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ABSTRACT

In many queueing systems the server processes several
customers simultaneously. Although the capacity of a
batch, that is the number of customers that can be
processed simultaneously, is often variable in practice,
nearly all batch-service queueing models in literature
consider a constant capacity. In this paper, we extend
previous work on a batch-service queueing model with
variable server capacity, where customers of two classes
are accommodated in a common first-come-first-served
single-server queue. We include correlation between the
classes of consecutive customers, and the service times
are geometrically distributed. We establish the equa-
tions that govern the system behaviour, the stability
condition, and an expression for the steady-state prob-
ability generating function of the system occupancy at
random slot boundaries. In addition, some numerical
results are shown to study the impact of the mean ser-
vice times and of the customer-based correlation in the
arrival process on the performance of the queueing sys-
tem.

INTRODUCTION

In manufacturing environments, a single machine often
has the capability to process multiple products simul-
taneously in a single batch. The maximum number of
products that can be processed at the same time, also
called the service capacity, is often assumed to be a
constant and bounded value, e.g. |Banerjee and Gupta
2012} [Claeys et al.|[2012) [2013; |Goswami et al.|[2006;

Weng and Leachman||[1993l The difference with multi-
server systems is that a newly arrived customer cannot
join an ongoing service, even if the service is not com-
pletely full. In manufacturing, this can be found in
for instance a furnace where a heating phase cannot
be interrupted. In real systems, the maximum batch
size or service capacity is often variable and stochas-
tic, which has been studied in only a few papers. In
many of these papers, the service capacity is generi-
cally distributed and does not depend on any parame-
ter of the system, like the number of customers waiting
in the queue, see the papers of (Chaudhry and Chang
2004} |Germs and Foreest||2010; [Pradhan et al. 2015}
Sikdar and Samantal[2016. A more detailed description
of these papers can be found in our paper (Baetens
et al.|2016). Also, |Germs and Foreest| (2013|) have de-
veloped an algorithmic method to analyse the perfor-
mance of continuous-time batch service queueing sys-
tems with arrival process, service time distribution and
variable service capacity that depend on the number of
customers in the queue.

None of the previous papers on batch service consid-
ered multiple customer classes. Differentiated service
is common in priority queueing and polling systems,
where the system can use different scheduling algo-
rithms to optimize the performance of the system (e.g.
Reddy et al| (1993); Boxma et al. (2008); [Dorsman
et al.| (2012)).In contrast with polling systems and pri-
ority queueing, that use a unique queue for each pos-
sible class of customers, we use a common queue with
a global First-Come-First-Served service discipline, be-
cause it is not always feasible to install a multi-queue
system due to certain constraints like the increased cost
of a more complicated system. An example of such a



system is a furnace in a production line. A furnace
can handle multiple customers simultaneously as long
as the products must be heated to the same tempera-
ture and for the same duration.

In this paper, we analyse the performance of a two-
class discrete-time batch-service queueing model, with
a variable service capacity that depends on the queue
size and on the specific classes of the successive cus-
tomers. This kind of queueing systems can be found in
many telecommunication technologies like optical burst
switching networks (Chen et al.|2004) and wireless lo-
cal area networks (Lu et al.||2005). To the best of our
knowledge, the combination of batch service with vari-
able capacity and multiple customer classes has only
appeared in our previous paper Baetens et al.| (2016)).
The difference with that paper is that we relax the as-
sumption of fixed single-slot service times by consid-
ering geometric service times instead. We also intro-
duce correlation between the classes of consecutive cus-
tomers in order to model the tendency for same-class
customers to arrive in clusters.

The paper is structured as follows. In the next sec-
tion, we describe the discrete-time two-class queueing
model with batch service in detail. In the third section
we establish the system equations, from which we de-
duce the stability condition, and derive a closed-form
expression for the steady-state probability generating
function (pgf) of the system occupancy at random slot
boundaries. Next, using the expressions obtained in
this part, we evaluate the performance of the system
through some numerical examples and study the im-
pact of the mean service time and the degree of corre-
lation between the classes of consecutive customers on
the system performance. Finally, we draw some con-
clusions about the obtained results.

MODEL DESCRIPTION

In this paper we study a discrete-time two-class queue-
ing system with infinite queue size. This system uses
a batch server with a stochastic service capacity based
on the class of the customer at the head of the queue.
We distinguish two different customer classes in the ar-
rival process, which we will call class A and B. When
the server is idle or becomes available at the start of a
new slot and finds a non-empty queue, a new service
is initiated immediately. The capacity of this service
is determined by the number of consecutive customers
at the head of the queue that are of the same class
which means it depends on the class of the batch being
processed. More specifically, the server starts serving a
batch of n customers if and only if one of the following
two cases occurs:

o Exactly n customers are present and they are all of
the same class.

o More than n customers are present, the n customers
at the front of the queue are of the same class and the
(n 4+ 1)-th customer is of the other class.

We define the class of a batch as the class of the cus-
tomers within it. The aggregated numbers of customer
arrivals in consecutive slots are modelled as a sequence
of independent and identically distributed (i.i.d.) ran-
dom variables, with common probability mass function
(pmf) e(n) and pgf F(z). The mean of these i.i.d. ran-
dom variables is denoted as A. The class of a newly
arrived customer depends on the class of the previous
customer. If the previous customer was of class A (B),
then the newly arrived customer will also be of class
A (B) with probability (w.p.) a (8). fa+ 8 > 1,
same-class customers will have a tendency to arrive in
clusters. The service time of a random batch follows a
geometric distribution with mean g, and does not de-
pend on the class of the processed batch and its size.
The pgf of the service time distribution is defined as

S(z2)
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ANALYSIS

In this section, we first determine the system equations
that capture the system behaviour. In the next part we
analyse the conditions under which the system is stable.
In the main part, we establish the steady-state pgf of
the system occupancy, that is the number of customers
in the system at the beginning of a random slot, in-
cluding those in the ongoing service if the server is not
idle.

System Equations

We start by defining the variables we use in the sys-
tem equations that capture the behaviour of the sys-
tem at consecutive slot boundaries. The number of
customers in the system, or the system occupancy at
random slot boundaries, is denoted by wy. The num-
ber of customers in the system while the server is idle
and the previously processed batch is of class A or B
is respectively denoted as ur 4 and ur px. We also
define the random variables u4,, and upj as the sys-
tem occupancy at random slot boundaries if the server
is processing a class A or B batch during slot k.

If the server is idle in slot k, then the server will remain
idle if there are no new arrivals. On the other hand,
when the server finds at least one newly arrived cus-
tomer, then a new batch is started immediately. The
probability that the class of the first arrival in slot k
is of class A or B depends on the class of the most
recently processed batch which is why we distinguish
between the two cases. The system equations if the
previous batch was a class A batch are given by

UT,Ak+1 = 0 if €L — 0
ua k+1 = e if e > 0 & first arrival of class A
up p+1 = €y if e >0 & first arrival of class B, (1)

where ey, represents the number of arrivals during slot
k. The analogous equations if the previous batch was



of class B are

Ur,B,k+1 = 0 if € — 0
uA p+1 = e if e > 0 & first arrival of class A
up k+1 = ey if e > 0 & first arrival of class B. (2)

On the other hand, if the server is processing a class A
batch during slot k£ and the service period does not end
in slot k + 1, then the service continues and the newly
arrived customers are added to the tail of the queue.
However, if the service ends, then the behaviour will
be determined by the probability that all customers in
the system at service initiation of the batch, processed
during slot k, were of the same class. In the case that
all waiting customers were of the same class, then the
behaviour will be as if the server was idle in the previous
slot. On the other hand, if at least one customer in the
queue was a class B customer, then the next batch
will always be a class B batch. The resulting system
equations in the case of an ongoing class A batch are

UA k+1 =UA L + ep if Service not done
ur,Ak+1 =0 if Service done
& cap=uainir & sep =0
uA, k+1 =sey, if Service done & car = UA inik
& sep >0 & first arrival of class A
up k+1 =sex if Service done & c4 k= A, inik
& sep, > 0 & first arrival of class B
UB k+1 =UA ini,k — CAk + S€
if Service done & car < uajnik » (3)
where seg, car (cB.k) and A inik (UB,inik) Tepresent
respectively the number of arrivals, the service capacity
and the system occupancy at initiation of the ongoing
service during slot k& which is of class A (B). The anal-
ogous system equations for the case that the ongoing
service is of class B are given by
UB k+1 =uB,k + e if Service not done
ur,g k+1 =0 if Service done
& cpr =uBinik & sep =0
up, p+1 =sey if Service done & cp i = UBinik
& sep > 0 & first arrival of class B
uA g+1 =sey if Service done & c¢pk = UB ini k
& sep, > 0 & first arrival of class A
UA,k+1 =UB,ini,k — CB,k T S€k

if Service done & cpr < upinik - (4)

Stability Condition

In this part we analyse a system in which the server is
always busy and the variable server capacity is always
smaller than the number of waiting customers, also
called a saturated system. In such a system, the size of
the processed batches is geometrically distributed and
a class A and B batch are processed alternately. The
system is stable when the mean number of customer ar-
rivals during two consecutive service periods, which is
equal to 2u]\, is less than the mean number of customers

that leave the system during the same two service pe-
riods. Since a class A and B batch leave the system
during this time period, the mean number of customers
that leave the system is the sum of the mean batch size
of a class A and B batch. The batch size of a class A
and B batch follow a geometric distribution with pa-
rameter « or [ respectively. The stability condition is
then given by

2uN ! !

AT T1-3
If « or B is equal to 1, then the system will always be
stable, since all customers that arrive are of the same
class. The server can then group all waiting customers,
which leaves an empty queue after service initiation.
This also follows from the stability condition, which is
reduced to A < oo under the restriction that « or S is
equal to 1. Another element of interest in the stability
condition, is the maximum allowed arrival rate, which
reaches a minimum value for « = 5 = 0.5. Finally,
the load p of the system is defined as the fraction of A
versus the maximum allowed arrival rate, which leads
to

2, (=015

pP="7 1
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<1.

The stability condition implies that the load is smaller
than 1.

System Occupancy

Assuming the stability condition is met, we can de-
fine the steady-state pmf of the system occupancy at
random slot boundaries, as

u(i) == klgr;o Prlug =1] ,

with corresponding pgf

i=0
We can split the generating function of the system oc-

cupancy U(z) in two parts based on the class of the
most recently initiated service. This leads to

U(z) = ur,A+urp+ Ua(z)+Ug(2) ,
where we introduced the following definitions
ur, A:= lim Priu; 44 =0] ,
k—o0

ur, B:= lim Prlu; g =0] ,
k—o0
o0
_ lim P _ i
Ua(z) ;kggo rlug =14z"

Ug(z) ::Zkh—)rrolo Prlup = i)z" .
i=1

The probability that the server is idle and the previ-
ously initiated service contained class A customers, de-
noted by uy 4, is found by invoking system equations



Eq. and Eq. .
S(E(0) Ua(e) 5
1-E(0) po
Using Eq. (2)) and Eq. (4), we find the analogous equa-
tion if the previous batch is of class B
S(E(0)) U
11— SCEO) Un(8) o
1—-E(0) pp
The partial pgf Ua(z) of the system occupancy when
the server is processing a class A batch can be split
based on the state of the server in the previous slot.
This leads to
Ua(2) = Bl"4++)
:E[ZuA’k+II{UI,A,k:0}] + E[ZuA’kHI{uLB,k:O}]
+ B[z >0y + B4 g s0y] 5 (7)
where I(¢) are indicator functions which are equal to
1 if event C' occurs and zero otherwise. Invoking the

system equations in Eq. . we can write the first term
of the right-hand side of Eq. . as

E[ZuA k+1[{uI,A,k:0}} = OéUI,A(E( ) - E(O)) . (8)

ur,.A =

Analogously, by using Eq. , we obtain
E[ZUA’kJrlI{uI,B,k:O}]
=(1 = B)ur,s(E(z) — E(0)) . (9)

Using Eq. (3]), we obtain the following equation for the
third term of the right hand side of Eq. .

(1- p)UA(Z)E(Z)

T
 S(E(2)) - S(E(0)
1 - 5(E(0))
The last term of Ua(z) results in

B Ly >0y

E[ZUA’k+1I{uA,k>O}] —

1B Us(BE(B)  Us(d)
~— (G — 5 SEO)
S(B() - SEQ) | 1-8
1— S(E(0)) Wz —B)
(Us(2)E(z) zUs(B)E(B) .
(50 ﬁ SEwm) )SED -y

By combining Egs. , we obtain
Uale) (1 (s = DEG)) = 1= )
E(z) —E(0) S(E(2)) — S(£(0))

+8(EO) (772 E0)  1-S(E0) )
1-5 S(E(z)) — S(£(0))
Un(8)) + = S(E(0))
1-7 UB(ﬁ)E(ﬁ))
S(E(a)) B S(E(B))

- S(E(2)) - (12)

Up(2)E(z

: (UA(a) +

Multiplying both sides of Eq. (12]) by S(E(Z)) results in

Ua(z) = = gU (2)S(E(2)) + S<E<0>>5§S”
E(z) —E(0) S(E(2)) —S(E(O)))
E< 1— S(E(0))
)> n S(E( ))

S(E(0))
S(E(0))
S(E(2)) (U ( VE(a)  1-8 UB( )E(5)>

E(z) \ S(E(a)) B S(EP))
~ (1-8)2Us(B)E(B) S(E(2))* (13)
Bz=B) S(EPB) E(z)
A similar analysis leads to an equation for the partial
pgf of the system occupancy if the customer is process-
ing a class B batch

1= Us(2)S(B (=) + S(EO) S(E(2))

EQ©0) E(Z))—S(E(O)))
E( 1= S(E(0))

(A
(UB(B L1 )) S(E( ))

SN
S(E() SH)EE) 1—aUA<> (o)
E(2) (%% SEE) T s )
| (1-a)z Ua(a)E(a) S(B(2))?
oz —a) S(B@) B 14)
Using Eqgs. , @, and , we obtain
U()((2— a)(z — B) — (1 — a)(1 — B)S(E(2))?)
(e (0) Uata) , S(E(0)) Un(d)
E©O) pa | 1-B(0) up
+( Ble) — EQ) _ S(B(:) —S(EO)y
—“E(0 1 S(B(0))

(5
(Uate)

UB(Z) =

z—
E(2)

S(E(0))
0

S(E(0))
E

)
- S(B(0)2 (E (g)) -

+(1-)SER)(z—a—pz+ az)) v

+((z=a)(z = B) + (1= B)S(E(2))
U (B)E(B)
BS(E(B))
—(1- B)z(z —a+(1—a)S(E(2))

Us(BEB) S(E(2)? _ Ua(@)E(a) S(E(2))?

BS(E(B) E()  aS(E(a) E()
(1=a)z(2= B+ (1= BHSER)) - (15)

-(z—ﬂ—az+ﬂz))




In Eq. (15), the two remaining unknowns Uy («) and
Ugp(B) still have to be calculated. With the theorem
of Rouché, we can easily prove that the common de-
nominator of these partial pgf’s, given by the left hand
side of Eq. 7 has two zeros inside or on the unit
circle. Fach zero of the denominator must also be a
zero of the numerator since generating functions are
analytical functions inside the complex unit disk and
bounded for |z| < 1. We can easily see that z =1 is a
zero of the denominator, which leads to the same con-
dition as the normalisation condition. The other zero
can be calculated numerically. The condition that the
numerator of Ux(z) is equal to zero for the second zero
of the denominator, combined with the condition from
the normalisation condition, constitutes a set of two
linear equations that leads to a unique solution for the
two remaining unknowns.

With these results we can also obtain the result of our
previous paper, see|Baetens et al.[2016, by using a mean
service time p = 1, which corresponds to single-slot ser-
vice times and S = 1 — a.. Substituting these assump-
tions in Eq. and Eq. results in

Ua(z) ((z —a)(z—14a)—a(l - a)E(z)2)

E(z) — E(0)

1—-FE(0

0 (z—1+a+(1—a)E(z))

=a(z — a)

: (UAOEQ) + UB1(1_;Q)> — (1 - )2B(2)*Ua(a)
Up(l—a)
—az(z — OZ)E(Z)% )

NUMERICAL RESULTS

In this section we will study the impact of different pa-
rameters on the probability u; that the server is idle,
which is given by the sum of u; 4 and uy g, and the
mean system occupancy. The number of arrivals in
each slot follows a geometric distribution with mean
arrival rate A. In Fig. we show the impact of the
mean service time g on the probability that the server
is idle. In this figure, the probabilities o and [ are
both equal to 0.5 and results are obtained for a num-
ber of different mean arrival rates. We observe that for
all arrival rates, the probability that the server is idle
decreases when the mean service time increases, until
it reaches the point that the probability is equal to 0
and the system becomes unstable. A higher value for
w results in, on average, longer service periods, which
means that the probability that there are no arrivals
during a service period decreases. The two require-
ments for the system to become idle after a service is
finished are that all customers at service initiation must
be of the same class and there are no arrivals during
the service period. Because of its impact on the prob-
ability of this second requirement, it is clear that an
increase in the mean arrival rate leads to a decrease of
the probability that the server is idle.

In Figure [T} we used a symmetric arrival process, that
is the probability for a class A and B customer are

— A=02 e A=030o2o Ax=04 44 A=054=2 1=06
1.0 T T T T T T T T

10

I

Fig. 1: Impact of Mean Service Time on the Idle Prob-
ability using o = 8 = 0.5.
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Fig. 2: Impact of Asymmetry in the Arrival Process on
the Idle Probability

equal. We can introduce asymmetry in the arrival pro-
cess by using a < 0.5 while keeping o + 8 = 1. The
impact of a bigger difference between o and 3, or an
increasing degree of asymmetry in the arrival process,
on the idle probability, is shown in Fig. using the
mean arrival rate A = 0.5. We note that an increas-
ing degree of asymmetry in the arrival process leads to
an increased idle probability for the same value of pu.
This is because the mean length of a sequence of class
A and B customers increases for values of « closer to
0, which in turn increases the probability that all wait-
ing customers are of the same class. This corresponds
with the first requirement for the server to jump from
a busy state to an idle state. We also note that more
asymmetry in the arrival process allows using a slower
server, that is a server with a higher mean service time.

In Fig. we analyse the impact of asymmetry in the
arrival process on the system occupancy, for an arrival
process with mean arrival rate A = 0.5 and a + 5 = 1.
We clearly see that increasing the degree of asymme-
try significantly reduces the number of customers in the
system, and allows the server to work more slowly while
still being stable. The reason for this is that values of «
closer to 0 lead to a higher mean length of a sequence of
same-class customers, thus allowing the server to pro-
cess higher service capacity. If the server can process
larger batches, the system occupancy will be reduced
and the service time must be higher to have the same
mean number of customers in the system. We note
that the point at which the system becomes unstable
is inversely proportional to the parameter o and g as
can be seen in the deduction of the stability condition.

In the previous figures, we assumed there was no ten-
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Fig. 3: Impact of Asymmetry in the Arrival Process on
the System Occupancy
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Fig. 4: Impact of Clustering on the Idle Probability

dency for same class customers to arrive in clusters or
that § = 1 — . In the following results, we study the
impact of this tendency for clustering by using values
of @ and 8 so that « + 8 > 1. In Fig. [ we first
analyse the influence of this tendency on the idle prob-
ability, by using 5 = 0.7, « varying between 0.5 and 1,
and a mean arrival rate A = 0.5. We clearly see that
increasing «, or the tendency for clustering, also leads
to an increasing idle probability. This occurs because
using more clustering in the arrival process means the
expected length of sequences of same-class customers
increases. This leads to a higher probability that all
waiting customers are of the same class, which in turn
results in a higher probability that the queue is empty
after service initiation.

The influence of this tendency for clustering on the
mean system occupancy, for the same system config-
uration as in the previous figure, is shown in Fig.
In case of a small mean service time, e.g. u = 4, we
see that increasing the degree of clustering only has
a very small influence on the average number of cus-
tomers in the queue. On the other hand, for larger val-
ues of u, the system is stable only for a certain degree
of clustering, and the more clustering in the system,
the lower the mean system occupancy. An increased
degree of clustering in the arrival process leads to a
higher mean length of a sequence of same-class cus-
tomers, which means that on average more customers
can be processed. This increase in the mean service ca-
pacity means that the server processes larger batches,
which leads to a lower mean system occupancy.

CONCLUSIONS AND FUTURE RESEARCH

In this paper we have analysed the performance of a
discrete-time two-class single-server queueing system
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Fig. 5: Impact of Clustering on the System Occupancy

with variable capacity batch service. The capacity of
the batch server is determined by the length of the se-
quence of same-class customers at the head of the queue
at service initiation. The service times of a batch of ei-
ther class are geometrically distributed, and we also
considered correlation between the classes of consecu-
tive customers. During the analysis, we have derived
the steady-state pgf of the number of customers in
the system, also called the system occupancy, at ran-
dom slot boundaries. Using the generating function
technique, we have demonstrated the impact of the
mean service time, asymmetry and clustering in the ar-
rival process on two performance characteristics, more
specifically on the idle probability and on the mean sys-
tem occupancy.

There are a number of possible extensions that could be
considered for this model. A first extension would be to
find the steady-state pgf for the number of customers
that are being processed by the batch server, and the
customer delay. In a second extension we could extend
the model to use a class-dependent general service time
distribution for class A and B batches. Another pos-
sible extension is introducing an upper bound for the
service capacity. We can also look at systems capable
of processing more than 2 classes of customers. We
expect that this will introduce an extra level of com-
plexity because the class of the next batch, if not all
customers in the queue at service initiation were of the
same class, is not deterministic.
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