further information on SMC-ABC, see 
e.g. the review by Lintusaari et al.36.

In our case the outcome of the SMC-ABC algorithm are samples from the joint posterior probability density 
function of the five parameters we investigate. Here, we used posterior mean values of each marginal PDF to sum-
marize information about that PDF. The posterior mean values are compared to the original parameter values to 
estimate the goodness of the inference (e.g. Fig. 5), and to summarize the results from all ten simulated and ten 
real subjects.

Sway measures.  To test the quality of the inferred COM signals, we calculated four conventional statistical 
sway measures from the measured COM signals and their inferred counterparts: mean distance MD, mean veloc-
ity MV, mean acceleration MA, and mean frequency MF7.
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where x is the COM signal of length n, and fS = 50 Hz is the sampling frequency. When calculated from the COP 
signals, these simple sway measures correlate only moderately with each other9. This means that they possibly 
represent different aspects of the body sway.

To get a detailed picture of the characterization of body sway, we additionally used four nonlinear sway meas-
ures: fuzzy sample entropy (FSE)47, scaling exponent α of detrended fluctuation analysis (DFA)48, correlation 
dimension (D2)49, 50, and largest Lyapunov exponent (λmax)51, 52. These measures have been used to characterize 
body sway, and one can theorize that they relate to physiological aspects of human body50. Commonly these 
measures are used to characterize center-of-pressure (COP) signals, here we use them to characterize the COM 
signals – the model output.

Fuzzy sample entropy47 describes the repeatability or predictability of the signal. Its change in sway signals 
has been theorized to signify the amount of attention a person invests in balancing53. The algorithm calculates 
the distance dL

i,j = max0≤k≤L−1|xj+k − xi+k| between all L-length sequences xi and xj (i ≠ j) in the signal. Next, a 
(fuzzy) value between 0 and 1 is determined using the function μ(dL

i,j,r,c) = exp(−(dln(cln2)/lnr)/c); the more alike 
the sequences are, the larger the μ value. The tolerance r and the shape factor c determine the shape of μ. Bm is 
the sum of μ-values for all combinations of xi and xj. The procedure is repeated with L + 1-length sequences 
(dL

i,j = max0≤k≤L|xj+k − xi+k|) which gives AL, as the sum of the μ-values. Finally, FSE is defined as −ln(AL/BL). 
We chose the L and r parameters as instructed by Lake et al.54: The segment length L was chosen according to the 
corresponding AR-process order, which was determined by minimizing the Schwarz’s Bayesian criterion. r was 
chosen based on minimizing a sample entropy (FSE, except that μ is a Heaviside function) error estimate. Using 
this approach, we arrived at: L = 6, r = 0.03 and c = 0.01.

Detrended fluctuation analysis48 quantifies long-range correlations in nonstationary signals. The algorithm 
first numerically integrates the signal. The signal is then divided into s-length segments (here we chose s to be 
between 5 and 750 data points with logarithmic intervals), and each segment is separately detrended by a linear 
least squares fit. The square root of the average residuals of the segments is plotted on a logarithmic scale against 
the segment length s. The scaling exponent α is the slope of the so constructed graph. α is between 0 and 2. The 
larger the value, the more persistent, ‘smoother’ the signal is48, 55.

Correlation dimension estimates the number of the active control variables (degrees of freedom) of the under-
lying dynamics of postural control49, 50. The COM signal x is presented in a state-phase presentation, Xi = [xi, xi+J, 
xi+2J, …, xi+(M-1)J], where J is the lag, M the embedding dimension, and Xi a point in a N − (M − 1)J length trajec-
tory. Here J was estimated as the first minimum of the mutual information function56. The algorithm calculates 
the correlation sum CM, the fraction of pairs of trajectory points that are separated by a distance less than r, but 
by more than the temporal separation of twice the lag J. CM behaves as a power law, CM(r) ∝ rD2 for small values 
of r. dM is the slope of CM against r on logarithmic scale. dM is calculated for increasing M (M = 1, 2, 3…). When 
M > 2 ∗ dM + 1, dM is the correlation dimension, D2. Here M = 6 ± 1 and J = 27 ± 5.

A positive value of the largest Lyapunov exponent indicates the presence of chaos in a deterministic and non-
linear signal51, 52. When applied to COM signals, λmax quantifies the sensitivity of the postural control system to 
small, internal perturbations57. The λmax algorithm uses the state-phase presentation of the signal, as described 
in the previous paragraph on D2. Next, the divergence of initially close trajectories is quantified using nearest 
neighbours, Xĵ, where Xĵ is defined as the Xj that minimizes the Euclidean distance between Xj and Xĵ, and still has 
a temporal separation greater than twice the lag J. The divergence at an instance i is d(i)j = d(0)jeλmax(iΔt), where 
d(0)j is the initial distance between Xj and Xĵ. Finally, λmax is estimated as the slope of a least-squares fitted line, 
y(i) = Δt−1〈lnd(i)j〉, where 〈 〉 is the average value over j neighbours.

Statistics.  The inference error was estimated from the results of both the simulated and the real subjects. The 
error between the true parameters and inferred parameters (simulated subjects) was estimated by regressing the 
estimated parameters (posterior mean) against the true parameters, and by calculating the fractional error: 100% 
* (Estimated parameter-True parameter)/True parameter. Separate paired t-tests were conducted to estimate the 
difference between the sway measures calculated from the measured COMs and the COMs that were simulated 
with the inferred parameters. We considered p < 0.05 to be significant.

To understand how changes in parameters mediate to changes in summary statistics, we analyzed the sensitiv-
ity of each parameter. We changed one parameter value at time between 0.5 and 1.5 times its true value (between 
0.1 and 5 in case of D), while keeping the others fixed, and calculated the discrepancy value, ρ (Eq. (10)). We 
also formed the summary statistics, Фsim and Фobs using either the amplitude -, the velocity -, the acceleration 
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histogram or the spectrum (see Section Methods: Statistical inference of the model parameters). We then repeated 
the sensitivity analysis using these four summary statistics. Furthermore, we compared the relative effects of P 
and D (Eq. 3) on the model output. Both P and D affect how the pendulum is maintained upright by the corrective 
torque, TC. To this end, we simulated 6000 s of upright stance using default parameter values (P = 147 Nm/rad, 
D = 10 Nms/rad, K = 471 Nm/rad, B = 4 Nms/rad, σ = 0.2 Nm, Δ = 0.2 s, r = 0.004 rad-rad/s, m = 60, h = 1), and 
another 6000 s where all parameters had their default values, except D = 100 Nms/rad (10 times its default value).
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