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Abstract

This chapter elaborates a new parametric model for the joint distribution of income and consump-
tion. The model combines estimates for the marginal distributions of income and consumption
and a parametric copula function to capture the dependence structure between the two variates.
Specifically, we apply the “symmetrized Joe-Clayton” copula to model the dependence between
income and consumption margins whose non-identical distributions belong to the “κ-generalized”
family. Using data from the Bank of Italy’s Survey on Household Income and Wealth for the period
1987–2014, we find that the proposed copula-based approach accounts well for the complex de-
pendence between income and consumption observed in our samples. The chapter also points
to further developments that are specific to the field of welfare economics.

Keywords: Italy, consumption, personal income, κ-generalized distribution, dependence,
symmetrized Joe-Clayton copula

1. Introduction

The focus of this chapter is to develop and fit a flexible parametric model for the bi-
variate distribution of income and consumption in Italy. Sincethe independence be-
tween income and consumption is not the most appropriate assumption to work with,
we study the joint distribution of the two variables by separately estimating the uni-
variate marginal distribution models for income and consumption, and by estimating
a parametric copula function to capture information about the dependence between
the two dimensions. This approach is appealing as copulas are easily estimated using
maximum likelihood techniques, and there are many alternatives available in the lit-
erature that capture a wide range of dependence structures beyond simply correlation.
In addition, copulas are flexible in that they can be applied to any specification of the
marginal distributions, including allowing for the latter tohave different specifications.
This provides an attractive method for capturing the dependencestructure contained
in the joint distribution of income and consumption of actualsamples.

c© Elsevier Ltd.
All rights reserved. 1
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2 An Introduction to Agent-Based Macroeconomics

Using copulas to model multivariate distributions is extremely popular in the fi-
nance and actuarial context, particularly for capturing dependence among stocks. How-
ever, copula-based approaches have rarely been applied in welfare economics—but
see [3] on potential applications. There are some notable exceptions: the approach
used by [12] and [33] to analyze the correlation between the incomes of spouses is
(implicitly) copula-based; [25] use a copula-based framework to measure the extent
of re-ranking through taxation; [9] estimate a parametric copula todescribe individual
earnings trajectories and income mobility in France; [70], [71] and[84] utilize copulas
to measure association between income and health, whereas [50]and [36] take advan-
tage of the copula paradigm to analyze the dependence betweenincome and wealth; a
copula-based approach was also considered,inter alia, by [81], [26], [69], and [4] for
assessing inequality and poverty under dependent dimensions of well-being.

As far as income and consumption are concerned, the only attempt that we are
aware of in the current literature is by [28] and [29], who apply a copula-based ap-
proach to the measurement of household financial fragility in Italy. However, our work
is different than their approach because of the distinctive parametricassumptions we
make for both the uni-variate margins and the copula function that summarizes the
existing dependence structure. Furthermore, we are better positioned to take a long-
term perspective since we use the same data but for a longer time span than the single
appraisal period as in [28] and [29].

The organization of the chapter is as follows. Section 2.1 describes the data set used
and provides a preliminary inspection of the degree of dependence between income
and consumption in Italy. Section 2.2 motivates the choice ofκ-generalized models
for the income and consumption distributions, whereas Section2.3 briefly reviews
the theory of copulas and discusses the reasons of our interest in the “symmetrized
Joe-Clayton” specification for modeling the association between the two variables.
Estimation results and analysis of the parametric model for the bi-variate distribution
of income and consumption are presented in Section 3. Finally,Section 4 concludes
and points to possible extensions of this work for the future.

2. Data and methodology

2.1. The Italian personal-income and consumption data
Income and consumption data are drawn from the Survey on Household Income and
Wealth (SHIW), a representative survey of the Italian resident population conducted
by the Bank of Italy since the mid-1960s to gather data on income, saving, consump-
tion expenditure, wealth, demographics and labor force participation of Italian house-
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Modeling the Joint Distribution of Income and Consumption in Italy 3

holds.1

The SHIW was carried out yearly until 1987 (except for 1985) and everytwo years
thereafter (the survey for 1997 was shifted to 1998). The sample usedin the most
recent waves comprises about 8,000 households (20,000 individuals), distributed over
around 300 Italian municipalities.

The data set employed in this chapter includes fourteen independent cross sections
of Italian households covering the period 1987–2014, for a totalof 111,118 observa-
tions. While income and consumption data are available also for years prior to 1987,
we choose to focus on data collected from 1987 onwards because of amajor over-
haul of the survey that took place in 1986–87, when the design of the questionnaire
was entirely revised, the sample size was raised to double that of previous waves, and
the income definition underwent significant changes that hinder temporal comparisons
(income from financial assets started to be recorded only in 1987).

The basic definition of income provided by the SHIW is net of taxation and so-
cial security contributions. It is the sum of four main components: compensation of
employees; pensions and net transfers; net income from self-employment; property in-
come (including income from buildings and income from financial assets). The SHIW
variable recording household consumption expenditure, in turn,is obtained by aggre-
gating household expenditures for durable and non-durable goods. According to the
definition of the Bank of Italy, expenditures for non-durable goods correspond to all
spending on both food and non-food items, plus non-monetary income integrations
(fringe benefits) and imputed rents.2 Household expenditures for durable goods cor-
respond to items belonging to the following categories: means of transport, furniture,
and precious objects.

The variables analyzed here focus on total income and consumption of the house-
holds surveyed. Since in some waves there were cases of zero and/or negative fig-
ures, we dropped such observations and kept only strictly-positive amounts of income
and consumption.3 Furthermore, income and consumption figures have been adjusted

1The data (with documentation in English) are freely available at:https://www.bancaditalia.it/

statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/index.html. We
refer the reader to the works of [11] and [10] for details on design of the survey, data quality, and main
changes in the sample and variable definitions. See also theSupplement to the Statistical Bulletin available
from https://www.bancaditalia.it/pubblicazioni/indagine-famiglie/index.html, which
sets out the main results of the survey waves that the Bank of Italy has carried out.
2If a household dwelling is neither owned nor rented, but occupied in usufruct or free of charge, the total
consumption expenditure for that household will include an imputed rent, i.e. an amount corresponding
to the rent that could be charged for such a dwelling.
3This exclusion affected only a tiny fraction of the data—on average, 0.28% and 0.01% of theobservations
on income and consumption, respectively—and left us with a total of 110,870 observations. Accordingly,
the sampling weights of households have been re-calibrated in such a waythat estimates from the samples
after deletion of non-positive records are forced to fit the initial population-level distribution of certain
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4 An Introduction to Agent-Based Macroeconomics

for differences in household size using the “modified OECD” equivalence scale and
weighted by the provided sampling weights.45 Finally, we deflated all monetary ag-
gregates (expressed in Euros) so as to obtainreal distributions of income and con-
sumption. To do so, we employed the consumption deflator for resident households
provided by the Italian statistical office (ISTAT).6 The base year for the deflator is
2010.

Information on the association between income and consumptionin our samples
is shown in Figure 1, where we plot summary indicators of correlation such as Pear-
son’sρ, Spearman’sρs, and Kendall’sτ. The Pearson’s correlation coefficient gives
us an indication of the linear relationship between income and consumption. The oth-
ers—Spearman’sρs and Kendall’sτ—are rank correlation indicators that are often
preferred to Pearson’sρ for non-normal data, since they are less sensitive to extreme
data (e.g. [56] and [23]; see also discussion in Section 2.3). Overall, we observe a
strong positive dependence between income and consumption in Italy that is generally
greater than 0.5 in all samples, but that dependence varied considerably over time. In-
deed, regardless of the indicator used, two regime changes of temporal evolution are
clearly identified: correlation was high in the early part of the period, then lowered in
central years, and raised at last during the recent economic crisis.

To test for the presence of time-varying dependence, we perform a structural change
analysis of correlation coefficients over the whole period using the procedure proposed
by [5] and [6], henceforth BP. A key feature of the methodology developed by these
authors is that it allows to test for multiple breaks at unknown dates. The model
considered here is the linear regression model withm breaks (or, equivalently,m + 1

characteristics known from external sources. The external information used in calibration is: gender,
age group (under 26, 26–45, 46–65, and over 65), geographicalarea (North, Centre, South and Islands)
and size of the municipality of residence (under 20,000 inhabitants, 20,000–40,000, 40,000–500,000,
and over 500,000). Weighting adjustments have been implemented using the R functioncalib from the
library sampling [79].
4The “modified OECD” equivalence scale allocates points to each person ina household by taking the first
adult as having a weight of 1 point, whereas each additional person whois 14 years or older is allocated
0.5 points, and each child under the age of 14 is allocated 0.3 points [35].Equivalized household figures
are derived by dividing total household income and consumption by a factor equal to the sum of the
equivalence points allocated to household members. Unlike the old OECD scale, the modified one gives
less weight to any additional household member, allowing for higher economies of scale.
5We use person-level adjusted weights (the product of household weights and the number of household
members) when generating income and consumption indicators for the total population. Results from esti-
mation of distributional parameters, presented in Section 3, have also been weighted to obtain population-
level estimates and account for the SHIW survey design.
6Available at: https://www.bancaditalia.it/statistiche/tematiche/

indagini-famiglie-imprese/bilanci-famiglie/tavole-principali-risultati/index.

html.
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Figure 1 The association between income and consumption in Italy, 1987–2014

regimes)

yt = β j + ut, t = T j−1 + 1, . . . , T j, j = 1, . . . ,m + 1, (1)

whereT0 = 0 andTm+1 = T by convention (T is the number of yearly observations).7

In other words, within the regimej the Pearson’sρ, the Spearman’sρs, or the Kendall’s
τ equals the regime-specific meanβ j plus a stationary error termut, which may have
a different distribution across regimes. The goal of the analysis is todetermine the

7To increase significance of findings, we use linear interpolation to estimate missing data for years in
which the SHIW waves are not available. This leds us to enlarge sample sizefrom 14 to 28 time observa-
tions.
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6 An Introduction to Agent-Based Macroeconomics

optimal number and location of the structural break pointsT j, j = 1, . . . ,m, by min-
imizing the within-regime sums of squares. By default, our implementation of BP’s
technique derives the appropriate number of breaks as the one achieving the lowest
Bayesian information criterion score [75].8

The results can be visualized in Figure 2, which shows time series plots for any
of the three measures of dependence stated previously (gray solidlines) along with
the estimated break points (black dashed lines) and the regime-specific means in each
resulting data segment (black solid lines). As can be seen, the period under consid-
eration has two clear breaks, which correspond to 1991 and 2008. For all correlation
indicators, we find statistically significant evidence of a break in the earlier two dates,
with a p-value lower than 0.05.9

Thus, we can conclude that there is evidence against constantdependence structure
over time for the SHIW income-consumption data. This provides a solid motivation
for considering copula-based multivariate models that are able to reproduce the ana-
lyzed pattern of time-varying dependence. However, as it will be shown in Section 2.3,
the association between income and consumption in any single year is more complex
than can be captured by single summary measures like linear correlation or rank cor-
relation, because the strength of dependence between the two variables in the bottom
tail of their joint distribution is different from what comes out of the upper tail. Hence,
our “ideal” copula-based model should also be able to accommodate asymmetric de-
pendence in the tails of the bi-variate distribution of income and consumption.

2.2. The κ-generalized distribution for margins
The interest in finding parametric models for the size distribution of income has a
long history. A natural starting point in this area of inquiry was the observation that
the number of persons in a population whose incomes exceedx is often well approx-
imated byCx−α, for some realC and positiveα, as Pareto argued over 100 years ago
[63, 64, 66, 65]. Since the early studies of Pareto, numerous empirical works have
shown that the power-law tail is a ubiquitous feature of income distribution. However,
even 100 years after Pareto’s observation, the understanding of the shape of income
distribution is still far to be complete and definitive. This reflects the fact that there are

8When implementing the BP’s procedure for structural change, the maximal number of breaks to be
calculated is a parameter to be fixed by the researcher. For our data, weallow simultaneous calculation
for up to m = 2 breaks. The technique suggested by BP has been implemented in a unified way in the
packagestrucchange [87, 86, 85] for the statistical softwareR [72], which is the one we rely upon in
the present study.
9The values of theF statistic for testing against a single-shift alternative of known timing—the so-called
“Chow test” [14]—amounted in fact to 12.58, 19.66, and 23.02 in 1991and to 8.39, 6.55, and 5.51 in
2008 for, respectively, the Pearson’sρ, the Spearman’sρs, and the Kendall’sτ, which exceed in all cases
their respective 5% critical values.
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Figure 2 Structural breaks in correlation coefficients, 1987–2014

two distributions, one for the rich, following the Pareto’s powerlaw, and one for the
vast majority of people, which appears to be governed by a completely different law.

Over the years, research in the field has considered a wide variety of functional
forms as possible models for the size distribution of income, some of which aim at pro-
viding a unified framework for the description of real-world data—including the heavy
tails present in empirical income distributions [52]. Among these, the “κ-generalized
distribution” was found to work remarkably well [17, 15, 18, 19, 20,16, 22]. First pro-
posed in 2007, and further developed over successive years, this model finds its roots
in the context of generalized statistical mechanics [43, 44, 45, 46, 47, 48]. Within this
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8 An Introduction to Agent-Based Macroeconomics

theoretical framework, the ordinary exponential function exp(x) generalizes into the
function expκ (x) defined through

expκ (x) =
(√

1+ κ2x2 + κx
)

1
κ
, x ∈ R, κ [0, 1) . (2)

We recall briefly that in theκ → 0 limit the function (2) reduces to the ordinary
exponential, i.e. exp0 (x) = exp(x), and for x→ 0—independently on the value of
κ—behaves very similarly with the ordinary exponential. On the other hand, the most
interesting property of expκ (x) for modeling the size distribution of income and wealth
is the power-law asymptotic behavior

expκ (x) ∼
x→±∞

|2κx|±
1
|κ| . (3)

Given (2), theκ-generalized distribution is defined in terms of the following cumu-
lative distribution function (CDF)

F (x;α, β, κ) = 1− expκ

[

−
(

x
β

)α]

, x > 0, α, β > 0, κ ∈ [0, 1) , (4)

where{α, β, κ} are parameters. The corresponding probability density function (PDF)
reads as

f (x;α, β, κ) =
α

β

(

x
β

)α−1 expκ
[

−
(

x
β

)α]

√

1+ κ2
(

x
β

)2α
. (5)

The distribution defined through (4) and (5) can be viewed as a generalization of the
Weibull distribution, which recovers in theκ → 0 limit. Consequently, the exponential
law is also a special limiting case of theκ-generalized distribution, since it is a special
case of the Weibull withα = 1. Forx→ 0+, theκ-generalized behaves similarly to the
Weibull distribution, whereas for largex it presents a Pareto’s power-law tail, hence
satisfying the weak Pareto’s law [55].

Figures 3 to 5 illustrate the behavior of theκ-generalized PDF and complemen-
tary CDF, 1− F (x;α, β, κ), for various parameter values. The exponentα quantifies
the curvature (shape) of the distribution, which is less (more) pronounced for lower
(higher) values of the parameter, as seen in Figure 3.10 The constantβ is a character-
istic scale, since its value determines the scale of the probability distribution: if β is
small, then the distribution will be more concentrated around the mode; ifβ is large,
then it will be more spread out (Figure 4). Finally, as Figure 5 shows, the parameter
κ measures the fatness of the upper tail: the larger (smaller) itsmagnitude, the fatter

10It should be noted that forα = 1 the density exhibits a pole at the origin, whereas forα > 1 there exists
an interior mode.
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Figure 3 Plot of the κ-generalized PDF (a) and complementary CDF (b) for some different values of α (=
1.00,1.50,2.00,2.50) and fixed β (= 1.20) and κ (= 0.75). The complementary CDF is plotted on doubly-logarithmic
axes, which is the standard way of emphasizing the right-tail behavior of a distribution. Notice that the curvature
(shape) of the distribution becomes less (more) pronounced when the value of α decreases (increases). The case
α = 1.00 corresponds to the standard exponential distribution
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Figure 4 Plot of the κ-generalized PDF (a) and complementary CDF (b) for some different values of β (=
1.20,1.40,1.60,1.80) and fixed α (= 2.00) and κ (= 0.75). The complementary CDF is plotted on doubly-logarithmic
axes, which is the standard way of emphasizing the right-tail behavior of a distribution. Notice that the distribution
spreads out (concentrates) as the value of β increases (decreases)

(thinner) the tail.
Expressions that facilitate the analysis of the associated moments and various tools

for the measurement of inequality have been reported for theκ-generalized distribution
[15, 18, 19, 20, 16, 22]. These expressions are functions of the parameters in the model
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Figure 5 Plot of the κ-generalized PDF (a) and complementary CDF (b) for some different values of κ (=
0.00,0.25,0.50,0.75) and fixed α (= 2.00) and β (= 1.20). The complementary CDF is plotted on doubly-logarithmic
axes, which is the standard way of emphasizing the right-tail behavior of a distribution. Notice that the upper tail
of the distribution fattens (thins) as the value of κ increases (decreases). The case κ = 0.00 corresponds to the
Weibull (stretched exponential) distribution

and prove useful in the analysis of population characteristics.
The κ-generalized distribution was also successfully used in a three-component

mixture model for analyzing the singularities of survey data onnet wealth, i.e. the
value of gross wealth minus total debt, which present highly significant frequencies of
households or individuals with null and/or negative wealth [21, 16, 22]. The support
of the κ-generalized mixture model for net wealth distribution is the realline R =
(−∞,∞), thus allowing to describe the subset of economic units with nil and negative
net worth. Furthermore, four-parameter variants exist that containas a particular case
theκ-generalized model for income distribution [61].

During the last decade, there have been several applications ofκ-generalized mod-
els to real-world data on income and wealth distribution. Of special interest are papers
fitting several distributions to the same data, with an eye on relative performance.
From comparative studies such as [19], who considered the distribution of household
income in Italy for the years 1989 to 2006 , it emerges that model (5) typically out-
performs its three-parameter competitors such as the Singh-Maddala[77] and Dagum
type I [24] distributions, apart from the generalized beta II (GB2) which has an extra
parameter.11 The model was also fitted by [20] to data from other household bud-

11The GB2 is a quite general family of parametric models for the size distribution of income that nests
most of the functional forms previously considered in the size distributions literature as special or limiting
cases [58]. In particular, both the Singh-Maddala and Dagum type I distributions are special cases of the
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get surveys, namely Germany 1984–2007, Great Britain 1991–2004, and the United
States 1980–2005. In a remarkable number of cases, the distribution of household
income follows theκ-generalized more closely than the Singh-Maddala and Dagum
type I. In particular, the fit is statistically superior in the right tail of data with re-
spect to the other competitors in many instances. Another example of comparative
study is [60], who considered US and Italian income data for the 2000s. He found
the three-parameterκ-generalized model to yield better estimates of income inequality
even when the goodness-of-fit is inferior to that of distributions in the GB2 family.
The excellent fit of theκ-generalized distribution and its ability in providing relatively
more accurate estimation of income inequality have recently been confirmed in a book
by [16], who utilize household income data for 45 countries selected from the most
recent waves of the LIS Database (http://www.lisdatacenter.org/).

The previously mentioned works were mainly concerned with the distribution of
household incomes. In an interesting contribution by [21], theκ-generalized distri-
bution was used in a three-component mixture to model the US net wealth data for
1984–2011. Both graphical procedures and statistical methodsindicate an overall
good approximation of the data. The authors also highlight therelative merits of their
specification with respect to finite mixture models based upon the Singh-Maddala and
Dagum type I distributions for the positive values of net wealth. Similar results were
recently obtained by [16] when analyzing net wealth data for 9 countries selected from
the most recent waves of the LWS Database (http://www.lisdatacenter.org/).

Finally, four-parameter extensions of theκ-generalized distribution were used by
[61] to analyze household income/consumption data for approximately 20 countries
selected from Waves IV to VI of the LIS Database. To provide a comparison with
alternative four-parameter models of income distribution, the GB2 and the double
Pareto-lognormal (dPlN) distribution introduced by [74] were also fitted to the same
data sets. In almost all cases, the new variants of theκ-generalized distribution outper-
form the other four-parameter models for both the income and consumption variables.
In particular, they show an empirical tendency to estimate inequality indices more
accurately than they counterparts do.

Given the excellent performance of theκ-generalized family of distributions, doc-
umented through several years of research, we shall assume in the following that
consumption and income data can be modeled by non-identical three-parameterκ-
generalized distributions, henceforth denoted byFc (xc;αc, βc, κc) andFi (xi;αi, βi, κi),
where the subscriptsc andi clearly refer to consumption and income, respectively.

Parameter estimation will be performed using the maximum goodness-of-fit (MGF)
estimation method [54], also known as the “minimum distance estimation method”

GB2.
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[42, 82, 83]. MGF estimation consists in maximizing goodness of fit—or minimiz-
ing a goodness-of-fit distance—between the empirical distribution function (EDF) of
the sample and the CDF of the specified distribution. This method is suitable for es-
timating distribution parameters of data characterized by both skewness and heavy
tails, since in such cases other commonly used estimation techniques (e.g. maximum
likelihood approach) can lose their optimality properties [54].

In what follows, the distance measure that will be minimized in order to fit the
κ-generalized distribution to the SHIW micro-data on income and consumption is the
so-called “right-tail Anderson-Darling statistic of second degree”, defined as

AD2R = 2
n

∑

j=1

ln
(

1− z j

)

+
1
n

n
∑

j=1

2 j − 1
1− zn+1− j

, (6)

wherez j = F
(

x j;γ
)

is the point-wiseκ-generalized CDF of income or consumption,
γ = {α, β, κ} is the unknown parameters vector andn is the sample size. The AD2R,
one of the variants of the Anderson and Darling’s distance [2] proposed by [54], as-
signs more weight to the right tail of the distribution, and thusis particularly indicated
to accommodate both heavy-tailedness and positive skewnessin data.

Minimization of the AD2R statistics with respect to the unknown parameters of the
κ-generalized CDF (4) will be performed by numerical methods using optimization
routines from thefitdistrplus package [27] implemented in theR programming
language [72].

2.3. The symmetrized Joe-Clayton copula
Often the issue of dependence between random variates is addressed through the con-
cept of correlation. However, for non-normal variables more complex, non-linear de-
pendence structures can arise when considering their joint distributions (e.g. [80]).12

Copula-based multivariate models are becoming an increasinglypopular approach to
modeling joint distributions as they make it possible for a wide range of dependence
structures to be captured beyond simply correlation.

Popularized by Sklar [78], copula-based models allow the researcher to specify the

12Non-normality is usually the case when analyzing income and consumption data, because of skewness
and fat tails (kurtosis) in their distributions. An obvious consequence is that correlation can be misleading
when analyzing their degree of association. For example, Pearson’s correlation coefficient—by far the
most widely applied correlation concept in statistics—is known to be sensitivetowards extreme events,
which are more likely to occur with fat tails than is predicted by normal distribution (e.g. [56] and
[23]). Furthermore, Pearson’s correlation coefficient measures the degree of linear association between
two random variates, but usually this does not sufficiently describe association between non-normally
distributed random variables [32]. In particular, the concept of correlation is not defined for some heavy-
tailed distributions whose second moments do not exist (see e.g. [73]).
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models for the marginal distributions separately from the dependence structure (cop-
ula) that links these distributions. In particular, a substantial advantage of copula-based
methods is that the models for the marginal distributions may come from different fam-
ilies. This frees researchers from considering only existing multivariate distributions,
and allows for a much greater degree of flexibility in forming the joint distribution.

More in detail, a copula is a multivariate distribution which isdefined on the[0, 1]d

hypercube, where each of thed marginal variates is uniformly distributed.13 That
is, given a set ofd random variatesX1, . . . , Xd with cumulative distribution function
F1 (x1) , . . . , Fd (xd), then each can be transformed into marginal variates defined on
the unit interval[0, 1] using ui ∼ Fi (xi), for i = 1, . . . , d. Each variate also has an
inverse cumulative distribution function such that, fori = 1, . . . , d, xi ∼ F−1

i (ui).
Under Sklar’s theorem [78], if the joint cumulative distributionof X1, . . . , Xd is

given by some functionH (x1, . . . , xd), then there exists a copula functionC (u1, . . . , ud)
with marginsF1 (x1) , . . . , Fd (xd) such that

H (x1, . . . , xd) = H
(

F−1
1 (u1) , . . . , F

−1
d (ud)

)

= C (F1 (x1) , . . . , Fd (xd))

= C (u1, . . . , ud) .

(7)

Thus, the joint distribution is expressed in terms of its respective marginal distribu-
tions and a functionC that binds them together. This makes modeling the dependence
between the uniformly distributed margins equivalent to modeling the dependence be-
tween the variates themselves. In case that the multivariate distribution has a density
h, and this is available, it holds further that

h (x1, . . . , xd) = c (u1, . . . , ud) × f1 (x1) × · · · × fd (xd) , (8)

where

c (u1, . . . , ud) =
∂dC (u1, . . . , ud)
∂u1 · · · ∂ud

(9)

is the density of the copula.
If the marginal distributionsF1 (x1) , . . . , Fd (xd) are continuous, then the corre-

sponding copula in Equation (7) is unique. IfF1 (x1) , . . . , Fd (xd) are not all continu-
ous, the joint distribution function can always be expressed as(7), although in such a
case the copula is not unique [76, ch. 6].

There exist many copula functions that could be used in dependence modeling,
especially for the bi-variate case—a fairly exhaustive list is contained, e.g., in [40,

13[38] and [59] are the two comprehensive treatments on this topic. A detailed review and discussion of
copula theory is also given, among others, in [31], [80], [1], [7], [68], and [40].
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ch. 4].14 All of these functions depend on one or more parameters, sayθ, which
are called association parameters and are related to the degree of dependence be-
tween margins. Common measures of the amount of association between two vari-
ables, such as Kendall’sτ and Spearman’sρs among others, are usually expressed as
function of the association parameters. For instance, Kendall’s τ can be written as
τ (θ) = 4

∫ 1

0

∫ 1

0
C (uc, ui; θ) c (uc, ui; θ) duc dui − 1, while Spearman’sρs is written in

terms of copula asρs (θ) = 12
∫ 1

0

∫ 1

0
C (uc, ui; θ) duc dui − 3 [59, ch. 5]. In particular,

these measures do not depend on parameters of the marginal distributions but on the
association parameters only.15

It is worth noticing, however, that theτ andρs values corresponding to theθ do-
main do not necessarily cover the whole dependence interval[−1, 1], and the range
of dependence that can be really achieved varies for different copulas. Therefore, a
key point to consider should be choosing an appropriate copulafrom the competi-
tive functions whose association parameter lies within a rangethat allowsτ andρs

to cover at least their empirical values, or more generally, thepositive dependence
domain[0, 1].16

Information on “tail dependence” is also useful for making initial decisions on
the types of copulas that may be suitable for a given data set, since many copula
models—such as the normal and Frank ones—impose zero tail dependence in both
tails, whereas other copulas impose zero tail dependence in one of their tails (e.g.
right for the Clayton copula and left for the Gumbel copula).17 Tail dependence is a
measure of the strength of dependence in the joint upper (lower) tail of a bi-variate
distribution. Informally, in our application it measures the probability that large (or

14Henceforth, we will concentrate on the bi-variate case, i. e. whend = 2, since it will be later considered
in the empirical analysis. Accordingly, by “copula” we will always mean bi-variate copulas for modeling
the dependence between income and consumption distributions.
15The Pearson’s correlation coefficient is a poor measure of the association between two variables. In
particular, it is not invariant under general non-linear, strictly increasing transformations of the vari-
ables—e.g.ρ (Xc, Xi) , ρ

[

exp(Xc) ,exp(Xi)
]

—and is affected by the marginal distributions of the data
(see,inter alia, [49], [32], [80], and [68]). This is equivalent to imposing that a better measure of depen-
dence should be obtained as a function of theranks of the data only, which is in turn equivalent to it being
a function solely of the copula, and not the marginal distributions. Both Kendall’s τ and Spearman’sρs

are invariant under non-linear, strictly increasing transformations and, as seen in the main text, they can
be expressed in terms of the associated copula.
16For instance, the Farlie-Gumbel-Morgenstern copula allows only for a limited degree of dependence
(Kendall’s τ is restricted to

[

− 2
9 ,

2
9

]

and Spearman’sρs to
[

− 1
3 ,

1
3

]

), which reduces its appeal for use in
applications (e.g. [40, p. 213]). Similar considerations hold also for theAli-Mikhail-Haq copula, one of
the members of the so-called Archimedean family of copulas, whose range for Kendall’sτ is restricted
to [−0.18, 0.33] and for Spearman’sρs to [−0.27, 0.48], so that it can only model weak dependence (e.g.
[59]).
17For more on this issue, see [59, ch. 4], [40, ch. 2], and [68].
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Figure 6 Distribution across quintile groups of total consumption and net disposable income for the 2014 wave of
the SHIW

small) values of consumption appear with large (or small) values of income.
Tail dependence in the income-consumption data for the 2014 wave of the SHIW

can be seen in Figure 6, where we show the cross-tabulation of the quintile groups
of both resource variables.18 The bars denote the proportion of households found
in the quintile groups of both the income and consumption distributions. The most
striking feature is that for households in the top quintile group of disposable income

18The plots for the other waves resemble to Figure 6, therefore they are not shown here—but available
from the authors upon request.
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Figure 7 Asymmetric tail dependence for the 2000 wave of the SHIW: (a) estimated quantile dependence be-
tween income and consumption data; (b) percent difference between corresponding upper and lower quantile
dependence estimates

(the five stacked bars that are furthest to the right in the figure) the probability of being
in a particular quintile group of total consumption increases very quickly—that is,
it is more likely that a household in the top-income quintile group is also in the top
consumption group rather than in one of the other four. Likewise, the probability that a
lowest-income quintile group household is in the lowest consumption group is higher
than such a household being in the second to fifth groups of consumption (see the
five stacked bars that are furthest to the left). Thus total consumption and disposable
income are highly associated, particularly at the top and bottom of the distribution.

In the SHIW income-consumption data we also find evidence ofasymmetric tail
dependence, in that observations in the lower tail of the bi-variate distribution are
somewhat more dependent than observations in the upper tail. This can be seen from
Figure 7, where panel (a) presents the estimated quantile dependence plot and panel
(b) displays the difference between the upper and lower portions of this plot, respec-
tively.19 “Quantile dependence” measures the strength of the dependence between two
variables in the joint lower or upper tails of their support—see [68, p. 909] for a more
formal definition. By estimating the strength of the dependencebetween two variables
as we move from the center to the tails, and by comparing the left tail to the right

19The results depicted in the figure focus on the 2000 wave of the SHIW and use deciles
as the quantiles of choice—hence the differences are calculated asqu−ql

ql
× 100, for {(u, l)} =

{(90,10) , (80, 20) , (70,30) , (60,40) , (50, 50)}. The results for the other waves (not shown) are pretty
similar and can be obtained on request.
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tail, we are thus provided with a richer description of the dependence structure of the
two variables. The figure clearly shows that income-consumptionpairs at the bottom
of the joint distribution are more dependent than observations in the upper tail, with
the relative difference between corresponding quantile dependence estimates being as
high as nearly 7%.

The above evidence compels us to be flexible in selecting the copula function to
use in our empirical analysis. In particular, it should allow forasymmetric positive
dependence in either direction. Since some of the copulas presented in the statistics
literature impose zero tail dependence in one or both of the tails (e.g. normal, Frank,
Clayton and Gumbel) while other copulas such as the Student’s t allow for positive and
symmetric dependence in both tails, these functions are not considered in this chapter.
Rather, our choice falls on the “symmetrized Joe-Clayton” copula used in [67]. The
symmetrized Joe-Clayton (SJC) copula is given by

CSJC

(

uc, ui; τ
U, τL

)

=
1
2
×

[

CJC

(

uc, ui; τ
U, τL

)

+CJC

(

1− uc, 1− ui; τ
L , τU

)

+ uc

+ui − 1] ,
(10)

whereCJC

(

uc, ui; τU, τL
)

is the Joe-Clayton copula defined as

CJC

(

uc, ui; τ
U, τL

)

= 1−
(

1−
{

[

1− (1− uc)
k
]−r
+

[

1− (1− ui)
k
]−r
− 1

}− 1
r

)

1
k

(11)

with k = 1
log2(2−τU) andr = − 1

log2(τL)
[38].

The copula functional form (10) has two parameters,τU andτL , which are mea-
sures of tail dependence. The SJC copula exhibits lower tail dependence ifτL ∈ (0, 1]
and no lower tail dependence ifτL = 0; similarly, it exhibits upper tail dependence if
τU ∈ (0, 1] and no upper tail dependence ifτU = 0. By construction, the SJC cop-
ula also nests symmetry as a special case, which occurs whenτU = τL . From an
empirical perspective, the fact that this copula is flexible enough to allow for both
upper- and lower-tail asymmetric dependence—with symmetric dependence as a spe-
cial case—makes it a more interesting specification than many other copulas.20

A commonly used procedure will be adopted for estimating the parametersτU and
τL of the SJC copula. The method is called “inference functions for margins” (IFM)
and was introduced by [41]. It consists of two steps: the parametersof the marginal
distributions are estimated separately in the first step and then, given these, the pro-

20Unfortunately, there is no simple closed-form expression for Kendall’sτ and Spearman’sρs in terms
of the SJC copula parameters. In the following, the accuracy of the chosen copula will be thus assessed
by comparing the actual measures of association to their values computedfrom observations drawn at
random from the SJC-copula-based joint distribution of income and consumption (see Section 3.2).
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cedure calculates the estimate of the association parameters of the copula function.
Here, this means that the MGF estimatesγ̂c andγ̂i of theκ-generalized distributions
for consumption and income margins are provided in the first step.They are then
plugged into the log-likelihood function

l
(

uc, ui; τ
U, τL

)

=

n
∑

j=1

ln
[

cSJC

(

u j
c, u

j
i ; τ

U, τL
)]

(12)

that is maximized with respect toτU andτL , where

cSJC

(

uc, ui; τ
U, τL

)

=
∂2CSJC

(

uc, ui; τU, τL
)

∂uc∂ui

=
1
2

















∂2CJC

(

uc, ui; τU, τL
)

∂uc∂ui
+
∂2CJC

(

1− uc, 1− ui; τU, τL
)

∂ (1− uc) ∂ (1− ui)

















(13)

is the density of the SJC copula (10) anduc = Fc
(

xc; γ̂c
)

, ui = Fi
(

xi; γ̂i
)

are the es-
timatedκ-generalized cumulative probabilities of consumption and income, respec-
tively.21 [39] showed that the traditional asymptotic properties of the maximum likeli-
hood estimates still hold for the IFM estimates.

3. Results

3.1. Parametric marginal distributions of income and consumption
Estimates by MGF of the parameters of the two marginal distributions for each wave
are shown in Table 1. Also displayed are the estimated standard errors, obtained by
numerically evaluating the Hessian of the negative log-likelihood under both the data

21In Equation (13), the expression for
∂2CJC(1−uc ,1−ui ;τU ,τL)

∂(1−uc)∂(1−ui)
is the same as

∂2CJC

(

uc, ui; τU, τL
)

∂uc∂ui
= (AB)−r−1 (1− uc)

k−1 (1− ui)
k−1











[

1−
(

A−r + B−r − 1
)− 1

r

]−1+ 1
k

(

A−r + B−r − 1
)−2− 1

r (1+ r) k +
[

1−
(

A−r + B−r − 1
)− 1

r

]−2+ 1
k

(

A−r + B−r − 1
)−2− 2

r (k − 1)
}

,

whereA = 1− (1− uc)
k and B = 1− (1− ui)

k, but we substituteuc andui in the latter with 1− uc and
1− ui to get the former. Also note thatk = 1

log2(2−τL) andr = − 1
log2(τU) for the former.
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and the estimatedκ-generalized parameters.22 Convergence was achieved easily within
a few iterations.

The model fit varied slightly across years but was generally excellent, as indicated
by the small value of the errors. This is demonstrated by the plotsshown in Figures
8 and 9 for the most recent data available (for brevity, we do not report plots for each
year but they are available from the authors on request). In fact, thefitted cumula-
tive function well approximates the empirical curve in panels (a);the κ-generalized
and empirical densities match appropriately in panels (b), and the points in the Q-Q
plots (c) comparing sample quantiles with the theoretical quantiles computed from the
model lie extremely close to the 45◦ ray from the origin—except for a few extreme
values—and much closer than is typically observed in plots ofthis type. Moreover,
the double-logarithmic plots in panels (d) show how theκ-generalized performs par-
ticularly well in the top part of the empirical distributions.

Thus, the overall fit of theκ-generalized distribution is extremely satisfactory.

3.2. The joint distribution of income and consumption
Table 2 presents the estimated parameters of the SJC copula along with asymptotic
standard errors.23 Given parameter estimates, the joint cumulative distribution of in-
come and consumption is easily derived from Equation (7) as

H
(

xc, xi; γ̂c, γ̂i, τ
U, τL

)

= C
(

Fc
(

xc; γ̂c
)

, Fi
(

xi; γ̂i
)

; τU, τL
)

, (14)

i.e. by coupling together theκ-generalized marginal distributions of income and con-
sumption via the SJC copula estimation.

The overall goodness of fit of the bi-variate model (14) can be gauged in two ways.

22Theκ-generalized log-likelihood for a complete random sample of sizen is

l (x;α, β, κ) =n ln (α) − nα ln (β) + (α − 1)
n

∑

j=1

ln
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)

+
1
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)α


















− 1
2

n
∑

j=1

ln













1+ κ2
(

x j

β

)2α










,

where the consumption and income subscripts have been omitted for notational convenience. By nu-
merically evaluating the HessianH (γ̂) of the negative ofl (x; γ̂) under both the datax = {x1, . . . , xn} and
the estimatedκ-generalized parametersγ̂ =

{

α̂, β̂, κ̂
}

, the sampling covariance of the MGF estimates has
been estimated from the Fisher information asVγ̂ = H−1 (γ̂). The standard errors for each of the unknown
γ = {α, β, κ} have been finally obtained as the square roots of the off-diagonal elements ofVγ̂. To calculate
numerical approximations to the Hessian matrixH (γ̂) at the estimated parameter values, we use here the
R functionhessian from the librarynumDeriv [34].
23The SJC copula for all waves of the SHIW was estimated using MATLAB code provided by Andrew
Patton to replicate the results presented in Patton [68]. The code is freely available at:http://public.
econ.duke.edu/˜ap172/code.html.
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Figure 8 Adequacy of the κ-generalized distribution for the SHIW consumption data, 2014: (a) empirical and fitted
CDFs; (b) empirical and fitted PDFs; (c) Q-Q plot; (d) empirical and fitted complementary CDFs

First, we compare measures of association derived from the parameter estimates
to the statistics computed from the raw data. Since no closed-form expression ex-
ists for deriving the various association measures from the SJC copula parameters,
our estimation is based on Monte Carlo sampling using the parametric models and
their estimated parameters. That is, we simulate pseudo-samples of income and con-
sumption pairs for each wave of the SHIW based on the inverse sampling method
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Figure 9 Adequacy of the κ-generalized distribution for the SHIW income data, 2014: (a) empirical and fitted
CDFs; (b) empirical and fitted PDFs; (c) Q-Q plot; (d) empirical and fitted complementary CDFs

(e.g. [59]): we first drawn correlated pairs of uniformly distributed variates(uc, ui),
where n equals the original sample size and the correlation is determined by the
SJC copula parameters, and then we generate the consumption andincome pairs as
(

xc = F−1
c

(

uc; γ̂c
)

, xi = F−1
i

(

ui; γ̂i
)

)

, i.e. thexc-th andxi-th theoretical quantiles im-
plied by the parameter estimates of the marginal distributions. Model-based measures
of association are finally obtained by performing standard calculations on the pseudo-
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Table 2 Parameter estimates for the SJC copula, 1987–2014a

Wave τU τL

1987 0.64 (0.01) 0.78 (0.00)
1989 0.63 (0.01) 0.79 (0.00)
1991 0.60 (0.01) 0.79 (0.00)
1993 0.57 (0.01) 0.62 (0.01)
1995 0.58 (0.01) 0.68 (0.01)
1998 0.57 (0.01) 0.45 (0.01)
2000 0.56 (0.01) 0.55 (0.01)
2002 0.56 (0.01) 0.55 (0.01)
2004 0.59 (0.01) 0.55 (0.01)
2006 0.57 (0.01) 0.63 (0.01)
2008 0.56 (0.01) 0.64 (0.01)
2010 0.65 (0.01) 0.61 (0.01)
2012 0.66 (0.01) 0.65 (0.01)
2014 0.65 (0.01) 0.57 (0.01)

a Numbers in parentheses: estimated standard errors

samples.
Figure 10 shows model-based predictions of the Spearman’s and Kendall’s cor-

relation coefficients. As can be seen, measures of association computed from simu-
lated data reproduce well the time-varying profile of dependence observed in Figure
1, confirming that the SJC copula can give an adequate description of the dependence
structure in the Italian income-consumption data.

A second approach to assessing whether our model really conform with data con-
sists in generating a probability plot of the theoretical jointCDF given by Equation
(14) against the empirical copula,24 as shown in Figure 11 for the 2014 wave.25 The
45◦ line from (0, 0) to (1, 1) is the comparison line: the cumulative distributions are
equal if the plot falls approximately on this line, whereas anydeviation from it indi-

24Similar to the empirical distribution, the empirical copula can be defined for multivariate data after a
transform to ranks. Suppose data are realizations from a continuous bi-variate distribution of sizen. The
empirical copula is then the empirical distribution function corresponding to[59, p. 219]

Cn

(

j
n
,

k
n

)

=
number of pairs(xc, xi) in the sample withxc ≤ x( j)

c andxi ≤ x(k)
i

n
, 1 ≤ j, k ≤ n,

wherex( j)
c andx(k)

i denote order statistics from the sample.
25Plots for the other waves of the SHIW are similar and can be obtained on request.
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Figure 10 Model-based predictions of the Spearman’s and Kendall’s correlation coefficients, 1987–2014

cates a difference between the theoretical and empirical joint distributions of income
and consumption. As can be seen, the points almost coincideswith the comparison
line and the majority of the probability plot is linear. Hence,the hypothesis that in-
come and consumption can be modeled as non-identicallyκ-generalized distributed
variables, and their dependence by a SJC copula, is not rejected for the examined data.

The estimated joint PDF of income and consumption

h
(

xc, xi; γ̂c, γ̂i, τ
U, τL

)

=c
(

Fc
(

xc; γ̂c
)

, Fi
(

xi; γ̂i
)

; τU, τL
)

× fc
(

xc; γ̂c
)

× fi
(

xi; γ̂i
)

,
(15)

obtained as the product of the SJC copula density (13) with theκ-generalized distri-
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Figure 11 Adequacy of the SJC-copula-based joint distribution of income and consumption for the 2014 wave of
the SHIW

bution for margins given by Equation (5), is charted in Figure 12 for1987, 2000, and
2014. The contours of the joint densities are also shown at the top to help visualize the
overall pattern. There are a number of interesting features revealedby the bi-variate
PDF graphs. The narrow profile of the contours of the distribution atthe lower end
of the income-consumption space suggests a strong positive dependence between the
two variates for bottom-ranked households. By contrast, the roundprofile of the con-
tours of the joint distribution at the upper end suggests a lesser degree of dependence
between income and consumption for top-ranked households. Furthermore, there is a
gradual evolution of the dependence structure between income and consumption dur-
ing the sample period, especially seen in the wider contours ofthe 2000 joint distribu-
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Figure 12 Joint PDF of the bi-variate distribution of income and consumption in Italy: (a) 1987; (b) 2000; (c) 2014

tion: the dependence in the lower tail of the distribution is reduced compared to 1987
and 2014, although the contours remain narrower than those at thetop-right corner; at
the same time, by comparing contours of the joint distributions, we note that also the
dependence in the upper tail is somewhat lower in 2000 than in1987 and 2014.

The above evidence suggests that the dependence structure between income and
consumption in Italy variedasymmetrically over the sample period. Figure 13 shows
the degree of asymmetry implied by the SJC copula by plotting the upper and lower
tail dependence estimates presented in Table 2 along with 95%(point-wise) confidence
intervals for these estimates. The plot confirms that the changein dependence also
took place in the tails of the joint distribution, with averagetail dependence—defined
as

(

τU + τL
)

/2—dropping from 0.71 in 1987 to 0.56 in 2000, and then rising to 0.61
in 2014. However, the level and the dynamics of dependence were both substantially
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Figure 13 Upper and lower tail dependence between income and consumption from the SJC copula, 1987–2014.
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different in the two tails of the income-consumption distribution:in the first part of
the sample period, from 1987 to 2000, lower tail dependence was on average about
12% greater than upper tail dependence, as well as the average rate of decline for
the former dependence was consistently higher than for the latter (respectively, an
average decline of more than 2% per annum versus nearly 1%). By contrast, during
the 2000s and up to 2014 the asymmetry pattern is reversed and somewhat weaker:
upper tail dependence was on average about 1% greater than lower tail dependence
and also grew faster than the latter (respectively, an average yearly increase of about
1.3% versus nearly 0.3%). In particular, Figure 13 shows quite clearly that the level of
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Figure 14 The average propensity to consume (APC) in Italy, 1991–2014

dependence between income and consumption increased markedly following the break
that occurred around the Great Recession of 2008, and the dependence structure went
from significantly asymmetric in one direction to weakly asymmetric in the opposite
direction.

Overall, our results can be deemed to be consistent with compelling evidence that
the propensity to consume declines as household income increases (e.g. [8], [51],
[57], [13], [30], and [37]). This can be seen in panel (a) of Figure 14, wherewe plot
estimates of the average propensity to consume (APC) of Italian households for the
years 1991–2014.26 The figure shows quite clearly that the APC, which measures the
average association between total consumption and net disposable income, declines
for all years when moving from the bottom towards the top of the income distribution,
meaning that consumption and income are somewhat more dependent in the lower
than in the upper tail. Furthermore, from panel (b) of the same figure we note that
APC increased substantially for all income deciles around the outbreak of the 2008
crisis, following years of decline during the 1990s and of relative stagnation during
the first half of the 2000s. Thus, it appears that consumption became more dependent
on income toward the end of the sample period in all deciles of the distribution, thereby
reducing the degree of asymmetry in the dependence structure of the Italian income-
consumption data.

26Appendix A provides detailed specification and estimates of the consumptionfunction used to gauge
the propensity to consume based on the SHIW data.
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4. Conclusions and directions for future research

The purpose of this work was to provide a contribution to the estimation of joint distri-
butions where both the variables are dependent and parametrically distributed. Since
the independence between household income and consumptionvariables is not the
most appropriate assumption to work with, the approach concernedmodeling the bi-
variate distribution of income and consumption in Italy with uni-variate margins be-
longing to a given parametric family, and a copula function which summarizes the
existing dependence structure. To do this, we applied the “symmetrized Joe-Clayton”
copula to model the dependence between income and consumption margins whose
non-identical distributions belong to theκ-generalized family.

The proposed copula-based approach was found to capture well the complex de-
pendence between income and consumption observed in our samples, but more needs
to be done.

One clear extension of this work would be to extend the model toaccount for
other measures of economic well-being, such as wealth. There can be indeed little
dispute that wealth is a relevant measure of living standard too, and one which is
probably able to capture long-term economic resources better thanincome—as, over
and above any income flow, it represents resources that people are able to draw upon
to face adverse shocks. Thus, since both income and wealth maybe used to finance
current consumption, or retained to support future consumption, they can be thought
of as alternative means of securing the living standards of individuals, families or
households. Information on household wealth holdings is also collected in the Bank
of Italy’s SHIW database.

Another aspect of interest is studying whether accounting forincome and con-
sumption jointly reveals a different pattern of economic inequality than the traditional
“income only” approach.27 To capture inequality in the joint distribution of income
and consumption, we can rely on the bi-variate Gini coefficient [53], which is deter-
mined by the degree of inequality in the two marginal distributions as well as by the
association among the two variates. This would also allow us to compare overall in-
equality of income and consumption across time and examine ifchanges are driven by
differences in the association between income and consumption, or by differences in
the marginal distributions. In our view, the most straightforwardway to attain this goal
is to work with parametric estimates of our bi-variate model to design a counter-factual
analysis in order to assess the implications of variations in the model parameters on
the bi-variate version of the Gini coefficient: we would evaluate these implications by
calculating what the bi-variate Gini would be if the dependence structure of income

27Clearly, the same is true for what concerns the relationship between consumption and wealth or income
and wealth.



✐

✐

“copula” — 2017/1/23 — 18:39 — page 30 — #30
✐

✐

✐

✐

✐

✐

30 An Introduction to Agent-Based Macroeconomics

and consumption was fixed but the parameter estimates of the marginal distributions
changed over time, and by assessing how would bi-variate inequality change if the
relationship between income and consumption changed over time but the marginal
distributions were fixed.

All these aspects are still open and in need of an in-depth study.

Appendix A. The propensity to consume in Italy

In order to estimate the marginal propensity to consume at the household level and us-
ing cross-sectional information, we follow the empirical approachproposed by [62].
We consider a simple consumption function based on the life cycle model where in-
dividuals use income and wealth accumulation to smooth consumption over their life
cycle. In this framework, current consumption is proportional to total net disposable
income (i.e. the sum of total consumption and saving) and total net wealth (i.e. the
sum of real and financial assets minus the financial liabilities).

We start with the following simple consumption function

Cit = β0Yit + β1Wit, (A.1)

where each period of timet available in the SHIW survey is considered as a dynasty.
Dividing Equation (A.1) by the level of net income, we obtain the expression for esti-
mating the average propensity to consume (APC) with respect to net income and net
wealth as

Cit

Yit
= β0 + β1

Wit

Yit
, (A.2)

whereCit, Yit, andWit denote, respectively, total consumption, total income, andnet
wealth at timet for a given householdi. In this model,β0 andβ1 are the APC out of
income (or “income effect”) and the APC out of wealth (or “wealth effect”), respec-
tively.28

The results of the micro-based estimates are reported in Table A.1.The results
show a strong income effect and a limited wealth effect on consumption in Italy: the
estimated APC out of income varies from 0.75 to 0.85, but overall it is increasing
in the period 1991–2014, while the impact of wealth on consumption appears to be
negligible, about 0.006, meaning that one additional euro ofwealth would increase
annual consumption by 0.6%.

We consider now a more flexible specification where we allow the APC to vary
across the income distribution. We define income categories in which the household
income composition is quite homogeneous. We introduce dummyvariables account-

28Equation (A.2) is estimated taking into account the period 1991–2014, where data on net wealth are
available.
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ing for the households belonging to the considered income position, which are in-
teracted with the variables in Equation A.2. We consider 9 income groups, defined
according to the following income deciles: 0.0 to 0.10-th, 0.10-th to 0.20-th, 0.20-th
to 0.30-th, 0.30-th to 0.40-th, 0.40-th to 0.50-th, 0.50-th to 0.60-th, 0.60-th to 0.70-th,
0.70-th to 0.80-th, 0.80-th to 0.90th, and 0.90-th to 1-st decile.

The results are presented in Table A.2. As expected, the impact of net wealth
is still negligible, but remarkable differences of the impact of income among the dif-
ferent percentiles emerge. The APC out of income, that we consider as a proxy of
the marginal propensity to consume, shows a decreasing trend when we move forward
along the income distributions. Indeed, we obtain an APC decreasing from 0.8-1.1
cents of euro for households in the first decile to about 0.6 cent of euro for households
at the top of the income distribution. This imply that the average APC out of income,
estimated from the baseline model (A.2), is likely to be biased bythe non-linear effects
arising along the income distribution.
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