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Abstract 

 SeeStar is an autonomous, underwater camera system for observing aquatic 

environments. The Monterey Bay Aquarium Research Institute (MBARI) developed SeeStar to 

provide a low cost solution for marine researchers wishing to observe underwater ecosystems 

over long durations. The system consists of completely open-source designs featuring only 

common, commercially available components. This means users may purchase the components 

and build the system themselves. While MBARI originally intended for the system to simply 

capture photo and video data, many customers have requested additional sensors to gather 

contextual data to complement the captured images. The latest generation, SeeStar III, features a 

sensor module, enabling users to easily integrate sensors into the system. 

 This project phase encompasses sensor module firmware design and testing. The primary 

design challenge is creating a general interface so users may integrate additional sensors without 

modifying the system’s firmware for each new sensor. This preserves the system’s ease-of-use. 

The secondary design challenge is maximizing power efficiency such that long term untethered 

deployments are possible. 
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Chapter 1: Introduction 

 The climate challenges of the 21st century have led to an unprecedented need for marine-

biological research. Observing the behavior of marine life can hold valuable insight for the state 

of the planet and our well-being. However, many marine researchers had difficulty collecting 

such oceanographic data because most underwater imaging equipment is expensive and designed 

for niche applications. They needed an underwater imaging system that was inexpensive, easy to 

assemble, and versatile. 

 The Monterey Bay Aquarium Research Institute (MBARI) designed and released the 

SeeStar underwater imaging system in 2014. MBARI designed SeeStar to meet the needs of 

many researchers by featuring a simple, low-cost design that is easy to assemble, deploy, and 

maintain. The system features a modular design, consisting of a waterproof camera, LED light, 

and a battery. The system design is completely open-source, and can be assembled by the user 

with common, commercially available components. The camera module also contains a 

microcontroller that controls the system in untethered deployments, and activates the camera and 

LED on timed intervals. 

 The latest generation of the SeeStar system, the SeeStar III, features a sensor module to 

allow for contextual data collection upon image captures. Many users of the previous generations 

requested the ability to collect data along with their images, such as temperature, salinity, and 

pH. This data can greatly increase the insight provided with each photo by adding contextual 

information. For instance, a researcher could correlate the number of fish visible in a series of 

photos with the temperatures measured at the times each photo was captured. 

 To maximize the sensors module’s utility, it features three general purpose sensor ports 

where users can plug in virtually any aquatic sensor that has a serial output. This allows different 

users to tailor the system for their research, or to reuse the system in different experiments. The 

system can be easily configured for each new sensor by entering the sensor’s parameters into the 

system’s console interface. The SeeStar also features built-in temperature and pressure sensors. 
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Chapter 2: Customer Needs, Requirements and Specifications 

Customer Needs Assessment 

 Many marine researchers need an inexpensive, autonomous underwater camera system to 

monitor underwater environments. MBARI met this need with the low-cost SeeStar solution. 

Many customers used the SeeStar system to study underwater biological activity, such as feeding 

patterns and population numbers. Customer feedback indicated that many studies could benefit 

from additional oceanic data (including temperature, pressure, pH and salinity) to contextualize 

their captured images. The SeeStar III system features a sensor module, allowing users to 

integrate sensors with the system and take measurements during deployments. The sensor 

module features the same modular, low-cost design as the rest of the system, so low-budget 

customers may still afford it. 

Requirements and Specifications 

The customer requests collected after SeeStar II’s release drove the design of the new 

feature set in the SeeStar III system. One of the most common requests was the ability to collect 

contextual data when capturing photo or video. The new system features a sensor module to 

provide contextual data. To maintain simplicity, accessibility and utility to all users, the sensor 

module is designed for compatibility with a wide range of sensors (Table I, requirement 1). This 

way, users can use the sensor module in a wide variety of experiments by swapping out the 

sensors. In addition, the user can configure the capture interval, to optimize data resolution and 

power consumption (Table I, requirements 5, 6). The sensor module also features a built in 

temperature sensor and pressure sensor (Table I, requirement 2). Not only are temperature and 

pressure useful in most oceanographic studies, but these variables can affect the performance of 

the system’s electronics. Temperature and pressure measurements can be used by the system for 

self-calibration. Table I lists all of the project’s marketing requirements and engineering 

specifications. 

TABLE I 

SEESTAR III SENSOR MODULE REQUIREMENTS AND SPECIFICATIONS 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

1, 5 General sensor ports must read from any 

serially interfacing sensor at baud rates 

between 1K and 1M baud. 

The SeeStar system may find use in several 

applications. Users select different sensors to 

conduct different experiments. 

1, 5 General sensor ports must power any serially 

interfacing sensor operating between 5V and 

12V, and under 2A. 

The SeeStar system may find use in several 

applications. Users select different sensors to 

conduct different experiments. 

1 Must accept up to three peripheral sensors 

simultaneously. 

Users may need to collect multiple data plots 

in one experiment. 

2 Must measure temperatures between -5˚C and 

35˚C. Temperature measurement error must 

not exceed ±0.005˚C. 

Many applications may require temperature 

measurements. Temperature values also effect 

the module’s operation. 

2 Must measure pressures up to 682 PSI. 

Pressure measurement error must not exceed 

Oceanic pressure correlates directly to depth. 

Many applications may require depth 
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±0.05 PSI. information. 

3 Must withstand any depth not exceeding 1500 

feet. 

Some applications may require deep water 

observation. 

4 Must accept any supply voltage between 14V 

and 18V. 

The SeeStar system uses an 18V battery. The 

sensor module must use the system’s supply. 

5 Capture rate must be user-adjustable between 

1 capture/day and 4 captures/minute. 

Different applications require different data 

resolutions. Capture rate also effects power 

consumption, so users may optimize it for their 

needs. 

6 Power consumption must not exceed 0.5W 

with a capture rate of 1 capture/hour or less. 

A battery may supply the power. A longer 

battery lifetime makes maintenance easier. 

6 Power consumption must not exceed 5W with 

a capture rate of 12 capture/hour or less. 

A power cord may supply the power. Still, the 

system should operate efficiently in higher 

power settings. 

7 The cost of parts must not exceed $500. The sensor module addition must not make the 

system unaffordable. 

7, 8 Must only contain common, commercially 

available microcontroller(s) and circuit 

components. 

This makes it much easier for customers to 

acquire and replace system components. 

9 Chassis size must not exceed 5” x 4” x 2.5”. A smaller chassis size enables easy system 

integration. 

Marketing Requirements 

1. Three general-purpose sensor ports. 

2. Built-in temperature and pressure measurement 

3. 1500 feet maximum depth. 

4. Easy system integration. 

5. Configurable. 

6. Low power. 

7. Low cost. 

8. Easy assembly and maintenance. 

9. Small form factor. 

 

TABLE II 

SEESTAR III SENSOR MODULE PROJECT DELIVERABLES 

Delivery 

Date 
Deliverable Description 

2/16/17 Design Review  

3/8/17 EE 461 demo 

3/11/17 EE 461 report 

5/3/17 EE 462 demo 

4/29/17 ABET Sr. Project Analysis 

5/20/17 Sr. Project Expo Poster 

5/29/17 EE 462 Report 
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Chapter 3: Functional Decomposition (Level 0 and Level 1) 

Level 0 Block Diagram 

 The Sensor Module is an interface between the SeeStar system and any aquatic sensor the 

user wishes to use. The module is powered by 14-18V DC. The module internally regulates the 

supply voltage down to 5V and 12V to power internal components and peripheral sensors. The 

sensor module records sensor measurements each time a “capture” signal is received from the 

camera module and stores the measured data internally. Figure I shows a level 0 block diagram 

of the sensor module. 

 

 
FIGURE I 

SEESTAR III SENSOR MODULE LEVEL-0 BLOCK DIAGRAM 

 

TABLE III 

SEESTAR III SENSOR MODULE LEVEL-0 FUNCTIONALITY TABLE 

MODULE Sensor Module for SeeStar III Underwater Camera 

INPUTS • Power: 14-18V DC 

• Camera module control signal 

• Sensor input as streaming data or polled data 

OUTPUTS • Control signal to sensors to initiate data streaming or polling 

• 12V DC to power peripheral oceanographic sensors 

FUNCTIONALITY Integrate 3 rd -party sensors with SeeStar camera for contextual imaging 

data. Convert the SeeStar’s 14-18V DC battery module to 5-12V DC for 3 

rd –party sensor power supply. Store sensor data on MicroSD card. 
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Level 1 Block Diagram 

 

 The SeeStar III Sensor Module consists of three main components: a voltage regulator, a 

microprocessor, and an instrument control interface. Figure II shows level 1 diagram 

highlighting the sensor module’s subsystems. 

 
FIGURE II 

SEESTAR III SENSOR MODULE LEVEL-1 BLOCK DIAGRAM 

 

 The DC-DC Converter regulates the system’s supply voltage, outputting 5V and 12V. 

The 5V supplies the module’s microprocessor and components in the instrument control block. 

The 12V output powers peripheral sensors. Table IV outlines the DC-DC Converter’s features. 

 

TABLE IV 

DC-DC CONVERTER LEVEL-1 FUNCTIONALITY TABLE  

MODULE DC-DC Converter 

INPUTS • Power: 14-18V DC 

OUTPUTS • 5V DC 

• 12 VDC 

FUNCTIONALITY Convert 14-18V battery power supply to 12V and 5V levels. Supplies lower 

voltages to other system components. 
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 The modules internal microprocessor controls measurement sequences. When the module 

receives a “capture” signal, the microprocessor collects raw sensor data from the instrument 

control block, decodes the data, and saves it to memory. Table V outlines the microprocessor 

block’s features.  

 

TABLE V 

MICROCONTROLLER LEVEL-1 FUNCTIONALITY TABLE   

MODULE Microcontroller 

INPUTS • Power 5V DC 

OUTPUTS • Serial (TTL) 

• Digital I/O 

• Analog Signals 

FUNCTIONALITY Control system, calibrate sensors and record sensor data. 

 

 The instrument control block is an interface between the microcontroller and the 

peripheral sensors. It provides ports for three digital output sensors, one analog output sensor, 

and two built-in sensors (temperature and pressure). It also controls power supplied to each 

sensor. Table VI outlines the instrument control block’s features. 

 

TABLE VI 

INSTRUMENT CONTROL LEVEL-1 FUNCTIONALITY TABLE  

MODULE Instrument Control 

INPUTS • Power 12V DC 

• Power 5V DC 

• Sensor Data 

OUTPUTS • 12V DC 

• Sensor Capture Signals 

FUNCTIONALITY Supply power to sensors and route sensor data to microcontroller. 
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Chapter 4: Project Planning (Gantt Chart and Cost Estimates) 

Gantt Chart 

 

Figure III outlines the predicted project milestones and their estimated durations. 

 

 
 

FIGURE III 

PROJECT TIMELINE GANTT CHART 
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One preparation phase and three design-test-build iterations constitute the project’s 

timeline. The preparation phase includes research, high-level design, cost estimation and ABET 

analysis. The first design phase focuses on investigating the feasibility of each major firmware 

function (variable sensor interfacing, minimal power usage, etc). The second design phase 

involves designing the full system, focusing on reliable operation and interfacing between 

components. The third design phase involves modifying firmware to optimize speed, power 

usage and reliability. 

 

Cost Estimate 

 

 The project’s firmware development phase is relatively inexpensive. Since the hardware 

was completed in the previous project phase, the only hardware expenses come from additional 

sensors purchased to test the peripheral sensor interfacing. The primary expense in this phase is 

engineering. Costs estimates are based on the PERT formula shown in Figure IV. 

 

𝐶𝑒𝑠𝑡 =  
𝐶𝑜𝑝𝑡 + 4𝐶𝑟𝑒𝑎𝑙 + 𝐶𝑝𝑒𝑠

6
 

Cest = cost estimate 

Copt = optimistic cost 

Creal = realistic cost 

Cpes = pessimistic cost 

 

FIGURE IV 

PERT COST ESTIMATION FORMULA 

 

TABLE VII 

ESTIMATED PROJECT COSTS BREAKDOWN 

Item Name Cost/Unit 

(Optimistic) 

Cost/Unit 

(Realistic) 

Cost/Unit 

(Pessimistic) 

Cost / Unit 

(Estimated) 

Unit 

Qty 

Subtotal 

Parts       

pH Sensor $20 $30 $45 $31 1 $31 

Temp. Sensor $5 $12 $25 $13 1 $13 

Light sensor $3 $6 $12 $7 1 $7 

       

Engineering       

Firmware 

Design / Testing 

$20 $35 $55 $35/hr 155 $5,425 

       

TOTAL      $5,476 
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Chapter 5: Design 

Hardware Selection 

 The hardware system included within the scope of this senior project can be divided into 

three main functional blocks, the Camera Module, the Sensor Module, and the Sensor Modules 

built-in sensors. While the hardware component selection was completed in a previous senior 

project, it is relevant to this project. 

 The Camera Module is built around a Raspberry Pi 3. The Raspberry Pi includes many 

features needed in the Camera Module, including SD card compatibility, serial communication 

pins, and a powerful processor. However, the Raspberry Pi does not feature a low power mode 

needed in a battery operated application like See Star, so a Sleepy Pi accessory has been 

integrated with the Raspberry Pi to enable full sleep between measurements. In addition, the Pi’s 

serial pins are connected to an external TTL to RS232 converter to enable communication with 

the Sensor Module’s Arduino. 

 The Sensor Module uses an Arduino Mega 2560 microcontroller. The Mega features a 

wide array of external pins, including SPI, PWM, serial UART, and several DIO pins. This 

allows for significant flexibility when developing the Sensor Module to operate multiple 

peripheral sensors simultaneously. In addition, a Micro SD Shield has been integrated with the 

Arduino Mega to enable interfacing with an SD card. The primary drawback of the Mega 2560 is 

its high power usage. As this project is an early rendition of the See Star III system, the Sensor 

Module software will eventually need to be ported to a lower power microcontroller before the 

system can be feasibly deployed for long durations on a single battery. 

 

Figure X. Arduino Mega 2560 microcontroller. 

 



 10 

 The Sensor Module also needs to interface with up to 4 peripheral serial sensors. The 

Sensor Module uses MAX3232 TTL to RS232 converters to translate the voltage levels of the 

peripheral sensor’s serial stream down to the 0 – 3.3V levels used by the Arduino’s IO pins. 

Since the MAX3232 board can convert two serial interfaces, 2 boards are needed to 

accommodate all 4 serial channels. To reduce total power draw due to sensor operation, the 

sensors must be powered down completely between measurements. This is achieved with the 

iTead 4-channel relay board. Each relay completes a connection with one of the peripheral serial 

sensors, and is actuated by one of the DIO pins on the Arduino Mega. 

 Finally, the Sensor Module features two built-in sensors to measure temperature and 

pressure. The temperature sensor is a 5V Omega temperature sensor, and it is measured via a 

Sparkfun MAX31855k SPI thermocouple breakout board. The pressure sensor is an 12V Omega 

pressure sensor, and interfaces with the Arduino with an Adafruit ADS 1115 4-channel I2C 

ADC.  

Software Design 

The sensor module is built around an Arduino Mega 2560. This board features several 

UART and DIO ports, ideal for interfacing with several sensors. An SD card “shield” is 

integrated with the Mega to allow interfacing with a Micro SD card. In addition, the Arduino 

interfaces with a Sparkfun MAX31855k SPI thermocouple to gather data from a temperature 

sensor, and an Adafruit ADS1115 ADC to read a pressure sensor. Finally, the serial UART ports 

on the Mega provide multiple channels to connect different serially controlled sensors. 

The sensor module features 10 channels, which are software structures that map to a 

physical sensor. To inform the Arduino what kinds of sensors are connected to it, it’s SD card 

must be loaded with “config files” before startup. For each channel to be used, the user will write 

one config file describing the type of sensor, and the physical pins or port that it will utilize. 

Upon startup, the sensor module will read these config files, and initialize each channel with the 

information in its file, and store this information in a data structure for use throughout the 

module’s operation. 

The information listed in a config file is dependent on the type of sensor it is describing. 

For instance, a serial sensor’s config file should indicate which of the Arduino’s serial UARTS it 

will use for communication, while an SPI should indicate which of the Arduino’s DIO pins it 

will use for VCC, GND, and CS. In other words, the config file will list values that will vary 

between sensors of the same type, such as what pins it uses. On startup, the Sensor Module’s 

software will determine what type of sensor a config file describes by reading its first line. A 

config file always starts with the keyword “type”, followed by a word indicating the type of 

sensor (e.g. “ser”, “spi”, “i2c”, etc.). After the sensor type is determined, a function is called that 

searches the config file for information specific to that sensor type. It does this by searching for 

pre-defined keywords, and reads the values following each keyword. A list of keywords specific 
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to each build-in sensor type is shown in Table VIII below. An example config file is shown in 

Figure V. 

Table VIII. List of keywords used by config files for each sensor. 

Serial Sensor Keywords I2C Sensor Keywords SPI Sensor Keywords 

powerpin 

hwserial 

swserialrx 

swserialtx 

delimiter 

delimiter2 

adcchannel cspin 

vccpin 

gndpin 

 

 

Figure V. An example of a config file for an SPI sensor. Note by the name that this file would be 

used to configure channel 2. 

 The camera module will poll the sensor module regularly to gather sensor data or other 

information. To facilitate this, the system uses a serial data protocol to structure requests from 

the camera module and replies from the sensor module. The format of camera module requests 

and the set of valid opcodes is outlined in Figure VI. The “destination ID” field indicates which 

module the packet is intended for. The camera module’s ID is always 0, and connected sensor 

modules are given a unique ID of 1-9. In systems with multiple sensor modules, requests are 

broadcast on all channels connected to sensor modules, and only acknowledged by the sensor 

module with the correct ID. 
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Table IX. Camera Module request format and list of opcodes. 

$ <destination ID> <opcode> <channel>         (i.e.) $1rd0 

PA 

PC 

RD 

RB 

RL 

Power All Channels 

Power Channel 

Read Channel 

Read Block 

Read Calibration 

RF 

RS 

WL 

WF 

RE 

Read Configuration 

Read Status 

Write Calibration 

Write Configuration 

Reboot System 

 

 Since the sensor module can interface with serial, I2C, and SPI sensors, three methods of 

measurement were implemented in the modules firmware. Sensor measurements are made with 

Arduino’s “Serial” API, I2C measurements are made with Adafruit’s “ADS” API, and SPI 

measurements are made with Sparkfun’s “Probe” API. “Serial” only provides functionality for 

reading single bytes, rather than discrete measurements. Therefore, I implemented a function to 

read bytes from the sensor once a “delimiter” character is detected, and continue reading until a 

second “delimiter” is read. This delimiter character is a specific character that the sensor uses to 

indicate the end of a data packet, and is referenced by the user in that sensors config file. 

 The sensor module will remain in low power mode until it receives a serial transmission 

from the camera module. To reduce errors, all serial transmissions from the camera module are 

stored in a special array in the sensor module called the “Serial Buffer”. This buffer won’t accept 

any characters until a ‘$’ is detected, then it reads the 4 subsequent characters. This ensures that 

requests won’t be operated upon unless they assume the proper format. If the buffer doesn’t 

reach 4 characters, a timeout will occur after 500 ms, and the serial input will be assumed to be 

erroneous. Then the buffer will be cleared and the sensor module will go into low power mode. 

A flowchart outlining the systems high-level operation is shown in figure VII. 
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Figure VI. Flowchart of Sensor Module software operation. Note that the function calls 

associated with each state are listed to the lower right. 
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Chapter 6: Testing 

 I conducted a test while integrating each piece of hardware to ensure proper functionality 

and reliability. First, I tested the measurement functionality of the Sensor Module. I achieved this 

by connecting an RBR temperature sensor to the Sensor Module, and wrote a config file with the 

sensor’s information. Next, I powered on the Sensor Module’s Arduino and entered the 

command $1RD0 in the Arduino IDE’s serial input field, to indicate that I wanted to read data 

from the Sensor Module’s channel 0 sensor. After successfully reading the room’s temperature, I 

integrated the Omega temperature and pressure sensors to prove that the system can handle 

multiple sensors. I entered the commands $1RD0, $1RD1, and $1RD2 to read data from each 

sensor individually. Next, I entered $1RB0 to read a data block (data from every sensor). After 

the test, I inspected the contents of the system’s SD card and found that all of the measured data 

was saved successfully. 

 The next step in system integration was connecting the Raspberry Pi such that it could 

send commands to the Arduino serially. First, I connected the serial IO pins on the Pi to the 

Serial 1 pins on the Arduino (with TTL to RS232 converters on both ends). I started by sending a 

simple ASCII string to verify a good connection. Next, I changed the Pi’s program to print the 

response to each command I sent, and began to send commands in the proper format (e.g. 

$1RD0). Once I could reliably send commands and read measured data from the Pi’s terminal, I 

began to work on a more robust serial driver for the Pi’s communication with the Arduino. 

 The third test involved integrating the relays that toggled power to the serial sensors. 

First, I connected one of the relays to a DIO pin on the Arduino, and toggled power the pin to 

verify that the relay would open and close. Next, I wrote a function to the Sensor Module’s 

software that could actuate a relay for a given channel (using the “powerpin” number indicated 

in the channels config file). I tested the function by entering $1PC0 to toggle channel 0’s power 

on/off. After I set up additional relays on other channels, I entered $1PA1 (power all to state 1) 

and observed all of the relays’ LEDs switching on. 

 Finally, I tested the full system by configuring all three sensors to the Sensor Module and 

connecting the serial interface to the Pi. I wrapped my serial driver with a simple text prompt 

user interface. This allowed any users unfamiliar with the serial protocol command format to 

interact with the system. I used the test program to test all of the currently supported commands 

(read data, read block, power channel, power all) and found that each worked reliably. The read 

data and read block commands would return measured data from the indicated sensors, and the 

power commands would successfully switch the relays. 
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Table X. Results of testing the predefined engineering specifications. 

Result Engineering 

Specifications 

Explanation 

Not tested General sensor ports must read from any 

serially interfacing sensor at baud rates 

between 1K and 1M baud. 

Only tested with a baud rate of 9600 

(successfully). 

Not tested General sensor ports must power any serially 

interfacing sensor operating between 5V and 

12V, and under 2A. 

 

Passed Must accept up to three peripheral sensors 

simultaneously. 

Tested with 2 serial sensors, 1 I2C sensor 

and 1 SPI sensor 

Failed Must measure temperatures between -5˚C and 

35˚C. Temperature measurement error must not 

exceed ±0.005˚C. 

Errors were due to sensor variations 

Not tested Must measure pressures up to 682 PSI. 

Pressure measurement error must not exceed 

±0.05 PSI. 

 

Not tested Must withstand any depth not exceeding 1500 

feet. 

Not within project scope 

Passed Must accept any supply voltage between 14V 

and 18V. 

 

Not tested Capture rate must be user-adjustable between 1 

capture/day and 4 captures/minute. 

Not within project scope 

Failed Power consumption must not exceed 0.5W with 

a capture rate of 1 capture/hour or less. 

Power consumption exceeded 0.5W due to 

high power draw of Arduino Mega 

Passed Power consumption must not exceed 5W with a 

capture rate of 12 capture/hour or less. 

 

Passed The cost of parts must not exceed $500. Excluding optional sensors, only includes 

sensor module hardware 

Passed Must only contain common, commercially 

available microcontroller(s) and circuit 

components. 

 

Not tested Chassis size must not exceed 5” x 4” x 2.5”. Not within project scope 
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Appendix A: Senior Project Analysis (ABET Analysis) 

 

Project Name: SeeStar III Underwater Camera Sensor Module 

 

Student’s Name: Matt Ducasse  Student’s Signature: ________________ 

 

Advisor’s Name: Bridget Benson  Advisor’s Initials: ________________ 

 

ABET Senior Project Analysis 

 

1. Summary of Functional Requirements 

The SeeStar Sensor Module addition gathers oceanic measurements while capturing photo or 

video data. The additional data contextualizes the image content and enables researchers to 

deploy the SeeStar system as a scientific instrument in many more scenarios. The sensor module 

interfaces with several varieties of sensors with minimal configuration per sensor. The system 

gathers image and measurement data automatically, and stores the timestamped data. The Sensor 

Module features an integrated temperature sensor, and pressure sensor, and four general sensor 

ports. 

 

2. Primary Constraints 

Cost is the primary design and manufacturing constraint. The SeeStar system provides a low-cost 

alternative to expensive underwater imaging equipment. The Sensor Module must use only 

inexpensive, commercially available components. 

 

3. Economic 

The SeeStar system has a significant economic impact on individuals and companies involved in 

marine research. The system’s low cost provides opportunities for many researchers unwilling to 

purchase more expensive equipment. The system also impacts its component’s manufacturers, 

and shipping companies. 

 

MBARI provided the hardware components necessary to develop and assemble the SeeStar 

prototype. MBARI also spent several hundred hours developing the prototype. 

 

4. If manufactured on a commercial basis: 

The Sensor Module hardware development costs $6,000, and firmware development costs 

$5,476. Each module costs $600 to produce [6]. The production cost consists of $200 for 

manufacturing and $400 for parts. If sold for $800, MBARI would break even after selling 58 

units. If the SeeStar system were in high demand and could be sold in greater quantities, the 

manufacturing price would fall to $500. The Module could be sold for $515 and would break 
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even after 765 units were sold. The manufacturing costs for the rest of the system are $700, and 

parts are $2200. The total system would sell for $4000. 

 

The system’s operation cost is relatively low. The main costs arise from operator salary, as a user 

must configure the system and extract measurement data between deployments. The battery also 

must be charged between deployments. Replacement part costs constitute the maintenance costs. 

 

5. Environmental 

SeeStar’s environmental impacts include component manufacturing. The system’s components 

each contain plastics and/or metals that are environmentally damaging to produce. The system 

could also interrupt the underwater ecosystem if not retrieved after use. Pollution from shipping 

system parts is another indirect environmental impact.  

 

The positive environmental effects are less direct but potentially more numerous. The system is 

used by marine researchers to gather environmental data. This data could provide insight into the 

state of the marine ecosystem and how to prevent further degradation [8]. 

 

6. Manufacturability 

The Sensor Module’s hardware consists entirely of common components available from multiple 

brands. Mechanical hardware components (PVC pipe, screws, etc) are available at most 

hardware stores. Electrical hardware components are available on most online electronics 

retailers. Users may access MBARI’s SeeStar designs, purchase the components and build the 

system themselves. The system’s software may inhibit manufacturability. The software 

associated with the cameras, microcontrollers, and battery management may vary between 

manufacturers. This could affect the interfacing between modules and may require software 

design changes. 

 

7. Sustainability 

The system deploys in saltwater environments regularly, so parts may degrade and need 

replacement. The system’s modular design allows for easy maintenance. Users can remove parts 

and purchase and install replacements easily. In addition, software updates may become 

available after purchase. Users can download software updates for no cost. Users may even 

integrate their own software or hardware upgrades. 

 

Energy is required to produce and ship the system’s components. However, system development 

and assembly mostly involves only human labor, and has a minimal environmental impact. 

 

 

 

8. Ethical 
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Customers use the SeeStar system to collect data in scientific experiments with ecological 

implications. It is imperative that the customers are informed SeeStar Sensor Module’s degree of 

accuracy, so they do not draw false conclusions from their data. This honesty to the customers 

embodies utilitarian ethics, as it acknowledges that correct scientific data can lead to knowledge 

that benefits a large number of people. 

 

SeeStar also aims to comply with the IEEE code of ethics. Part 1 of the IEEE code of ethics 

states “to accept responsibility in making decisions consistent with the safety, health, and welfare 

of the public, and to disclose promptly factors that might endanger the public or the 

environment”. SeeStar is tested and assembled in a way that has minimal environmental impact. 

However, the systems contents may act as pollutants if not removed from the water after use. 

Users are notified to use the system responsibly and to not use it in situations that may harm the 

environment or marine organisms. 

 

9. Health and Safety 

The electrical connections between the system’s components may threaten users and nearby 

organisms. Constant use in saltwater conditions can degrade protective casings, exposing 

conductors. The documentation must instruct users to regularly inspect the system and replace 

damaged components. 

 

10. Social and Political 

The production and use of the SeeStar system probably has little direct social and political 

impact. It requires few resources to manufacture, and it targets a relatively small customer base. 

It may have larger indirect consequences, since the system gathers oceanic environment data. 

This data may change how the community comprehends the underwater ecosystem, and affect 

how people interact with the environment. 

 

11. Development 

Planning this project involved studying the previous SeeStar generations, and familiarizing 

myself with the SeeStar III Sensor Module hardware. I also discussed firmware design goals 

with engineers from MBARI. I employed the Agile design process to develop the firmware, 

separating the project into three design/test/build phases. This made it easier to uncover 

unanticipated challenges and react sooner. 

 

See Chapter 5: Works Cited for literature search. 
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Appendix B: Integrating New Sensor Types into See Star III Sensor Module Software 

 

1. Preparation 
 

1.1 Things to Know in Advance 

 

Before attempting to modify the SSM software to interface with a new sensor type, it is 

important to know the following about the sensor: 

 

• What type of interface it uses (Serial, SPI, I2C, etc.) 

• What pins on the Arduino it could viably connect to. 

• What software driver it uses. 

• Whether it needs an “init” function to be called on system startup. 

• How its measurement function(s) work. 

• The datatype and format of its measurement function(s) output. 

• Whether the sensor’s power is automatically or manually switched on/off. 

 

1.2 Overview 

 

Modifying the software to be compatible with a new sensor requires the following steps: 

 

• Defining a new struct to hold parameters associated with the new sensor 

• Defining a measurement function for gathering data from the sensor and converting it to 

string format 

• Defining a configuration function that reads a config file for the new sensor and maps its 

contents to the sensor’s struct. 
 

2. Creating a New Sensor Type Struct 
 

2.1 Background 

 

The Sensor Module uses a data structure (called SSM) to keep track of each of its channels. It 

contains information on what type of sensor each channel uses, whether the channel is enabled, 

what pins the channel’s sensor uses, etc.  

 

From a code perspective, the SSM struct contains an array of Channel structs representing each 

of the Sensor Modules channels. Each Channel struct contains an SensorType enum indicating 

what kind of sensor that channel is interfacing with, and a Sensor union that can hold any sensor 

struct. 

 

A sensor struct contains parameters unique to a specific type of sensor. For instance, the 

SerialSensor struct contains information like what pin controls the sensor’s power relay, which 

of the Arduino’s serial interfaces it uses, and it’s baudrate. These parameters must be stored so 
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that the software can call one function to manipulate different serial sensors using different pins 

and baudrates. 

 

2.2 Defining the New Sensor Struct 

 

Open the file ssmSensor.h and scroll to the commented definition of struct NewSensor. Replace 

this fake definition with a struct for your new sensor. Give it a name indicative of the physical 

sensor it is representing. Include all values that will need to be kept track of during the system’s 

operation. Location of the new sensor struct shown in Figure 2.1 below. 

 

Here are some items that may need to be stored in your struct: 

 

• Pins used by the sensor 

• Pointer to a driver class instance (for making measurement function calls) 

• ADC channel (if using an external ADC) 

• Power state & pin (if powering sensor via relay switch) 

 

Next, add a new member to the union “Sensor” with the type of your new sensor struct (This 

union allows the “Channel” struct to store a struct for any sensor type). Finally, add a new value 

to the enum “SensorType” pertaining to your new sensor type. This will be used by the 

“Channel” struct to indicate what kind of sensor it’s using. 

 

 
Figure 2.1: Commented sections indicate where to add code for a new sensor struct. 
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3. Writing Measurement Function 
 

Open file ssmSensor.cpp and define a new measurement function with the following function 

prototype: 

 
static int measureNewSensor(NewSensor *sensor, 

                            char *buf, 

                            int *len); 

 

It’s important that your new function has the same parameter and return types (except replace 

“NewSensor” with the name of your new sensor struct).  

 

Design this function to gather one datapoint from your sensor. If your sensor uses a third party 

driver, this should be fairly simple. Ultimately, you want the data to be in string format for 

saving and serial transmission. If a conversion from float to char* is needed, use dtostrf() or 

another conversion function. 

 

Make sure to add your new function prototype to ssmSensor.h. 

 

Next, scroll to the function measureSensor() (shown in Figure 3.1 below) and add a case to its 

switch statement that calls your new measurement function if the sensor type is that of your new 

sensor. This generic function chooses which measurement function to use based on the sensor 

type being measured from. 
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Figure 3.1: The function measureSensor() contains a commented out space for a call to a new 

measurement function. 

 

4. Writing configuration functions 
 

4.1 Background 

 

Upon startup, the Sensor Module reads a series of config files stored on it’s SD card. The 

contents of these config files list information about the physical sensors on each channel (such as 

sensor type, pins, etc.). Much of this information must be transferred to the SSM struct’s 

Channels upon startup for efficient access during operation. 

 

There will be one config file for each channel that will be utilized during operation. When the 

config file is discovered by the system, it will be searched for specific keywords and the values 

associated with those keywords will be read and stored in the SSM struct. 

 

In every config file, the first keyword will be “type”. This will be followed by the type of sensor 

that this config file is describing. Next will be a series of keywords pertaining to that specific 

type of sensor and their respective values. An example config file is shown in Figure 4.1 below. 
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Figure 4.1. Config file for an SPI sensor listing the keywords cspin, vccpin, and gnd pin, and 

their corresponding values. 

 

4.2 Determining Config File Keywords 

 

There must be one config file keyword for each parameter in your new sensor struct. The values 

associated with these keywords will be read and mapped to the struct’s parameters upon startup. 

Decide upon a descriptive set of keywords to use in the config files for your new sensor. 

 

4.2 Writing Configuration Functions 

 

Once the config file keywords have been decided upon, open the file ssmConfig.cpp. Scroll to 

the section labeled “CONFIGURE NEW SENSOR”. Define a new function in this section with 

the following prototype: 

 
static void initNewSensor(Channel *channel, File *configfile) 

 

Change “NewSensor” to the name of your sensor. The function will take two parameters. The 

first is of type Channel*, and refers to the channel that this sensor will be used by. It is assumed 

that the sensor type of this channel has already been determined to be your new sensor type. The 

second parameter is a File pointer to the config file containing this sensors parameters. As 

already stated, it is assumed that if this function is called, the first line of the config file must 

indicate that the type is your new sensor type. 

 

Design the function to search the config file for keywords pertaining to your sensor, read their 

values, and save those values to the new sensor struct within the Channel struct. To conveniently 

search the config files, the following functions are already defined in ssmConfig.cpp: 

 
int getInt(File *configfile, const char *key) 

Searches a config file for a given key, and converts it’s corresponding value to integer format. 

 
int getChar(File *configfile, const char *key) 

Searches a config file for a given key, and returns the first character of it’s corresponding value. 

 
int getValueForKey(File *file, const char *key, char *value) 

Searches a file for a given key, and copies the value to a char buffer.  
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Simple integer values like pin numbers can be easily parsed from config files with the getInt() 

function. However, unusual parameters may need to be read with getValueForKey() and 

processed further in code. 

 

Additionally, if your new sensor uses a driver with a class instance to call functions, you will 

need to point to this instance in your sensor struct. If each sensor needs a unique instance of this 

driver class to operate, you should malloc an instance of this class in your config function and 

store the pointer in your struct. An example of this is shown in Figure 4.2 below. 

 

 
Figure 4.2: Configuration function for a SPI sensor that allocates a new instance of a driver class 

for each sensor. 

 

Be sure to set the member of the Sensor struct to the correct type, as shown in line 217 in Figure 

4.2 above. 

 

Finally, scroll down to the function initChannel(). In the switch statement, add a new case for 

your new sensor type and call your sensor configuration function. The switch statement in 

initChannel() is shown in Figure 4.3 below. 
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Figure 4.3: Switch statement within initChannel() with a commented case reserved for a new 

sensor type. 

 

5. Conclusion 
 

Now all of the necessary functions have been defined to integrate the new sensor. It may take a 

few iterations of testing and modification before the sensor is interfacing with the Sensor Module 

perfectly. 

 


