California State University, San Bernardino

CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2000

Billing and receivables database application

Sushma Lukalapu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

b Part of the Data Storage Systems Commons

Recommended Citation

Lukalapu, Sushma, "Billing and receivables database application" (2000). Theses Digitization Project.
1618.

https://scholarworks.lib.csusb.edu/etd-project/1618

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.


https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1618?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

" BILLING AND RECEIVABLES

DATABASE APPLICATION

A Project
Presented to the
Faculty of
California‘State Uﬁiversity,

San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in

Computer Science

by
Sushma Lukalapu

June 2000



BILLING AND RECEIVABLES

DATABASE APPLICATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

Sushma Lukalapu

June 2000

Approved by

Or. Josephine Mendoza, Chdir

by

3-15-000

Dr. ‘George M. Georgiou

Dr. Torig Lai Yu //

Ms. Lorraine Frost

Date



ABSTRACT
The Accounting Department at California State University,
San Bernardino (CSUSB), keeps track of vast amount of
student financial data. The purpose of the Billing/
Receivables application is to develop a computerized
database system to kee? track of all.the financial details
pertaining'to students such‘as tﬁition} registration,
pafking, housing, etc. Originally, all the data has been
stored in files. This.application has been converted into
a database from a file;based system. The application aims
td‘support a centralized approach to the billiﬁg and,
receivables functions, process and track the transactions}
and also provide ad—hoc access to produce appfopriate
reports. This‘database offefs several benefits over the
current filé based system: allows multipie user‘access;
reduces data redundancy; provides speedy recovery of data;
maintains data integrity; allows security restrictions; and
balances conflicting requirements. The database is‘
designedvusing the entity-relationship (E—R) model
concepté. The.databasenis implementéd using a felational
database managementAéYStém f QRACLE 7.3. along with its
components SQL*Plus‘3.1..; SQL*erms 4.5., and SQL*Reports

2.5. The database executes asbén integrated menu

iii



applicatioﬁ (désigned using SQL*Forms). It also includes
user—-friendly data entry forms, and.several SQL quefies
that generate organized reports of use requested |
inforﬁation. The database has been validated for its

functionality and is ready for use.

iv



ACKNOWLEDGMENT

I thank the facuity of the Computer Science department for
givihg.me an opportﬁnity to pursue my M.S. in Computer
Science aﬁ California State University, San,Bernardino. I
expfess my sincere appreciation to my graduate advisor, Dr.
Josephine Mendoza, who provided me with invaluable guidande
through this entire effort. I also thank my other
 committee members, Dr. George M. Georgiou and Ms. Lorraine
Frost, for their valuable input. I would also like to
thank the staff of the Admihiétrative Computing Services
for their cooperation and advice in.the éhalysis of the
project. Last but nof leést; Iiwould like to thank my
husband Ramana for his invaluablé support and my friend Air -

Radha for his help with Oracle applications.



1.

TABLE OF CONTENTS

INTRODUCTION ittt v et et aaaeeesssossseneenneennnsnesssssns 1

1.1.INTRODUCTION ..vvvvvvnnnnnnnnnn P e 1
1.2.PURPOSE OF THE PROJECT ....... e e e e e 2
1.3.RESULTS OF THE PROJECT ...ttt ennnanns e 3
DATABASE REQUIREMENTS AND SPECIFICATIONS........ e 5
2.1.PROJECT APPROACH ........nnn.. PP
2.2 .INFORMATION DESCRIPTION ..; ......................... . 6
2.2.1.Information Flow Representation.................. -6
2.2.2.Flaws in the Existing File Based System:....... .14
2.2.3.Information Content Represehtation.._ ............ 15
2.2.4.System Interface Description.................... 15
2.2.5.Conceptual Database Design..........ociiieeennnn 18
2.3.SYSTEM REFERENCE &+t tvvvnnenenuennenneeneennnnns ... 42
2.4.SOFTWARE PROJECT CONSTRAINTS ..ttt in i eneneennans 42
2.5.FUNCTIONAL DESCRIPTION ..ot et eteteeeneaseanacaansans 43
2.5.1.Functional Description.....uviiiiiiiiienenennns 43
2.6.BEHAVIORAL DESCRIPTION ... veiiteneeannnn P 46'
2.6.1.8ystem State ... .ottt e e e e 46
2.6.2.Events and ACTionS ... weeuinmeneneneneananenenenns 46
2.7.VALIDATION CRITERIA . ittt vttt nnnnnnnnnnnaneennennss 49‘
2.7.1.Performance BOUNAS .....ctiutiininnnnnnnnnns 49
2.7.2.Classes of Tests..... T 50
2.7.3.Expected Software Respbnse ..................... .50
2.7.4.Special Considerations..... vt eneeoeensassanansas 50
PHYSICAL DATABASE'DESIGN...@;v ......................... 51
3.1.CREATION OF TABLES .t tit ittt it aeennonoeassssoenns 51

3.2.DATA LOADING . ittt vttt i ie e et ntaeeasososesssessasaas 55

vi



3.3.DESIGN Of SQL*FORMS .u.'vvverennnnn e S ...56

3.4.DESIGN OF SQL*REPORTS & .'vvvevennnnnn . S 58
3.5.FUTURE ENHANCEMENTS .t vvvvvennnnnn e e 60
4. DATABASE VALTIDATION......o... e e 61
4.1 .UNIT TESTING & vve vt vnnnnnnnns e e e e e e e e e e e 61
4.2 .INTEGRATION TESTING v vverunreneennnn [ 62
4.3.SYSTEM TESTING ....... e e e e e e e 62
APPENDIX A: CREATING TABLES, FORMS AND REPORTS .....e.wvn... 63
APPENDIX B: STEPS TO GENERATE A MASTER DETAIL FORM ....... 70
APPENDIX C: FORMS CREATED FOR PROJECT “ vt vt ieeeeneenennnn. 75
APPENDIX D: REPORTS CREATED FOR PROJECT ...... e 94
BIBLIOGRAPHY ....... R ... 104

vii



. PRIMARY AND FOREIGN KEYS

LIST OF.

. ATTRIBUTE

.2.1.1 DETAILS
.2.1.2. ATTRIBUTE DETAILS
.2.1.3. ATTRIBUTE DETAILS
.2.1.4 ATTRIBUTE’DETA;LS
.2.2.1. ATTRIBUTE DETAiLs
.2;2.2. ATTRIBUTE DETAILS

TABLES

FOR STUDENT ENTITY..nn 24

FOR CHARGES ENTITYnn26
FOR PAYMENT ENTITY.ooooooooooo, 27
FOR ACCOUNT ENTITY.ooooooooeosooon 28

FOR BILLED RELATIONSHIP...... 31

FOR APPLIED RELATIONSHIP....34

viii



XT

ZZ .......... ERTRTCERTEITPICIRETERIRELERIEE WVHDVIG dIHSNOI.I.V'—_[HH _XJIJI‘LNE .Z.Q.Z.Z HHDDI&

9T HTANYXA-NOI IVINASHIAAY INIINOD NOILYWJIOANI "€°C°¢ HdNDIA

SHYNDIA A0 LSIT



1. INTRODUCTION

1.1. INTRODUCTION

1}

The AccountingtDepartment'at California State
University, San Bernardiné (CSUSB) maihtains ﬁhe financial
details Qf the student accounts like tuition, bdarding,
housing, parking, etc. The department has<to keep tréck of
an extensive amount of student account information. This‘
requirement clearly drives the need for‘a computerized
‘database system that allows a greater level of flexibility
in the organization and storage of”data, maintenance of
data, and retrieval of data. This need for a more versatile
database led to the development of this project,vthe Billing
and Receivablés database application. The |

Billing/Receivables application aims to:

e Support a centralized approach to the billing and

receivables functions
® Process and traék Billing/Receivables transactions
e Facilitate decision making
X Faéilitate follow-up

e Provide ad-hoc access to produce appropriate reports



1.2. PURPOSE OF THE PROJECT

The purpose of this project is tobdesign, build, and
impiement an information retrieval database system for the‘
Accounting Department at CSUSB. The database will focus on
the fihancial’details of the student accounts maintained by
the accounting personnel. It offers detailed information
pertinent to tuition, parking, housing, boarding, etc. The
main reason for selecting the database approach over the
existing file-based approach is due to specific advantages
of centralized control of data. Some advantages‘of the

database approach are:

Redundancy can be controlled

e Data can be shared

e Consistency of data is maintained

¢ Multiple users can access the data at a time
e Standards can be enforced

. Security is improved

e Data integrity‘canibe maintained

e Conflicting requirements caﬁ'be balanced



e Backup and recovery services can be improved

e Concurrency can be increased

The database is implemented using a commercial database
management system - ORACLE Version 7.3. This databaserill'
address the immediate needs of the accounting staff and at
the same time would also permit the accounting‘personnel to -

further enhance the application.

1.3. RESULTS OF THE PROJECT

This project consists of the following outputs:

Database Application: A working database with relevant
application programs, that meet the spécific needs of the
Accounting Department with respect to storage and retrieval
of student accounté. ORACLE SQL*Forms and SQL*Reports are
utilized to maximize the user—friendliness.of the database

application.

Users Manual: An implementation manual will be provided

for the users.

Data Dictionary: A dictionary detailing all thé fields

will be provided.

Systems Manual: A‘projéct‘report Cdntaining the.details

3



and specifications of the design will be available; and
procedure to create template reports and forms will be

provided.



2. DATABASE REQUIREMENTS AND SPECIFICATIONS

2.1. PROJECT APPROACH

The campus accounting department’s B/R applications are
currently functioning on an IBM-4391, mainframe system.

This computer system adequately supports the administrative
applications with the help of upgrades and enhancements.
However, this IBMrsystem doesn't adeduately support the
efficient retrieval of data from the administrative systems
for ad-hoc reporting purposes. The application consists of
vafious screens written in COBOL. ‘The student billing
information is viewed by means of screens and the data
‘updated on the screens is directly updated in the VSAM
(Virtual Sequential Accesvaethod) files on the mainframe
syétem. Howevef, other ihformation not found on the screens
is obtained by sending the requests to the COBOL analysts in
the Administrative computing. These analysts write COBOL
programs to get the required data and send the_reports back
to the accounting department.v This‘procedure is not very
efficient because the accounting department personnel have

to wait for a day before they get the required information.

Motivation for this project comes from wanting to develop a
better, faster and complete database for the needs of the

5



end userslin the accounting deparﬁment. The ad-hoc queries
will bé done by accounting peréonnel as required using
BRIO. BRIO is a Query ianguage developed at BRIO
Technology, Inc. to retrieve data. Accounting personnel are

trained in using BRIO. .

A review of different types of data uséd by the accounting
staff revealed that the aété‘constituted distinguishable

" objects (entities) that can be linked to each other with
certain relationships. Therefore, the concept of relational
model was chosen as the design approach. The relational
model is a way of representing data in tables and
manipulating the data by means of operators such as Select,

Join, Insert, Delete, Update, etc.

2.2. INFORMATION DESCRIPTION

2.2.1. Information Flow Representation

The data for the database design has been obtained after a
thorough analysis of the existing data files and discussions
with the current users and analysts. All their requirements
and~specifiCations were taken into account whiie designing

the database.

To start with, twelve files were obtained from the

accounting department:



FILE NAME

FILE DESCRIPTION

Student attribute file - contains the pérsonal

information of a student

AM

Student miscellaneous file - contains
information like who did the transaction on a

student, the holds if any on students, etc.

AP

Building/room posting file - contains
information about the courses being offered and

the location of each class, etc.

AR

Tuition rate table file - contains information
of how much to charge a student depending on the

number of units enrolled, flat fees, etc.

BC

Subcode‘file - contains information of the
subcode for a specific type of charge, the
subcode description, if the transaction is a
charge or payment, etc. Every subcode is

associated with a 10 digit account number




FILE NAME

FILE DESCRIPTION

BD

Financial detail file - contains information
about a-bill,’e.g., the date bill was prépared}

thé‘amount,’peréoﬁ who prepared-the bill, due

' date of the bill, etc.

BM

Cash cheékout:file - if the payments are in

'césh, who took'the payments and were7théy posted

to the account, etc.

BS

Financial summary file'Q’contains»informatioﬁ
about a}bill,fe.g., the bill type, if the

transaétion has been fed to the corresponding

1 accounts, etc.

| CF.

Cashiering fees feed file - corresponds to the

cashiers office

CS

Cashiering»SuSpend/line‘item file Fvcorrespohds

to the cashiers office




| FILE NAME | FILE DESCRIPTION

RC . | Course term file - contains information about a
particular course like the course no., units,

name, faculty offering the course, etc.

RT ‘Student term»file:— contains information of the
courses takeﬁwby a student in a particular
quarter,]whetﬁer'the.Studenttis a sophomore, a

-graduate,vetq}gf

»After théroﬁgh.aﬁalysis of a11 the above files,vit waS_
vconcluded that AA, BD and BS'arévthe only files felatéd to -
the B/R‘mOdule. After_diséussions.With‘ﬁhefeﬁd users,>all:
the‘requiréd attributéS'Were'éeieCted-from the files. The
following is‘thé detailed dés¢ription of attributes in-the

AA, BD, and BS files.

© FILE AA - STUDENT ATTRIBUTE FILE\

ATTRIBUTE NAME ATTRIBUTE DEFINITION

sID ‘Social security number




ATTRIBUTE NAME

ATTRIBUTE‘DEFINITION

PrevSID Previous social security number if any
or blank

Name Student name

PrevName

Previous student name if any or blank

FILE BD - FINANCIAL DETAIL FILE

ATTRIBUTE NAME

ATTRIBUTE DEFINITION

| TranDate Date transaction was done
SID Social security number
ExtrInd External indicator. Specifies whether
the student is regular (‘'-'), contract
(“C’), or extension (‘E’).
Subcode subcode number assigned to the charge or

payment

10




ATTRIi;UTE NAME :A'I'VTVR.IB‘UT‘.E DEFINITION

Transeq ' :- Sequénce‘humber‘of‘the transaction

BiilDate  _ dété dé#ailyit¢@'wés prepared

TrahAcctRef uéeﬁfdéfiﬁedgid:fprhthe transaction

TranAmt - v‘amount‘dhétgeq"fér a subcode

BaidDate R daté the transaCtiOn was paid

PaidAmt v _ _ ,.'tétél‘amount paid 

TranUser ,‘ code»indicéting_the‘user of-the

| t?ansa;tiéﬁ,‘
EffDaté ] v. o date when charge or paymgnt is effective;
AdctngFeed f - wﬁethér transaction fed to accountiﬁg'”
| léystem ‘ |

\fW::not déﬁe;;‘Z': first phase ddﬁe;
‘37 check‘ﬁfitﬁén for-fefund‘

DueDate ”j avoid penalty.d?te

11




ATTRIBUTE NAME | ATTRIBUTE DEFINITION
ChrgClass control the order in which payments ére
applied to charges during the accounting
|| feed
TranAcctl‘ charge debited from this account
TranAcct?2 charge»credited to this account -
RecéiptNum number on the receipt of the transaction

FILE BS - SUBCODE DESCRIPTION FILE

ATTRIBUTE NAME

' ATTRIBUTE DEFINITION

SubDesc

desCription of the subcode

Chrg_Pay_Ind

Whether‘charge»of_payment

APFeedInd

INDICATES TRANSACTION WITH THIS SUBCODE

TO ACCOUNTS PAYABLE (A/P); ‘N’: NO

REFUND; ‘Y":EREFUND,‘CHECKS WILL BE

GENERATED.FROM‘ANVA/P VOUCHER




ATTRIBUTE NAME ATTRIBUTE DEFINITION

BillType indicates how transactions posted to the
subcode are to be processed

‘-': nothing;

M’ : tuition income clearing qccount;

‘T’ : non-resident tuition;

‘N’ : Othér tuition;

‘Q’; other fées;

‘o registraton;

‘B’ : boarding;

‘H’ : housing;

‘C': contract;

‘S scholarship;

\E’: exemption;

‘W’ : waiver;

‘D’ : deposit;

‘A’ : financial aid;

‘C’, 'S’ and ‘E’ are used during tuition

calculation to generate credit forms.

13




2.2.2. Flaws in the Existing File Based System:

Field Charge Class is 3 characters long which keeps track
of the'order in which the payments are applied. The‘data
being entered is not very understandable;’\However, after
another discussion.with the analysts, Chrg‘Class ié a
three lettér id which tells what payment has to be
applied when. It is thg order of the payments applied to
the account. It can-take Values A, B, and AB. However,
a look-up table is‘requiréd that describes the meaning of

A, B, and AB.

Transaction User is 2 characters and it is the code
indicating the usér. There should be some kind of a. look
up table that specifies the user name corresponding to
the code.

Bill Date is redundant because most of the time it is the
' \

same as the Effective Date.

Transaction account reference is the user defined id for
the transaction. There should be some document to keep
track of all the ids. Also there is no clear need for

this id. As there is transaction sequence which keeps

14



track of the transaction.
2.2.3. Information Content Representation

All the data will be represented in ORACLE tables and
viewed by means of SQL*Forms and SQL*Reports. The entity
Student is a relational table. ‘The form ‘Students Data"is
an independent form derived from the Student base table.
”There is also a report which prints out all the students
enrolled in the University that corresponds to the Students
Data form. The report is generatéd using an SQL statement
based on the Student table. This is achieved-by selecting

the student SSNo and the Name from the Student table.

A sample Main menu, Form, and the corresponding report

are shown in Figure 2.2.3.
2.2.4. System Interface Description

This application allows easy ad-hoc access to student
billing information and also allows efficient retrieval of
student information from the desktop of the‘end user. The
billing information is updated in the mainframe
applications. The relevant information will be extracted
using FOCUS, a symbolic programming language and loaded into

the database tables nightly.

15



9T

FIGURE 2.2.3. INFORMATION CONTENT REPRESENTATION - EXAMPLE

FORMATTED
'REPORT GENERATED
THROUGH

SQL*REPORTS



The final B/R database is a set of ORACLE tables, SQL
Forms to view, insert, and update'data, and SQL Reports to
retrieve often used data. SQL Reports are generated using

SQL scripts.

The advantages of this interface are:
e FEase of use (user is informéd of the wvalid choices),

e Minimal entry errors (items can be selected instead of
typing; spelling errors can be avoided; and invalid

entries can be prevented).

Pick Lists are used for certain fields which have a set
* of entries. For example, if the attribute ‘Extr-ind’ can
take values Blank, ‘C’ or ‘E’ the corresponding pick list

gives the description for each of these values.

The B/R module will have three levels of user

interaction:
e Ad-hoc queries,
e Routine data entry, and

e Maintenance data entry (updating, deleting).

Once all requirements were collected and analyzed, the

17



next step was to create thé conceptual data model which

consists of:
e Identifying entities (e.g., Student, Payment, etc.),

. Determiniﬁg key attributes of each entity (e.g., Student

has entities SID, Name, etc.),

e Establishing relationships and defining constraints
(e.g., Billed is the relationship between Student and

Payment) .
2.2.5. Conceptual Database Design

The design process begins with conceptual design phase,
which includes a clear definition of database requiréments,
content, structure, interrelationships, and constraints. |
The conceptual design results in a conceptual model (a high-
level data model) that possesses'the following

characteristics:
a) Expressiveness,
"b) Simplicity,
c) Minimality,

d) Diagrammatic representation, and

18



e) Formality.

Prior to defining the design parameters, it is critical
to identify the entities and the information to bé recorded
about those entities. Therefore, the initial step is to

gather and review the database requirements.

2.2.5.1. Requirements and Collection Analysis

In order to design the database effectively, we must
know the requirements of the users and the intended‘uses of
the database in as much aetail as possible. Thése include
new and existing users and applications. Meetihgs were held
with the accounting staff and the analysts for the following

activities:

e TIdentification of the major application areas and user

groups,

e Review of the existing documentation concerning the

application, and

f

* Analysis of the types of transactions and their

frequencies.

The following is a detailed summary of the database

contents and user requirements:

19



e Application area: the datébaSe‘shduld hold and offer
informatidn related to the student accounts, the account

description, subcodes.

e Application users: the application should be accessible
to the accounting staff and also to the analysts in the

Administrative Computing Dept.

e Operating environment: the application is currently on
UNIX‘platform (Sun0OS). The application uses ORACLE
Version 7.3 along with its components SQL*Forms 4.5 and
SQL*Reports 2.5. ORACLE 7.3 was chosen for this
application primarily because of its existence in the
Administrative and Computing Department at CSUSB and also
for its powerful capabilities such as, flexibility to
expand the application in'the future, enormous data
processing capabilities, etc. It is also an industry
standard Relational database management éystem. Multiple

users can access the application simultaneously.

2.2.5.2. Development of Entity-Relationship (E-R)

Model

Following the requirements collection and analysis, is
the development of the conceptual schema. The conceptual

schema 1s a concise description of the data requirements of

20



- the users and includes détailed despription of the data
types, relationships, and constraints. The conceptual
schema is expressed by‘means of E—R‘diagrams} An entity
represented in the E-R model is a ‘thing’ in the real world
that has an independent existence. E.g., an entity can be
an objéct with physical existence such as a person or an
object with conceptual existence such as a company. Each
éntity has a specific set of attributes (properties) that
describe the entity. Each entity also has an attribute
called the primary key éttribute and it is used to identify
each entity uniquely.b'fhé E - R diagram is shown in Figure

2.2.5.2.

2.2.5.2.1. Identify Entities and Associated

Attributes

Entities are classified as either regular or weak
entity types. A regular entity is also referred to as a
strong entity. If an entity)s»existence is independent of
another entity, then it is‘known as a regular entity. If an
entity’s existence is dependent on another entity, then the
depending entity is called weak entity. 1In this
application, the eﬁtities “Student” and “Account” are
regular entities and the rest are all weak entities. A

regular entity is drawn as a single lined rectangle where as

- 21



cc

FIGURE 2.2.5.2. ENTITY RELATIONSHIP DIAGRAM

PrevSID >
CSb >
Student
C ame




a weak entity is drawn as a double lined rectangle.

Attributes are a set of properties that define an

entity. E.g., the entity “Student” posSesses properties

such as the social security number, name, etc. Each of

these attributes derives their values from a corresponding

domain. Attributes can be of several types such as:

Atomic or Composite: an atomic attribute cannot be
divided into sub-properties. Atomic attributes are also
called simple attributes. Composite attributes are made

up of atomic attributes.

Single or Multi—valued: a single valued attribute has a
single value. A multi-valued attribute has a set of

values.

Base or Derived: a base attribute is an original
attribute of an entity where as a derived attribute is a
computed value from one or more of the base values or

other derived values.

The following are the entities and their corresponding

attributes identified in the Billing/Receivables

application.

23



Student: This entityvspeCifies'the demographic informationv
_ina student,like:the Name,'SSNo,, Extrind.; etc.

AttributevdetailSﬁare shéwn»in Table'2,2.4.2.1.1,

. Table 2.2.4.2.1.1. Attribute Details for Student Entity

Attribute/ |Size Data  |S or M' |cC or‘A? B or D

| | type
Description

siD/Social |9  |VARCHAR|S = |A B
Security
Number of the

| student

PﬁevSID/ . 9 'v §AéCHAR-”é'- RS |  .B
’Pfevioﬁs o AT |
Spcial
SeCurity'"
N@mbér»bf fhé

student if

,_.
n
1l

; vSinglevvalued;rM~= Multi valued
2 ¢ = Composite; A= Atomic ;

= Base; D = Derived

w
w
1

24



any or else

blank

Name/Name of | 32 VARCHAR | S A B

the student.

PrevName/Prev_ | 32 VARCHAR | S ' A B
| ious name of

the student

ExtrInd/Indic |1 VARCHAR | S A B
a-tor to the
type of

student

Charges: This entity specifies the charges charged under

each transaction sequence. ' The effective dates and the due
|

|
dates are also included in this entity type. This entity is

also a weak entity. The attribute details of this entity

type are shown in Table 2.2.4.2.1.2.

25



Table 2.2.4.2.1.2. Attribute Details for Charges Entity

Attribute/

S or M

number of the

transaction

Size |Data CorA |BorD
Description type
Term/Quarter 3 VARCHAR | S A B
Subcode/Id of 5 VARCHAR | S A B
the payment
AMOUNT /AMOUNT 9 NUMBER S A B
CHARGED TO THE
STUDENT
EffDate/Date 8 DATE S A B
'when the bill
becomes
effective
DueDate/Date 8 DATE s A B
when the
payment is due
TranSeq/ 1 VARCHAR | S A B
Sequence

26




Payment: This entity holds the details of the payments made
by the students. This is also a weak entity. The details

of the attributes are shown in Table 2.2.4.2.1.3.

Table 2.2.4.2.1.3. Attribute Details for Payment Entity

Attribute/ Size Data S or M C or A B or D
Description | type
ReceiptNum/ 5 VARCHAR S A B

Number on the
payment

receipt

| PaidAmt /Amo- |9 NUMBER S A B
unt of

payment

PaidDate/Date | 8 DATE S A B
the payment

was made

Account: This entity type holds the details of the various
types of accounts. This is a strong entity and the details

27




of this entity type are shown in table 2.2.4.2.1.4.

Table 2.2.4.2.1.4. Attribute Details for Account Entity

Attribute/ Size | Data | SorM [Cor A B or D
Description | type

Subcode | 5 VARCHAR |S A B
SUBDESC/DESCRIP | 30 VARCHAR S | A B

TION FOR THE

SUBCODE

CrAcct/Credit 15 VARCHAR |S A B'
account number

of the subcode

DBACCT/DEBIT 15 |VARCHAR |s  |A B
ACCOUNT NUMBER

OF THE SUBCODE

2.2.5.2.2. Identify Relationships and

Associated Attributes

As described earlier, the Billihg/Receivables database

has four entities.' Each of these entities are associated

28



among themselves by means of relationships; "To set up a
relationship betweén any two entities, one must determine
the‘hature of the relationship. There are three types of .

relationships as:described below.

0._Oﬁe—fo—mahy reiationéhip (1-M):: a oneFto—many
relationShip is‘the most common type of felatithhip‘in}a
relational database._ In thisltypevof relationship,.au
‘record‘in Table A (Entity A) can have:ﬁore‘than one |
matching:recbrd’in Table B (Entity'B). However, a record
in Table Bvcan"have étmost one'métching record in Table

A.

1 O Mg

° Many—to-mahy (M—M);Jin;hié’tYpéiof félétionship, a
record in Table AﬁéénihaﬁéJﬁéﬁéiﬁhaﬁ one ﬁatching record
in Table B, aﬁd similéfiy.aifééérd‘in Table B can. have H

" more than one matchiﬁg_recbrd in Téble A. |
| M . ‘ ..M

e One-to-one relationship (1-1): this is not a very common

relationship. In this type of relationship, a record in
 Table A can have no more than one matChiﬁg record in

29



‘Table B, and similarlypafreccrd in Table B can have no more

than one matching record in Table A. -

The entities involved in a specific relationship are

‘called the participants of the relationship, and the number

of participants in that relationShip defines the degree of

the relationship.' The participation level of an entity in a

relationship can eithér be total or partial. It is said to

be total participation when -every instance of the

participating entity participates in at-least one instance

of the relationship) ctherwiSe, the participation level 1is

termedvas_partial, The following are the relationships that -

were derived in the Billing/Receivables‘application,

Billed:
Chargea
charges
to only
several
to only

partial

is a one-to-many reiationship'between Student and |
andistudeht and anmént.‘ Every‘Studént‘haS a'sét.cf
tc pay wheré as one particular charge can be applied
one student. Similarly, every‘student has makes |
payments where as one particular payment corresponds

one student.. Student participation in Billed is

where as Charges and Payment participation is total.

Every student might not have charges or Payment but every

30



charge is billed to a stﬁdént.and eVeryvpaYment istmade by

a student.‘ Billéd'is atweakvrelationShip‘becausé Charges

and Payment are weak ehtities.

_ this relationship are shown in Table 2.2.4.2.2.1.

The attribute detailS'of

Tablef2.2;4.2;2,l. Attribute Details for Billed Relationship".

Attribute/

Description

, Size

Data

_tYpe. 

SorM

C or A

B”o: D

TranSeq/Id |

for the
transaction
being

processed

VARCHAR

TranUser/Us
er id:of
the person
recordiné
'theﬂ

transaction

VARCHAR - |

BillDate/Da

te bill

prepared

| paTE

31




c/Pind/ 1 VARCHAR |S |A
Indicator
for charge

or payment

ReceiptNum/ | 5 VARCHAR S A
Number on

the receipt

for the
payment
Student
Billed Charges




Made: is a one—td—many.réiationship»bétWéen Payment’aﬁd
;Chargeé. Every'Paymehﬁ is made for many Charges and manyli_
-chargés together are péid at once. Paymeht partic;pation in-
Médejis total whereias_éharges»participation in Made is
parfial{>'Every’charge'might;notﬁhavé a paymént but every
payment Will,have a charge;lﬁaaeaié.a:wQék relationship

because both Charges anvaaYmént a;é weak entities.

Tement | <\\\\\\//////)

Correspond: 1is a one-to-one relationship between

Charges

Chargeé and Acéoﬁnt. Every charge cdrresponds to a éubcode
and every subcbde-Correspbnds to jusf one charge.‘ Charges
participation in this relatibnship is total where aé Account
‘ participation‘in this relationship is partial, Every bill
is charged based on a subcode but every subcode is not
billed to a student. Correspond is a Qeak relationship'

- because Charges is a weak entity.

Account
Charges

Applied: is a one-to-many relationship between Payment'-

33.



and»Account. Every payment constitutes differént subcodes

in the Account. The participation of Payment,in Applied

. relationship is total where as the participation of Account

~in Applied relationship is partial. Every payment

cbrresponds to a subcode but évery subcode might'not have a

payment. Applied is a weak relationship because Paymént is

a weak entity. The attribute details are shown in Table

2.2.4.2.2.2.

Tablé 2;2.4.2.2.2; Attribute Details for Applied

Relationship
Attribute/ Size Data - S orM CorA 3'or D"
: L type
Description - .
‘TranAcctRef/ |6 VARCHAR |S | a B
User défined 1
id for the f f
tranSaction  1
TranAcctFeed/ | 1 VARCHAR |S A B
Whether
transaction
has been fed

34



http:Payment.in

to the
accounting

system

APFeedInd/
Indicates
transaction
in the
Accouﬁt

Payable

VARCHAR

BillType/Spec
ifies if it
is
registration,

tuition, etc.

VARCHAR

ChrgClass/Or-
der in which
the payment
has to be

applied

VARCHAR

35




Payment ‘ Applied Account

2.2.5.3. DERIVATION OF FUNCTIONAL DEPENDENCIES

Once the E—R‘diagram is mapped with the database
requirements and constraints, the next logical step is to
derive functional dependencies (FDs). Functional
dependencies are used to groué attributes into relational
schemas that are in normal form. A functional dependency is

"a constraint between two sets of attributes from a database.

In a relation schema R, X functionally determines Y if
and only if whenever two tuples of R agree on their X-value,
they must necessarily agree on their X—&alue or,
alternatively, the wvalues ofVX‘cOmponent of a tuple uniquely
or functionally determine the values of the Y cemponent.
Symbolically, this relation is represented as X -> Y.

Based on the review of the usef requirements, and the E-R
diagram, the following FDs have been established. The
functional dependencies are grouped by each determinant

attribute.

SID ==——- > PrevSID

36



SID ————-— > PrevName

SID —-—---- > ExtrInd“'

Tran Seq ----- > TrénUse:
Tran Seq —----- > Term
Subcode ----- > Subbesc
Subcode ----- > CrAcct
Subcode ———f—> DbAcct

Tran Seq —--—--- > BillDate
Tran_Séq ————— > EffDate
Tran Seq —----- > DueDaté
Tran_Seq» ————— > ReceiptNum
Tran Seq ----- > TranAcctRef
Tran Seq ----- > ChrgClass
Tran_Seq ————— > BillType

37



2.2.5.4. Development Of Base Relations

This sectioh defines‘the initial set of base‘relations‘
that éan bé derived from the E-R diagram. A relation is a
mathematical term for a table. A relation consists of tuples
and fields.l A tuple corresponds to a row and a field
corresponds to a column which 1is also an attribute. The
number of tuples‘in‘a relation is the ¢ardinality of the
relation. The number of attfibutes in a relation is the
degree of the relation. In’eVery relation there is a primary
key whiéh uniquely identifies the tuples. There could also
be a foreign key Which corresponds to a primary key in the
. base relation. Primary key is denoted with a solid
underline and foreign key is denoted with a dashed

underline.

The following base relations have been derived for the

Billing/Receivables database

Student

SID | PrevSID Name PrevName | ExtrInd
Billed

TranSeq TranUser BillDate C/Pind ReceiptNum .

38



Charges

SID Term Subcode  Amount - EffDate - DueDate TranSeq

Payment

SID TranSeqg ReceiptNum PaidAmt

PaidDate

Applied

BillType TranAcctRef TranAcctFeed

APFeedInd | |

ChrgCiaSs

Account

. Subcode SubDesc CrAcct DbAcct
2.2.5.5.‘ Normaliéation of Base Relations

The next step is to_normaiize the above baée relations.
Normaliéation of data is a_prpcéss during which
‘uhsatisfactory relétidhgschemas are decomposed by breaking
up thei; attributes into smaller reiation schemés that
possess desirable properties. Unsatisfactory relation
" schemas are thése schemas which have redundant attributes,

i.e., composite and multi valued attributes. Normalization

39



is achiéVed_thr¢ughlfhree steps which are First Normal Form
(INF), Second Ndrmal Form (2NF), and Thirdedrmél Form '  _
' (3NF). Hence, a databas§ is desired to beMat'least,in'Third

MNormal F6rm,

vFirst‘hormal fgrm is?aéfih.if£5§aiséii§wﬁmﬁlti4valped
attribﬁtes,_coﬁpositefatégigﬁﬁééyiéﬁd”théig'éombinations.

It statés that the domains:ggitﬁéiéftfibutes must include
only atomic values and that theivalue of,any attribute ih a
tuple must;bé asihglevalue'ffom the‘domain,bf‘that |
'attribﬁte, 'Hence, 1NFAdisall§wskhaviﬁga sétbofHVaers, a
vtﬁple.of valuesj or'é-COmbination‘¢f both as aﬁ’éttfibute'«
value forwé sinéle tuple; The iny‘attribuﬁe Values |
permifted by INF are éiﬁgle atomic values erm'é domain of
such &élues.‘ Asfper £he definition of 1INF, we seevthat the.
Billing/Receivables databaseis‘élreadyjin the 1NF éince it

dOQSHft contain any multi-valued or compdSite attributes.

 Second normal'férm depeﬁds on the concepﬁlofffull
_functional_depéndeﬁcy. A fﬁnctional dependéncy X ===> Y is
fully funCtional‘depéﬁdeht if removal of any attribute A
 from X meansvthat the dependency‘doésn;t hold‘any.more. 7A'
relation schema R is inv2NFIif every non primary key
attribute‘in R is_fully‘functionallyvdepeﬁdént on the

primary key of R. As per the definition of 2NF, the

40


http:since.it

Billing/Receivables database is already in 2NF since all
the hon primary key attributes are fully functionally

dependent on the primary key of the base relation.

Third normal form is based on the concept of transitive
dependéncy. A functional dependency X ---> Y is a
transitive'dependency if there is a set of attributes Z that
is not a subset of any key of the relation R, and both X ---
> Z and Z ——-> Y hold.‘ A relation schema R is in 3NF if
every non primary key attribute of R is transitively

dependent on the primary key. As per the definition of 3NF,
the Billing/Receivables.database is already inV3NF because

there are no transitive dependencies.

So the base relations are the normalized relations.

2.2.5.6. Database Implementation

- Created relational tables and query scripts using

ORACLE 7.3, S$QL*Forms 4.5, and SQL*Reports 2.5.

2.2.5.7. Testing and Validation

The Billing/Receivables application has been validated
for several validation criteria. Various classes of tests
have been conducted to verify the following database

functionality:

41



'T'éyf, Correctness the result of correctly framed querles

_jshould return all matchlng records
b); Multl user functlonallty tests for ORACLE’S multl user“_
.features,’e g concurrent read access ThlS hasn t yetf

been tested as the database hasn t yet been loaded in ;:

the,system,;

Lo The extractlon of - data from}the malnframe system is done :
fu81ng FOCUS FOCUS”ls a symbollc programmlng language
‘:It is mostly used for commerc1al appllcatlons FQCUS_lS‘

'best able to'handleicompleg,lnput/_output functions nhere’
'anlarge'volumebof'data‘needsgto‘bé?ﬁrocessed at one»time;;
b”Thebextractlonlof datavwas"dOnefby'Mr. Téd»SChiffer of
vAdministratiye bebartment.li o - | H

2.3. ‘rsYSTEm-REFERENCE,
The proposedldatabaSe develobmentﬂuilllembloy‘Sun.OSVH
l 4 3 1 operatlng system ‘The database:management o

system(DBMS) used w1ll be Oracle 7 3 along w1th 1ts

components SQL*Elus»B,l,‘SQL* Forms 4. 5, and SQL*Reports .

2.5,

2.4, SOFTWARE PROJECT CONSTRAINTS
Personnel - The system‘isibeing,designed-and implemented



by a graduate student, Sushma Lukalapu under the guidance
of advisors, Dr. Josephine Mendoza, CSCI Dept. and Ms.

Lorraine Frost, Administrative Computing Services.

2.5. FUNCTIONAL DESCRIPTION
2.5.1.  Functional Description
2.5.1.1. Processing Narrative

The information about student accounfs is available to the
accounting staff so fhey can create.éd—hoc queries to

retrieve the data.‘Also, some data can be obtained from the
reports created in this project. The SQL reports provided

to the accounting staff are:

e names of all students who have been charged a particular

subcode by term,

° listing of subcodes charged to a particular student by

term or transaction date, and

e detailed description of the fees paid by a student for a

term.

The result of each of the above quefies will be a SQL report

which may be viewed onscreen or printed.

43



' 2.5.1.2. Restrictions/Limitations

a) Accounting staff will have a few reports to choose from
‘(as mentioned above). Any other reports for which SQL
scripﬁs are not written could be created using ad-hoc

queries.

b) The staff might receive some data which may not fit into

the existing schema. -

2.5.1.3.  Performance Requirements

The siZe of the database is‘relatively small ( Seven base
tables with an average ofvsix fields per table) when
compared to ORACLE's processing capacity. Since, it is only
sample‘data, not more than ten records are inserted in a
table. So the response time is expected to be good.
However, there are some implicit requirements for this

system design

a) User-friendly

e Shortest time possible required for the user to get

used to the database.

e Sample forms are graphidally illustrated, and menu-

driven oriented pull down menus.

44



b) Testability

e FEach requirement in this design has been verified and

thoroughly tested

2.5.1.4. Design Constraints

Constraints like data constraints, domain constraints,

and enterprise constraints will be taken into account:

a)

The enterprise constraints mean the set of specifications
initially defined by the enterprise. The B/R module

doesn’t have any enterprise constraints.

The domain constraints specify the range of values for a
certain attribute (e.g., In the Student table of the B/R
module, the attribute Extr ind can take values -Blank, C

or E).

Data constraints specify the size of each attribute(e.qg.,
In the Student table of the B/R module, the attribute SSN
has to be 9 digits).

2.5.1.5. Supporting Diagrams

ER diagrams that provide an overview of the database,

DDLS (Data definition language) used to create the tables

and the final Oracle tables comprise the supporting

45



diagrams.

2.6. BEHAVIORAL DESCRIPTION

2.6.1. System State

The database state should be consistent, which means

that the database should satisfy all the state constraints

such as:

‘a) Attribute key constraint which specifies whether an

attribute or a set of attributes is a unique attribute of
an entity type. e.g. Subcode is a unique key for the

entity ‘Account’.

Attribute structural cbnstraint which specifies whether
an attribute.is single valued or multi-valued and whether
or not null is allowed for the attribute. There are no
multi—valuéd attributes in the Billing/Receivables

module.
2.6.2. Events and Actions

It will be ensured that the proposed database will

maintain the integrity‘constraints:

a) Entity integrity will ensure that every primary key is

not null. e.g. SSNo. cannot take a null value.

46



b) Referential integrity makes sure that every foréign key

thét exists (isvnot nuli) in a child table refers to an

| existing primary key in the parent tabie. Referential
integrity could be violated when updating a relation.

There are three basic update operations on relations:

Inserting a tuple:lWhen inserting a tuple in a child
table, referentiél'integrity can be violated if tﬁat Same
value does nor e%isr'in thébparent table. This can be
corrected by changihg Eheivalue in the child table to
some valid value that exists in the parent table. It
can also be corrected by inserting a new tuple with this
- value in the pérent table (this inéertion has to be
acceptable). e.g;‘Inserting a student and a corresponding
charge in the ‘Charges’ table‘withéut inserting the
student (studént's SSNo.) in the ‘Student’ table will

violate referential integrity.

Deleting‘a tuple: If referentialbintegrity is Violatéd
while deleting a record, it could be corrected either‘by
rejecting the deletion, cascadé the deletioniby deleting
tuples that reference the tuple being deleted or by
modifying the referencing atrribute Values that cause the
vioclation; each such value is set to null or‘changed to

reference another valid tuple. However, if the

47



refeféncingrattributebthat causésvthe’vidlation is part of
the»brimafy key,vthen‘it‘Canﬁot be éet to null , because
_1then‘i£ would Violaté eﬁtity integrity. .é.g. Deléting a
‘student’s SSNo; from thév‘Student” table when thé\SSNQ.
exists in the fCharges’ table violates'reférential‘

integrity.

e Modifying the value of an attribute: If féferéntiai

| ’integrity'is’violated whilévmodiinng the value of4a,’

- primary key,*then itVCah‘be COrrected'by the abové two .
‘methods becausé‘modifyihé"is siﬁilar fg deleting a tuple
and inserting anothér‘in’iﬁé piacg;' waever,'if a
foieign key 1is modifiéaf‘fhehjghe ﬁew value‘should refer

to an existing tuple in the referenced relation.

Alsdo whenever the primary key is updated; the
‘corresponding foreigﬁ key alsQ has to be updated; If a
primary key is‘deletéd; the corfespbnding foreign key
should also be deleted. If a néw récord is inserted into
the‘child table, the recqrd has to exist invthe’parent
.table. Table 2.6.2 shoWs the primafy keys and the foreign

keys for the B/R module.

48



67

- "3delfoxd ayn

70 odoos °u3 pUO&eqféIéxéééﬁ:.pUQ”eouéﬁio;qed‘eqq 108378 Aeu

‘-2790 ‘squ;exjsuobﬁteuotjjpbéVﬁﬁtbpé ‘seTge3 8yl 01 SPTeT]

 ,Meu«6qup€vextf_?udxjeoIfddé'éqﬁvép;sjno sioqoé; I9Yy3lo OsT®e

PUY  "PopPROTISAO eqvptnoo ’semtq.qg ququ’qioquu Jeqndmoo

sndwed 8yl eBTA IonTos 2yl yaTm ejeoIUnmmoo TTtM asegelep

a/g‘equlefdmexe T04 'emtq osuodsal sy3l 3093Je PINOO SI030RJ

Swog “TTews sT (

SaTgel usass ATuo) es?qeqep 2y3 Jo esz“

Y3 3eyl HburtaspTsuod poob oqg 03 psioedxe sT sourwrorxad oyl

spun@g SoueWIOFISd T TL'C

VIHQLIHDNQILV@ITVA Ltz
abmz&a&z& ON | QETII9 ‘INIWAYL | | WONLATEOTY
HoNaaaﬂﬁH ON OLAAITddY ATYLODYNYVAL
~ SEHDYYHO ILNNODOY - 9aoodns
LNIWAYA “SADIYHD qaTIIE | : OASNYYL
INZWAYA ‘SEOMVHD INEANLS o ais
zqé?m AT NOIENOA ATEVL iax‘xuvwxaa ‘ ‘sxsx xavwiua

sAhey ubTox0] puUE AiemI;a ‘292 eTQQL




2.7.2. ClaSses of Tests

The result of correct ad-hoc queries will be all

matching records. Three specific tests will include:

a) Unit Test: Individual tables will be tested for the check
constraints, unique key constraints and the entity

constraints.

b) Integration Test: All tables together will be tested for

referential integrity constraints.

c) System Test: The whole database will be tested to ensure

that it performs all the allocated functions.
2.7.3. Expected Software Response

As discussed earlier, B/R will be designed to have good

response time.
2.7.4. Special Considerations

‘a) New data entries may contain information which wasn't
anticipated in the existing schema. So, the database

might need periodic modifications.

b) Users might want some enhancements once the B/R module is

in daily use.

50



3. PHYSICAL DATABASE DESIGN

The physical design phase of the databése is the
physical implementation of the cénceptual design using a
Relational Database Management System like ORACLE 7.3. This
phase defines the data storage structures, associated
mappings, and access paths related to the database
application.. This process generally involves the design of
tables, loading of data into the tables, design of forms,
generating reports, and testing the performance. The

following section describes the physical design in detail.

3.1. CREATION OF TABLES

The tables for the Billing/Receivables database were
created using ORACLE 7.3. The normalized relations from the
conceptual design were converted into the table format using
the ‘create table’ command in ORACLE. There ate seven
tables in the Billing/Receivables database. Each table has

on average six fields.

The syntax for the’create table command is shown in -the

Appendix A.

The order in which the tables are dropped and created

is critical ©because of the referential integrity

51



constraints. The sequence of the tables in the

Billihg/Receivables'database is as given below.

drop
drop
drop
drop
drop

drop

table Student;
table Account}
table Billed

table Charges;
table Paymeﬁt;

table Applied;

Create table Student(

SID VARCHARZ (9) constraint student sid pk

PRIMARY KEY,

PrevSID VARCHAR2 (9) constraint student_prevsid_uk

UNIQUE,

NULL,

Name VARCHAR2 (32) constraint student_name_nn‘NOT

PrevName  VARCHAR2 (32),
ExtrInd VARCHAR2 (1) constraint student extrind ck

check (Extr Ind in ('-', 'C', 'E')));

52



Create table Billed(
TranSeq VARCHAR2 (4) constraint billed transeq pk
PRIMARY KEY,

. TranUser VARCHARZ2 (2) constraint billed_tranuser_nn

NOT NULL,
BillDate DATE,

C/Pind VARCHARZ (1) constraint billed cpind ck check

(C/Pind in (C’, ‘P’)),

ReceiptNum VARCHAR2 (5) constraint billed recptnum pk

PRIMARY KEY) ;
Create table Account(
Subcode VARCHARZ(S)-constraiht‘account_subcode_pk
PRIMARY KEY,

SubDesc VARCHAR2 (30) constraint account_subdesc nn

NOT NULL,
CrAcct VARCHAR2 (15) constraint account cracct uk
UNIQUE, |
DbAcct VARCHARZ (15) constraint account_dbacct uk
_UNIQUE) ;

53



v' C£eate{tab1e_Ch$fges(_

‘SID‘ - :'VARCHAR2(9) constraint charges_sid;fk
: reférenéés>Student ON DELETE CASCADE,
Effﬁate' DATE,* o
DueDate  jDATE,

Term  VARCHAR2(3),
SQbCode VARCHAﬁ2(5)Yconstraiht charggs_subcodé_fk

references Account ON DELETE CASCADE,
Amount NUMBER(9, 2),

TranSeq VARCHAR2 (4) constraint charges_transeq_fk

references Billed ON DELEIEYCASCADE);

Create table Payment (

sip VARCHAR2 (9) constraint paymeht_sids;fk

references Student ON DELETE CASCADE,
PaidDate DATE,
PaidAmt’_ NUMBER (9, 2),
 éeceiptNum VARCHAR2 (5) constraint
payment_recptnum_fk refereﬁqes BilledeN DELETE

CASCADE) ;

547



Create table Applied(

TranAcctRef VARCHARZ (6) constraint applied ref pk

PRIMARY KEY,

TranAcctFeed VARCHARZ2 (1),

APFeedInd VARCHARZ2 (1),
ChrgClass VARCHARZ (3),
BillType ' VARCHAR2 (1) constraint

charges_billtype ck

check (BillType in
(,'I',’T','N’,'Q','F',’B','H','C','S','E','W',’D','A’))

);

3.2. DATA LOADING

The data_extraction from the filevmanagement system was
déne using FOCUS. FOCUS is a data retrieval language. The
data was extfacted by Mr. Ted Schiffer of the Adminstrative
Computing Services. This data was to be loaded into the
ORACLE tables using SQL*Load. This task couid not be
completed because SQL*Loader was not accessible at school

(it wasn’t loaded in the system). Sample data has been

55



: loaded and the application has been tested With the sample
data. All the queries have been reported to return all

matching records
3.3. ’DESIGN‘ OF SQL*FORMS
SQL*Forms were deSigned for- data entry and updating
'SQL*Forms aid 1n the quick development of form based
‘applications for entering, querying, updating,_and deleting'

data. Before gOing further into detailed discuSSion of

forms, it‘is»important to understand the following terms:

- Block: a section of form that corresponds*to a table in the -
database. Blocks provide a Simple mechanism for grouping
‘related items into a functional unit for storing,‘
vdisplaying, and manipulating records.

Multi—record block: a block that can-display more than one
record at a time.
" Record: data from one row in base table as represented in a
form.

~ Base table: a table in'the-databasewon Which_azblock is
based.

Base table item: an item that directly relates to.the base

56


http:development.of

table;~'
Control-item: these 'items are populated with database>values‘
using SQL statements. e.g. TotalAmt is obtained by adding

up all the AmtCharged from the Charges table.

List‘item: a list of text elementévthat can be displaYed as
pop list'sometimes called drbp'list. é;g; BillType in the

Charges table is a_list‘item.

Radio groups: display é‘fixed}no. Of optidns that'are-‘
mutually éxclusivelﬂuEaéhﬂdption_ié”represented by an
individual radiéfbutt0nlc~e4g;'AEEeédInd‘in the Applied

table.
Text itemé:‘default data type for text items is CHAR.

Eleven forms have been déveloped for the‘
Billing/Receivables application. These forms can be grOupgd
under two different categQriés namely Indepéndent forms,

Master—detéil forms.

The independent forms directly‘corieSpond_ﬁo the base
tables wherein data can.be entered and updated. Data.for
some fields (e.g. Extr Ind;.C/P‘Ind, AP Feed Ind,_Aéctg
Feed) in ﬁhe indepehdent forms can be entered through list
items and radio buttons. ‘All the base tables have the

57



:¢Orrésponding independent forms. Examples of independentv"

'forms’are Student, Charges,vPaymeht, etc.

}Masteeretéil.form on the dther>hand is an éssociation
betwéen twblbaée'table‘blocké, the_master biock:andvthe'
- detail block. The relatiohship bétween the maéter bléck ahd'
. the detail block reflects a primary key to foreigh key
relationsﬁip between the‘tables.on.which the blocks are
based. The master block is'related fo‘the detail block
through-tﬁe‘Join éondition. The Join condition estabiiéhes
the pﬁimafy key itém iﬁ the maéter block.and>the.foreign key
item in the detail.block;\'The data in‘the,master-detail

forms cannot be updated. They are jUst,used for displaying

1

- data.

' The master-detail forms are”Student—Charges; Account-

Charges; Student-Charges-Payment.
‘Steps to create and modify forms are shown in Appendix A.

3.4, DESIGN OF SQL*REPORTS

A report is a summary of information that is well
orgahiZed and formatted to suit the user’s specifications.
Reports provide more flexibility in presenting data that is

easy to understand. Some daily use examplés of reports are

58



mailing labels, invoices, sales summaries, etc.

For the Billing/Receivables application several reports
can be generated based on query criteria. These reports
could be generated on single-variable or multi-variable

requests. Single-variable requests are:
e Search for students based on a subcode,

e Search for subcddes charged for a stﬁdent, etc.

Multi-variable requests are:

e Search for students based on subcode by term or

transaction date,

e Search for subcodes per student by term or transaction

date, etc.

The reports consist of several SQL queries. Every base
table has a corresponding report (é.g. Student data, charges
for students, payment by a student, lisf of the subcodes
along with theiridescription, etc.). There are three multif
variable request reports (e.g. Search for students based on
subcode by term, Search for subcodes per student by term,

charges for a student,:etc.).

Steps to generate and modify reports are shown in

59



Appendix A.

3.5. FUTURE ENHANCEMENTS

Transaction User can have a pick list that shows the user

name correéponding to the two digit code.

Accounting feed is defined as a radio button. That can

be changed to a pop list.
Have a Main menu for the reports also.

Within the main menu for reports, have a sub menu for the
students report, in the'increasiﬁg order of the SSNo,
alphabetical order, and according to the external

indicator.

Have several other reports like querying charges by
transaction sequence, charges by term, etc. in the main

menu.

60



4. DATABASE VALIDATION

Once the database is succeséfully designed and
implemented, the next step is to validate the database
application for its functionality. Positive results in
these vélidétion tests would imply that the database would
perform satisfactorily and initial objectives have been met.
Tests performed on the Billing/Receivables application can

be grouped under three categories:
e Unit testing,
e Integration testing, and

e System testing.

Test results under each of these categories is

presented in the following sections.

4.1.  UNIT TESTING

Unit testing focuses on the verification effort of the
smallest unit of the database application. For the B/R
application, each form is tested individualiy for its
functionality like proper storége and retrieval of data,

etc.

61



Similarly, each report is also tested to verify data
Qrganization, format, and accurate data retrieval of the

user requested query.

4.2. INTEGRATION TESTING

Following the unit testing phase, the next phase would
focus on the pérformance of the integrated components of the
database application. The individual components like forms
~and reports are integrated using SQL*Forms. Various tests
| were conducted to verify the linkage between all forms and

reports.

4.3. SYSTEM TESTING

In this phase of testing, the B/R application is tested
as a complete system. Two primary tests were conducted to
ensure the completeness of the system which include tests on

database user-friendliness and multi-user feature of ORACLE.

User—friehdliness: tests are performed to verify whether the
application prompts the user for information in an accurate
“and easily interpretable format. Also to verify if useful

help text was provided when necessary.

Muti-user feature: tests are performed to verify the muti-

user feature of ORACLE like the concurrent read access.

62



APPENDIX A: CREATING TABLES, FORMS AND REPORTS

63



SYNTAX TO CREATE TABLES IN ORACLE

create table table_name (

columnl datatype(size)

column_conétraintItable_constraint,

columnz datatype (size),

The syntax uéedvto create table is not case sensitive. The
create table command enforces different kinds of constraiﬁts
on the table including p;imary keys, foreign keys, not
nulls, and check conditions. Enforcement of these
constraints allow ORACLE to maintain the database integrity.
Based on the type of the data, the datatype is specified as
CHAR, VARCHAR, DATE, NUMBER, etc. The advantage of using
VARCHAR over CHAR is that VARCHAR uses only the required
spaces>where as CHAR uses ali defined spaces by filling the
unfilled spaces (after using the required spaces) with
blanks. A majority of the fields in the Billing/Receivablés
database are VARCHAR. The dates are given the datatype DATE

and the amounts are given the datatype NUMBER.

64



STEPS TO CREATE FORMS IN ORACLE

After invoking the Oracle Forms designer, choose File -

Open -—2> Form from the menu bar.

Once the list of files are listed, Select ->

‘stucgpmt . frb

After the file is selected, Forms returns to the Object
Navigator. Define a Window and a Canvas View to place
the stucgpmt form on. Give a name to the Window and the

Canvas View.
Next, go to the tool bar and open the layout editor.

Once the form module is created, the default name can be
changed from the property sheet;i‘cher properties in the

property sheet could also be changed.

Steps to create blocks

From the object navigator, select the blocks node by

clicking on it one time
Cliék on the cfeate icon on the vertical tool bar

Connect to the database from File --> Connect

65



e This will bring up the New Block dialog box. Specify

the name of the base tablé, name of the block, énd name of
the canvas if an independentvform has to be created. If
a master detail form has té created, then specify the
name of the master table and also the name of the’detail
table along with the Join condition to relate to these
two tables. Select columns uhder Items. New Block
Options allows to select only the wanted columns. Select

the style of the block as Tabular or Form.

e From the tools menu in the Object Navigator, select the
layout editor to view the skeletal form of the block just

created.

Steps to Test the Forms

Generate the form to create an executable version of the
form and then run the form. Select the <Generate> option
from the File menu. Execute the form by selecting <Execute>
from the file menu. Then select the <Run> button from the
tool bar. The form that was Jjust created appears. The form
is tested by inserting a new record, query an existing
record, update the queried record, querying the record just
inserted. To insert a new record, press the <Insert

Record>, enter the data and then select <save>.

66



Steps to Modify the Forms

The form could be modified by going into the Layout>Editor.
The blocks can be repositioned. . The fields in a block can\
be selectéd or deselected by opening the appropriate block.
The fields could be re-named by opening the properties sheet
for that particular field. List items, Radio buttons, Pop

lists, etc. can be used to define a field.

STEPS TO CREATE REPORTS IN ORACLE

e Invoke Oracle Reports by double-clicking on the Oracle

Reports»Desigher.
e Connect to the database through File --> Connect..

e Double-click on the icon in the Data Model Node and the

Data Model Editor is displéyed.

e Select the query tool by clicking on it once in the Tool

Palette.

"’_Move the mouse pointer into the Data Model editor and
click once. A gquery object represented by a rounded

rectangle appears.

e Double click bn the query object to display its property

67



sheet;l

In the SELECT Statement field,.type in the select -

statement for the required data.

e Select OK to close theruery'property sheet. A default
group‘containing a list of the selected columhs is

created.
e Select Tools -= Default Layout.

e Select File - Save to save the report.

Steps to Test the Reports

e Select File - Run and Oracle Réports.displays»the
‘Runtime Parameter Form.

e Select Run Report.frpm the3Rﬁntime.Parameter Fbrm to
~accept the default Val@ésJ ¥ 

Thé report is tested to see if the desired data has been

_displaYed;»

Steps to Modify the Reports

e Open the Data Model Editor and double click Qn‘the query :

box.

68



e Select statements can»be'Written,here or the existing
select statements can be modified by having various

conditions in the Where clause.

69



APPENDIX B: STEPS TO GENERATE A MASTER DETAIL FORM

70



- Below are the steps to'create.Studentfcharges—Payment‘

masterldetail form:
After invoking the Oracle Form§1designer,_
1. Select File—>Open—§stuchgpmt.fmb from the menu bar.
2. After the file is selécted, Forms returns to the Object
Navigator. Now define a window and a canvas-view to .
- place the stucghpmt form.
3. Select New Block option from the Tools in the tool bar.
This will bring up the New Block dialog box. Give the

name for the.hew block ‘as Student . ‘Give the name for

the window and the canvas view aS‘stuchgpmt.

4. Select the table Student and select Name, SSNo., and
Extr Ind coiumns under items from the table.

5. Select the stylé of théVleck as form.

6. Repeat step three for the Is_Billed block and select
the columns SSNO. and Tran Seq. Place this block also
on the stuchgpmt canvas.

7. Select the master-detail option and give the join

~ condition between the Student block and the Is Billed
block. SSno{‘jdins the two tables. Name this block as

: "‘1'7'1j o




Billed.
8. Select the form layout for the Billed block.

9. Repeat step six for the Charges block. Select the
columns Tran Seq, Term, Subcode, Tran Amt, Eff Date,
Due Date, Chrg Class and place the block on stuchgpmt

canvas.

10. Select the master detail option and give the join
condition between the Billed block and the Charges
block. Tran Seq joins the two blocks. Name this block

as Charges.
11. Select the tabular layout for the Charges block.

12. Create a'hew'block for the Payment table and place
it on the stuchgpmt ganvés.
13. Select the columns Receipt Num, Tran Seq, Amt

Paid, and Date Paid

14. Join the charges block and the Payment block by

the Tran Seq and name it as payment.
15. Select the form layout for the payment block.

le6. Once all the required blocks are created, go to

the layout editor in the tool bar and view the skeletal

12



form of the blocks just created.

17. Now, we can double click on each item of the block
and go to its property sheet. The blocks properties
can also be changed by double clicking on the entire

block.

18. The items and the blocks on the form can be moved

within the form to the desired location.

19. Select the Button Palette block under the

stuchgpmt form..

20. - Select the UP, DOWN, QUERY, SAVE items under the

Button Palette block.

21. Write athen_New_Formwlnstahce trigger under the
form level trigger to query the form, as you enter the

form. The trigger is shown in the Appendix D.

22. Have another item in the stuchgpmt under the
Student block and name it aé MAINMENU. Write an item
level trigger to return to the mainﬁenu on déuble
clicking the item. The trigger ié shown in the Appendix

D.

23. To run the form, select File->Generate and then

File->Execute.

73



24. The form is automatically queried and all the

‘information is in appropriate fields.

25. To enter new data in the form, go to the last
record and do scroll down. Enter the data and save it.

Then do query on it. New data is stored.

74



SL

LOHECOYd dOod JILVYHED SIWOd D XIANHddVW



The Object Navigator for the stuchgpmt form is shown in

Figures. 1, 2, and 3.

.
-
.

.
.
-

o .

\
.

i
.

S

-

- :
. -

76



Figure 2

// . /@f@w

\./,\

=

. . ,

@W@% .

o

%/// . -

L S

e

.
\w .

f
e
o
e
.
P
L

o

.
.

o

et

.

o

.

77



Figure 3

.x\
s o
. .

e

e
.

-
L

.

i

=

.

.

.
.

-
.

78



A form level trigger is written to execute the query (the
data 1s entered in the appropriate fields as the form is
opened) as we enter the form. A form level trigger for the

-stuchgpmt form is shown in Figure 4.

Figure 4

WHEN-NEW-FORM-INSTANCE

T

EXECUTE_QUERY;

79



Item level trigger is written for an item action to take
place. Main menu is an item in the student block. To

return to the main menu from the stuchgpmt form, SQL editor

¥
l

1ls

opened. The code is shown in Figure 5.

Figure 5

80



Block level trigger is executed when a block is opened.

This trigger takes care of the

table constraints. Block level trigger for the stuchgpmt is

shown in Figure 6.

Figure 6.

ON-CHECK-DELETE-MASTER

T

-- Begin default relation declare section

DECLARE .
Dunmy_Define CHAR(1):

-- Begin BILLED detail declare section

CURSOR BILLED cur IS
SELECT null FROM billed
WHERE SID = :STUDENT.SID; .

-~ End BILLED detail declare section

-- End default relation declare section

-- Begin default relation program section

BEGIN

-- Begin BILLED detail program section

81



The main menu appears as shown in Figure 7. The user can

select a form from the given choices for data entry.

Figure 7

82



the

in

The following form shows all the students enrolled

iversity.

Un

o AT

L
-
.

M .

- - L
i

]
-

L .
-

FEY
A

1

i m.
.

b
@,
=
=
ol
=
-
ot
VNM
£l
L
o
g
=
=
ot
fed
2]

L

e

e
.

e
e
.

83



The following form shows all the details of a charge billed

to a student.

Figure 9

R

-

.

- .
S
e

mql

e

S
e

-

Income Clear

.
S
-

1on

s

-

-

T

@V»wx‘yf%w .

-

-
o

-

-
:
=

i\
-
-
g

o

=

198

-JUN-

o

_@

e - e

- .

e

.m\ %
. =

o

-
E

-

.

i

o
o

N

. - -

84



charge.

The following form shows the transaction details for a
" Figure 10

§

"
A

LY

BILL

oY
£

Ty
i

z
1%
P

T
3

v

i

S

=

.

85



The following form shows the paymént receipt numbers paid

by a student.

Figure 11

e

86



The following form checks if the charge or payment has been

fed to the accounting system.

Figure 12

.
.

- .
.

o -

.

-

.
3&”%/% e

-

e
.
.
.
.

.

i

i

[

.

- -

.
.

1%
z
Q
=
L
%]
&
==
Q.
=
s
=4
—
L

B

CHARL

=

87



Figure 13

The following form shows all the subcodes and their

description.

.

.

o

88



Figure 14 is a master detail form that shows all the.
student names that have been charged a particular subcode

on a certain transaction date.

89



Figure 15 1s a master detail form that shows all the student

names that have been charged a particular subcode by term.

Figure 15

15-MAY-88

15-MAY-38

90



ter detail form that shows the names of
Figure 16

.

-

o

=
@&\\

.

,
.

111110000

i

S
wa&\.&

i

-
e

.

=
_
e
.
Wv,

e

.
i
»}\»

7
\Z_’)

i

e

)

i

91

1s a mas

Figure 16

students that have been charged a subcode per term.




Figure 17 shows the student charges and payment by term.

Figure 17

i

.

S
o

el

=

.
-

-

\v
e
.
i

.
e
o

daa e
\a@» Ghana

92



Figure 18 shows the details of a payment made by a student.

Figure 18

-

e sEm

P

-

.
.

.

.
o
o

.
.

.Vgﬁwwx‘
.
.

.

93



76

LOHACOYdd ¥0d JHLVYEID S.I.ﬁO&EH ‘d XIANEddv



SUBCODES REPORT

cgsu - San Bernardino

Current Date:

03-JUN-99

SUBCODES REPORT

Page 2 of2

The following is the SQL Code used to generate the Subcodes

report:

SELECT

PAYHENT

* FROM Account

Order by Subcode;

95

SUBCODE SUBCODE DESCRIPTION CREDIT ACCOUNT DEBIT ACCOUNT
11111 TUITION : 1111100001 1111100002
22222 NON RESIDENT TUITION 2222200001 2222200002
33333 REGISTRATION FEE 3333300001 3333300002

. 44444 HOUS ING 4444400001 4444400002
55555 PARKING 5555500001 5555500002
66666 6666600001 6666600002



APPLIED TRANSACTIONS REPORT

CSU-~ San Bernardino

Date : 03-JUN-99 APPLIED TRANSACTIONS ; ‘ Page 2. of

Trans Seq AP Feed Indicator Trans Acct Feed Trans dcct Ref

6127 ¥ - 612701
0177 N - o a17725

6128 N - 612801

The following is the SQL Code used to generate the

transactions report:

SELECT * FROM APPLIED;

96



Billed Report

CSU- San Bernardino . . . »
i t- . :
Date : n3-T11N-99 . Billed Repor Page 2 of
Trans User 33N. 'I‘rans Seq ' Bill Date
o1 017725073 0176 17-APR-98
o1 © 017725073 0177 15-APR~-98
12 123456789 1234 ’ 15-APR-98
14 ' ) 123546789 1235 '15-APR-98
12 : 124356789 1243 15-APR-98
61 . . 612701267 6127 15-APR-98
o1 : 612"?0126'? 6128 17-APR-98

The following is the SQL Code used to generate the Billed

report:

SELECT * FROM Billed;

97



‘Charges Report

C8U - San Bernardino Charges Report Page 2 of 2
Current Date: 03-JUN-99

SN0, Trans Seq Subcode Charge Class Bill Type Term Amt. Charged Eff Date Due |
017725073 0176 33333 A } Q 974 25 10-MAY-98 11-J
0177 22222 A T 882 | 450 15-MAY-98 15-4
123456789 . 1234 22222 A T 982 600 15-MA¥Y-98 15-4
612701267 6127 ) 11111 A I 982 400 v15—,l{AY-98 15-4|
: 22222 A 982 789 15-MAY-98 15-4|
6128 33333 AB Q 932 v 25 15-MiY-95 15-J

The following is the SQL Code used to generate the Charges

report:
SELECT * FROM Charges

Order by SID;

98



Payments Report

C3U - San Bernardino. ) Payments Report 'Page 2 of

Current Date: O03-JUN-99

55No. Tran. Seq Receipt No. Subcode imt. Paid Date Paid
017725073 0176 - 25074 | . 33333 ' 20 01-JUN-93

0177 - 25073 . 22222 ‘ ‘ 450 ‘Dl—JUN-SlEi
1‘23456'?89 1234 56789 . 22222 550 1Z-MiR-93
612701267 6127 - 01267 11111 400 01-JUN-98

6128 01268 33333 25 01-JUN-598

The following is the SQL Code used to generate the Payment

report:

SELECT * FROM Payment

Order by SID;

99



Subcodes By Transaction Report

C8U - ‘San Bernardino

SUBCODES BY TRANSACTION DATE Page l
Date: 03-JUN-99

SSNo . Extr. Ind. Subcode Chrg. Class Amt. Charged Amt. Paid
017725073 E . 22222 X 450 450
017725073 E 33333 i 25 20
123456789 E 22222 i 600 550
612701267 - 11111 A 400 400
612701267 - 33333 LB 25 25
The SQL code for the above report is shown below.

= student.sid

100

of



CBU - San Bernardino STUDENTS PER SBSUBCODE LISTING Page 1 of 1
Date: 03-JUN-399

S$SNo. Name Subcode Qubcnde Desc. Amt. Charged  Amt.Paid Trén. Date
01'?'7250'?3 ramana 22222 NCN RESIDENT TUIT: 450 450 01-JUN-98
017725073 ramana 33333 : REGYISTRATIQN ‘FEE . . 2:5 . z0 01-JUN-98
123456789 radha 22222.‘ NON RESIDENT TU»IT: . 600 ‘550 12-MAR-98
6127012 67 sushma 11111 TUITION ‘ 400 ' 400 01-JUN-98
612701267 sushma 33333 REGISTRATION FEE 25 25 U1-Juﬁ—98

"The SQL code used to generate the above report is shown

below:

101'



i Z»(;\V

.
.

i
L
.
.
.

t eubead,

nd pay
nd billed.transeq = charges.transeq

© land payment.sid = charges.sid
. |and student.sid = charges.sid
. |and student.sid = payment.sid
_jand term = '"982"

;3//\@'3

-

s

102



Students Report

CSU - San Bernardino Students Report : Page 2 of 2

Current Date: O03-JUN-99

38No. Name Previous 35SNo. Previous Nare vExtr. Ind.
612701267 sushma 612701267 sushma -
017725073 ramana 017725073 reamans E
123456789 radha ) 123456789 radha \ E
"124356789 uma . 124356789 uma -
123546789 divya 123546?89» ) divya -
111111111 wvenkat ) 111111111 venkat ‘ c

The SQL Code used to generate the Students report is shown

below:
SELECT * FROM Student;

'If we order by name in the select statement, the names are

displayed in the ascending alphabetical order.

103



BIBLIOGRAPHY

[1]Batini, C., Ceri, S., and Shamkant N., Conceptual
Database Design - An Entity Relationship Approach, The
Benjamin/ Cummings Publishing Company Inc., 1992.

[2]Connolly, T}, Begg, C., and Strachan, A., Database
Systems - A Practical Approach to Design, Implementation

- and Management, Addison Wesley Publishing Company Inc.,
1996. T

[3]Date, C. J., An Introduction to Database Systems, 6th
ed., Addison Wesley Publishing Company Inc., 1995.

[4]Elmasri, R., and Shamkant, N., Fundamentals of Datébase
Systems, The Benjamin/Cummings Publishing Company Inc.,
1989. : :

[5]Koch, G., ORACLE7 --the complete reference,‘McGraw—Hill,v
Inc., 1993. _

[6]Luers, T., Essential Oracle 7, vFirst;ed., Sams
-publishing Inc., 1995. R

[7]0racle 7.3 Manuals, Oracle CQrpdration, USA, 1996.

[8]Ricardo, C., Database Systems - Principles, Design and

Implementation, Macmillan Publishing Company, 1990
[9]1Rolland, Relational Database Management with Oracle, ond
ed., Addison Wesley Publishing Company Inc., 1992.

104



	Billing and receivables database application
	Recommended Citation


