
Interdependence of ICD rates in paired quantum dots

on geometry

Fabian Weber∗, Emad F. Aziz†‡§, Annika Bande ¶

April 12, 2017

Abstract

Using state-of-the-art antisymmetrized multiconfiguration time-dependent Hartree
(MCTDH) electron dynamics calculations we study the interdependence of the inter-
molecular Coulombic decay (ICD) process on the geometric parameters of a doubly-
charged paired quantum dot (PQD) model system in the framework of the effective
mass approximation (EMA).

We find that ICD displays a maximum rate for a certain geometry of the
electron-emitting quantum dot, which is simultaneously dependent on both the dis-
tance between the quantum dots as well as the photon-absorbing quantum dot’s geom-
etry. The rate maximum is shown to be caused by the competing effects of polarization
of electron density and Coulomb repulsion.

The ICD rate-maximized PQD geometry in GaAs QDs yields a decay time of 102.39
ps. It is given by two vertically-aligned cylindrical QDs with radii of 14.42 nm separated
by 86.62 nm. The photon absorbing QD then has a height of 46.59 nm and the electron
emitting QD a height of 16.33 nm.
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Using electron dynamics calculations, the intermolecular Coulombic decay (ICD) rate in a
paired quantum dot (PQD) model system is optimized by a multidimensional scan of geomet-
ric parameters. An ICD rate-limiting maximum is found that is non-trivially interdependent
on all geometric parameters. The reason for the occurence of the maxima is identified as the
competing effects between Coulomb repulsion and electronic polarization, which expands the
understanding of the ICD process in QDs.
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INTRODUCTION

The intermolecular Coulombic decay (ICD)1 process presents an indirect pathway for using

the energy of a photon to eject a bound electron. It is based on a photo-induced auto-

ionization process where, in contrast to the Auger decay2, the auto-ionized electron is emitted

from a different molecule than the initially excited one. The reason for this behaviour is

directly related to the energetic regime of the ICD process and the electronic structure.

While Auger processes are initiated using highly-energetic radiation (i.e. exciting core-

shell electrons), the ICD process is initiated in a rather low-energy regime1. For such low

excitation energies, the resonance state leading to the decay is not high enough in energy to

undergo a direct ionization process on the same excited species. It may, however, decay to

a state where the ionization took place on a different species via electron correlation3.

Over the last two decades since its postulation, many different molecular clusters have

been shown both experimentally4–6 as well as theoretically7–9 to undergo ICD. In all studies,

the efficiency of the process was proven to be heavily dependent on the electronic structure

of the respective molecular clusters. The ICD rate ΓICD is often described in terms of a

virtual photon transfer process in an asymptotic approximation10

ΓICD =
3

4π

σ̃E(Evph) · τ
−1
A

R6 · E4
vph

, (1)

which assumes that the excited and the emitted electron are not interacting with each

other and that their separate wavefunctions do not overlap. In the above expression σ̃E(Evph)

is the photonionization cross section of the electron-emitting species at energy Evph, τ
−1
A is

the inverse life time corresponding to a spontaneous radiative decay of the photon-absorbing

species’ excited initial state and Evph is the virtual photon energy released upon relaxation

of this state. As all the quantities are heavily dependent on the electronic structure, the

released electrons have very characteristic kinetic energy profiles11.

In contrast to molecules, the electronic structure of quantum dots (QDs) may be tai-

lor made12 to a very high degree. Consequently they are promising candidates for uti-

lizing the ICD process in different energetic regimes and for various purposes. To study

electron dynamics in such extended systems, we combine the effective mass approximation
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(EMA)13 with the antisymmetrized variant of the multiconfiguration time-dependent Hartree

(MCTDH) method as implemented in the Heidelberg MCTDH software distribution14,15.

Due to the quantum confinement of the electrons in nanoscopic materials16, one may limit

the calculation to only the two electrons directly involved in the ICD process, which are then

confined in a model potential that mimics the shape of the nanoscopic particle.

Using this approach, we were able to formulate a paired quantum dot (PQD) model

system that undergoes ICD17. The system is comprised of one designated photon-absorbing

QD (AQD) and one electron-emitting QD (EQD). We conducted different studies on the

interaction of the PQD with laser fields18,19, as well as on the effects of geometrical changes

on the ICD rate and electronic structure. For instance, we were able to reproduce the R−6

behaviour of the ICD rate as given in the asymptotic approximation for inter-QD distances

with vanishing orbital overlap17.

In our most recent study on the geometric set-up, the height of the AQD as well as

the width of both QDs were varied separately20. From the variation of the AQD height,

we concluded that the ICD rate is strongly interdependent on both QDs simultaneously,

as we found a non-trivial behaviour different from Γ ≈ E−4
vph as given in the asymptotic

approximation (eq. (1)). Also, we could show that the QD width variation had an impact

on the ICD rate ΓICD, although the widths have no obvious connection to the asymptotic

approximation. The geometric set-up which resulted in the fastest ICD rate found in that

study was a pair of vertically aligned cigar-shaped QDs.

Owing to the possibility to factorize the three-dimensional problem into a truly one-

dimensional one and the large speed-up achieved20, it is now possible to not only study

how changes in the remaining unprobed EQD height parameter affect the ICD rate ΓICD,

but also to address the interdependence of ΓICD on changes in several geometric parameters

simultaneously. Based on the understanding of the interplay of these parameters, we may

then formulate optimal geometries for desired experimental observables. In this work we

search for a geometry that could be applied in an ultrafast and efficient photon detection

device by optimizing the decay rate. When the ICD rate is maximized, other processes that

could quench the signal in such detection devices like phononic dissipation of the photon

energy are less likely to occur. Additionally, the approach also allows to draw conclusions
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about the physical limitations of the ICD process in charged QDs.

This paper is organized as follows. In the theory section we will outline the general

equations describing the paired QD system and explain the procedure used to calculate the

ICD rates for a rigorous scan of over 1000 different geometries. The results section first

summarizes shortly the geometric control of the ICD rate through the AQD height and

inter-QD distance known from preceding studies17,20 and thereafter focuses on the effects on

ΓICD upon varying the EQD geometry, as we did not cover this parameter yet. After that we

investigate how the ICD rate depends on several geometric PQD parameters simultaneously

and especially whether there are trends in the interdependence as well as limitations of the

ICD rate to be found. Finally, we conclude our results and discuss how to predict a geometry

with a maximized ICD rate.

THEORY

Paired quantum dot model

The one-dimensional paired quantum dot (PQD) model system is given by two differently-

shaped inverse Gaussian potentials in z direction

VPQD(zi) =







−DA e−bA(zi+
R

2
)2

︸ ︷︷ ︸

VA

−DE e−bE(zi−
R

2
)2

︸ ︷︷ ︸

VE

, if zi ∈ [−Lz, . . . , Lz]

∞, otherwise.

(2)

For calculation purposes, the PQD is placed inside a relatively broad infinite potential

well with box length 2Lz. In this expression, the indices A and E stand for the photon

absorbing QD (AQD) and electron emitting QD (EQD), respectively. The depth parameter

DA/E encodes information on the material composition while bA/E and R are geometrical

parameters. The inter-QD distance R gives the distance between the inverse Gaussian po-

tential minima and the QD height hA/E is connected to bA/E through the full width at half

minimum value of the inverse Gaussian hA/E = 2
√

(ln(2)/bA/E). Note that the effective

distance Reff = R− hA+hE

2
which is a measure for the distance between the QD interfaces is
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affected by changes in the individual QD heights.

To offer a more concrete description, the parameter values which enter the calculations

in atomic units (indexed a.u.) were translated to material specific real units (indexed EMA)

by using the effective mass approximation (EMA). Throughout the study we convert into

units of GaAs with the effective mass for the electron of m∗

e = 0.063 me and the dielectric

constant κGaAs = 12.9:21

REMA = Ra.u.
κme

m∗
e

a0, EEMA = Ea.u.
κ2me

m∗
e

Eh, tEMA = ta.u.
~

EEMA
. (3)

In this study we vary predominantly the parameter bE. Additionally, simultaneous vari-

ation of the parameters bA and R serves to probe the interdependence of the ICD rate on

all parameters for the first time. In all cases, the PQD potential parameters are chosen

such, that there is exactly one one-electron level in the EQD and two one-electron levels

in the AQD. The parameter ranges may be taken from table 1 in real units of GaAs and

in atomic units. Note that we conducted one large scan of hE ∈ [11.41, . . . , 23.29] nm for

one specific pair of default values hA = 18.04 nm and R = 86.62 nm that were used in our

other studies17,19,20,23. For any other combination of hA and R we diminished the interval to

hE = [14.73, . . . , 19.34] nm. The box length was chosen as Lz = 65.0 a.u. (which translates

to 704.31 nm). Figure 1 visualizes the PQD shapes for the extreme values for both QD

heights and inter-QD distances R.

The Hamiltonian for the one-dimensional two-electron system in atomic units (me = 1

a.u., ~ = 1 a.u., 1
4πǫ0

= 1 a.u.) is given by

ĤPQD(z1, z2) =
2∑

i=1

(

−
1

2

( ∂

∂zi

)2

+ VPQD(zi)

)

+ V (|z1 − z2|)
(ω⊥)
1D (4)

with V (|z1 − z2|)
(ω⊥)
1D being a pseudo one-dimensional Coulomb interaction potential of

the form22

V (|z1 − z2|)
(ω⊥)
1D =

√
π

2l2
eξ

2

(

1− erf(ξ)
)

. (5)

The potential assumes the electrons to be confined in a harmonic oscillator potential

perpendicular to z with strength ω⊥. The quantity ξ is given as
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ξ(|z1 − z2|) =
(
√

1

2l
|z1 − z2|

)
, (6)

with l =
√

1/ω⊥ in atomic units. The widths of both QDs in the pseudo one-dimensional

description was fixed to 28.84 nm by choosing ω⊥ = 1.0 a.u., which is the same value

as used in previous studies17. There, we also presented a proof of principle, by showing

that the pseudo one-dimensional calculation suffices to reproduce the results of a full three-

dimensional calculation.

Solving the time-independent Schrödinger equation with ĤPQD of eq. (4) yields a set of

different eigenstates with different physical meaning. Eigenstates which show electron density

confined in either of the QDs while not having any energetically lower-lying eigenstate that

would show electron density outside either of the QDs shall be termed bound eigenstates.

We shall refer to eigenstates that display electron density of at least one electron outside of

the QDs as continuum-like, although they are technically still bound inside the simulation

box and as such, cannot describe a real continuum. Eigenstates which lie higher in energy

than the first continuum-like eigenstate but show pronounced electron density mainly inside

the QDs again will then be referred to as resonance-like states.

Electron dynamics calculations

As explained before, the ICD process starts from a resonance state, where the AQD elec-

tron is in its first excited state while the EQD electron remains in its ground state. For

easier notation we shall call this resonance state A1E0 and the overall ground state A0E0.

Both of them may be approximated by eigenstates of the system Hamiltonian eq. (4). The

resonance-like A1E0 eigenstate obtained from this Hamiltonian is then used as the initial

state for the propagation of the electronic wavepacket applying the non-Hermitian propaga-

tion Hamiltonian

Ĥprop(z1, z2) =
2∑

i=1

(

VPQD(zi)−
1

2

( ∂

∂zi

)2

− iWL(zi)− iWR(zi)

)

+ V (|z1 − z2|)
(ω⊥)
1D . (7)

In solving the time-dependent Schrödinger equation, the real A1E0 resonance state is

obtained from the initial resonance-like A1E0 state after the first few propagation steps,

7



and then decays exponentially. The propagation Hamiltonian eq. (7) contains additional

complex absorbing potentials (CAP)24

WL,R(zi) = ηL,R(zi − zL,R)
nΘ(zi − zL,R) (8)

at the left (L) and right (R) side of the paired QD. In this expression, the Heaviside

function Θ(zi − zL,R) ensures that the potentials only act beyond the onset points zL,R.

Onsets and CAP order n were fixed to be zL,R = ±325 nm and n = 4, respectively. ηL,R are

the CAP strength parameters that were equal on both sides. They were adjusted for each

calculation separately to minimize reflections of the continuum electron with a defined Ekin

at the quantum well boundaries.

The improved block relaxation15 utilizing the system Hamiltonian of eq. (4) as well as

the propagation of the wavepacket in real time are performed within a multiconfiguration

time-dependent Hartree (MCTDH) ansatz. Here we utilize a wavefunction of the form

Ψ(z1, z2, t) =

n1∑

j1=1

n2∑

j2=1

Aj1j2(t)ϕ
(1)
j1
(z1, t)ϕ

(2)
j2
(z2, t), (9)

where each degree of freedom zi is represented by ni orthonormal and time-dependent

single particle functions (SPF) ϕji . Every set of indices j1j2 is connected to a specific product

of SPFs and represents one configuration in the complete configuration space. Finally, each of

the configurations is weighted by a time-dependent factor Aj1j2(t). We are treating a system

of triplet spin electrons by antisymmetrizing the weights according to Aji = −Aij
17,19.

We choose 48 SPFs for each of the electrons’ z coordinates for the improved relaxation

calculation with the system Hamiltonian eq. (4). For the propagation of the resonance state

in real time with the propagation Hamiltionan eq. (7), the A1E0 wavepacket is expressed

using a reduced number of 12 SPFs. The SPFs were expanded in terms of a discrete variable

representation (DVR)15 into a set of 182 orthogonal sine DVR functions on a grid inside

the quantum well boundaries. The grid resolution (0.129 grid points per nm) as well as the

integrator accuracy for the time-propagation were adopted from earlier calculation-speed

optimized scans20. Convergence of the ICD rates with respect to variations in the box

length and grid resolution was thoroughly checked for variations of the parameters of the
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PQD geometry.

The solution of the time-dependent Schrödinger equation starting from the resonance-

like A1E0 ΦA1E0 wavepacket using the propagation Hamiltonian eq. (7) yields a decaying

wavepacket ΨDecay
A1E0 (z1, z2, t) whose normN(t) =

√
∫ ∫

Ψ(z1, z2, t)∗Ψ(z1, z2, t)dz1dz2 decreases

over time when electron density leaks into the continuum, i.e. into the CAPs. The ICD rate

ΓICD can be obtained from the exponential decay of the squared autocorrelation function

|a(t)|2 = |〈 ΦA1E0(z1, z2, t = 0) | ΨDecay
A1E0 (z1, z2, t) 〉|

2 ∝ e−ΓICDt. (10)

RESULTS AND DISCUSSION

State-of-the-art geometric control in PQDs

In our first work on the geometric control of ICD in PQDs17 we focused on changes in the

inter-QD distance R and whether it was possible to reproduce the R−6 behaviour for the ICD

rate ΓICD as suggested from the asymptotic approximation eq. (1). While for intermediate

and long inter-QD distances the ΓICD ≈ R−6 was obtained, very low inter-QD distances lead

to a big enhancement of the ICD rates. This effect was attributed to the overlap of the QD

potential wells alongside the A1 and E0 one-electron orbitals - which is a known limitation

of the asymptotic approximation.10

The second study on geometric control20 was then focused on changing the AQD height

hA as well as the width of both QDs. It was shown that changes in hA heavily influence both

the virtual photon energy as well as the Coulomb interaction. Low values of hA resulted in

higher virtual photon energies Evph as the quantum confinement in smaller QDs separates

the eigenstates more and more. It was not possible though, to reproduce the E−4
vph behaviour

of the ICD rate, as changes in the AQD height have a seemingly much more complex impact

on the asymptotic approximation. For example, low AQD heights lead both to a smaller

Coulomb interaction due to the lower effective distance Reff = R − hA+hE

2
between the two

electrons, as well as a change of the photoionization cross section σ̃E(Evph) through the

change in Evph. However, all findings showed that lower AQD heights always lead to lower
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ICD rates.

Finally, to give an idea about the sensitivity of the ICD rate on these parameters, we fix

every other parameter to the default case (i.e. hE = 18.04 nm, hA = 36.08 nm and R = 86.62

nm). When then changing hA from 47 nm to 29 nm a moderate increase of the decay time

from 116 ps to 434 ps is obtained. If, however, R is changed from 87 nm to 173 nm the

decay times increase significantly from 236 ps to 18 ns.

Variation of the EQD height

Static Properties

To understand the general characteristics when changing the EQD geometry, we started

investigating the electronic structure and other static properties of the resonance state.

To achieve this, we first performed improved block relaxation calculations using the system

Hamiltonian (eq. (4)) at a fixed, default inter-QD distance R = 86.62 nm and AQD height of

hA = 36.08 nm. Figure 2 shows the one-electron densities |Φ(z1)|
2 =

∫
Φ∗(z1, z2)Φ(z1, z2)dz2

of the most important electronic eigenstates, namely the resonance-like state A1E0 and

ground state A0E0 of which the eigenvectors were taken for further analysis. One can see

that both the A0E0 and the A1E0 states represent cases, where the electrons are localized

inside the QDs as the density is close to zero outside the QDs.In addition to these states,

the first continuum-like eigenstate’s electron density is shown. Here, one electron is in the

ground state of the AQD while the other electron is outside either QD. For easier notation,

we will call such states to be of A0C type.

Figure 3 depicts the eigenenergies EA1E0 and EA0E0 and the continuum-like states’ eigenen-

ergies for the large scan of hE. For the sake of better readability, only every second of the

continuum-like states is included in the figure. The eigenenergies were shifted such, that the

first continuum-like eigenstate has an energy of zero.

The ground state and resonance-like state energies are both lowering for higher hE. As

both states have one electron in the E0 state, their eigenenergies are affected by the same

magnitude and in the same way as we observe for the one-electron E0 state eigenenergies.

This goes along with the fact that for higher hE the EQD electron’s movement is less and
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less restricted due to the widening of the potential well.

Furthermore, it can be seen that the energies of the low-lying continuum-like states stay

almost constant. This is due to the fact that they are of A0C type for most geometries,

which means that they have no electron density inside the EQD region, and therefore are

not affected by changes of hE. The energetically highest states shown are CE0 continuum-

like states. Here the AQD electron is in the continuum while the EQD has one electron

in its only bound state. Continuum-like states of this type follow the exact same energetic

decrease as the A0E0 and A1E0 states.

As the energy of the A1E0 state decreases for increasing hE while the A0C type states

stay constant in energy, at some points the states must cross each other. The state A1E0

which we declare as the jth state at some hE turns into one of A0C type when going towards

higher hE. The A1E0 state is then represented by the (j − 1)th state. A closer look (cf. Fig.

4) reveals an avoided crossing with a wide energy gap at every second of these transitions.

Here the states become almost degenerate (cf. Fig. 5) over a large range of hE, while every

other transition (which we refer to as non-degenerate) is less affected. The former crossings

are with those A0C states that have continuum contributions to the right side, the latter to

the left.

Another important quantity that is directly related to the ICD process is the expectation

value of the Coulomb repulsion ECou = 〈Φ| 1
r12

|Φ〉 of the real resonance state. Unfortunately,

the expectation value obtained from the resonance-like state may differ significantly from

the real one, because the fromer is heavily influenced by the admixture of continuum-like

contributions to the real A1E0 state’s wavefunction near the avoided crossings. We thus

decided to approximate the expectation value by utilizing a shortly propagated wavepacket

Φ̃prop
A1E0 that was obtained by applying the non-Hermitian propagation Hamiltonian (eq. (7))

for the propagation of the resonance-like eigenstate of Hamiltonian eq. (4). This way, the

degeneracy caused by the continuum contributions of the wavefunction would be remedied

in the first few time steps by the CAP, which absorbs all continuum-like state’s electron

density. As the norm of this wavepacket is different from unity, the final expression for the

approximation is
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ẼCou =

∣
∣
∣
∣
∣

〈Φ̃prop
A1E0|

1
z12

|Φ̃prop
A1E0〉

〈Φ̃prop
A1E0|Φ̃

prop
A1E0〉

∣
∣
∣
∣
∣

with z12 = |z1 − z2| (11)

Figure 6 depicts ẼCou for different values of hE. The Coulomb repulsion obtained by the

remedied wavefunction still shows pronounced spikes that can be clearly assigned to values

of hE near the avoided crossings. One can see that for increasing EQD height, ẼCou decreases

slightly with a local minimum at hE = 18.91 nm. Note that the value of the inverse of ẼCou

conveniently corresponds to a mean inter-electron distance r̄12 in the two-electron system.

Using the highest and lowest values of ẼCou (i.e. 1.294 and 1.281 meV, respectively), we can

see that all values in r̄12 lie within a range of 86.29 to 87.14 nm, which is in close vicinity to

the actual inter-QD distance R = 86.62 nm. The reason for the overall trend in ẼCou can

be connected to the fact that for a broader EQD potential well the E0 electron may move a

bit farther away from the A1 electron, which minimizes the Coulomb repulsion and polarizes

the E0 electron density slightly away from the AQD, i.e. to the right side. As a competitive

effect, the undistorted E0 state gets stabilized when going towards higher values of hE, such

that at some point the polarization of the EQD electron density presents less of an energetic

gain than assuming the undistorted density.

To reinforce the above statement, we calculate a measure for the polarization of the

wavepacket as the expectation value of the total dipole moment from the shortly-propagated

wavepacket as

〈q〉 =

〈Φ̃prop
A1E0|

2∑

i=1

zi|Φ̃
prop
A1E0〉

〈Φ̃prop
A1E0|Φ̃

prop
A1E0〉

(12)

As the potential wells are centered around z = 0, expression (12) is giving information

on whether the electrons are more located to the right (positive sign, i.e. side of the EQD)

or left (negative sign, side of the AQD). As can be seen from figure 7 the electron density of

the two-electron wavepacket is indeed moving to the right for increasing hE, as 〈q〉 increases.

The spikes in the curve are again related to the near-degenerate A1E0 states.
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Electron Dynamics

To analyse the dynamics of the ICD process, the A1E0 resonance-like states obtained

as eigenstates of Hamiltonian eq. (4) for the different geometries were chosen as initial

wavepackets and each was propagated in time for 320 ps (converted to time of the GaAs

QDs from 5000 a.u.) using the non-Hermitian propagation Hamiltonian Ĥprop(z1, z2) (eq.

(7)). The numerical time-propagation steps were adapted dynamically by the program to

ensure time-reversibility of the wavepacket’s trajectory14. On average, the propagation step

size was about 90 fs. After the propagation, the squared autocorrelation function |a(t)|2

(eq. (10)) was evaluated and the ICD rate ΓICD extracted. In table 2 we list a selection of

representative examples. The respective autocorrelation plots are shown in figure 8.

The geometries shown here are derived from the default parameters hA = 36.08 nm,

hE = 18.04 nm, and R = 86.62 nm (denoted “0” in the legend), from which we then alter

the EQD height to both lower as well as higher values. Note that the number in front of the

minus/plus indicates roughly how many nm smaller/larger the respective EQD height is. As

one can see, there seems to be no monotonous trend in the ICD rate ΓICD with respect to

hE, because we find lower decay rates for both higher, as well as lower EQD heights. Hence,

we expect at least one local maximum within the screened parameter range. To prove this,

we plot the decay rates ΓICD for fixed R = 86.62 nm and hA = 36.08 nm against a large scan

of the EQD height hE (cf. Fig. 9).

One can see that there is indeed a single maximum in the ICD rate ΓICD at an EQD

height of about hE = 16.01 nm. While for increasing EQD heights there is a slow decline

in ΓICD, towards lower hE the ICD rate decreases very fast. The reason for this behaviour

can be explained when considering the aforementioned competing effect of the polarization25

versus the Coulomb repulsion, which was discussed for the same parameter set in the previous

section.

For low hE the polarization 〈q〉 is increasing rapidly (cf. Fig. 7), whereas ẼCou is decreas-

ing rather slowly. As the Coulomb repulsion is thus still high for low hE, the stronger and

stronger polarization of the electron density towards the EQD facilitates the ICD process,

as the overall electron density is shifted towards the QD from which they may leave the
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system. However, as the electron density inside the EQD shifts farther away from the AQD

upon further increasing hE, the Coulomb repulsion becomes weaker - which slows down the

ICD process again. At some point in hE the lower Coulomb repulsion ultimately wins over

the enhanced polarization, thus leading to the explicit maximum.

Interdependence of ICD on geometrical parameter variations

To study the interdependence of the ICD rate on the various geometric parameters at the

same time, we will not only consider variations in hE, but simultaneously probe a limited

number of different values of the other parameters hA and R. We start the discussion by

performing scans of the ICD rates for hE at different hA but still for a fixed inter-QD distance

of R = 86.62 nm (cf. Fig. 10). Note that five of the curves presented in figure 10 were

calculated for the range of hE = [14.73, . . . , 19.34] nm, while four screens were performed in

shorter ranges of about one nanometer around spline-interpolated estimate positions of the

other maxima. All details on the rate-maximizing geometries at the maxima are collected

in table 3.

In accord with the monotonous increase of ΓICD when increasing only hA, one can see that

the curves as a whole are in almost all points higher for larger values of hA. This behaviour

was discussed earlier in the short summary and is attributed to both lower virtual photon

energies Evph (cf. eq. (1)) as well as an increasing Coulomb repulsion ẼCou - both of which

can also be confirmed in table 3, where we list the properties of the geometries leading to the

maxima. A new observation that could only be made by changing the AQD height at the

same time as the EQD height is that the specific EQD height which leads to the maximum

in ΓICD (denoted hmax
E ) does not remain constant for different hA. Still, one can see that the

hmax
E are following a rather smooth behaviour even when varying hA. Considering that the

maximum in ΓICD is related to the polarization of the E0 electron, it is sensible that changes

of the A1 electron density will also have an influence on the position of hmax
E .

To understand the underlying interdependence of the ICD rate ΓICD with respect to both

hA and hE, we need to combine these results with the interpretations made in the previous

section. As changes in the AQD height have a higher impact on the Coulomb repulsion than

that of the EQD height, we shall divide the discussion on three different regions of AQD
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heights.

For low AQD heights, the ICD rates ΓICD are overall smaller due to the lower Coulomb

interaction and the strong polarization towards the AQD (cf. Tab. 3). When changing the

EQD height, no large changes are expected for the ICD rate, polarization, and Coulomb

repulsion, because the interaction between the two QDs is weaker anyway. To obtain an

optimal ICD rate in such a scenario, the rate-maximizing EQD heights hmax
A need to be

larger than in case of small effective distances Reff , as only then a favourable polarization

can be achieved.

For intermediate AQD heights, the overall Coulomb interaction between the QDs becomes

stronger, which also renders changes in the geometry of the EQD more important for the

ICD rate. In this region, the rate-maximizing hmax
E is found at smaller heights than in the

weak interaction region, because a more sensitive balance between polarization and Coulomb

repulsion is needed as both terms become equally important for the process.

Finally, for even higher values of hA, hmax
E becomes larger again. At this point, the

potential wells may start overlapping, as the barrier separating the wells does not reach a

value of zero between the QDs any more. Hence, from this point on tunneling processes

become more and more available and consequently the asymptotic approximation does not

hold any longer. Therefore, the decay displayed by such geometries is not caused by pure

ICD, which is by definition an intermolecular rather than intramolecular process.

Next, we include the last missing parameter R in the discussion of the hmax
E values as

well. To do this, we plot the respective rate-maximizing EQD heights hmax
E for a specific set

of R and hA in figure 11. One notices that in general a higher inter-QD distance R leads

to higher values of hmax
E . This can be directly related to the fact that the greater distance

lowers both the Coulomb repulsion as well as the polarization. Consequently, the EQDs

must become larger to experience the same polarization as for smaller distances.

When comparing the plots of hmax
E for the different inter-QD distances R (cf. Fig. 11),

all curves show an increase of the rate-maximizing EQD height at lower values of hA and

all of them decrease again after a maximum. Eventually, the curves for R = 86.62 nm and

R = 97.52 nm increase again for even higher hA which is, however, due to the overlap of the

potential wells - and therefore not considered for the discussion of ICD processes (indicated
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by hollow markers and dashed lines). It is informative to note, that the minima in hmax
E for

R = 86.62 nm and R = 97.52 nm are almost separated by exactly the difference in their

respective values of R.

Finally, the actual interdependence of ΓICD on the geometric parameters shall be discussed

for all the ICD rate-maximized EQD geometries. To capture all geometric information at

once, we first collect the data of hmax
E and hA in a composite variable, which we call the

rate-maximizing height ratio χ defined as

χ(hA;R) =
hA

hmax
E

. (13)

As can be seen in figure 12, the composite variable χ is a non-linear function of hA that is

almost uniquely defined and almost strictly monotonously increasing with hA, except for the

first data point of R = 108.36 nm. It is informative to note, that in all rate-maximized PQD

geometries, the AQD remains at least 1.6 times higher than the EQD. The region, where the

asymptotic approximation breaks down can be directly related to when the curvature of χ

becomes negative for higher hA.

When then plotting the rate-maximized ICD rates against the respective values of χ (cf.

figure 13), we may extract the whole interdependence of ΓICD on the geometric parameters.

Firstly, we notice that lower inter-QD distances R in general produce a higher ICD rate

for all values of χ. Secondly, a higher χ value also results in a higher value of ΓICD, which

simultaneously means that high values of hA lead to a faster decay, as χ monotonously

increases with hA. Additionally, whether increasing or lowering hE from the optimized value,

one always obtains worse rates.

Finally, one can see that for low values of χ the curves for different inter-QD distances R

seem to follow the same behaviour until they eventually separate from each other. This result

presents two major implications for the ICD process in charged PQD systems. Firstly, we

can see that there exists a quantum physical upper bound to ΓICD for a given rate-maximized

height ratio, that may or may not be achieved by the PQD geometry depending on the chosen

inter-QD distance R. Secondly, as soon as the upper bound cannot be achieved any more,

the curve for a given R branches off the general behaviour. The lower the inter-QD distance

was chosen, the later the deviation occurs. The branching off the boundary behaviour is,
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however, not caused by the breakdown of the asymptotic approximation, as this occurs only

for much higher values of χ.

In the end, the rate-maximized geometry for ICD is found for high AQD heights hA and

small inter-QD distances R. The required EQD height hE for the highest rates is determined

by an optimal balance of the decreasing Coulomb repulsion ẼCou and the growing polarization

〈q〉 of the E0 electron.

CONCLUSIONS

In this work we present triplet-spin electron dynamics calculations using the antisymmetrized

multiconfiguration time-dependent Hartree (MCTDH) method in a pseudo one-dimensional

model system that reflects a doubly-charged, paired quantum dot (PQD). Performing a scan

of over 1000 geometries, we study the dependence of the intermolecular Coulombic decay

(ICD) process on the overall PQD geometry and especially focus on the interdependence of

the ICD rate on changes in various parameters at the same time.

As we had not covered changes in the height of the electron emitting quantum dot (EQD)

with our previous studies yet, we started by scanning this parameter individually. We found

that there exists a maximum in the ICD rate with respect to the EQD height, which we

ascribe to competing effects in the polarization and Coulomb repulsion.

We then discovered that changing other geometric parameters like the photon absorber

QD (AQD) height or the inter-QD distance changes both the value of the maximum in the

ICD rate as well as its position in terms of the EQD height. While the general trends for

the ICD rate were already known for these two parameters, the changes in the position of

the maximum point out the non-trivial nature and interdependence of the ICD process, such

that one may not optimize one or the other QD separately. This result also shows that

the asymptotic approximation may not be sufficient to fully describe the ICD process in

quantum dots.

Finally, we propose an ICD rate-maximized geometry for a charged PQD system with a

decay time of 102.39 ps in real units of GaAs. In this optimized set-up the cylindrical QDs

are vertically-aligned, the EQD has a height of 16.33 nm, and the AQD a height of 46.59
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nm. The inter-QD distance of this set-up equals 86.68 nm and the radii of the cylinders were

14.42 nm for both QDs.
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20. Dolbundalchok, P., Peláez, D., Aziz, E. F., Bande, A., J. Comput. Chem., 2016, 37,

2249.

21. Electronic archive: New Semiconductor Materials. Characteristics

and Properties. Basic Parameters of Gallium Arsenide. Available at:

http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html (accessed November

7, 2016).

22. Bednarek, S., Szafran, B., Chwiej, T., Adamowski, J., Phys. Rev. B, 2003, 68, 045328.

23. Bande, A., Pont, F. M., Dolbundalchok, P., Gokhberg, K., Cederbaum, L. S., EPJ Web.

Conf., 2013, 41, 04031.

24. Muga, J. G., Palao, J. P., Navarro, B., Egusquiza, I. L., Phys. Rep., 2004, 395, 357.

25. Stumpf, V., Brunken, C., Gokhberg, K., J. Chem. Phys., 2016, 145, 104306.

20



Figure 1: Binding potential curves of the PQD (eq. (2)) in z-direction for the shortest (top)

and longest (bottom) inter-QD distances R in consideration. The solid lines in both panels

reflect the uppermost height values hA and hE while the dashed lines give the respective

other extreme. The numbers may be taken from Tab. (1).

Figure 2: One-electron densities of the A0E0 (bottom), the first continuum-like A0C (mid-

dle), and the A1E0 resonance eigenstates (top) in energetic ordering. Black circles indicate

the QD positions. The one-electron densities of the A0E0 and A1E0 states are strictly lo-

calized around the QDs, while the A0C state has electron density to the far right, reflecting

its unbound character.

Figure 3: Eigenenergies of electronic states for varying EQD heights hE. Dashed lines

represent every second of the continuum-like states, while solid lines show the states A0E0

and the first continuum-like eigenstate A0C. All eigenenergies were shifted such that the

first A0C state represents the continuum threshold with zero energy. The dots mark the

resonance-like state A1E0.

Figure 4: The zoom into the eigenenergies close to the resonance-like state shows a non-

degenerate state-to-state transition at hE= 19.0 nm and a near-degenerate avoided crossing

at hE= 19.6 nm. The solid line with point-markers represent the A1E0 state, while dashed

and dash-dotted lines give the continuum-like states. Note, how the jth state turns into the

(j − 1)th state and so on.

Figure 5: (from top to bottom) Densities of the near-degenerate (j − 1)th and the (j − 2)th

states at the avoided crossing of 0.04 meV at hE = 19.6nm (cf. Fig. 4). Black circles indicate

the position of the QDs.

Figure 6: Expectation value of the Coulomb energy for different hE as approximated by eq.

(11) with a local minimum at hE = 18.91 nm.

Figure 7: Expectation values of the real part of the total dipole moment as a function of hE

as approximated by eq. (12).
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Figure 8: Logarithmic autocorrelation functions for different PQD geometries (cf. Tab. 2).

The geometries are derived from a default system D, where the hE parameter is changed

to a set of different values to show the general trends. The minus and plus signs indicate

whether the height was increased or decreased, while the number represents the magnitude

of the change.

Figure 9: ICD rates ΓICD for the screen of the EQD heights hE at fixed R = 86.62 nm and

hA = 36.08 nm

Figure 10: ICD rates ΓICD as functions of EQD heights hE for different AQD heights hA

given in nanometers beside the curves. Five curves have been calculated for the full hE

range from 14.73 to 19.34 nm, whereas the shorter curves were calculated on a small range

around the spline interpolated estimations of the location of their maxima. The dashed line

is connecting the maxima of the curves.

Figure 11: EQD heights hmax
E for which a maximum ΓICD is found as a function of the AQD

height and inter-QD distance R. Dashed lines as well as hollow markers indicate that these

results were obtained for non-separate QD wells.

Figure 12: Rate-maximizing height ratios χ (eq. (13)) as function of AQD heights at the

three different QD inter-QD distances R. The ratios are calculated for the geometries with

maximum ICD rates. Dashed lines, as well as hollow markers indicate that these results

were obtained for non-separate QD wells.

Figure 13: ICD rates as a function of the rate-maximized height ratios χ for different inter-

QD distances R. Dashed lines, as well as hollow markers indicate that these results were

obtained for non-separate QD wells.
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Parameter Range [a.u.] Resolution [a.u.] Range [nm in GaAs]

R [8.00, . . . , 10.00] 1.00 R=[86.68, . . . , 108.36]

bA, hA [0.15, . . . , 0.35] 0.05 hA=[46.59, ..., 30.50]

bE, hE [0.60, . . . , 2.50] 0.01 hE=[23.29, ..., 11.41]

Table 1: Total parameter ranges for the scan of the geometries. Note that the EMA conver-

sion from bA/E to real units of GaAs includes transforming the parameters into the respective

heights.

Label hE [nm] τICD [ps] ΓICD [10−3/meV]

+5 23.29 202.01 3.2583

+2 20.17 171.24 3.8439

0 18.04 160.54 4.0964

−3 14.98 156.36 4.2096

−5 13.34 219.34 3.0009

Table 2: Geometric parameters and decay times τICD for probing changes in the EQD height

parameter. The geometries are derived from a default case 0 (hA = 36.08 nm, hE = 18.04 nm

and R = 86.62 nm) and carry labels corresponding to the approximate changes in hE in

nanometers with respect to the default case. The corresponding autocorrelation plots are

collected in (cf. Fig 8).
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hA [nm] hE
max [nm] Evph [meV] ẼCou [meV] 〈q〉 [nm] τICD [ps] ΓICD [10−3/meV]

46.59 16.26 4.425 1.299 -3.070 102.4 6.450

43.13 15.70 4.669 1.293 -2.230 110.2 5.971

40.34 15.53 4.842 1.292 -2.219 119.1 5.522

38.04 15.64 5.031 1.287 -2.174 131.9 4.989

36.08 16.01 5.147 1.285 -3.131 149.8 4.384

34.41 16.27 5.291 1.277 -3.771 174.7 3.766

32.94 16.68 5.392 1.271 -5.358 209.7 3.116

31.65 16.54 5.485 1.258 -7.089 262.7 2.506

30.50 16.68 5.540 1.241 -9.706 341.0 1.933

Table 3: Properties of rate-maximizing PQD geometries for R = 86.62 nm
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