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S U M M A R Y
Converted phase (CP) elastic seismic signals are comparable in amplitude to the primary
signals recorded at large offsets and have the potential to be used in seismic imaging and
velocity analysis. We present an approach for CP elastic wave equation velocity analysis
that does not use source information and is applicable to surface-seismic, microseismic,
teleseismic and vertical seismic profile (VSP) studies. Our approach is based on the cross-
correlation between reflected or transmitted PP and CP PS (and/or SS and CP SP) waves
propagated backward in time, and is formulated as an optimization problem with a differential
semblance criterion objective function for the simultaneous update of both P- and S-wave
velocity models. The merit of this approach is that it is fully data-driven, uses full waveform
information, and requires only one elastic backward propagation to form an image rather
than the two (one forward and one backward) propagations needed for standard reverse-time
migration. Moreover, as the method does not require forward propagation, it does not suffer
from migration operator source aliasing when a small number of shots are used. We present a
derivation of the method and test it with a synthetic model and field micro-seismic data.

Key words: Inverse theory; Body waves; Seismic tomography; Computational seismology;
Wave propagation.

1 I N T RO D U C T I O N

In recent years, full waveform seismic imaging and velocity
analysis methods have become standard and the use of elas-
tic waves is now drawing more attention. Converted phase (CP)
waves are an integrated part of the recorded elastic seismic sig-
nal and are investigated in numerous studies in the research ar-
eas of vertical seismic profile (VSP) data (e.g. Esmersoy 1990;
Stewart 1991; Xiao & Leaney 2010), surface reflection (e.g. Pur-
nell 1992; Stewart et al. 2003; Hardage et al. 2011) and trans-
mission seismic data (e.g. Vinnik 1977; Vinnik et al. 1983;
Bostock et al. 2001; Rondenay et al. 2001; Brytic et al. 2012;
Shang et al. 2012; Shabelansky et al. 2013). In particular, for exam-
ple Xiao & Leaney (2010) and Shang et al. (2012) showed that the
CP seismic images can be calculated using one elastic propagation
without using source information (i.e. location, mechanism and
time-function). Source information is generally considered manda-
tory in standard seismic imaging and velocity analysis. However, in
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passive monitoring source information is generally not available and
in active source surveys seismic data require special treatment for
frequency matching due to coupling differences between soil and
vibro-seis or dynamite casing. These factors affect the accuracy
of the imaging and velocity estimation and add computational and
processing cost. Moreover, CP elastic seismic imaging is shown to
have higher resolution in Xiao & Leaney (2010) and fewer artifacts
than reflection type imaging in Shabelansky et al. (2012).

In this study, we present a source-independent CP (SICP) velocity
analysis method that is formulated based on the framework of CP
imaging and wave equation migration velocity analysis (WEMVA;
e.g. Biondi & Sava 1999; Sava & Biondi 2004; Shen 2004, 2012;
Albertin et al. 2006). We refer to this method as SICP-WEMVA.
Like WEMVA, SICP-WEMVA depends strongly on starting (initial)
velocity models (P- and S-wave speeds) and optimization algorithms
with their parameters. SICP-WEMVA is typically less sensitive to
the cycle skipping that is a problem for full waveform inversion, but
it has lower resolution than full waveform inversion. The objective
functional for converted P to S phases in source-dependent WEMVA
(i.e. CP-WEMVA using forward/source propagation for P wave and
backward propagation for S wave) appears to be convex (Yan 2010),
and thus we expect SICP-WEMVA to also exhibit favourable prop-
erties for estimating large-scale velocity models. Unlike WEMVA,
SICP-WEMVA (and CP-WEMVA) uses interference between
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different wave types (i.e. P and S waves), and thus the resolution
and stability of the two methods are not the same. Also, since SICP-
WEMVA back-propagates data solely from receivers and does not
depend on source information, it can be performed locally in the
vicinity of the receivers only. This reduces the computational cost
of iterative velocity analysis.

This paper is divided into three parts. In the first part, we present
a SICP imaging condition in an extended domain. We use this to
formulate an objective functional for gradient-based optimization.
In the second part we present the derivation of the SICP-WEMVA
velocity model optimization scheme. In the third part we show
results of applying SICP-WEMVA to a synthetic model and its
application to field data from a geothermal reservoir with abundant
natural and induced seismicity. We also include three appendices
addressing details of SICP-WEMVA.

2 T H E O RY O F S I C P - W E M VA

SICP-WEMVA is a gradient-based iterative optimization scheme
whose residuals are calculated from extended-domain migrated im-
ages. The gradients are formed from the backward and forward
propagating in time seismic data and image residuals. We present
below the derivation of the method, a summary of the algorithm and
its practical implementations.

2.1 Extended SICP imaging condition (ESICP-IC)

We start our derivation using the isotropic elastic wave equation

ü = λ + 2μ

ρ
∇∇ · u − μ

ρ
∇ × ∇ × u + 1

ρ
∇λ(∇ · u)

+ 1

ρ
∇μ · [

(∇u) + (∇u)T
]
, (1)

where u(x, t) and ü(x, t) are the displacement and acceleration vec-
tor wavefields, λ(x), μ(x) and ρ(x) are the two Lamé parameters
and density, ∇, ∇· and ∇× are the gradient, divergence and curl
and x = (x, y, z), and t are the spatial and time variables, respec-
tively. The right hand side of eq. (1) consists of four terms: two with
Lamé parameters and two with their gradients. The terms with the
gradients are significant only at interfaces/discontinuities in subsur-
face medium and they are responsible for generation of reflected,
transmitted and CP seismic data.

For the purpose of imaging, we assume smooth Lamé parameters
(i.e. taking only the first two terms on the right-hand side of eq. 1),
and obtain (Aki & Richards 2002, p. 64)

ü = α̂∇∇ · u − β̂∇ × ∇ × u, (2)

where the parameters α̂(x) and β̂(x) are defined through the P- and
S-wave velocities, α(x) and β(x), as

α̂ = α2 = λ + 2μ

ρ
, β̂ = β2 = μ

ρ
. (3)

Since we use the isotropic elastic wave equation, the acceleration
wavefield can be decomposed as ü = ü p + üs , where

ü p(x, t) = α̂(x)∇∇ · u(x, t), üs(x, t) = −β̂(x)∇ × ∇ × u(x, t).

(4)

Then, the SICP-IC for Ne sources (i.e. explosions or earthquakes)
is given as the zero lag in time cross-correlation between the back-
propagated P and S acceleration vector-wavefields, ü p and üs ,

I (x) =
Ne∑
j

∫ 0

T
ü j

p(x, t) · ü j
s (x, t) dt, (5)

where · is the dot product between vector components (e.g. vertical,
radial and transverse), the superscript j refers to the source index,
and T is the maximum recording time; it is at the lower limit of the
integral (i.e. the data are propagated backward in time).

This imaging condition has three very important properties: first,
no source information (i.e. location, mechanism and time-function)
is required; second the image can be constructed only in the vicin-
ity of the receivers (i.e. far from the sources); and third, the image
can be constructed during the backward propagation and no wave-
field storage is required. These properties reduce the computational
cost and memory storage, and more importantly improve the image
quality in comparison with standard reverse-time migration (RTM).
Note also that we decompose the P- and S-wavefields using eq. (4)
rather than using the more computationally efficient Helmholtz de-
composition. The reason for this choice stems from the fact that
the separated wavefields, using eq. (4), have consistent amplitude
polarity for imaging, unlike those obtained by Helmholtz decom-
position, which require additional treatment for signal amplitude
(e.g. Du et al. 2012).

To provide intuition for the imaging condition in eq. (5), we
show in Fig. 1(a) a snapshot of an elastic wave propagation from a

Figure 1. (a) A snapshot of the Z-component elastic wavefield generated
from an isotropic point source at the position (x, z) = (2.0, 1.7) km, marked
with a star, and propagating through a horizontal interface at a depth of 1 km.
(b) Schematic illustration of the wavefields shown in (a) above the horizontal
interface. The black curves refer to the transmitted P and S wavefields
(PP and PS) through the interface, marked by horizontal green line. The big
red dots mark the points where the two wavefields interfere constructively
and an image is formed.
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Figure 2. Schematic illustration of the construction of the space-lag CIG
along x direction, hx, using ESICP-IC (eq. 6). The black curves are as
in Fig. 1(b) and the big red dots in (a) and (b) mark the current points
of interference between the wavefields while the small red dots show the
hx = 0 position. The blue curve connecting the big and small red dots follows
the points of interference and thus is called the moveout curve. This moveout
is obtained by shifting the wavefields in opposite directions; these directions
are marked with arrows in (a) and (b), and the length of the shift is called
the space-lag.

single point source, through a horizontal interface. Fig. 1(b) illus-
trates the wavefields schematically above the interface. The red dots
in Fig. 1(b) correspond to constructively interfering image points at
which the energy of the zero-lag in time cross correlation between
P- and S-wavefields is maximized. When we sum over multiple
sources, Ne, in eq. (5), the signal-to-noise ratio (S/N) of the inter-
fering image points increases.

This concept is valid when the P- and S-wave speed models
are correct. However, when the velocities have error, the interfer-
ence between P and S waves does not occur at the correct image
points and energy leaks to adjacent points. To quantify the leak
and interference mispositioning, we introduce an extended source-
independent converted-phase imaging condition (ESICP-IC) in the
so-called subsurface space lag, h = (hx , hy, hz), as

I (x, h) =
Ne∑
j

∫ 0

T
ü j

p(x − h, t) · ü j
s (x + h, t) dt. (6)

The concept of extension is adopted from acoustic reflection imag-
ing where the extended image is typically called a common image
gather (CIG), and the subsurface space lag, h, is called the subsur-
face offset (e.g. Rickett & Sava 2002). However, as source informa-
tion is not involved in SICP-IC and ESICP-IC, the notion of offset
is not well defined.

In Fig. 2 we show schematically the construction of these image
gathers, given by eq. (6), in 2-D for a single source and horizontal
space lag, hx [i.e. we show I(x = xf, z; hx, hz = 0) where xf is
a fixed horizontal image point] that are obtained by continuously

shifting the P-wavefield (marked PP) to the right and S-wavefield
(marked PS) to the left, as marked with the arrows in Fig. 2(a). The
waves interfere at new points during the shift (i.e. space-lag); these
interference points are marked with a blue line and are called the
moveout. The small red dot in Fig. 2(a) corresponds to the initial
interference point, marked in Fig. 1(b) by the big red dot, and the
big red dot in Fig. 2(a) marks the current point of interference
along the moveout. Fig. 2(b) shows the same schematic for negative
horizontal space lags, when the P-wavefield is shifted to the left and
S-wave to the right. Note that the curved moveout can appear linear
for small lags.

To illustrate numerically the construction of the moveout in the
space lag gathers for the same horizontal interface model, discussed
for Figs 1 and 2, we generate a set of isotropic P sources from be-
low the horizontal layer at a depth of 1.7 km. We construct the
gathers using forward propagated P and S wavefields. In Figs 3(a)
and (b), we show moveouts for an image point at xf = 2 km ob-
tained from sources generated at (x, z) = (1.5, 1.7) km and (x,
z) = (2.5, 1.7) km, below the interface, respectively. These move-
outs verify the behaviour presented in Figs 2(a) and (b) for correct
P- and S-wave velocity models. The summation of the two gath-
ers (Figs 3a and b) is shown in Fig. 3(c), where we observe that
only the energy around hx = 0 at the depth of the layer interferes
constructively. By adding more sources, generated from different
horizontal positions below the interface, we obtain more focusing
of the energy around hx = 0 (see result in Fig. 3d obtained with
14 sources).

As mentioned above, this focusing is achieved only when the P-
and S-wave velocities are correct. When the velocities have error,
the energy is no longer focused. To demonstrate this, we add to
the correct S-wave model an elliptical lens (i.e. anomaly) with a
maximum perturbation of 15 per cent of the background model and
perform the same numerical experiment. Fig. 4(a) shows a result
obtained with the same 14 sources as that shown in Fig. 3(d) with
the incorrect S-wave velocity. The idea behind the SICP-WEMVA is
to design an optimization procedure that will minimize the energy
outside of h = 0 (see the residual gather for hx in Fig. 4b) by
updating the P- and S-velocity models. This optimization procedure
is discussed in the next section.

2.2 Derivation of the SICP-WEMVA optimization

To relate the deviation of energy from h = 0 in the extended sub-
surface space lag image gather (shown in Fig. 4) to the error in
velocity, we formalize a gradient-based optimization problem by
minimizing the energy at h �= 0. We use the differential semblance
criterion (Symes & Carazzone 1991; Shen 2004, 2012) for the
objective functional, J, as

J = 1

2

∫ ∫ H

−H
h2 I 2(x, h) dh dx, (7)

where H = (Hx , Hy, Hz) is the maximum subsurface space-lag,
and hI (x, h) is the residual subsurface space-lag CIG; Fig. 4(b)
shows a 2-D CIG along the horizontal x direction, hx, with
Hx = 9.5 km. The choice of maximum space lag is addressed in
Appendix A. In general, we add additional regularization terms to
eq. (7) as discussed in for example, Shen & Symes (2008) and
Shen (2012). These terms do not affect the understanding of the
derivation and so will not be further discussed.
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Figure 3. Converted phase subsurface space lag CIGs at xf = 2 km, I(x = xf, z, hx, hz = 0), obtained with the correct velocity models from a source at position
(a) (x, z) = (1.5, 1.7) km, and (b) (x, z) = (2.5, 1.7) km. (c) The summation of the two subsurface space lag CIGs from (a) and (b). (d) The summation over 14
sources generated at the depth of z = 1.7 km with a horizontal increment of 0.25 km.

Figure 4. (a) Converted phase subsurface space lag CIGs at xf = 2 km, I(x = xf, z, hx, hz = 0), obtained with the incorrect S-wave velocity with the same shots
that are shown in Fig. 3(d). (b) The residual gather used for the SICP-WEMVA (i.e. signal at hx = 0 was removed).

To formulate our problem as a gradient-based optimization, we
use perturbation theory to calculate the gradients of the objective
function with respect to the model parameters. We seek to obtain

δ J =
∫ (

Kα̂(x)δα̂(x) + K β̂ (x)δβ̂(x)
)

dx, (8)

where Kα̂ and K β̂ are the sensitivity kernels, associated with gra-
dients of the objective function, J, that is perturbed with respect to

model parameters, α̂ and β̂, respectively. The model parameters α̂

and β̂ are defined in eq. (3).
The sensitivity kernels (gradients) of eq. (8) are derived in detail

in Appendix B, and have the following convolutional forms

Kα̂(x) = −1

α̂(x)

Ne∑
j

∫ 0

T
ü j

p(x, t) · v j
p(x, T − t) dt (9)
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and

K β̂ (x) = 1

β̂(x)

Ne∑
j

∫ 0

T
v j

s (x, t) · ü j
s (x, T − t) dt, (10)

where the vector wavefields v p and vs are calculated by forward
propagation using adjoint sources

v j
p(x, T − t) = (

L−1
)∗ ∇∇ ·

∫ H

−H
α̂(x + h)ü j

s (x + 2h, t)

× R(x + h, h) dh (11)

and

v j
s (x, T − t) = (

L−1
)∗ ∇ × ∇ ×

∫ H

−H
β̂(x − h)ü j

p(x − 2h, t)

× R(x − h, h) dh, (12)

where (L−1)∗ is the adjoint of the inverse of the isotropic elastic
wave equation operator (here L∗ is defined as forward propagation)
and R(x, h) = h2 I (x, h) (see Appendix B for more details).

To reduce computational burden, we replace ∇∇ · in eq. (11)
and ∇ × ∇ × in eq. (12) by respective weights a and b (that
are obtained from analytic derivation of spatial derivatives), and
calculate the adjoint sources as

v j
p(x, T − t) = (

L−1
)∗

a

∫ H

−H
α̂(x + h)ü j

s

× (x + 2h, t)R(x + h, h) dh (13)

and

v j
s (x, T − t) = (

L−1
)∗

b

∫ H

−H
β̂(x − h)ü j

p

× (x − 2h, t)R(x − h, h) dh. (14)

With these gradients of the objective function, we set up the
standard gradient-based optimization scheme as

mi+1 = mi + νik p
i
, (15)

where the model parameter vector m = (α̂ β̂)T with α̂ and β̂ sorted
into row vectors, p is the line search direction column vector and
ν is the step length scalar. The superscript T denotes transpose and
subscripts i and k refer to the indices of the iteration of the search
direction and that of the step length, respectively. The efficient
calculation of the step length, ν, for SICP-WEMVA is given in
Appendix C.

The search direction is given by the conjugate gradient method
(Hestenes & Stiefel 1952) as

p
0

= −C0g
0
; (16)

p
i
= −Ci gi

+ ηi p
i−1

, (17)

where g = (K α̂ K β̂ )T , K α̂ and K β̂ are the gradients found in eqs (9)
and (10) and sorted into row vectors, C is a pre-conditioner (here
we use it as a smoothing function), and scalar ηi is defined as in for
example, Rodi & Mackie (2001) as

ηi =
gT

i
Ci gi

gT
i−1

Ci−1g
i−1

. (18)

2.3 Algorithm

Each iteration of the proposed algorithm consists of the following
steps:

(i) Propagate each elastic shot gather, j, backward in time, and
store the acceleration wave fields ü j

p(x, t) and ü j
s (x, t).

(ii) Construct extended image gathers I (x, h) from all shots using
eq. (6).

(iii) Construct residual extended image gathers: R(x, h) =
h2 I (x, h).

(iv) Calculate v j
p(x, T − t) and v j

s (x, T − t) for each shot from

the stored ü j
p(x, t), ü j

s (x, t) and constructed R(x, h).
(v) Construct the sensitivity kernels Kα̂(x) and K β̂ (x) (gradi-

ents).
(vi) Update model parameters α̂(x) and β̂(x) using the gradients

(sensitivity kernels).

2.4 Practical considerations and implementation

There are three important practical considerations that need to be
addressed during the SICP-WEMVA calculation. The first consid-
eration is the smoothing and regularization of the gradients, Kα̂

and K β̂ . Many studies address the problems associated with the
construction and smoothing of the WEMVA gradient (e.g. Shen
& Symes 2008; Fei & Williamson 2010; Vyas & Tang 2010;
Shen & Simes 2013). In our study, we regularize the gradients
in the so-called vertical time domain (e.g. Alkhalifah et al. 2001;
Shabelansky 2007), which stabilizes and speeds up the convergence.
The transformation for vertical time is given by

Kα̂(x) −→ Kα̂(τα)

K β̂ (x) −→ K β̂ (τβ ), (19)

where the vertical times τα and τβ are defined as

τα = (
τα

x , τ α
y , τ α

z

) =
∫ x

0

dξ

α
and τβ = (

τβ
x , τ β

y , τ β
z

) =
∫ x

0

dξ

β
.

The second consideration is the presence of the surface waves
in the data and the excitation of false body-wave modes during
the back propagation. The back-propagation of the surface waves
may contaminate the image in the shallow part, as they cannot be
separated into purely P and S waves. The false modes are generated
due to the imperfect acquisition geometry, and become less severe
with dense receiver coverage. Nevertheless, this effect is observable
and will be addressed and illustrated below. To alleviate both of these
effects and stabilize the optimization procedure, we apply muting
in the space-lag domain. However, more sophisticated approaches
may be beneficial.

The third practical consideration is related to the propagation
of the adjoint P- and S-wave sources (eqs 13 and 14). In the
2-D examples below we propagate both sources simultaneously
using only one propagation where the P-wavefield propagates in the
P-SV plane and the S-wavefield propagates in the SH plane. This
propagation is possible in 2-D as the wavefields are completely
decoupled in 2-D. In 3-D, however, each adjoint source wavefield
needs to be propagated separately.

3 N U M E R I C A L T E S T S

To examine the proposed algorithm we test it with two data sets:
a synthetic data set and a field data set from the passive source
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Figure 5. True S-wave speed used in the synthetic test. The dashed vertical
line refers to the location of the CIG gathers, xf, shown in Figs 6, 9 and 10.

microseismic monitoring of a geothermal area in Iceland. The ac-
quisition geometry is transmission for both tests, that is the record-
ing stations are placed on the surface and sources are located at
depth (some earthquakes in the field data occurred outside of the
imaging/computational region). All elastic wave solutions are mod-
eled with a 2-D finite-difference solver, using a second order in
time staggered-grid pseudo-spectral method with perfectly matched
layer (PML) absorbing boundary conditions (Kosloff et al. 1984;
Carcione 1999; Marcinkovich & Olsen 2003).

3.1 Synthetic test

We test SICP-WEMVA with a synthetic S-wave speed model, shown
in Fig. 5, and constant P-wave speed and density of 4500 m s−1 and

2500 kg m−3, respectively. The number of gridpoints in the model
is Nz = 150 and Nx = 200, and the spatial increments are �x =
�z = 20 m. We generate 35 isotropic (explosive) sources equally
distributed at 1.8 km depth with horizontal increment of 100 m
using a Ricker wavelet with a peak frequency of 45 Hz and �t of
0.001 s. The data are recorded with two-component receivers that
are equally distributed and span the same computational grid at a
depth of 0 km (i.e. xobs = (x, 0) km). Figs 6(a) and (b) show repre-
sentative common shot gathers for Z and X components, uz(xobs, t)
and ux (xobs, t), from a source at (x, z) = (2.0, 1.8) km. In Fig. 6(c),
we also present the P component of the seismic shot gather, calcu-
lated by ∇ · u(xobs, t), to support the assumption made in eq. (B16)
(Appendix B) that the P wavefield is barely affected by a contrast
in the S-wave speed, evidenced by the lack of energy arriving after
the direct P arrival.

Having calculated the elastic seismic data (Fig. 6), we test SICP-
WEMVA with the smoothed background S-wave speed model,
shown in Fig. 7(a) (i.e. elliptical velocity inclusions were omit-
ted). In Fig. 7(b), we show the S wave model after five iterations.
We observe that the smooth part of the true velocity model is recon-
structed. To compare the effect of the inverted velocity model on
imaging, we calculate the CP images using the true, initial and in-
verted S-wave speeds, along with the smoothed true S-wave speed.
In Fig. 8(c), we observe that the migrated image obtained using the
inverted model shows significant improvement and gradual conver-
gence towards the true image compared to that obtained with the
initial model (Fig. 8b). We show the space-lag image gathers for
the image point at xf = 2 km in Figs 9 and 10. The strong energy
extending linearly in depth (marked with green arrows in Fig. 9a)

Figure 6. Common shot gathers calculated at the depth of 0 km due to an isotropic source from (x, z) = (2.0,1.8) km: (a) Z-component, uz(x, t); (b) X-component,
ux(x, t); (c) P-component calculated during the propagation as ∇ · u, shown to support the assumption made in eq. (B16) (Appendix B) that the P-wavefield is
barely affected by a contrast in the S-wave speed, evidenced by the weak energy arriving at the times after the direct P-wave arrivals.
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Figure 7. S-wave speed models: (a) initial and (b) after five iterations of SICP-WEMVA. The smooth part of the true velocity model (Fig. 5) is reconstructed
in the inferred model.

Figure 8. Results of the source-independent converted-phase elastic seismic imaging (SICP-IC) obtained with: (a) true, (b) initial and (c) inferred S-wave
speeds that are shown in Figs 5 and 7. (d) SICP image obtained with the smoothed true S-wave velocity model to show the resolution of the expected image
reconstruction with SICP-WEMVA. P-wave speed and density are constant, 4500 m s−1 and 2500 kg m−3, respectively.

corresponds to the energy introduced by the false wave modes. In
Fig. 10, we show the same gathers after zooming in and muting
the false wave modes. Note that SICP-WEMVA was applied to the
muted gathers. We observe that although some energy remains at
the non zero-lags, the energy is more focused around zero lags in the
gather calculated with the inverted model compared to that obtained
with the initial S-wave speed.

The resolution of the velocity reconstruction depends on the
sufficient sampling of the medium by both P and CP S (or/and S and
CP P) back propagated wavefields (i.e. illumination) and is directly
related to the imaging resolution through data frequency content

and receiver aperture. An analytic imaging resolution analysis for
comparison between the PP and PS imaging was conducted in Xiao
& Leaney (2010). This comparison highlighted the superiority of
the spatial resolution for PS over the PP imaging.

3.2 Field data example

The second example uses passive source, microseismic field data
from a geothermal area in a region of Iceland that has abundant nat-
ural and induced seismicity (see Fig. 11a). We test SICP-WEMVA
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Figure 9. Converted-phase space-lag common image gathers with the (a) true, (b) initial and (c) inverted S-wave speed model. The strong energy linearly
extended in depth, marked with green arrows in (a), corresponds to the false wave-mode oscillation.

Figure 10. Converted-phase space-lag common image gathers (CIGs) from Fig. 9 shown in different colour after the false wave mode energy was muted out and
the horizontal axis was zoomed in. The CIGs are obtained with (a) true, (b) initial and (c) inverted S-wave speed model after five iterations of SICP-WEMVA.
The input for SICP-WEMVA is the residual image gathers after the false wave-mode energy has been muted out. Note that although some energy remains
at the non-zero lags, the energy is more focused around the zero lags (black vertical dashed line) in the gather after the five iterations of SICP-WEMVA.
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Figure 11. (a) Map of the investigated area in Iceland with microseismic field data. The blue dots mark the earthquake locations projected onto the surface, the
red triangles refer to locations of the recording stations named with three letters, and the black diamonds denote the computational grid points of the regional
traveltime tomography done by Tryggvason et al. (2002). (b) Representative normalized and filtered Z-component traces that are recorded at the surface along
a 2-D line at the latitude of 64.06◦ and sorted into (c) a common shot gather. The relative position of the traces in the common shot gather corresponds to the
relative position of their stations on the surface; the trace #0 from station SAN in (b) is the leftmost trace in (c).

with four stations (SAN, IND, BIT and TRH) along a 2-D line at the
latitude of 64.06◦ and longitudes between −21.6◦ and −21.10◦. In
Figs 11(b) and (c), we show four representative traces sorted into a
common shot gather (Z-component) from a single earthquake. Each
trace is of a time record of T = 12 s and �t = 0.005 s that was band-
pass filtered between 2 and 12 Hz. The relative position of the traces
in the common shot gather corresponds to the relative locations of
the stations at the surface, xobs = (x, zsurface = 0 km). The compu-
tational grid is Nz = 90 and Nx = 300 and the spatial increments
are �z = 0.2 km and �x = 0.15 km. To construct an image (using
eq. 5) of the geothermal area that is located between longitudes
−21.4◦ and −21.2◦, we use 32 events (i.e. earthquakes) of moment
magnitude between 0.9 and 1.2. Initial P- and S-wave speeds were
taken from the model of Tryggvason et al. (2002) obtained using
regional-scale traveltime tomography. These velocity models are
shown in Figs 12(a) and (b), along with the SICP image in Fig. 12(c).
Note that the shallow part of the SICP image is completely contam-
inated by aliasing caused by the sparse station distribution on the
surface and thus is muted out. By applying the SICP-WEMVA opti-
mization for the deep part of the Earth (between 2.5 and 10 km), we
update the P- and S-velocity models (Figs 12d and e) and the SICP
image (Fig. 12f). We use 27 iterations of conjugate gradient for

updating the velocity models (see the convergence curve in
Fig. 13a). We observe that in the area of the reservoir (longitudes
between −21.38◦ and −21.22◦) the P-wave velocity has slightly in-
creased while the S-wave velocity decreased along vertical trends.
Although this result indicates a high Vp/Vs and may suggest magma
conduits, more study is needed to understand the geologic implica-
tions of this result. The image produced with the updated velocities
(in Fig. 12f) shows more focused structure and reveals previously
obscured structure (e.g. the region within the marked red ellipse).
We also show in Fig. 13(b) the subsurface space-lag gather along the
x-direction, hx, at longitude of −21.34◦, where we observe that the
energy in the updated gather is more focused around zero space-lag
than that obtained with the initial models. These gathers, along with
the convergence curve, suggest that the SICP-WEMVA optimiza-
tion converges towards a reasonable solution.

4 D I S C U S S I O N

In this section, we address the most pressing assumptions underly-
ing SICP-WEMVA and discuss their implications for the accuracy,
stability, robustness and applicability of the method.
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Figure 12. Left-hand side: the initial (a) P-wave speed, (b) S-wave speed and (c) SICP image obtained with the P- and S-wave speeds from (a) and (b).
Right-hand side: the results of SICP-WEMVA after 27 iterations (d) P-wave speed, (e) S-wave speed and (f) SICP image obtained with the P- and S-wave
speeds from (d) and (e). The blue dots in (c) and (f) mark the location of natural and induced microseismic events and the red ellipse highlights the region
where the structure has improved. The shallow part of the images are contaminated due to sparse station distribution and thus were muted. The horizontal axis
corresponds to distance of 22 km (i.e. exaggerated by 2.2 times in comparison to the vertical depth axis).

First, SICP-WEMVA is derived based on the assumption of an
isotropic medium in which the total acceleration wavefield is de-
composed into the P- and S-wavefield components. Although the
wavefield separation can be achieved in certain anisotropic cases
(e.g. Yan 2010; Zhang & McMechan 2010; Yan & Sava 2011)
for imaging purposes, additional mathematic effort is needed to
derive the sensitivity kernel to update the velocity model for the
anisotropic medium. Note however, that there are studies for re-
flection type source-dependent anisotropic WEMVA (e.g. Li et al.
2012; Li 2013; Weibull & Arntsen 2013) that could potentially be
applied to the source-independent converted-wave case constructed
here.

The second assumption is related to the differential semblance
operator (eq. 7) for the residual image, which is defined as a mul-
tiplication of the extended image by h. Although this operator is
very intuitive and was derived in Shen & Symes (2008) from the
derivative operator that measures the flatness of the seismic energy
in the angle domain CIG, it has been recognized that a more sophis-
ticated operator is required for better focusing of the energy at zero
subsurface space-lag and reducing noise at large lags (e.g. Shan &
Wang 2013; Weibull & Arntsen 2013).

The third consideration addresses the source illumination or num-
ber of sources required to focus the energy around zero space-lag,
even with the true velocity model. It is known that for reflection
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Figure 13. (a) Convergence curve for SICP-WEMVA. (b) Converted phase subsurface space-lag CIG with initial and updated velocity models shown in
Fig. 12.

type WEMVA (and CP-WEMVA), many sources are required to
obtain focusing. For transmission SICP-WEMVA, in contrast, the
number of sources could be smaller (see Fig. 3d) because of the
low frequency content in the data due to the presence of the di-
rect waves. The comparison between WEMVA/CP-WEMVA and
SICP-WEMVA will be discussed elsewhere.

The fourth and last issue is the applicability of the SICP-WEMVA
to different types of seismic data: active source surface-seismic and
VSP, and passive tele-seismic data. For surface-seismic data, where
the CP signal in the data is generally of a reflection type for both P
and (converted) S waves, reflection SICP-WEMVA may have sim-
ilar limitations with source illumination and frequency content as
the standard reflection WEMVA/CP-WEMVA, as discussed above.
For VSP studies, SICP-WEMVA may have limitations with the
illumination due to the geometry of the monitoring wells, and it de-
pends on the wave types that are recorded: reflection, transmission
or both types simultaneously. The use of both wave types simulta-
neously might produce images and velocity models with improved
resolution from SICP-WEMVA but may also introduce additional
complexities. For tele-seismic data, the separation of different body-
wave phases should be clearer than with microseismic data, shown
in this study, and should produce clear large-scale images and ve-
locity models, but may be restricted by the high amplitude surface
waves in the record and thus would require procedures for win-
dowing out the surface-waves before using body-wave information
in the SICP-WEMVA. However, SICP-WEMVA does not require
source information, thus it does not distinguish between different
types of data and acquisitions, and can be applied similarly to each
data set as long as CP waves are present in the signal. Neverthe-
less, more research needs to be conducted to better understand the
method’s performance on each individual data type.

5 C O N C LU S I O N

We have developed a fully automatic, data-driven optimization
method for velocity update using CP waves. We presented a CP
imaging condition in the extended space-lag domain for the objec-
tive functional. We derived a gradient-based iterative optimization
method based on this objective functional and tested the method
using a synthetic model and field microseismic data. The results
show the applicability of the method in particular to microseismic

applications where source information is not directly available. This
opens up the possibility for source-independent full-wavefield ve-
locity analysis, a methodology that previously was not available,
thus considerably improving the quality of velocity analysis and
reducing the computational and processing cost.
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A P P E N D I X A : M A X I M U M S PA C E - L A G S E L E C T I O N P RO C E D U R E

For choosing the optimal maximum space-lags, H , we need to derive and solve another optimization problem. Although we do not solve the
optimization problem explicitly, here we give a recipe for the simple selection of a nearly optimal H . We reduce the space-lag 3-D domain to
1-D along the x direction and take the derivative of eq. (7), the objective functional of SICP-WEMVA, with respect to maximum space-lags,
Hx, using the finite difference approximation, and set it to zero as

∂ J

∂ Hx
≈ 1

2�Hx

(∫ ∫ Hx2

−Hx2

h2
x I 2(x, hx ) dhx dx −

∫ ∫ Hx1

−Hx1

h2
x I 2(x, hx ) dhx dx

)
= 0, (A1)

where �Hx = Hx2 − Hx1 . For the sake of simplicity we omit the dependence on x , and by manipulating the limits of integration, eq. (A1)
becomes

∂ J

∂ Hx
≈ 1

2�Hx

(∫ Hx2

Hx1

h2
x I 2(hx ) dhx −

∫ −Hx2

−Hx1

h2
x I 2(hx ) dhx

)
= 0 (A2)

or

∂ J

∂ Hx
≈ 1

2�Hx

(∫ Hx1 +�Hx

Hx1

h2
x I 2(hx ) dhx −

∫ −Hx1 −�Hx

−Hx1

h2
x I 2(hx ) dhx

)
= 0. (A3)
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Thus, to obtain the nearly optimal solution for Hx we calculate the integrals in eq. (A3) solely between −Hx1 and −Hx1 − �Hx and between
Hx1 and Hx1 + �Hx , which in general are small. We use the regula falsi algorithm (e.g. Stoer & Bulirsch 2002, p. 339) to iteratively solve
eq. (A3) to select the values of Hx1 .

A P P E N D I X B : D E R I VAT I O N O F T H E S E N S I T I V I T Y K E R N E L F O R S I C P - W E M VA

To derive the sensitivity kernels, Kα̂ and K β̂ , we perturb the objective function (eq. 7) and obtain

δ J =
∫ ∫

δ I (x, h)R(x, h) dx dh, (B1)

where R(x, h) = h2 I (x, h) and

δ I (x, h) =
Ne∑
j

∫ (
δü j

p(x − h, t) · ü j
s (x + h, t) + ü j

p(x − h, t) · δü j
s (x + h, t)

)
dt. (B2)

Substituting eq. (B2) into eq. (B1) yields

δ J := δ Jp + δ Js, (B3)

where

δ Jp :=
Ne∑
j

∫ ∫ ∫ (
δü j

p(x − h, t) · ü j
s (x + h, t)

)
R(x, h) dt dx dh (B4)

and

δ Js :=
Ne∑
j

∫ ∫ ∫ (
ü j

p(x − h, t) · δü j
s (x + h, t)

)
R(x, h) dt dx dh. (B5)

To find δü j
p and δü j

s in eqs (B4) and (B5), we perturb eq. (4) and obtain:

δü j
p = δα̂∇∇ · u j + α̂∇∇ · δu j (B6)

and

δü j
s = −δβ̂∇ × ∇ × u j − β̂∇ × ∇ × δu j , (B7)

both of which depend on δu j . To evaluate δu j , we consider eq. (2) with any input source function f as a linear system given as

Lu j = f , (B8)

where L is the isotropic elastic wave operator defined as

L = α̂∇∇ · −β̂∇ × ∇ × −∂2
t . (B9)

By perturbing eq. (B8) we obtain

δLu j + Lδu j = 0 (B10)

or

δu j = −L−1δLu j . (B11)

The perturbation of the modelling operator, L, is

δL = δα̂ (∇∇·) − δβ̂ (∇ × ∇×) , (B12)

which turns eq. (B11) into

δu j = −L−1

(
δα̂

ü j
p

α̂
+ δβ̂

ü j
s

β̂

)
, (B13)

where
ü j

p

α̂
= ∇∇ · u j and ü j

s

β̂
= −∇ × ∇ × u j (see eq. 4).

Substituting eq. (B13) into eqs (B6) and (B7) yields

δü j
p = δα̂

α̂
ü j

p − α̂∇∇ · L−1

(
δα̂

α̂
ü j

p + δβ̂

β̂
ü j

s

)
(B14)

and

δü j
s = δβ̂

ü j
s

β̂
+ β̂∇ × ∇ × L−1

(
δα̂

ü j
p

α̂
+ δβ̂

ü j
s

β̂

)
. (B15)
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Since model parameters α̂ and β̂ are smooth, we assume that the perturbation in P- and S-wavefields are not affected by perturbations in S-
and P-wave speeds, respectively. Thus, we can drop the δβ̂ term in δü j

p and the δα̂ term in δü j
s to obtain

δü j
p = δα̂

α̂
ü j

p − α̂∇∇ · L−1 δα̂

α̂
ü j

p (B16)

and

δü j
s = δβ̂

β̂
ü j

s + β̂∇ × ∇ × L−1 δβ̂

β̂
ü j

s . (B17)

Next, we substitute eqs (B16) into (B4) and obtain

δ Jp =
Ne∑
j

∫ ∫ ∫ (
δα̂(x)

α̂(x)
ü j

p(x − h, t) − α̂(x)∇∇ · L−1 δα̂(x)

α̂(x)
ü j

p(x − h, t)

)
· (

ü j
s (x + h, t)R(x, h)

)
dt dx dh

=
∫

δα̂(x)

α̂(x)

⎛
⎝ Ne∑

j

∫ ∫
(ü j

p(x − h, t)) · (ü j
s (x + h, t)R(x, h)) dt dh

⎞
⎠ dx

−
Ne∑
j

∫ ∫ ∫ (
α̂(x)∇∇ · L−1 δα̂(x)

α̂(x)
ü j

p(x − h, t)

)
· (

ü j
s (x + h, t)R(x, h)

)
dt dx dh. (B18)

In the first integral we substitute the imaging condition, eq. (5), and in the second integral we recognize an inner product and so we can replace
it with an adjoint operator [i.e.

(
α̂∇∇ · L−1

)∗ = (L−1)∗∇∇ · α̂, where superscript ∗ refers to adjoint] in order to isolate (δα̂)/α̂:

δ Jp =
∫

δα̂(x)

α̂(x)

(∫
I (x, h)R(x, h) dh

)
dx

−
∫

δα̂(x)

α̂(x)

⎛
⎝ Ne∑

j

∫ ∫
ü j

p(x − h, t) · (
(L−1)∗∇∇ · α̂(x)ü j

s (x + h, t)R(x, h)
)

dt dh

⎞
⎠ dx . (B19)

To make the second integral computationally efficient and integrate over h only once before applying the adjoint operator, we apply a shift in
spatial coordinates (e.g. Shen 2004), and obtain

δ Jp =
∫

δα̂(x)

α̂(x)

(∫
h2 I 2(x, h) dh

)
dx

−
∫

δα̂(x)

α̂(x)

⎛
⎝ Ne∑

j

∫
ü j

p(x, t) ·
(

(L−1)∗∇∇ ·
{∫

α̂(x + h)ü j
s (x + 2h, t)R(x + h, h) dh

})
dt

⎞
⎠ dx

=
∫

δα̂(x)

α̂(x)

(∫
h2 I 2(x, h) dh

)
dx −

∫
δα̂(x)

α̂(x)

⎛
⎝ Ne∑

j

∫ 0

T
ü j

p(x, t) · v j
p(x, T − t) dt

⎞
⎠ dx

:=
∫

δα̂(x)
(
K D

α̂ (x) + K A
α̂ (x)

)
dx . (B20)

The sensitivity kernels in the first and second integrals are denoted by K D
α̂ and K A

α̂ , where the superscripts D and A refer to direct and adjoint,
respectively, based on their computation procedure (i.e. for the direct term, adjoint wavefield is not calculated). Note that in our experience
with the examples above K D

α̂ is significantly smaller than K A
α̂ and thus are dropped. We therefore use K A

α̂ for the sensitivity kernel used in
eq. (9). However, if K A

α̂ is not small it might underestimate the gradient calculation as K D
α̂ is always positive.

Similarly we substitute eqs (B17) into (B5) to derive δJs:

δ Js =
∫ ∫ Ne∑

j

(∫
ü j

p(x − h, t) · δβ̂(x)

β̂(x)
ü j

s (x + h, t) dt

)
R(x, h) dx dh

+
∫ Ne∑

j

∫ ∫ (
ü j

p(x − h, t) · β̂(x)∇ × ∇ × L−1 δβ̂(x)

β̂(x)
üs(x + h, t)

)
R(x, h) dt dx dh

=
∫

δβ̂(x)

β̂(x)

∫ ∫
h2 I 2(x, h) dx dh

+
∫

δβ̂(x)

β̂(x)

Ne∑
j

∫ ∫ ((
L−1

)∗ ∇ × ∇ × β̂(x)ü j
p(x − h, t)R(x, h)

)
· ü j

s (x + h, t) dt dx dh
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=
∫

δβ̂(x)

β̂(x)

∫ ∫
h2 I 2(x, h) dx dh

+
∫

δβ̂(x)

β̂(x)

Ne∑
j

∫ (
(L−1)∗∇ × ∇ ×

{∫
β̂(x − h)ü j

p(x − 2h, t)R(x − h, h) dh

})
· ü j

s (x, t) dt dx

=
∫

δβ̂(x)

β̂(x)

∫ ∫
h2 I 2(x, h) dx dh +

∫
δβ̂(x)

β̂(x)

Ne∑
j

∫ 0

T
v j

s (x, T − t) · ü j
s (x, t) dt dx

:=
∫

δβ̂(x)
(

K D
β̂

(x) + K A
β̂

(x)
)

dx . (B21)

As for Kα̂ , the sensitivity kernel, Kβ̂ (x), given in eq. (10), is simply K A
β̂

(x) and K D
β̂

(x) is dropped. Note that the direct terms in eqs (B20) and

(B21) are the same, K D
α̂ (x) = K D

β̂
(x), which suggests that K D(x) should have a larger bias on the S-wave speed estimation rather that of the

P-wave. The effect of the direct terms on the full sensitivity kernels requires further investigation.

A P P E N D I X C : A N E F F I C I E N T C A L C U L AT I O N O F T H E S T E P L E N G T H F O R
S I C P - W E M VA O P T I M I Z AT I O N

To find an optimal step length, ν, for the gradient-based optimization in eq. (15), we need to choose a step length that will set to zero the
derivative of the objective functional with respect to the step length. In other words, if J (νik+1 ) = J (mi + νik p

i
), then

∂ J

∂νik

(
νoptimal

) = ∂ J

∂mi

· ∂mi

∂νik

= g
ik

· p
i
= 0. (C1)

One way to find the optimal ν’s is to use the line search method: start with an initial guess and use the bisection method (e.g. Rodi &
Mackie 2001) or the regula falsi algorithm for iterative update of ν, such that eq. (C1) is satisfied. To satisfy this equation we need to calculate
gradient, g

ik
, at each iteration of the line search along a given search direction. Hence the calculation of each gradient (in SICP-WEMVA)

is accomplished with two propagations in eqs (9) and (10). We propose a faster way to calculate the ν’s without calculating the gradient at
each iteration; we calculate the objective functional for two consecutive ν’s (from either initial guesses or bisection method) with only one
propagation and then calculate the derivative of eq. (C1) using the finite difference approximation as

∂ J

∂νik

= J (νik ) − J (νik−1 )

νik − νik−1

= 0. (C2)

Note that for eq. (C2), we calculate the gradient solely when we define a new search direction.


