
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2000

Billing and receivables database application Billing and receivables database application

Sushma Lukalapu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Data Storage Systems Commons

Recommended Citation Recommended Citation
Lukalapu, Sushma, "Billing and receivables database application" (2000). Theses Digitization Project.
1618.
https://scholarworks.lib.csusb.edu/etd-project/1618

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1618?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

BILLING AND RECEIVABLES

DATABASE APPLICATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Sushma Lukalapu

June 2000

BILLING AND RECEIVABLES

DATABASE APPLICATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Sushma Lukalapu

June 2000

Approved by

 Date^—IS' ̂e?00
UT. Josephine Mendoza, Chair

Dr. George M, Georgxou

Dr. Tcmg Lai Yu

Ms. Lorraine Frost

ABSTRACT

The Accounting Department at California State University,

San Bernardino (CSUSB), keeps track of vast amount of

student financial data. The purpose of the Billing/

Receivables application is to develop a computerized

database system to keep track of all the financial details

pertaining to students such as tuition, registration,

parking, housing, etc. Originally, all the data has been

stored in files. This application has been converted into

a database from a file-based system. The application aims

to support a centralized approach to the billing and

receivables functions, process and track the transactions,

and also provide ad-hoc access to produce appropriate

reports. This database offers several benefits over the

current file based system: allows multiple user access;

reduces data redundancy; provides speedy recovery of data;

maintains data integrity; allows security restrictions; and

balances conflicting requirements. The database is

designed using the entity-relationship (E-R) model

concepts. The database is implemented using a relational

database management,system - ORACLE 7.3. along with its

components SQL*Plus 3.1. . , SQL*Forms 4.5., and SQL*Reports

2.5. The database executes as an integrated menu

iii

application (designed using SQL*Forms). It also includes

user-friendly data entry forms, and several SQL queries

that generate organized reports of use requested

information. The database has been validated for its

functionality and is ready for use.

IV

I

ACKNOWLEDGMENT

I thank the faculty of the Computer Science department for

giving me an opportunity to pursue my M.S. in Computer

Science at California State University, San.Bernardino.

express my sincere appreciation to my graduate advisor, Dr.

Josephine Mendoza, who provided me with invaluable guidance

through this entire effort. I also thank my other

committee members. Dr. George M. Ge.orgiou and Ms. Lorraine

Frost, for their valuable input. I would also like to

thank the staff of the Administrative Computing Services

for their cooperation and advice in the analysis of the

project. Last but not least, I .would like to thank my

husband Ramana for his invaluable support and my friend Air

Radha for his help with Oracle applications.

V

TABLE OF CONTENTS

1. INTRODUCTION 1

1. 1. INTRODUCTION 1

1.2.PURPOSE OF THE PROJECT 2

1.3.RESULTS OF THE PROJECT 3

2. DATABASE REQUIREMENTS AND SPECIFICATIONS 5

2.1.PROJECT APPROACH . 5

2.2.INFORMATION DESCRIPTION ... 6

2.2.1.Information Flow Representation 6

2.2.2.Flaws in the Existing File Based System: 14

2.2.3.Information Content Representation.. 15

2. 2. 4.System Interface Description 15

2.2.5.Conceptual Database Design 18

2.3.SYSTEM REFERENCE , 42

2.4.SOFTWARE PROJECT CONSTRAINTS 42

2.5.FUNCTIONAL DESCRIPTION 43

2.5.1.Functional Description 43

2.6.BEHAVIORAL DESCRIPTION 46

2.6.1.System State 46

2.6.2.Events and Actions 46

2.7.VALIDATION CRITERIA , 49

2.7.1.Performance Bounds . 49

2.7.2.Classes of Tests...... ..50

2.7.3.Expected Software Response . 50

2.7.4.Special - Considerations 50

3. PHYSICAL DATABASE DESIGN. . .; 51

3.1.CREATION OF TABLES 51

3.2.DATA LOADING 55

VI

3.3.DESIGN of SQL*FORMS 56

3.4.DESIGN OF SQL*REPORTS 58

3.5.FUTURE ENHANCEMENTS 60

4. DATABASE VALIDATION 61

4.1.UNIT TESTING 61

4.2.INTEGRATION TESTING ' 62

4.3.SYSTEM TESTING 62

APPENDIX A: CREATING TABLES, FORMS AND REPORTS 63

APPENDIX B: STEPS TO GENERATE A MASTER DETAIL FORM 70

APPENDIX C: FORMS CREATED FOR PROJECT 75

APPENDIX D: REPORTS CREATED FOR PROJECT 94

BIBLIOGRAPHY 104

Vll

LIST OF TABLES

2.2.4.2.1.1. ATTRIBUTE DETAILS FOR STUDENT ENTITY 24

2.2.4.2.1.2. ATTRIBUTE DETAILS FOR CHARGES ENTITY 26

2.2.4.2.1.3. ATTRIBUTE DETAILS FOR PAYMENT ENTITY 27

2.2.4.2.1.4. ATTRIBUTE DETAILS FOR ACCOUNT ENTITY. .28

2.2.4.2.2.1. ATTRIBUTE DETAILS FOR BILLED RELATIONSHIP 31

2.2.4.2.2.2. ATTRIBUTE DETAILS FOR APPLIED RELATIONSHIP 34

2.6.2. PRIMARY AND FOREIGN KEYS.. ...43

Vlll

22

LIST OF FIGURES

FIGURE 2.2.3. INFORMATION CONTENT REPRESENTATION-EXAMPLE...!6

FIGURE 2.2.5.2. ENTITY RELATIONSHIP DIAGRAM

IX

1. INTRODUCTION

1.1. INTRODUCTION

1

The Accounting Department at California State

University, San Bernardino (CSUSB) maintains the financial

details of the student accounts like tuition, boarding,

housing, parking, etc. The department has to keep track of

an extensive amount of student account information. This

requirement clearly drives the need for a computerized

database system that allows a greater level of flexibility

in the organization and storage of data, maintenance of

data, and retrieval of data. This need for a more versatile

database led to the development of this project, the Billing

and Receivables database application. The

Billing/Receivables application aims to:

• Support a centralized approach to the billing and

receivables functions

• Process and track Billing/Receivables transactions

• Facilitate decision making :

• Facilitate follow-up

• Provide ad-hoc access to produce appropriate reports

1.2. PURPOSE OF THE PROJECT

The purpose of this project is to design, build, and

implement an information retrieval database system for the

Accounting Department at CSUSB. The dafabase will focus on

the financial details of the student accounts maintained by

the accounting personnel. It offers detailed information

pertinent to tuition, parking, housing, boarding, etc. The

main reason for selecting the database approach over the

existing file-based approach is due to specific advantages

of centralized control of data. Some advantages of the

database approach are:

• Redundancy can be controlled

• Data can be shared

• Consistency of data is maintained

• Multiple users can access the data at a time

• Standards can be enforced

• Security is improved

• Data integrity can be maintained

• Conflicting requirements can be balanced

• Backup and recovery services can,be improved

• Concurrency can be increased

The database is implemented using a commercial database

management system - ORACLE Version 7.3. This database will

address the immediate needs of the accounting staff and at

the same time would also permit the accounting personnel to

further enhance the application.

1.3. RESULTS OF THE PROJECT

This project consists of the following outputs:

Database Application: A working database with relevant

application programs, that meet the specific needs of the

Accounting Department with respect to storage and retrieval

of student accounts. ORACLE SQL*Forms and SQL*Reports are

utilized to maximize the user-friendliness of the database

application.

Users Manual: An implementation manual will be provided

for the users.

Data Dictionary: A dictionary detailing all the fields

will be provided.

Systems Manual: A project report containing the.details

and specifications of the design will be available; and

procedure to create template reports and forms will be

provided.

2. DATABASE REQUIREMENTS AND SPECIFICATIONS

2.1. PROJECT APPROACH

The campus accounting department's B/R applications are

currently functioning on an IBM-4391, mainframe system.

This computer system adequately supports the administrative

applications with the help of upgrades and enhancements.

However, this IBM system doesn't adequately support the

efficient retrieval of data from the administrative systems

for ad-hoc reporting purposes. The application consists of

various screens written in COBOL. The student billing

information is viewed by means of screens and the data

updated on the screens is directly updated in the VSAM

(Virtual Sequential Access Method) files on the mainframe

system. However, other information not found on the screens

is obtained by sending the requests to the COBOL analysts in

the Administrative computing. These analysts, write COBOL

programs to get the required data and send the reports back

to the accounting department. This procedure is not very

efficient because the accounting department personnel have

to wait for a day before they get the required information.

Motivation for this project comes from wanting to develop a

better, faster and complete,database for the needs of the

. 5 ■ * '

end users in the accounting department. The ad-hoc queries

will be done by accounting personnel as required using

BRIO. BRIO is a query language developed at BRIO

Technology, Inc. to retrieve data. Accounting personnel are

trained in using BRIO. .

A review of different types of data used by the accounting

staff revealed that the data constituted distinguishable

objects (entities) that can be linked to each other with

certain relationships. Therefore, the concept of relational

model was chosen as the design approach. The relational

model is a way of representing data in tables and

manipulating the data by means of operators such as Select,

Join, Insert, Delete, Update, etc.

2.2. INFORMATION DESCRIPTION

2.2.1. Information Flow Representation

The data for the database design has been obtained after a

thorough analysis of the existing data files and discussions

with the current users and analysts. All their requirements

and -specifications were taken into account while designing

the database.

To start with, twelve, files were obtained from the

accounting department:

6

FILE NAME	 FILE DESCRIPTION

AA	 Student attribute file - contains the personal

information of a student

AM	 Student miscellaneous file - contains

information like who did the transaction on a

student, the holds if any on students, etc.

AP	 Building/room posting file - contains

information about the courses being offered and

the location of each class, etc.

AR	 Tuition rate table file - contains information

of how much to charge a student depending on the

number of units enrolled, flat fees, etc.

BC	 Subcode file - contains information of the

subcode for a specific type of charge, the

subcode description, if the transaction is a

charge or payment, etc. Every subcode is

associated with a 10 digit account number

FILE NAME	 FILE DESCRIPTION

BD	 Financial detail file - contains information

about a bill, e.g., the date bill was prepared,

the amount, person who prepared the bill, due

date of the bill, etc.

EM	 Cash checkout file - if the payments, are in

cash, who took the payments and were they posted

to.the account, etc.

BS	 Financial summary file - contains information

about a bill, e.g., the bill type, if the

transaction has been fed to the corresponding

accounts, etc.

CF..	 Cashiering fees feed file - corresponds to the

cashiers office

CS	 Cashiering suspend/line item file - corresponds

to the cashiers office

FILE NAME	 FILE DESCRIPTION

RC	 Course term file - contains information about a

particular course like.the course no., units,

name, faculty offering the course/ etc.

RT	 Student term file - contains information of the

courses taken by a student in a particular

quarter,.whether the, student is a sophomore, a

graduate., etc. y , 1

After thorough analysis of all'the above files, it was

concluded that AA, BD and B'S are the only files related to '

the B/R module. After discussions with the end users, all

the required attributes were selected from the files. The

following is the detailed description of attributes in the

AA, Bb, and BS files.

FILE AA -	STUDENT ATTRIBUTE FILE\

ATTRIBUTE 	NAME ATTRIBUTE DEFINITION

SID .	 Social security number

ATTRIBUTE NAME	 ATTRIBUTE DEFINITION

PrevSID	 Previous social security number if any

or blank

Name	 Student name

PrevName	 Previous student name if any or blank

FILE BD - FINANCIAL DETAIL FILE

ATTRIBUTE NAME	 ATTRIBUTE DEFINITION

TranDate	 Date transaction was done

SID	 Social security number

Extrind	 External indicator. Specifies whether

the student is regular (^-'), contract

(), or extension (^E').

Subcode	 subcode number assigned to the charge, or

payment

10

ATTRIBUTE NAME

Transeq

BillDate

TranAcctRef

TranAmt

PaidDate

PaidAmt

TranUser

EffDate

AcctngFeed

DueDate

ATTRIBUTE DEFINITION

sequence number of the transaction

date detail item was prepared

uset,;defineid :id transaction

amount charged for a subcode

date the transaction was paid .. .

total amount paid

code indicating, the user of the

transaction.

date when charge or payment is effective

whether transaction fed to accounting

system

1: not done; ^2': first phase done;

^3': check written for refund

avoid penalty date

11

ATTRIBUTE NAME	 ATTRIBUTE DEFINITION

ChrgClass	 control the order in which payments are

applied to charges during the accounting

feed

TranAcctl	 charge debited from this account

TranAcct2	 charge credited to this account

ReceiptNum	 number on the receipt of the transaction

FILE BS - SUBCODE 	DESCRIPTION FILE

ATTRIBUTE NAME	 ATTRIBUTE DEFINITION

SubDesc	 description of the subcode

Chrg Pay Ind	 whether charge of.payment '

APFeedlnd	 INDICATES TRANSACTION WITH THIS SUBCODE

TO,ACCOUNTS PAYABLE (A/P);'N': NO

REFUND; ̂ Y' . .REFUND, CHECKS WILL BE

GENERATED.FROM AN A/P VOUCHER

a12'

ATTRIBUTE NAME

BillType

ATTRIBUTE DEFINITION

indicates how transactions posted to the

subcode are to be processed

nothing;

11': tuition income clearing account;

> iji f .
 non-resident tuition;

'N': Other tuition;

^Q': other fees;

y-p,. registraton;

'B': boarding;

'H': housing;

'C ; contract;

'S': scholarship;

'E': exemption;

'W: waiver;

'D': deposit;

'A': financial aid;

^S' and ^E' are used during tuition

calculation to generate credit forms.

13

2.2.2. Flaws in the Existing File Based System:

• Field Charge Class is 3 characters long which keeps track

of the order in which the payments are applied. The data

being entered is not very understandable. However, after

another discussion with the analysts, Chrg Class is a

three letter id which tells what payment has to be

applied when. It is the order of the payments applied to

the account. It can take values A, B, and AB. However,

a look-up table is required that describes the meaning of

A, B, and AB.

• Transaction,User is 2 characters and it is the code

indicating the user. There should be some kind of a look

up table that specifies the user name corresponding to

the code.

• Bill Date is redundant because most of the time it is the

same as the Effective Date.

• Transaction account reference is the user defined id fo.f

the transaction. There.should be some document to keep

track of all the ids. Also there is no clear need for

this id. As there is transaction sequence which keeps

14

track of the transaction.

2.2.3. Information Content Representation

All the data will be represented in ORACLE tables and

viewed by means of SQL*Forms and SQL*Reports. The entity

Student is a relational table. The form 'Students Data' is

an independent form derived from the Student base table.

There is also a report which prints out all the students

enrolled in the University that corresponds to the Students

Data form. The report is generated using an SQL statement

based on the Student table. This is achieved by selecting

the student SSNo and the Name from the Student table.

A sample Main menu, Form, and the corresponding report

are shown in Figure 2.2.3.

2.2.4. System Interface Description

This application allows easy ad-hoc access to student

billing information and also allows efficient retrieval of

student■information from the desktop of the end user. The

billing information is updated in the mainframe

applications. The relevant information will be extracted

using FOCUS, a symbolic programming language and loaded into

the database tables nightly.

15

FIGURE 2.2.3. INFORMATION CONTENT REPRESENTATION - EXAMPLE

QUARTERENROLLEMENT

QUARTERLY TUITION I

OUTSTANDINGDUES
 1

CTi

<r- TUITIONFORM
SSN

MAIN MENUFORM

FORMATTED

REPORT GENERATED

SUBCODE DESC.np<?r amt nATis DUEDATE THROUGH
AMT. mm, nrrPHATP

SQL*REFORTS

:

i

3

The final B/R database is a set of ORACLE tables, SQL

Forms to view, insert, and update data, and SQL Reports to

retrieve often used data. SQL Reports are generated using

SQL scripts.

The advantages of this interface are:

• Ease of use (user is informed of the valid choices),

• Minimal entry errors (items can be selected instead of

typing; spelling errors can be avoided; and invalid

entries can be prevented).

Pick Lists are used for certain fields which have a set

of entries. For example, if the attribute ^Extr-ind' can

take values Blank, or ^E' the corresponding pick list

gives the description for each of these values.

The B/R module will have three levels of user

interaction:

• Ad-hoc queries,

• Routine data entry, and

• Maintenance data entry (updating, deleting).

Once all requirements were collected and analyzed, the

17 ,

next step was to create the conceptual data model which

consists of:

• Identifying entities (e.g.. Student, Payment, etc.),

• Determining key attributes of each entity (e.g.. Student

has entities SID, Name, etc.),

• Establishing relationships and defining constraints

(e.g.. Billed is the relationship between Student and

Payment).

2.2.5. Conceptual Database Design

The design process begins with conceptual design phase,

which includes a clear definition of database requirements,

content, structure, interrelationships, and constraints.

The conceptual design results in a conceptual model (a high-

level data model) that possesses the following

characteristics:

a) Expressiveness,

b) Simplicity,

c) Minimality,

d) Diagrammatic representation, and

e) Formality.

Prior to defining the design parameters, it is critical

to identify the entities and the information to be recorded

about those entities. Therefore, the initial step is to

gather and review the database requirements.

2.2.5.1. Requirements and Collection Analysis

In order to design the database effectively, we must

know the requirements of the users and the intended uses of

the database in as much detail as possible. These include

new and existing users and applications. Meetings were held

with the accounting staff and the analysts for the following

activities:

• Identification of the major application areas and user

groups,

• Review of the existing documentation concerning the

application, and

• Analysis of the types of transactions and their

frequencies.

The following is a detailed summary of the database

contents and user requirements:

. 19

• Application area: the database should hold and offer

information related to the student accounts, the account

description, subcodes.

• Application users: the application should be accessible

to the accounting staff and also to the analysts in the

Administrative Computing Dept.

• Operating environment: the application is currently on

UNIX platform (SunOS). The application uses ORACLE

Version 7.3 along with its components SQL*Forms 4.5 and

SQL*Reports 2.5. ORACLE 7.3 was chosen for this

application primarily because of its existence in the

Administrative and Computing Department at CSUSB and also

for its powerful capabilities such as, flexibility to

expand the application in the future, enormous data

processing capabilities, etc. It is also an industry

standard Relational database management system. Multiple

users can access the application simultaneously.

2.2.5.2. Development of Entity-Relationship (E-R)

Model

Following.the requirements collection and analysis, is

the development of the conceptual schema. The conceptual

schema is a concise description of the data requirements of

20

the users and includes detailed description of the data

types, relationships, and constraints. The conceptual

schema is expressed by means of E-R diagrams. An entity

represented in the E-R model is a ^thing' in the real world

that has an independent existence. E.g., an entity can be

an object with physical existence such as a person or an

object with conceptual existence such as a company. Each

entity has a specific set of attributes (properties) that

describe the entity. Each entity also has an attribute

called the primary key attribute and it is used to identify

each entity uniquely. The E - R diagram is shown in Figure

2.2.5.2.

2.2.5.2.1. 	 Identify Entities and Associated

Attributes

Entities are classified as either regular or weak

entity types. A regular entity is also referred to as a

strong entity. If an entity's existence is independent of

another entity, then it is known as a regular,entity. If an

entity's existence is dependent on another entity, then the

depending entity is called weak entity. In this

application, the entities "Student" and "Account" are

regular entities and the rest are all weak entities. A

regular entity is drawn as a single lined rectangle where as

21 	 '

INJ
 C^Amount

(C^^^Subcode

d^DucDate

ClT^rtn

CdTranSeq

C^^^ffPate

FIGURE 2.2.5.2. ENTITY RELATIONSHIP DIAGRAM

PrevSID^^

C7 SIB

<^xtrlnd_^

Student

CZName
 PrevName^

TranSeq SID
C/PInd

TranUser

C^ceiptNum Billed 5^BilLDate

M ' M

Charges Payment
Made

M

Correspon < Applied

M

Account

CrAcct
d^ubcqdd^

dTsubPesc^ d]pbAcct~2^

ReceiptNum

PaidAmF^

PaidDate^

BillTypO

Chrgclass]^

TranAcct]^f~^

TranAcctFe^

APFeedLnO

a weak entity is drawn as a double lined rectangle.

Attributes are a set of properties that define an

entity. E.g., the entity "Student" possesses properties

such as the social security number, name, etc. Each of

these attributes derives their values from a corresponding

domain. Attributes can be of several types such as:

• Atomic or Composite: an atomic attribute cannot be

divided into sub-properties. Atomic attributes are also

called simple attributes. Composite attributes are made

up of atomic attributes.

• Single or Multi-valued: a single valued attribute has a

single value. A multi-valued attribute has a set of

values.

• Base or Derived: a base attribute is an original

attribute of an entity where as a derived attribute is a

computed value from one or more of the base values or

other derived values.

The following, are the entities and their corresponding

attributes identified in the Billing/Receivables

application.

23

student: This entity specifies the demographic information

of a student like the Name,'SSNo., Extrlnd., etc.

Attribute details are shown in Table 2.2.4.2.1.1,.

Table ,2.2.4.2.1.1. Attribute Details for Student Entity

Attribute/ Size	 Data S or C or A^ B or D^

type

Description

SID/Social 9 VARCHAR s . A B

Security

Number of the

student

PrevSID/ 9; . VARCHAR s A B

Previous

Social

Security ,

Number of the'

student if

S = Single valued; M -Multi valued

C = Composite; A - Atomic

B>= Base; D = Derived.

24

any or else

blank

Name/Name of 32 VARCHAR S A B

the student

PrevName/Prev. 32 VARCHAR S A B

.ious name of

the student

Extrind/Indie 1 , VARCHAR S A B

a-tor to the

type of

student

Charges: This entity specifies the charges charged under

each transaction sequence. The effective dates and the due

dates are also included in this entity type. This entity is

also a weak entity. The attribute details of this entity

type are shown in Table 2.2.4.2.1.2.

25

Table 2.2.4.2.1.2. Attribute Details for Charges Entity

Attribute/ Size

Description

Term/Quarter 3

Subcode/Id of 5

the payment

AMOUNT/AMOUNT
 9

CHARGED TO THE

STUDENT

EffDate/Date 8

when the bill

becomes

effective

DueDate/Date 8

when the

payment is due

TranSeq/ 1

Sequence

number of the

transaction

Data S or M C or A B or D

type

VARCHAR S A B

VARCHAR S A B

NUMBER s A B

DATE s ' A B

DATE s A B

VARCHAR s A B

26

Payment: This entity holds the details of the payments made

by the students. This is also a weak entity. The details

of the attributes, are shown in Table 2.2.4.2.1.3.

Table 2.2.4.2.1.3. Attribute Details for Payment Entity

Attribute/ Size Data S or M C or A B or D

Description type

ReceiptNum/ 5 VARCHAR S A B

Number on the

payment

1

receipt

PaidAmt/Amo 9 NUMBER S A B

unt of

payment

PaidDate/Date 8 DATE s A B

the payment

was made

Account: This entity type holds the details of the various

types of accounts. This is a strong entity and the details

27

of this entity type are shown in table 2.2.4,2.1.4.

Table 2.2.4.2.1.4. Attribute Details for Account Entity

Attribute/ Size Data S or M C or A B or D

Description type

Subcode	 5 VARCHAR S A B

SUBDESC/DESCRIP 30 VARCHAR S A B

TION FOR THE

SUBCODE

CrAcct/Credit 15 VARCHAR s A b'

account number

of the subcode

DBACCT/DEBIT 15 VARCHAR s A ,B

ACCOUNT NUMBER

OF THE SUBCODE

2.2.5.2.2. 	 Identify Relationships and

Associated Attributes

As described earlier, the Billing/Receivables database

has four entities. Each of these entities are associated

28

among themselves by means of relationships. To set up a

relationship between any two entities, one must determine

the nature of the relationship. There are three types of .

relationships as described below.

• One-to-many relationship (1-M): a one-to-many

relationship is the most common type of relationship in a

relational database. In this type of relationship, a

record in Table A (Entity A) can have more than one

matching record in Table B (Entity B). However, a record

in Table B can have atmost one matching record in Table

A. ■

M

• Many-tb-many (M-M): in this type of relationship, a

record in Table A can have more than one matching record

in Table B, and similarly a record in Table B can- have

more than one matching record in Table A..

M . , M

• One-to-one relationship (1-1): this is not a very common

relationship.: In this type of relationship, a record in

Table A can have no more, than one matching record in.

29

Table B,. and similarly a record in Table B can have no more

than one matching record,in Table A.

1

The entities involved in a specific relationship are

called the. participants of.the relationship, and the number

of participants in that relationship defines the degree of

the relationship. The participation level of an entity in a

relationship can either be total or partial. It is said to

be total participation when every instance of the

participating entity participates in at-least one instance

of the relationship, otherwise, the participation level is

termed as partial. The following are the relationships that

were derived in the Billing/Receivables application.

Billed: is a one-to-many relationship between Student and

Charges and Student and Payment. Every student has a set of

charges to pay where as one particular charge can be applied

to only one student. Similarly, every student has makes

several payments where as one particular payment corresponds

to only one student., Student participation in Billed is

partial where as Charges and,Payment participation is total

Every student might not have charges or Payment but every

30

charge is billed to a student and every payment is made by

a student. Billed is a weak relationship because Charges

and Payment are weak entities. The attribute details of

this relationship are shown in Table 2.2.4.2.2,1.

Table,2.2.4.2.2.1. Attribute Details for Billed Relationship

Attribute/ Size Data S or M C or A B or D

Description type

TranSeq/Id 4 VARCHAR s A; B

for the

transaction

being

processed

TranUser/Us 2 VARCHAR. VS.- , - A B

er id of

the person

recording

the '

transaction

BillDate/Da 8 ^ DATE s A B

te bill

prepared

31

C/Plnd/ 1 VARCHAR S A B

Indicator

for charge

or payment

ReceiptNum/ 5 VARCHAR S A B

Number on

the receipt

for the

payment

student Charges

Billed

Student Payment
Billed

32

Made: is a one-to-rrianY. relationship between Payment and

Charges. Every Payment is made, for many Charges and many

charges together are paid at once. Payment participation in

Made is total where as .Charges.participation in Made is

partial. Every charge might . .n a payment but every

payment will have a charge.. Made Is. a. weak relationship

because both Charges and .Payment ard weak entities.

Charges
Payment:
 Made

Correspond: is- a one-to-one relationship between

Charges and Account. Every charge corresponds to a subcode

and every subcode corresponds to just one charge. Charges

participation in this relationship is total where as. Account

participation in this relationship is partial. Every bill

is charged based on a subcode but every.subcode is not

billed to a student.. Correspond is a weak relationship

because Charges is a weak entity.

Account
Corre
Charges

Applied: is a one-to-many relationship between Payment

33 .

and Account. Every payment constitutes different subcodes

in the Account. The participation of Payment.in Applied

relationship is total where as the participation of Account

in Applied relationship is partial. Every payment

corresponds to a subcode but every subcode might not have a

payment. Applied is a weak relationship because Payment is

a weak entity. The attribute details are shown in Table

2.2.4.2.2.2.

Table 2.2.4.2.2.2. Attribute Details for Applied

Relationship

Attribute/ Size Data S or M C or A B or D

type

Description

. TranAcctRef/ 6 VARCHAR S A B

User defined

id-for the

transaction.

TranAcctFeed/ 1 varchaR - A B ■ ■

Whether

transaction,

has been fed

34

http:Payment.in

to the

accounting

system

APFeedInd/ VARCHAR A B

Indicates

transaction

in the

Account

Payable

BillType/Spec VARCHAR A B

ifies if it

is

registration,

tuition, etc.

ChrgClass/Or VARCHAR A B

der in which

the payment

has to be

applied

35

Account

2.2.5.3. Derivation of Functional Dependencies

Once the E-R diagram is mapped with the database

requirements and constraints, the next logical step is to

derive functional dependencies (FDs). Functional

dependencies are used to group attributes into relational

schemas that are in normal form. A functional dependency is

a constraint between two sets of attributes from a database.

In a relation schema R, X functionally determines Y if

and only if whenever two tuples of R agree on their X-value,

they must necessarily agree on their Y-value or,

alternatively, the values of X component of a tuple uniquely

or functionally determine the values of the Y component.

Symbolically, this relation is represented as X -> Y.

Based on the review of the user requirements, and the E-R

diagram, the following FDs have been established. The

functional dependencies are grouped by each determinant

attribute.

SID > PrevSID . ' ,

36

SID

SID

SID

Tran_Seq

Tran_Seq

Subcode

Subcode

Subcode

Tran_Seq

Tran_Seq

Iran Seq

Iran Seq

Iran Seq

Iran Seq

Iran Seq

-> Name

-> PrevName

> Extrind ,

> TranUser

> Term

SubDesc

> CrAcct

■> DbAcct

> BillDate

> EffDate

> DueDate

--> ReceiptNum

> TranAcctRef

> ChrgClass

> BillType

37

2.2.5.4. Development Of Base Relations

This section defines the initial set of base relations

that can be derived from the E-R diagram. A relation is a

mathematical term for a table. A relation consists of tuples

and fields. A tuple corresponds to a row and a field

corresponds to a column which is also an attribute. The

number of tuples in a relation is the cardinality of the

relation. The number of attributes in a relation is the

degree of the relation. In every relation there is a primary

key which uniquely identifies the tuples. There could also

be a foreign key which corresponds to a primary key in the

base relation. Primary key is denoted with a solid

underline and foreign key is denoted with a dashed

underline.

The following base relations have been derived for the

Billing/Receivables database

Student

SID PrevSID Name PrevName Extrind

Billed

TranSeq TranUser BillDate C/Pind ReceiptNum

38

Charges

SID Term Subcode Amount EffDate DueDate TranSeq

Payment

SID TranSeq ReceiptNum PaidAmt

PaidDate

Applied

BillType TranAcctRef TranAcctFeed

APFeedInd

ChrgClass

Account

Subcode SubDesc CrAcct DbAcct

2.2.5.5. Normalization of Base Relations

The next step is to normalize the above base relations

Normalization of data is a process during which

unsatisfactory relation:schemas are decomposed by breaking

up their attributes into smaller relation schemas that

possess desirable properties. Unsatisfactory relation

schemas are those schemas which have redundant attributes,

i.e., composite and multi valued attributes. Normalization

39

is achieved through three steps which are First Normal Form

(INF), Second Normal Form (2NF), and Third Normal Form

(3NF). Hence, a database is desired to be at least in Third

Normal Form. - / u,rv . >;

First normal form is defined to disallow multi-valued

attributes, composite attributes, and their combinations.

It states that the domains of thb : attfibutes must include

only atomic values and that the value of any attribute in a

tuple must, be a single value from the domain, of that

attribute. Hence, INF disallows having a set of values, a

tuple of values, or a combination of both as an attribute

value for a single tuple. The only attribute values

permitted by INF are single atomic values from a domain of

such values. As per.the definition of INF, we see that the.

.Billing/Receivables database is already in the INF since.it

doesn.'t contain any multi-valued or composite attributes.

Secondinormal form depends On the concept of' full

functional .depehdency. A functional dependency X ---> Y is

fully functional dependent if removal of any attribute A

from X means that the dependency doesn't hold any more. . A

relation Schema R is.,in 2NF if every non primary key

attribute in R is.fully functionally dependent on the

primary key of R. As per the definition of.2NF, the

■ ■' ■ . ■ 40. .

http:since.it

Billing/Receivables database is already in 2NF since all

the non primary key attributes are fully functionally

dependent on the primary key of the base relation.

Third normal form is based on the concept of transitive

dependency. A functional dependency X > Y is a

transitive dependency if there is a set of attributes Z that

is not a subset of any key of the relation R, and both X

> Z and Z > Y hold. A relation schema R is in 3NF if

every non primary key attribute of R is transitively

dependent on the primary key. As per the definition of 3NF,

the Billing/Receivables database is already in 3NF because

there are no transitive dependencies.

So the base relations are the normalized relations.

2.2.5.6. Database Implementation

, Created relational tables and query scripts using,

ORACLE 7.3, SQL*Forms 4.5,. and SQL*Reports 2.5.

2.2.5.7. Testing and Validation

The Billing/Receivables application has been validated

for several validation criteria. Various classes of tests

have been conducted to verify the following database

functionality:

41

: a) Correctness: .the ..result of;ed:rrectl framed queries

, should:return all matching records.:

b); , .Multi-user^^:^.f^ 	 tests for: ORACLE's multi-user

. features,' e..:g... : eoncurren,t ,read access ^ This haSn't yet

been tested; as::the database hasn't yet been loaded in

the.system.

.• . 	The extraction of data frbm the mainframe system is done

using FOCUS. .FOCUS is a symbolic programming/language.

it is mostly used.for.commercial.applicatibns. FOCUS is

best able to handle complex.input/,output functions where

a large volume of' data needs to be.processed at one time;.

The extraction,rf data was done by Mr. Ted Schiffer of

Administrative Department..

2.3. SYSTEM RFFFRENCF;

The proposed database development will employ Sun OS

4.3.1 operating .system.; The database management

.system(DBMS) used will be. Oracle:7.3, along with its

components S.QL*Plus 3.1, SQL* Forms 4.5,. and SQL*Reports .

:2'.5.: ■

'2.4. SOFTWARF. PROJECT CONSTRAINTS

Personnel - The system is being.designed and implemented

■■ 	 . ; . .42 - ' . ■ '■

by a graduate student, Sushma Lukalapu under the guidance

of advisors. Dr. Josephine Mendoza, CSCI Dept. and Ms.

Lorraine Frost, Administrative Computing Services.

2'.5. FUNCTIONAL DESCRIPTION

2.5.1. Functional Description

2.5.1.1. Processing Narrative

The information about student accounts is available to the

accounting staff so they can create ad-hoc queries to

retrieve the data. Also, some data can be obtained from the

reports created in this project. The SQL reports provided

to the accounting staff are:

• names of all students who have been charged a particular

subcode by term, ,

• listing of subcodes charged to a particular student by

term or transaction date, and

• detailed description of the fees paid by a student for a

term.

The result of each of the above queries will be a SQL report

which may be viewed onscreen or printed.

43

2.5.1.2. Restrictions/Limitations

a) Accounting staff will have a few reports to choose from

(as mentioned above). Any other reports for which SQL

scripts are not written could be created using ad-hoc

queries.

b) 	The staff might receive some data which may not fit into

the existing schema. •

2.5.1.3. Performance Requirements

The size of the database is relatively small (Seven base

tables with an average of six fields per table) when

compared to ORACLE'S processing capacity. Since, it is only

sample data, not more than ten records are inserted in a

table. So the response time is expected to be good.

However, there are some implicit requirements for this

system design :

a) User-friendly

• Shortest time possible required for the user to get

used to the database.

• Sample forms are graphically illustrated, and menu-

driven oriented pull down menus.

44

b) Testability

• Each requirement in this design has been verified and

thoroughly tested .

2.5.1.4. Design Constraints

Constraints like data constraints, domain constraints,

and enterprise constraints will be taken into account:

a) 	The enterprise constraints mean the set of specifications

initially defined by the enterprise. The B/R module

doesn't have any enterprise constraints.

b) 	The domain constraints specify the range of values for a

certain attribute (e.g.. In the Student table of the B/R

module, the attribute Extr_ind can take values -Blank, C

or E).

c) 	Data constraints specify the size of each attribute(e.g.,

In the Student table of the B/R module, the attribute SSN

has to be 9 digits).

2.5.1.5. Supporting Diagrams

ER diagrams that provide an overview of the database,

DDLs (Data definition language) used to create the tables

and the final Oracle tables comprise the supporting

45

diagrams.

2.6. BEHAVIORAL DESCRIPTION

2.6.1. System State

The database state should be consistent, which means

that the database should satisfy all the state constraints

such as:

'a) 	Attribute key constraint which specifies whether an

attribute or a set of attributes is a unique attribute of

an entity type. e.g. Subcode is a unique key for the

entity ^Account'.

b) 	Attribute structural constraint which specifies whether

an attribute is single valued or multi-valued and whether

or not null is allowed for the attribute. There are no

multi-valued attributes in the Billing/Receivables

module.

2.6.2. Events and Actions ;

It will be ensured that the proposed database will

maintain the integrity,constraints:

a) 	Entity integrity will ensure that every primary key is

not null. e.g. SSNo. cannot take a null value.

46

b) Referential integrity makes sure that every foreign key

that exists (is not null) in a child table refers to an

existing primary key in the parent table. Referential

integrity could be violated when updating a relation.

There are three basic update operations on relations:

• Inserting a tuple: When inserting a tuple in a child

table, referential integrity can be violated if that same

value does not exist in the parent table. This can be

corrected by changing the value in the child table to

some valid value that exists in the parent table. It

can also be corrected by inserting a new tuple with this

value in the parent table (this insertion has to be

acceptable). e.g. Inserting a student and a corresponding

charge in the ^Charges' table without inserting the

student (student's SSNo.) in the ^Student' table will

violate referential integrity.

• Deleting a tuple: If referential integrity is violated

while deleting a record, it could be corrected either by

rejecting the deletion, cascade the deletion by deleting

tuples that reference the tuple being deleted or by

modifying, the referencing attribute values that cause the

violation; each such value is set to null or changed to

reference another valid tuple. However, if the

■ 47 ,

referencing attribute that causes the violation is part of

the primary key, then it cannot be set to null , because

then it would violate entity integrity. e.g. Deleting a

student's SSNo. from the ^Student' table when the^SSNo.

exists in the 'Charges' table violates referential

integrity.

• Modifying the value of an attribute: If referential

integrity is violated while modifying the value of a

.	 primary key, then it'can be Corrected by the above two

methods because modifying is similar to deleting a tuple

and inserting another in its place. However, if a

foreign key is modified,' then the new value should refer

to an existing tuple in the referenced relation.

Also whenever the primary key is updated, the

corresponding foreign key also has to be updated. If a

primary key is deleted, the corresponding foreign key

Should also be deleted. If a new record is,inserted into

the child table, the record has to exist in the parent

table. Table 2.6.2 shows the primary keys and the foreign

keys for the B/R module.

.48

Table 2.6.2. Primary and Foreign Keys

PRIMARY KEYS PRIMARY KEY TABLE
 FOREIGN KEY TABLE

SID STUDENT CHARGES, PAYMENT

TRANSEQ BILLED CHARGES, PAYMENT

SUBCODE ACCOUNT, CHARGES

TRANACCTREF APPLIEDTO
 NO REFERENCE ,

RECEIPTNUM PAYMENT, BILLED NO REFERENCE

2.7. : VALIDATION CRITERIA

2.7.1. Performance Bounds

The,performance is expected to be good considering that the

size of the database (only seven tables) is small. Some

factors could affect the response time. For example, the B/R

database will communicate with the server via the campus

computer network, which at times, could be overloaded. And

also other factors outside the application, like adding hew

fields to the tables, adding•additional,constraints, etc.,

may affect the performance and these .are; beyond the scope of

the project.

'49

2.7.2. Classes of Tests

The result of correct ad-hoc queries will be all

matching records. Three specific tests will include:

a) 	Unit Test: Individual tables will be tested for the check

constraints, unique key constraints and the entity

constraints.

b) 	Integration Test: All tables together will be tested for-

referential integrity constraints.

c) 	System Test: The whole database will be tested to ensure

that it performs all the allocated functions.

2.7.3. Expected Software Response

As discussed earlier, B/R will, be designed to have good

response time.

2.7.4. Special Considerations

a) 	New data entries may contain information which wasn't

anticipated in the existing schema. So, the database

might need periodic modifications.

b) 	Users might want some enhancements once the B/R module is

in daily use.

50

3. PHYSICAL DATABASE DESIGN

The physical design phase of the database is the

physical implementation, of the conceptual design using a

Relational Database Management System like ORACLE 7.3. This

phase defines the data storage structures, associated

mappings, and access paths related to the database

application. This process generally involves the design of

tables, loading of data into the tables, design of forms,

generating reports, and testing the performance. The

following section describes the physical design in detail.

3.1. . CREATION OF TABLES

The tables for the Billing/Receivables database were

created using ORACLE 7.3. The normalized relations from the

conceptual design were converted into the table format using

the 'create table' command in ORACLE. There are seven

tables in the Billing/I^eceivables database. Each table has

on average six fields.

The syntax for. the create table CGmmand is shown in the

Appendix A.

The order in which the tables are dropped and created

is critical because of the referential integrity

51

constraints. The sequence of the tables in the

Billing/Receivables database is as given below.

drop table Student;

drop table Account;

drop table Billed

drop table Charges;

drop table Payment;

drop table Applied;

Create table Student(

SID VARCHAR2(9) constraint student_sid pk

PRIMARY KEY,

PrevSID VARCHAR2(9) constraint student_prevsid uk

UNIQUE,

Name VARCHAR2(32) constraint student_name_nn NOT

NULL,

PrevName VARCHAR2(32),

ExtrInd VARCHAR2(1) constraint student_extrind ck

check (Extr_Ind in 'C, 'E')));

52

Create table Billed(

TranSeq VARCHAR2(4) constraint billed_transeq_pk

PRIMARY KEY,

TranUser VARCHAR2(2) constraint billed_tranuser nn

NOT NULL,

BillDate DATE,

C/Pind VARCHAR2(1) constraint billed_cpind_ck check

(C/Pind in (, ^P')) ,

ReceiptNum VARCHAR2(5) constraint billed_recptnum_pk

PRIMARY KEY);

Create table Account(

Subcode VARCHAR2(5) constraint account_subcode_pk

PRIMARY KEY,

SubDesc VARCHAR2(30) constraint account_subdesc nn

NOT NULL,

CrAcct VARCHAR2(15) constraint account_cracct uk

UNIQUE,

DbAcct VARCHAR2(15) constraint account_dbacct_uk

UNIQUE),;

53

Create table Charges(

SID VARCHAR2(9) constraint charges sid fk

references Student ON DELETE CASCADE,

EffDate DATE,

DueDate DATE,

Term VARCHAR2(3), '

Subcode VARCHAR2(5) constraint charges_subcode_fk

references Account ON DELETE CASCADE,

Amount NUMBER(9,2),

TranSeq VARCHAR2(4) constraint charges_transeq fk

references Billed ON DELETE, CASCADE);

Create table Payment(

SID VARCHAR2(9) constraint payment_sids fk

references Student ON. DELETE CASCADE,

, PaidDate DATE,

PaidAmt NUMBER(9,2),

ReceiptNum VARCHAR2(5) constraint

payment_recptnum_fk references Billed ON DELETE

CASCADE); ,

54^

Creat:e 'table Applied(

TranAcctRef VARCHAR2(6) constraint applied ref pk

PRIMARY KEY,

TranAcctFeed VARCHAR2(1),

APFeedInd VARCHAR2(1),

ChrgClass VARCHAR2(3),

BillType ■VARCHAR2(1), constraint

charges_billtype_Ck

check (BillType in

(, 'I', 'T' , 'N' , 'Q', 'F' , 'B' , 'H', 'C', 'S', 'E', 'W', 'D', 'A'))

);

3.2. 	 DATA LOADING

The data extraction from the file management system was

done using FOCUS. FOCUS is a data retrieval language. The

data was extracted by Mr. Ted Schiffer of the Adminstrative

Computing Services. This data was to be loaded into the

ORACLE tables using SQL*Load. This task could not be

completed because SQL*Loader was not accessible at school

(it wasn't loaded in the system) . Sample data has been

55

loaded and the application has been tested with the sample

data. All the queries have been reported to return all

matching records.

3.3. , DESIGN OF SQL*FORMS

SQL*Forms were designed for data, entry and updating.

SQL*Forms aid in the quick development.of form based

applications for entering, querying, updating,. and deleting

data. .Before going further Into detailed discussion of

forms, it is important to understand the following terms:

Block: a section of form that corresponds to a table in the :

database. Blocks provide a simple mechanism for grouping

related items into a functional unit for storing,

displaying, and manipulating records.

-record block: a block that can display more than one

record at a time.

Record: data from one row in base tabls as represented in a.

form.

Base table: a table in the database-v on which a block is

based.

Base table item: an item that, directly.relates to the base

56

http:development.of

table.

Control item: these items are populated with database values

using SQL statements. e.g. TotalAmt is obtained by adding

up all the AmtCharged from the Charges table.

List item: a list of text elements that can be displayed as

pop list sometimes called drop list. e.g. BillType. in the

Charges table is a list item.

Radio groups: display a .fixed ,no. of options that are

mutually exclusive. Each-dption is -represented by an

individual radio buftdn., :e.g, APFeddlnd in the Applied

table.

Text items: default data type for text items is CHAR.

Eleven forms have been developed for the

Billing/Receivables application. These forms can be grouped

under two different categories namely Independent forms.

Master-detail forms.

The independent forms directly correspond,to the base

tables wherein data can be entered and updated. Data for

some fields (e.g. Extr Ind, C/P Ind, AP Feed Ind, Acctg

Feed) in the independent forms can be entered through list

items and radio buttons. All the base tables have the

57 ■

corresponding independent forms. Examples of independent

forms are Student, Charges, Payment, etc.

Master-detail form on the other hand is an association

between two base table blocks, the master block and the

detail block. The relationship between the master block and'

the detail block reflects a primary key to foreign key

relationship between the tables on. which the blocks are

based. The master block is related to the detail block

through the Join condition. The Join condition establishes

the primary key item in the master block and the foreign key

item in the detail block. . The data in the.master-detail

forms Cannot be updated. They are just, used for displaying

data. ^

The master-detail forms.are Student-Charges;. Account-

Charges; Student-Charges-Paymeht.. >

1 Steps to create and modify forms are shown in.Appendix A.

• 3.4. DESIGN OF SQL*REPORTS

A report is a .summary of information that is well ,

organized and formatted to suit the user's specifications.

Reports provide more flexibility in presenting data that is

easy to understand. Some daily use examples of reports are

58

mailing labels, invoices, sales summaries,'etc.

For the Billing/Receivables application several reports

can be generated based on query criteria. These reports

could be generated on single-variable or multi-variable

requests. Single-variable requests are:

• Search for students based on a subcode,

• Search for subcodes charged for a student, etc.

Multi-variable requests are:

• Search for students based on subcode by term or

transaction date,

• Search for subcodes per student by term or transaction

date, etc.

The reports consist of several SQL queries. Every base

table has a corresponding report (e.g. Student data, charges

for students, payment by a student, list of the subcodes

along with their description, etc.). There are three multi-

variable request reports (e.g. Search for students based on

subcode by term. Search for subcodes per student by term,

charges for a student, etc.).

Steps to generate and modify reports are shown in

,59 ,

Appendix A.

3.5. FUTURE ENHANCEMENTS

• Transaction User can have a pick list that shows the user

name corresponding to the two digit code.

• Accounting feed is defined as a radio button. That can

be changed to a pop list.

• Have a Main menu for the reports also.

• Within the main menu for reports, have a sub menu for the

students report, in the increasing order of the SSNo,

alphabetical order, and according to the external

indicator.

• Have several other reports like querying charges by

transaction sequence, charges by term, etc. in the main

menu.

60

4. DATABASE VALIDATION

Once the database is successfully designed and

Implemented, the next step Is to validate the database

application for Its functionality. Positive results In

these validation tests would Imply that the database would

perform satisfactorily and Initial objectives have been met.

Tests performed on the Billing/Receivables application can

be grouped under three categories:

• Unit testing,

• Integration testing, and

• System testing.

Test results under each of these categories Is

presented In the following sections.

4.1. UNIT TESTING

Unit testing focuses on the verification effort of the

smallest unit of the database application. For the B/R

application, each form Is tested Individually for Its

functionality like proper storage and retrieval of data,

etc.

61

Similarly, each report is also tested to verify data

organization, format, and accurate data retrieval of the

user requested query.

4.2, INTEGRATION TESTING

Following the unit testing phase, the next phase would

focus on the performance of the integrated components of the

database application. The individual components like forms

and reports are integrated using SQL*Forms. Various tests

were conducted to verify the linkage between all forms and

reports.

4.3. SYSTEM TESTING .

In this phase of testing, the B/R application is tested

as a complete system. Two primary tests were conducted t
:o

on
ensure the completeness of the system which include tests

database user-friendliness and multi-user feature of ORACLE.

User-friendliness: tests are performed to verify whether the

application prompts the user for information in an accurate

and easily interpretable format. Also to verify if useful

help text was provided when necessary.

Muti-user feature: tests are performed to verify the muti

user feature of ORACLE like the concurrent read access.

62

APPENDIX A: CREATING TABLES, FORMS AND REPORTS

63

SYNTAX TO CREATE TABLES IN ORACLE

create table table_name(

columnl datatype(size)

column_constraint|table_constraint,

column2 datatype(size),

The syntax used to create table is,not case sensitive. The

create table command enforces different kinds of constraints

on the table including primary keys, foreign keys, not

nulls, and check conditions. Enforcement of these

constraints allow ORACLE to maintain the database integrity.

Based on the type of the data, the datatype is specified as

CHAR, VARCHAR, DATE, NUMBER, etc. The advantage of using

VARCHARover CHAR is that VARCHAR uses only the required

spaces where as CHAR uses all defined Spaces by filling the

unfilled spaces (after using the required spaces) with

blanks. A majority of the fields in the Billing/Receivables

database are VARCHAR. The dates are given the datatype DATE

and the amounts are given the datatype NUMBER.

64

STEPS TO CREATE FORMS IN ORACLE

• After invoking the Oracle Forins designer, choose File

Open Form from the menu bar.

• Once the list of files are listed, Select ->

stucgpmt.fmb

• After the file is. selected. Forms returns to the. Object

Navig_ator. Define a Window and a Canvas View to place

the stucgpmt form on. Give a name to the Window and the

Canvas View.

• Next, go to the tool bar and open the layout editor.

• Once the form module is created, the default name can be

changed from the property sheet. Other properties in the

property sheet could also be changed.

Steps to create blocks

• From the object navigator, select the blocks node by

clicking on it one time

• Click on the create icon on the vertical tool bar

• Connect to the database from File Connect

65

• This will bring up the New Block dialog box. Specify

the name of the base table, name of the block, and name of

the canvas if an independent form has to be created. If

a master detail form has to created, then specify the

name of the master table and also the name of the detail

table along with the Join condition to relate to these

two tables. Select columns under Items. New Block

Options allows to select only the wanted columns. Select

the style of the block as Tabular or Form.

• From the tools menu in the Object Navigator, select the

layout editor to view the skeletal form of the block just

created.

Steps to Test the Forms

Generate the form to create an executable version of the

form and then run the form. Select the <Generate> option

from the File menu. Execute the form by selecting <Execute>

from the file menu. Then select the <Run> button from the

tool bar. The form that was just created appears. The form

is tested by inserting a new record, query an existing

record, update the queried record, querying the record just

inserted. To insert a new record, press the <Insert

Record>, enter the data and then select <save>.

65

Steps to Modify the Forms

The form could be modified by going into the Layout Editor.

The blocks can be repositioned, . The fields in a block can

be selected or deselected by opening the appropriate block.

The fields could be re-named by opening the properties sheet

for that particular field. List items. Radio buttons. Pop

lists, etc. can be used to define a field.

STEPS TO CREATE REPORTS IN ORACLE

• Invoke Oracle Reports by double-clicking on the Oracle

Reports Designer.

• Connect to the database through File --^Connect.

• Double-click on the icon, in the Data Model Node and the

Data Model Editor is displayed.

• Select the query tool by clicking on it once in the Tool

Palette.

• Move the mouse pointer into the Data Model editor and

click once. A query object represented by a rounded

rectangle appears.

Double click on the query object to display its property

67

sheet.

• In the SELECT Statement field, type in the select

statement for the required data.

• Select OK to close the Query property sheet. A default

group containing a list of the selected columns is

created.

• Select Tools Default Layout.

• Select File Save to save the report..

Steps to Test the Reports

• Select File Run and Oracle Reports displays the

Runtime Parameter Form.

• Select Run Report, from the Runtime. Parameter Form to

accept the default values.

The report is tested to- s.ee if the desired data has been

displayed.

Steps to Modify the Reports

• Open the Data Model Editor and double Click on the query

box.

68

 • Select statements can be written here or the existing

select statements can be modified by having various

conditions in the Where clause.

69

APPENDIX B: STEPS TO GENERATE A MASTER DETAIL FORM

70

Below are the steps to create .Student-Charges-Payment

master detail form:

After invoking the Oracle Forms designer,

1. Select File->Open->stuchgpmf,fmb from the menu bar.

2. After the file is selected, Forms returns to the Object

Navigator. Now define a window and a canvas-view to.

, place the stucghpmt form.

3. Select New Block,option from the Tools in the tool bar.

This will bring up the New Block dialog box. Give the

name for the new block as Student . Give the name for

the window and the canvas view as stuchgpmt.

4. Select the table Student and select Name, SSNo., and

Ex.tr 	Ind columns under items from the table.

5. Select the style of the' block as form.

; 6. 	Repeat step three for the Is_Billed block and .select

the columns SSNO. and Tran Seq. Place this block also

on the stuchgpmt canvas.

7. Select the master-detail option and give the join

condition between the Student block and the Is_Billed

block. SSno. joins the.two tables. Name this block as

'	 '7' ■■ ■' ■ ^71' ■ ■ ■

Billed.

8. Select the, form layout for the Billed block.

9. Repeat step six for the Charges block. Select the

columns Tran Seq, Term, Subcode, Tran Amt, Eff Date,

Due Date, Chrg Class and place the block on stuchgpmt

canvas.

10. 	 Select the master detail option and give the join

condition between the Billed block and the Charges

block. Tran Seq joins the two blocks. Name this block

as Charges.

11. Select the tabular layout for the Charges block.

12. 	 Create a new block for the Payment table and place

it on the stuchgpmt canvas.

13. 	 Select the columns Receipt Num, Tran Seq, Amt

Paid, and Date Paid .

14. 	 Join the charges block and the Payment block by

the Tran Seq and name it as payment.

15. Select the form layout for the payment block.

16. 	 Once all the required blocks are created, go to

the layout editor in the tool bar and view the skeletal

72

form of the blocks just created.

17. 	 Now, we can double click on each item of the block

and go to its property sheet. The blocks properties

can also be changed by double clicking on the entire

block.

18. The items and the blocks on the form can be moved

within the form to the desired location.

19. 	 Select the Button _Palette block under the

stuchgpmt form. .

20. 	 Select the UP, DOWN, QUERY, SAVE items under the

Button_Palette block.

21. 	 Write a When_New_Form_Instance trigger under the

form level trigger to query the form, as you enter the

form. The trigger is shown in the Appendix D.

22. Have another item in the stuchgpmt under the

Student block and name it as MAINMENU. Write an item

level trigger to. return to.the mainmenu on double

clicking the item. The trigger is shown in the Appendix

D.

23. To run the form, select File->Generate and then

File->Execute.

73

24. The form is automatically queried and all the

information is in appropriate fields.

25. 	 To enter new data in the form, go to the last

record and do scroll down. Enter the data and save it

Then do query on it. New data is stored.

74

APPENDIX C: FORMS CREATED FOR PROJECT

75

The Object Navigator for the stuchgpmt form is shown in

Figures. 1, 2, and 3.

Figure 1

|gix

Fik Mt Toels gavigate -|g|

TRANSEQ Find;

-Foms

-A STUCGPM

gWHEN-NEW-FORM-lflSTANCI

• gON-CLEAR-DETAiLS
f Alerts

'Attached Libraries

"Blocks

"iSTUDENT
"Trygers

.■?ON-CHECK-OELETE-W^TER
.SON-POPULATE-DETAILS

''Items
"□MAINMENU

~ Triggers
J^'WHEN-BUTTONfflESSED

< Triggers
"EE NAME

-•■JiWHEHmiDATE-ITEM
- EE EXTRIND

""Triggers
jSWHEHVAUDATE-ITEM

Relations
^ISTUOENTJILLED

Mod: STUCGPMT File C:\0RAWINTORMS45\stucgpm{.f(nb <Con> <ins>

Figure 2

File Mt Tools Mavigator Wmdo\?^ Help m -

TRANSEQ 3Rrai:

"(iBUTTON,P/yiTTE
' Ttiggeit

Hems
'f-Q SCRMOJJP

■A

4' ^

i~0 DOWN

+□ SCROLL_DOWN
'PO QUERY
•f-O SAVE
- Relations

-1BILLED
- Triggers

T'l^^ON-CHECK'DEUTEWSTtR
^/^;ON-POPyUTE-DETAILS
^'iftKEY-DELREC

-=• Items
TRAMSEQ

^^S!0
Relations

'i^BflLED^CHARGES
'^^8fLLED_PAYMENT

PAYMENT
r Triggers
- Items

41BRECEIPTNUM

lO
Mod STUaSPMJ ^ File: C:\0F^WINSFqRMS45\3tucgpml tab <Con> <lm;

77

Figure 3

File Edit Tools HaYigatoj: Windovt^ Help

TRANSEQ
 EF

>^EPAIDAMT

TRANSEQ

r Relations

CHARGES

Triggers

Items

t^EFFDATE

DUEDATE

f^TERM

--m SUBCODE

"^^Triqaers

■•pWHEN-vALlDATE-ITEM
^BSCHRGCLASS

-I-^AMOUNT
Cj

Relations

Canvas-Views

^3 6TUCGPMT

V Editors

LOVs

/ Object Groups

' Parameters

Program Units

' Properly Classes

Record Groups

F Visual Attributes

- Windows

, „ mircDMT ,

L

Mod: STUCGPMT File: D\0RAW^'^F0RMS45\stu^^^ <CGn> <tm>

78

A form level trigger is written to execute the query (the

data is entered in the appropriate fields as the form is

opened) as we enter the form. A form level trigger for the

stuchgpmt form is shown in Figure 4.

Figure 4

PL^^QL EiMorJ .JigIX

File Edit Tools Window Help

tompiie Mew.. Mele ' I Help

Ti»pe: Trigger jObjaol: (Form Level) "3 "Jl
tae: WHEN-NEW-FORM-iNSTANCE

EXECUTE QUERY;

Successfully Compiled

I STUC&PMT File: C:\ORAWlW\FORMS45\stucgpmUmb ^Con> <ln5)

79

Item level trigger is written for an item action to take

place. Main menu is an item in the student block. To

return to the main menu from the stuchgpmt form, SQL editor

IS

opened. The code is shown in Figure 5,

Figure 5

glx
■'lite-,|iil 	Tools" -igl"xi

Compile Delete | Ctose | jie^
Type: Trigger Object STUDENT g|MAINMENU

Mame. WHEN-BUTTON-PRESSED Hil

Successfully Compiled

Mod: STUCGPMT File: C.\ORAWIN\FORMS45\$tucgpmLffnb <Con> <fns>

80

Block level trigger is executed when a block is opened.

This trigger takes care of the

table constraints. Block level trigger for the stuchgpmt is

shown in Figure 6.

Figure 5.

um

dow Help JllxJ

Compile New... Delete I

Tj|)e: Trigger H Obiect: STUDENT n (Block Level)

Name: ON-CHECK-DELETE-MASTER

— Begin default relation declare section

DECLARE

Durtiimy_Define CHAR(l);

— Begin BILLED detail declare section

CURSOR BILLED_cur IS

SELECT null FROM billed

WHERE SID = :STUDENT.SID; .

— End BILLED detail declare section

— End default relation declare section

— Begin default relation program section

BEGIN

— Begin BILLED detail program section

Successfully Compiled

Moct STUgSPMT FteC:\ORAWIN\FqRMS®stucgpffiLfiA <Con><lns>

The main menu appears as shown in Figure 7. The user can

select a form from the given choices for data entry.

Figure 7

WELCOl'IlTO TFrF.B!LLirTtl®ECEn/i\SLSS MOB'tJLE

CMJFORMASTATE UlflT/GESTTy

Stiijdeiits 1 Lli^T OF AOliENROOLEP STOBETFTS

Ti^^tioiig I TRAILSACTiOM USmSOFEACHTRANSACTiOn SEQIIH^CE

Chaises I CB^WrSSFOKmfHTfoWSMTONSEQliENCEQ¥STSPffiT

RecentN»s.| asjoFSJECHPTIfOIBSnS OF ftiLPAYMOTTJ

PaywCMts I i'AlMlil'irSFOElAT.KIKAK&^CTlOf-iS£g-JENCE

C/P Details| DEfmS OSTBE CKARCiF./PAFftMfi"APPLEDTOAMACCO'tlMT

Stdkcodes I MfH'OFSllBCOEiFa.'HNri'nrSBlPESCRTPIlCN

Oiai^esByTem| USTOFCHARGESFORASTOnE'Ti SYTERM

f C/FBv rratisrSeii:-;^ listofCHARCES&:rATMBTi BY-lHAI'SACnONSEQUiMCli:

Stude«ts/Sul>ceJeffenn| STWOENTMSllMGBY SOBCODIBTTIRftS

SubcodesByStudeiit I SUfiCOPELJSTHSiGPffiSTDOHW

82

The following form shows all the students enrolled in the

University.

Figure 8

SoKMSecturii^^Na, jG127012G7 fnedaiisSacM Seciiritj'N». jG127G12G7

,Name , |sushma PremtesNaw sushma

External'Eodirntor REGULAR rl

IIIIBII < IH Queiji 1 Save JMteiiuttenu

3nt_ReportStudent.

83

The following form shows all the details of a charge billed

to a student.

Figure 9

Transa^tiicii

Sequence
pTif Effective Date p5-MAY-9£

Due Date 15-JUN-98 Temt j982

Subevde j11111 BiUTjye Tuition Income Clearing '*'1

Change Class A ^ AmountChanged |4G0

SocialSecwiilyNo.|612701267 C/P Ihdicaton m

« 1 < > » Queiy I Save|Mainmenu

i b — ."'y** 1

j Charges Reportj|

84

The following form shows the transaction details for a

charge.

' Figure 10

SBidal'Secifidil^Ko. jsi27012G7 Traisfactbii Se(iti®ssc« |g127

-TiMsaeiioiitJisier !G1 IfiDate 15-APR-98

« » Save Maiititieitu

iBillied_B^orli.

85

The following form shows the payment receipt numbers paid

by a student.

Figure 11

Ssclal

Socioiiy No. Hece%i4No.:

- 01267

017725073 25073

123456789 56789

124356789 57689

w \ 123546789 56879

Main Menu|
< Quev Save

86

The following form checks if the charge or payment has been

fed to the accounting system.

Figure 12

Ti-ansaction Accoiuif |g12701 Txw!aK;tia».Sefnewce IG127

Ee&rvnce

AiiEcedMteator NO REFUND

Tracasactimn AocoTBiTiiig <!" NOT DONE

REFUND
Feed rfirst PHASE DONE

rCHECK WRITTEN FOR REFUND

« < IIIIIBHmi Qluerj^ Save 1 IMbliuiieiiU

APPLiibi^RiPOCT 1

87

The following form shows all the subcodes and their

description.

1

Figure 13

i'

1

LIST OFSUBCODESAHD THEISDESCEIPTIOK

Stdicode 66G66 AecnuKi 1666660000

Dewi^tbn |fWMENT DebitAceomtt |666660000

« lilBli > Quefjji j Save ■ilHIII

Figure 14 is a master detail form that shows all the.

student names that have been charged a particular subcode

on a certain transaction date.

Figure 14

STKDENl'SFSRSIIBCCBEBYTHAHSACTIOriDATE

Stifecade ~ BebitAjccomtNo. jl111100002

SabcadeDesci^iion jTUITIDN Cz«diiAjceauKtNo. jl111100001

SocialSecnuiij ̂

^0, Asnomit Cliax^ed AitsmiiitPadd DatePaM

G12701267 sushma 400 400 01^UN-98

iiigiliiiiiis

fsSpriraoirti « < IHIII » 1 Query ! Save j Maiiutieitii|

I r: £ ; 1 : 1 1

Figure 15 is a master detail form that shows all the student

names that have been charged a particular subcode by term.

Figure 15

STUBIHT CHMIGSS-OHBIRID3¥ TlltM

Hkiiie .jsushma

S®cM SccwxitjNo. j612701267

CimEGES

Txmsacclion.

Bate; Bi^Date Sudbcoile Am&%mtCkarged Teoa

_
6127 1 5-MAY-98 15-JUN-98 11111 |400 982

'

6128 15-MAY-98
V

15-JUN-98 33333 25 982

6127 15-MAY-98 15-JUN-93 22222 1789 982

V

V

iiiiiliiiililiilii

> » Query Save j Maiiuttteiui j

'

90

Figure 16 is a master detail form that shows the names of

students that have been charged a subcode per term.

Figure, 16

. ■ . 	 ' SlTJBlNISCHAilGlSBYSlIBCODI

SUBCODE

Sidbcads jlllll BeMtAiccsuniNo. |l11110000

Descrifiliaa |tUITION CretltAccoTratNo. jllll100001

SogM Secicrily

No. }%]tie AwuntChained AinoiuttPaM Term

612701267 	1sushma 400 400 j382

1 j

1]

j 1

!	 1

« > » Queiy Save liMiunenu
|SC95>4_Iteport|

91

Figure 17 shows the student charges and payment by term.

Figure 17 ,

mimmCEAmsEAim t-aymeit£byterm

SocMSeciailyNo. |G127012G7 jsushma EsieoialMkactor p

vio iiit< vk< vLVJLvSZskL V ̂

10127
 - . - Eece%:tNo. DatePaM TotalAiaamtPaid

012G7 01^UN-98 400

CHARGES

BKctisnsDate Dm Dats Terait Sahcofe Clsaiige Class Amouiit Ciiaiigedt

]l5-MAY-98 |l5>IUN-98 982 11111 A 400

fT5-MAY-98 jl5^UN-98 982 22222 A 789

1

UBiiiiii » j Query Save 1 BMnmenu|

;

92

i

Figure 18 shows the details of a payment made by a student,

Figure 18

BECOED OFPAYivSEWTS

SadblSecimijrNo. G127012G7

|012G7 DatePaid]G1-JUN-98

Transaction Se^Monce|
 AnisnntPaM 400

« < - > » Queiy ■IH Mabtuienu

IPajnneiitJR^ort|

93.

APPENDIX D: REPORTS CREATED FOR PROJECT

94

SUBCODES REPORT

Page 2 of 2
CSU - San Bernardino SUBCODES REPORT

Current Date: 03-JUN-99

SUBCODE SUBCODE DESCRIPTION CREDIT ACCOUNT DEBIT ACCOUNT

mil TUITION lllllOOGOl 11111GGGG2

22222 NON RESIDENT TUITION 22222G0001 22222GGGG2

33333 REGISTRATION FEE 33333GGGG1 33333GGGG2

44444 HOUSING 44444GGGG1 44444GGGG2

55555 PARKING 55555GGGG1 55555GGGG2

66666 PAYMENT 66666GGGG1 66666GGGG2

The following is the SQL Code used to generate the Subcodes

report:

SELECT * FROM Account

Order by Subcode;

95

APPLIED TRANSACTIONS REPORT

CSU San Bernardino flppLIED TRJlNSaCTIOHS , of 2

Date : 03-JUN-99 ^ or 2

Trans Seq AP Feed Indicator Trans Acct Feed Trans Acct Ref

6127 Y - 612701

0177 N - 017725

6128 N - 612801

The following is the SQL Code used to generate the

transactions report:

SELECT * FROM APPLIED;

96

Billed Report

CSU- San Bernardino

Billed Report
 Page 2 of 2Date : n:^-.TTTN-qq

Trans User SSN. Trans Seq Bill Date

01 017725073 0176 17-APR-98

□1 017725073 0177 15-APR-98

12 123456789 1234 15-APR-98

14 123546789 1235 15-APR-98

12 124356789 1243 15-APR-98

61 612701267 6127 15-APR-98

01 612701267 6128 17-APR-98

The following is the SQL Code used to generate the Billed

report:

SELECT * FROM Billed;

97

Charges 	Report

CSU - San Bernardino Charges Report Page 2 of 2

Current Date: □3-JUN-99

Trans Seq 	 Subcode Charge Class Bill Type Term Amt. Charged Eff Date DueSSNo.

017725073 	 0176 33333 A 974 25 lO-HAy-98 11-J

0177 22222 A 982 450 15-HAY-98 15-J

123456789 	 1234 22222 A 982 600 15-HAY-98 15-J

612701267 6127 11111 A 982 400 15-HAY-98 15-J

22222 A 982 789 15-HAY-98 15-J

6128 33333 AB 982 25 15-HAY-98 15-J

The following is the SQL Code used to generate the Charges

report:

SELECT 	 * FROM Charges

Order by SID;

98

Payiaent:s Report

CSU - San Bernardino Payments Report Page 2 of 2

Current Date: 03-JUN-99

SSNo.	 Tran. Seq Receipt No. Siibcode Amt. Paid Date Paid

017725073 	0176 25074 33333 20 Ol-JUN-98

0177 25073 22222 450 Ol-JUN-98

123456789 1234 56789 22222 550 12-MAR-98

612701267 6127 01267 mil 400 Gl-JUN-98

6128 01268 33333 25 □l-JUl^-98

The following is the SQL Code used to generate the Payment

report:

SELECT * FROM Payment

Order by SID;

99

Subcodes By Transaction Report

CSU - San Bernardino SUBCODES BY TRflNSflCTION DATE Page i of i

Date; 03-JU1J-99

SSNo. Extr. Ind. Subcode Chrg. Class Amt. Charged Aitit. Paid

□17725073 22222 A 45G 45G

G17725G73 33333 A 25 2G

1234567S9 22222 A 6GG 55G

6127G1267 mil A 4GG 4GG

6127G1267 33333 AB 25 25

The SQL code for the above report is shown below.

File Eia Help

3 ' ///;/ fh -lal 1

E d FW-

General ComroenI;

Naifte- QJ

Maximum Bows: Tables/Columns.

External fiueiy: Browse...

SjELECT Statement: i
:: select
ii; charges.sid,charges.subcode,amount,name,subdesc,paid ^

amt,paiddate from charges,account,student,pajrment
where charges,subcode = account,subcode
and charges.sid = student.sid

s and charges.sid = payment.sid
iand student.sid = payment.sid

and charges,subcode = payment,subcode; 'y [

OK Close

Li_: :

IStatfj Qfonas Designer - [0..[Nawgator - Personal. . ^Reports Designer

100

Ceu - San Bernardino STUDEMTS PER SUBCODE LISTING Page i of l

Date: 03-JT.W-99

Amt.Paid
SSNo. Name Subcode Subcode Desc. Amt.- Charged Tuan. Date

017725073 uamana 22222 NON resident TUIT: 450 450 Ol-JUN-98

017725073ramana 33333 REGISTRATION FEE 25 20 Ol-JUN-98

123456789radha 22222 NON RESIDENT TUITI 600 550 12-HAR-98

612701267sushina mil TUITION 400 400 Ol-JUN-98

612701267sushina 33333 REGISTRATION FEE 25 25 Ol-JUN-98

The SQL code used to generate the above report is shown

below:

101

ConEssent

; Jiatfie; jQ_1

ExteiftalI3.uer^:| Browse...

^jELECT Statement:

iii select charges,subcode,charges,transeq, account,subdesc,amount,effdate, billdate,

i paiddate

:¥ from charges,account,billed,student,payment

::: where charges,subcode = account,subcode

i$: and payment,subcode = charges,subcode

i and payment,subcode = account,subcode

i and billed.transeq = charges.transeq

1 and billed.transeq = payment.transeq

i and charges,transeq = payment,transeq

i::: and payment,sid = charges,sid

iiii: and student,sid = charges,sid

i and student,sid = p^ment.sid

iand term ='982'

iii and student,sid ='612701287';

m \
 —L. I

ISItart I'orms De -Personal Reports Designer...

102

Students Report

CSU - San Bernardino Students Report Page 2 of 2

Current Date: 03-JUN-99

SSNo. Name Previous SSNo. Previous Name Extr. Ind.

612701267 sushma 612701267 sushma

017725073 ramana 017725073 ramana

123456789 radha 123456789 radha

124356789 uma 124356789 uma

123546789 divya 123546789 divya

111111111 venkat 111111111 venkat

The SQL Code used to generate the Students report is shown

below:

SELECT * FROM Student;

If we order by name in the select statement, the names are

displayed in the ascending alphabetical order.

103

BIBLIOGRAPHY

[IJBatini, C., Ceri, S., and Shamkant N., Conceptual

Database Design - An Entity Relationship Approach, The

Benjamin/ Cummings Publishing Company Inc., 1992.

[2]Connolly, T., Begg, C., and Strachan, A., Database

Systems - A Practical Approach to Design, Implementation

and Management, Addison Wesley Publishing Company Inc.,

1996.

[3]Date, C. J., An Introduction to Database Systems, 6th

ed., Addison Wesley Publishing Company Inc., 1995.

[4]Elmasri, R., and Shamkant, N., Fundamentals of Database

Systems, The Benjamin/Cummings Publishing Company Inc.,

1989. ^

[5]Koch, G., ORACLE?, -the complete reference, McGraw-Hill,

Inc., 1993.

[6]Luers, T., Essential Oracle 7, First ed., Sams

publishing Inc., 1995.

[7]Oracle 7.3 Manuals, Oracle Corporation, USA, 1996. ' ■

[8]Ricardo, C., Database Systems - Principles, Design and

Implementation, Macmillan Publishing Company, 1990

[9]Rolland, Relational Database Management with Oracle, 2"^^

ed., Addison Wesley Publishing Company,Inc., 1992.

104

	Billing and receivables database application
	Recommended Citation

