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ABSTRACT 

An Investigation of Avian Wing Tip Vortex Generation Using a Biomimetic Approach 

David S. Martin 

 

An experimental study has been conducted to develop a process allowing the creation of 

biologically accurate aerodynamic test models mimicking the slotted primary feather geometry of 

the Brown Pelican (Pelecanus occidentalis). Preserved examples of both a full Brown Pelican wing 

and a single primary feather were 3D scanned and digitally reconstructed using a combination of 

MATLAB and CAD software. The final model was then 3D printed as a collection of smaller 

components using a LulzBot TAZ 6 printer and Taulman3D T-Glase PET filament. After using 

various surface finishing techniques to improve the finish of all 3D printed parts, an assembly was 

designed to mount the model in the low speed wind tunnel at the California Polytechnic State 

University. Prior to aerodynamic testing, airfoil sections of the pelican wing were generated in 

CAD and several common airfoil measurements and characteristics were investigated. At a flow 

velocity of 5 m/s (Re ~1.21 x 105), wind tunnel smoke and laser visualization testing highlighted 

the vortex generation of multiple primary feathers, as well as large-scale flow deviations in the 

vicinity of the feathers. A total pressure rake and total pressure probe were used to create detailed 

plots of the ratio of the local velocity to free-stream velocity (Vx/Vx∞) at two planes downstream of 

the model, which revealed vortex positioning consistent with that predicted by smoke visualization 

testing and provided a metric by which to evaluate the relative strength of each vortex. 

The model creation process and wind tunnel testing results outlined here provide a strong 

foundation for future investigations into the potential aerodynamic benefits provided by the slotted 

primary feather geometry employed by the Brown Pelican and other large gliding avian species. 

 

Keywords: Pelecanus occidentalis, Brown Pelican, biomimicry, 3D printing, wind tunnel 
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NOMENCLATURE 

English Symbols 

Symbol  Definition 

a  local speed of sound 

°C  degrees Celsius 

cm  centimeters 

HP  horsepower 

in  inches  

L  characteristic length 

M  Mach number 

m  meters 

mm  millimeters 

P  static pressure 

Pa  Pascals 

psi  pounds per square inch 

Re  Reynolds number 

V  flow velocity 

Vx   local flow velocity along the axis of the wind tunnel 

Vx∞  free-stream flow velocity 

 

Greek Symbols 

α  angle of attack (degrees) 

ρ  density  

μ  dynamic viscosity 
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1 INTRODUCTION 

 

Minimizing aerodynamic drag, the resistive force created when an object moves through 

the air, has been the source of extensive research since the introduction powered flight in the early 

20th century. Drag effects can generally be split into three main categories: parasitic drag, wave 

drag and induced drag. Induced drag, or the drag associated with the creation of lift, is created when 

the high pressure air below the wing of an aircraft curls over wing tip into the region of low pressure 

above the wing, creating a strong recirculating region of low pressure air at the wing tip that disrupts 

the airflow around the wing. This reduces the wing’s efficiency and increases the total fuel burn of 

the aircraft. Induced drag has been shown to account for approximately 40% of the total drag 

experienced by a subsonic transport aircraft during cruise conditions and up to 80-90% in take-off 

configuration.1 Additionally, these vortex structures may persist and remain airborne for up to 

several minutes and can create hazardous flight conditions for smaller aircraft in extreme cases. 

One common method to combat the creation of these wing tip vortices is through the use of winglets 

at the tip of the wing. 

While many varied winglet designs currently exist, the first examples of modern winglets 

were inspired in large part by the wing tip primary feathers of large gliding avian species.2 Many 

species of large gliding avians, such as the Brown Pelican (Pelecanus occidentalis), California 

Condor (Gymnogyps californianus) and Turkey Vulture (Cathartes aura) exhibit complex wing tip 

feather geometries composed of multiple slotted primary feathers. It has previously been theorized 

that these slotted primary feathers play a role in the reduction of drag by breaking a single wing tip 

vortex into multiple smaller vortices, thereby reducing the overall intensity. These prominent flight 

feathers may also play a part in noise reduction, as well as avian yaw and roll control. However, 

testing these hypotheses has proven to be extremely difficult in practice, primarily due to the 

challenges related to conducting parametric studies in a controlled testing environment with birds 

of this size. While numerous studies investigating the flight characteristics of smaller avian species 
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have been carried out in controlled environment (e.g. a wind tunnel or long hallway), additional 

studies have instead attempted to recreate the complex geometry of these splayed, cascading wing 

tip feathers. Such studies have met with varying levels of success. Simplifications often lead to stiff 

models composed of extruded airfoil sections protruding from the end of a wing without 

optimization, leading to vague approximations of the original geometry. 

While obtaining aerodynamic data directly from a live bird would be ideal, this is often 

difficult in practice and makes a true parametric study extremely challenging. Alternatively, studies 

using recreated geometries are much more straightforward, but sacrifice realism as a result. This 

study attempts to resolve this knowledge gap by uniting the complex geometry of true avian 

wingtips with the thoroughness and relative ease of a parametric investigation by employing 

biomimetic principles. The foundation of this approach is comprised of 3D scanning and 3D 

printing technologies, as well as computer-aided design tools, all of which enable replication of 

complex biological structures with a high degree of accuracy when used in conjunction. The 

specific goals of this study are twofold: 

 

1.) Develop a process to create biologically accurate aerodynamic test models of avian wing 

tip geometry. 

2.) Evaluate the flow field around a test model using the California Polytechnic State 

University low speed wind tunnel and related systems. 

 

Aircraft winglets can offer significant advantages when properly designed, ranging from 

lower operational costs and reduced emissions to less aerodynamic noise and higher cruise speeds. 

A winglet geometry accurately replicating the slotted primary feather geometry of large gliding 

avian species may offer additional benefits beyond those provided by modern winglets designs. 

Using 3D scan data collected from a Brown Pelican wing and primary feather, this study aims to 
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lay the groundwork necessary for future investigation into the potential benefits of biomimetic 

winglet geometries. 
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2 THE BROWN PELICAN 

 The Brown Pelican (Pelecanus occidentalis) is the smallest of the eight pelican species 

contained in Family Pelecanidae. In accordance with the species name occidentalis (Latin for 

“of/pertaining to the west”), the Brown Pelican is typically found in the western hemisphere along 

the coasts of North and South America. Though once endangered due to the use of organochlorine 

pesticides in North America, Brown Pelicans are now a relatively common sight along coastal 

areas.3,4 While awkward on land, the large wingspan of this bird (typically ranging from 1.8 to 2.5 

m for males) permits efficient flight to and from feeding areas as well as breeding grounds, which 

are often located on small, uninhabited offshore islands.4 As foraging may occur up to 75 km from 

the nest, Brown Pelicans spend a significant amount of time airborne.4 Overall lengths of male 

specimens can range from 1.0 to 1.4 m, whereas total weight may vary anywhere from 2.0 to 5.0 

kg.4,5 Females are somewhat smaller than males with wings that are approximately 3-6% shorter.4 

 

 

Figure 1. A juvenile Brown Pelican in flight near Bodega Bay, California.6 
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 While the vast majority of the pelican diet is composed of small fish and crustaceans, 

Brown Pelicans are the only species to routinely perform aerial dives into the water to capture prey, 

diving to depths of up to 2 m.4,7 In calm air, gliding typically occurs at airspeeds between 9 and 11 

m/s depending on atmospheric conditions, though speeds of up to 15 m/s have been noted in some 

cases.3,7 Brown Pelicans are often seen gliding low over the ocean to take advantage of the ground 

effect, which simultaneously increases the lift and decreases the drag experienced by the bird, 

resulting in a decreased energy expenditure during flight. To further increase flight efficiency, 

Brown Pelicans may take advantage of rising air currents or thermals during soaring flight.3 Slotted 

primary feathers located at each wing tip may be manipulated in flight and are hypothesized to 

provide drag reduction and aerodynamic control based on flight conditions. 

 The slotted primary feather geometry of the Brown Pelican makes this large gliding avian 

an ideal candidate for this investigation. While the model creation and analysis techniques outlined 

in this study may be utilized for any avian wing tip geometry, the Brown Pelican has been chosen 

here to provide a foundation for future studies investigating the aerodynamics of a Brown Pelican 

wing while in ground effect.  
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3 AERODYNAMIC THEORY AND THE WINGLET 

Forces and moments imparted on a body traveling through a fluid are due to two primary 

factors: the distribution of pressure over the body surface and the distribution of shear stress over 

the body surface. While various aerodynamic forces may result from these distributions, Nature’s 

ability to influence a body traveling through a fluid is restricted to these two effects alone.8 Two 

key forces generated when a body moves through the air, be it an aircraft or a bird, are lift and drag. 

A more in-depth discussion follows. 

 

3.1 Lift 

Lift is the resultant aerodynamic force acting on a body normal to its velocity vector and 

is typically produced by specialized structures such as wings. While the force generated by lift is 

typically used to counteract the weight of the body to enable steady flight, this is not necessarily 

always the case. In the case of subsonic flight below Mach 0.3, the generation of lift can be 

explained in a relatively straightforward manner by employing a simplified form of the Bernoulli 

equation: 

                                                                    𝑃 + 
1

2
𝜌𝑉2 = 𝑐𝑜𝑛𝑠𝑡                                                Eqn 1 

where P is the local static pressure, ρ is the density of the fluid and V is the local velocity of the 

fluid. In a steady and inviscid flow, the above equation is equal to a certain constant (often referred 

to as the total pressure) for any point along a streamline in that flow. This leads to the important 

conclusion that when the static pressure of a flow increases, the velocity of the flow decreases and 

vice versa. A lift-generating wing, when properly designed, will cause the air traveling over it to 

flow at a higher velocity than the air traveling beneath it. By referencing Equation 1, it can be 

inferred that this change in velocity will result in a region of relatively low pressure above the wing 

and a region of relatively high pressure below the wing. It is this pressure differential that imparts 

the force of lift to a wing. The strength of the regions of low and high pressure (and hence the 
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amount of lift) generated by the wing can be influenced to some degree by modifying several key 

geometric parameters of the cross section of the wing or by change the angle between the airfoil 

chord and the relative wind. These parameters will be discussed in greater detail in Section 3.3.8,11 

 

3.2 Drag 

The resistive force experienced by a body moving through the air is a function of three 

primary drag effects: parasitic drag, induced (or “lift-dependent”) drag and wave drag. In the realm 

of aerodynamics, wave drag is related to the formation of shock waves in a flow and typically only 

a factor at relatively high speeds where the effects of flow compressibility become non-trivial. 

Consequently, it will be disregarded for this discussion of low speed aerodynamics. The term 

“parasitic” drag covers several types of drag effects, such as form drag, skin friction drag and 

interference drag. Drag related to these effects is typically a function the geometry of the body in 

question, including its overall shape and size. At lower speeds, however, drag effects are primarily 

a function of induced drag.8 

As a byproduct of the generation of lift, a finite wing will produce regions of relatively low 

and high pressure above and below the wing, respectively. This net imbalance of pressure causes 

the high pressure air below the wing to “leak” out around the wing tip into the region of low 

pressure air. This introduces a spanwise component to the flow over the wing, with airflow above 

the wing moving towards the wing root and airflow below the wing moving away from the wing 

root. The curl of air over the wing tip and spanwise flow components contribute to the creation of 

a region of recirculating flow, or vortex, at the wing tip. These vortices introduce areas of relatively 

low pressure downstream of the wing, leading to a net pressure force in the downstream direction 

as a result of the relatively higher pressure immediately upstream of the wing. This may be 

essentially thought of as a drag force.8 
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The wing tip vortices created by a finite wing not only increase the amount of drag 

experienced by the wing, but also force the air in the vicinity of the wing in a downwards direction. 

This downwash reduces the effective angle of attack (α) that the wing experiences, thereby reducing 

the total lift generated by the wing.8  

 

 

Figure 2. Visualization of wing tip vortices created by a finite wing.9 

 

Clearly there is a strong incentive for the aerodynamicist to reduce the induced drag 

generated by a wing from an efficiency standpoint. The generation of induced drag by the tip of a 

finite wing can be addressed in several ways. One method is to increase the aspect ratio, or the span 

of the wing squared normalized by the surface area of the wing. Another is by designing the wing 

to have an elliptic lift distribution. While a thorough discussion of these concepts and their effect 

of the efficiency of a wing is beyond the scope of this work, additional information may be found 

in Reference 8. In situations where these options are not available, a third option exists: the 

additions of winglets. When properly designed, winglets reduce the size and strength of trailing 

vortices. By limiting the formation of vortex structures downstream of a wing through the use of 

winglets, the total drag and downwash experienced by a wing can be significantly reduced. 
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3.3 Airfoil Nomenclature 

 The aerodynamic properties of a lifting surface, be it an aircraft wing, helicopter blade, 

bird wing, etc., are strongly influenced by the shape of the wing section, often referred to as an 

airfoil. For subcritical Mach number flows where the chordwise flow component is much larger 

than the spanwise component, the aerodynamic properties of a wing’s airfoil sections may be used 

to approximate the aerodynamic properties of the wing as a whole. Several key geometric 

properties, such as the chord, mean camber line, camber, thickness and leading edge radius can be 

used to determine the exact geometry of an airfoil section. This nomenclature was developed in the 

early 1930’s by the National Advisory Committee for Aeronautics (NACA), the predecessor of the 

National Aeronautics and Space Administration (NASA), during extensive testing of 

systematically constructed airfoils. Figure 3 presents an overview of these terms.8,11 

 

 

Figure 3. Common properties of airfoil geometry.10 

 

 The chord of an airfoil is determined by connecting the leading and trailing edges using a 

straight line. The mean camber line essentially acts as a mean of the upper and lower surfaces of 

the airfoil and is located half way between each surface. The camber is defined as the maximum 

distance between the chord and the mean camber line when measured perpendicular to the chord. 

Similarly, the thickness is the maximum distance from the upper and lower surfaces when measured 

perpendicular to the chord. Also of note is the angle of attack (α), which defines the angle between 

the chord line of the airfoil and the vector of the incoming air flow.8,11  
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 Early studies inspired by the wings of birds focused on the aerodynamics of extremely thin 

wings (the term “thin” is here used to refer to airfoils with a maximum thickness to chord length 

ratio of 0.12 or less). This is evidenced by the thin airfoil sections used by many early aircraft 

designs, up to and including many World War I aircraft. Subsequent research indicated that lift 

generation could be enhanced by increasing the thickness and camber of an airfoil, as well as the 

leading edge radius. However, increasing these properties beyond certain limits may cause a 

significant increase in drag, leading to severely degraded performance of the airfoil. These 

geometric parameters also control, in part, the transition between laminar and turbulent boundary 

layers. 

 An exhaustive compendium of performance data for a multitude of NACA airfoils may be 

found in Reference 11. An in-depth discussion of the history and mathematics behind airfoil 

sections may be found in Reference 8. 

 

3.4 The Modern Winglet 

While the first examples of semi-functional aircraft winglets started to appear at the turn 

of the 20th century, the first winglet in the modern sense of the word appeared in the 1970’s with 

the work of Richard Whitcomb. Whitcomb, who is also known for his work involving the area rule 

and supercritical airfoils at NASA’s (then NACA) Langley Research Center, was inspired by the 

wing tip feathers of large gliding and soaring birds. Wind tunnel tests and subsequent flight testing 

on a retrofitted KC-135 indicated a 20% decrease in induced drag and a 7% increase in the lift-to-

drag ratio, a significant accomplishment in the world of aeronautics. With the cost of aviation fuel 

climbing ever higher throughout the 1970’s, many aircraft manufacturers began to implement 

winglets on a wide array of aircraft, ranging from large commercial jets to small propeller-driven 

aircraft.2 
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Modern winglets can vary significantly in size and shape depending on the needs of the 

specific aircraft. Regardless, the goal of each winglet remains the same: to reduce the induced drag 

generated by the wing and increase the efficiency of the aircraft. This is generally accomplished by 

modifying the effective aspect ratio without significantly increasing the span of the wing. Winglets 

offer improved efficiency without the need to lengthen the wing, which would require additional 

reinforcement of the wing structure and increase the total weight of the aircraft, further increasing 

the fuel burn. A collection of several modern winglet designs are presented below. 

 

 

Figure 4. A sample of modern winglet designs.1 

 

Once the effectiveness of the basic winglet geometry had been confirmed by NACA, 

researchers began investigating more radical geometries in an effort to improve performance even 

further. This resulted in a number of unconventional designs, such as the wing-tip turbine and 
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spiroid winglet. However, several designs bear a striking (albeit simplified) resemblance to the 

primary feather configuration of large gliding birds, such as the wing-tip sail, wing-grid and the 

modern split scimitar winglet (not pictured in Figure 4).  

 

3.4.1 Biomimetic Testing 

While Whitcomb’s inspiration for the modern winglet was indeed based on the slotted 

primary feathers of large gliding birds, the complex biological shape of this geometry has hampered 

efforts at artificial replication. As a result, related studies have typically used highly simplified test 

models. These approximations, while retaining some amount of resemblance to their original 

biological counterpart, often simplify avian wing tip geometry to such a degree that it is no longer 

clear how comparable the two geometries truly are in terms of aerodynamic performance. Many 

studies present unusual and contradictory results, leading to confusion about the efficacy of various 

winglet designs. 

As a case in point, a study performed by Coiro et al. compared two simplified slotted 

primary models, one with three cascading winglets and one with five cascading winglets, to a base 

wing configuration. The models were compared in terms of Oswald factor, an efficiency factor 

representing the change in drag with lift. While the five winglet geometry was found to decrease 

the induced drag experienced by the wing when compared to the base wing, the three winglet 

geometry was instead found to increase the drag. Furthermore, a comparison between the five 

winglet geometry and a standard, classical winglet suggested that the classical winglet was more 

effective at reducing induced drag. While the authors noted that the junction between each winglet 

and the wing tip on both cascading winglet models was poorly optimized (a common issue among 

studies using simplified geometries), this does not fully explain the unexpected and perplexing 

results.12 



 
 

 
13 

 

Studies investigating a larger number of configurations or employing optimized 

positioning of each winglet appear to give more reliable data. A reduction in reduced drag has 

clearly been achieved along with increased efficiency and performance in a number of cases, 

primarily at lower speeds (approximately 50 m/s or less) where the effects of induced drag are most 

apparent. A pair of studies by Catalano et al. using cascading winglets with variable positioning 

and angle control revealed that, of the 55 tested winglet configurations, only 6 configurations 

provided an increase in efficiency and performance, whereas the remaining configurations provided 

no benefit at all or even increased the drag experienced by the wing. From these studies, it appears 

that while a cascading winglet geometry may indeed provide benefits in terms of efficiency and 

performance, the positioning and geometric characteristics of each winglet must be optimized for 

each application and that a “one size fits all” approach likely does not exist.13,14 

Approaches using numerical optimization techniques have also yielded some degree of 

success. During a study of wing tip geometries on the U.S. Marine Corps Dragon Eye UAV using 

a panel method code that approximated each winglet as a flat plate, Shelton et al. discovered that 

the addition of distributed winglets did in fact increase the range and endurance of the UAV. 

However, it was noted that this depended strongly on the length and positioning of each winglet, 

as well as the flight conditions.16  

 

 

Figure 5. Dragon Eye UAV with cascading winglet geometry investigated by Shelton et al.16 

 

A number of more recent studies have focused on a relatively novel geometry: the spiroid 

winglet. While still inspired by slotted primary feathers, spiroid winglets simplify the geometry by 
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connecting two conventional vertical winglets with a horizontal section (see J in Figure 4). Other 

approaches simplify this geometry even further by constructing a fully closed ribbon-like loop at 

the wing tip. Preliminary investigations have been promising, showing an induced drag reduction 

ranging from 28% to 75% depending on flight conditions while simultaneously increasing total lift 

generated by the wing. Despite potential benefits, spiroid winglets are not without their 

shortcomings as well. The overall size of a spiroid winglet would lead to a marked increase in 

parasitic drag as well as an increased aircraft weight, due to both the increased weight of the winglet 

and the necessary reinforcement of the wing required to support this extra weight.1  

Additional studies have proposed even more radical ideas, such as morphing winglets with 

a variable span and cant angle. Morphing winglets could adapt to various flight conditions and 

could potentially offer an additional 2-3% improvement in aircraft fuel efficiency. Other studies of 

adaptive winglets able to modify their angle of attack, dihedral and sweep in flight have revealed 

that, in addition to potential gains in performance and efficiency, adaptive winglets could also be 

used for yaw and roll control, reducing or even eliminating the need for a conventional vertical 

stabilizer. While it would appear that potential gains in efficiency continue to point to the wing-

warping, rudderless avian flight configuration, care must be taken when investigating morphing 

technologies so as not to add an excessive amount of weight to aircraft designs.15,16 

It can be seen then that there is some degree of finesse involved in the design of biomimetic 

winglets. The success or failure of a cascading winglet design appears to hinge on a number of 

factors including the size and weight, as well as the splay angle and angle of attack of each winglet. 

Ultimately, ensuring the success of a winglet design revolves around a critical balance between the 

addition of weight to an aircraft and the reduction of drag over a wide range of flight conditions. 
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4 AVIAN MORPHOLOGY  

4.1 Wing Feathers 

The avian feather undoubtedly plays a crucial role in enabling flight. While the geometry 

of specific feathers can vary significantly depending on location and purpose, all feathers are 

primarily composed of the protein beta-keratin. In addition to their role in flight, feathers can also 

provide other benefits, such as insulation, camouflage, weatherproofing and fairing of the body 

structure.23 For the sake of simplicity, only the flight feathers located on the wing will be discussed 

here. The positioning of these feather groups with relation to the wing skeleton of a Brown Pelican 

may be found in Figure 7.22 

Wing feathers (occasionally referred to as remiges) generally include the primary and 

secondary feather groups. These are characterized by the asymmetric positioning of the feather 

shaft, resulting in a noticeably smaller leading edge, as well as their attachment to the skeletal 

structure. Direct attachment to the skeletal structure of the wing allows for the transmission of 

aerodynamic loads from the vane of each feather to the bird’s skeleton via the feather shaft. The 

primary feathers are typically the longest of all avian feathers and are located at the wing tip, 

attaching directly to the phalanges and carpometacarpus. As they are anchored to the “hand” of the 

bird, they may be spread or rotated independently with some degree of control. Primaries are 

thought to serve a number of purposes beyond the generation of lift depending on the species in 

question. These can range from drag reduction to aerodynamic noise reduction and even some 

degree of aerodynamic control.23 

Mature Brown Pelicans typically have 10 primary feathers at the tip of each wing. Figure 

6, generated by the United States Fish and Wildlife Service, presents the overall size and shape of 

each of these primary feathers. Of particular note are the distinctly slimmer and elongated feathers 

present near the wing’s leading edge, as well as the asymmetric positioning of the shaft in each 

feather. 
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Figure 6. Morphology of the primary feathers of a Brown Pelican in order from the leading edge 

(left) to the trailing edge (right) of the right wing.24 

 

Secondary feathers are typically somewhat shorter and more broad than the primary 

feathers and help to create the airfoil section of a bird’s wing. These feathers attach to the ulna and 

are unable to be manipulated without movement of the entire bone. Tertial feathers, which are 

generally not considered to be true flight feathers, attach to the skin of the bird only and exist to 

protect the folded wing and blend the wing and body shapes during flight. A detailed discussion 

regarding the pelicaniform skeletal structure and feather attachment may be found in Reference 22. 
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4.2 Skeletal and Muscular Systems 

 The avian skeletal system is composed of a collection of extremely lightweight bones, 

many of which are hollow. While the rear limbs of modern avian species have been retained as 

legs, the forward limbs have evolved into specialized wing structures. The phalanges retain some 

degree of movement allowing articulation of the primary feathers, though the majority of the 

metacarpal bones have been fused together, limiting the overall wrist movement. Articulation of 

the wing bones accomplished by a collection of muscles in each wing. While the powerful muscles 

enabling flight are primarily located in the chest and shoulder areas, each wing houses some two 

dozen individual muscles tasked with articulating the wing into a wide range of shapes. Despite the 

large number of wing muscles, the area between the shoulder and wrist joints is occupied by a 

collection of tendons only, which pushes the maximum thickness of the wing further aft. An 

overview of the skeletal structure and flight feather groups of a Brown Pelican wing is presented 

in Figure 7.21,22 

 

 

Figure 7. Overview of the Brown Pelican wing structure presented by Simons et al. Labels have 

been added for clarity.22 
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4.2.1 Metabolic Cost 

A prime consideration when discussing the aerodynamics of avian species is the metabolic 

cost incurred during flight. While this topic often falls under the purview of biologists rather than 

aerodynamicists, the results are nonetheless crucial to the understanding of flight feathers and their 

uses. A study conducted by Schnell et al. utilized Doppler radar techniques to investigate which of 

the following quantities the wings of different species of gulls, terns and skimmers were minimizing 

during flight: the metabolic rate required for flight (minimum power), the metabolic cost of 

transport over the ground or the metabolic cost of transport through the air. It was discovered that, 

while the flight mode was highly dependent on environmental and ecological factors, the birds 

generally chose a flight mode to minimize the metabolic cost over the ground.17 However, 

Hedenstrom et al. note that these types of studies can be a tricky business as it is not necessarily 

known to the investigator what factors the bird is aiming to optimize in a given ecological situation 

regardless of experimental technique, making it difficult to apply the appropriate mathematical 

optimization theory. A significant amount of additional data regarding the power required at 

various flight speeds during multiple flight segments (gliding, foraging, migrating, etc.) will need 

to be gathered for each species individually before a quantitative determination can be made 

regarding avian efficiency in certain ecological situations.18 

 

4.3 Experimental Techniques 

Conducting aerodynamic studies using live birds can present a multitude of difficulties. In 

addition to the potential moral and ethical quandaries related to placing live animals in a wind 

tunnel or other controlled testing environment, these animals would also need to be trained to 

perform in a way that allows for the consistent collection of useful data. Observation of birds in the 

wild is certainly a possibility, though this introduces enough variability in the experimental process 

to make any sort of detailed aerodynamic study near impossible. Nevertheless, numerous studies 
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to characterize avian flight using live birds have been performed, such as the series of studies 

performed by Spedding et al.  

In these studies, various birds were observed during flight in a large flight cage or down a 

long corridor. Vortices created by the bird’s wing tip were visualized using a series of cameras, 

flashbulbs and soap bubbles filled with helium suspended in the flight path. However, a common 

theme among these types of studies is the difficulty in achieving consistent and reasonable results. 

While relevant, these studies were carried out using relatively small birds (kestrels, jackdaws, 

pigeons, etc.) whose wings are more optimized for speed rather than gliding or soaring.19,20 

 In other cases, researchers have chosen to take a more direct approach by placing 

specimens in a small-scale wind tunnel with an articulating test section. This is useful as the test 

section can be rotated in such a way as to produce ideal gliding conditions within the test section 

indefinitely, allowing much more data to be captured between wing beats. In a study of the Harris’ 

hawk (Parabuteo unicinctus) using this methodology, Tucker compared two primary feather 

configurations: one with wholly intact primary feathers and one with clipped primary feathers. 

Clipping of the primary feathers was found to create a pronounced difference in the amount of 

induced drag experienced by the hawk, with the slotted primary feather configuration creating up 

to 50% less induced drag.25 Studies using a similar methodology found that a gliding jackdaw 

(Corvus monedula) spent a significant amount of time gliding in a configuration that maximized 

the ratio of lift to drag, or L/D ratio. This strongly suggests that birds do in fact take an active role 

in minimizing the metabolic cost during flight as the value of the L/D ratio plays a large role in the 

efficiency of a wing.26 
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5 DIGITAL MODEL CREATION 

The body of work for this research project was separated into two primary components: 

the establishment of a process allowing the creation of biologically accurate models suitable for 

aerodynamic testing and the implementation of this process to characterize the flow field 

downstream of an example model. An overview of the project workflow is presented in Figure 8.  

 

 

Figure 8. Project workflow overview. 

 

5.1 Biological References  

 Examples of both a Brown Pelican primary feather and a taxidermized wing were obtained 

to serve as references during the CAD model creation process. The example primary feather was 

loaned by Dr. Krista Fahy and the Santa Barbara Museum of Natural History in Santa Barbara, 

California. This particular feather was the ninth primary feather (P-9, second feather from the 

leading edge) on the left wing and was obtained from an existing specimen on cold storage at the 

time of the loan. The overall length of the feather when pressed flat was approximately 40 cm. 
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Figure 9. Brown Pelican primary feather loaned by the Santa Barbara Museum of Natural 

History. 

 

 A preserved example of a left wing in flight configuration was provided by the Los Angeles 

Natural History Museum. The wing had a span of 0.82 m and an average width (leading edge to 

trailing edge) of approximately 0.25 m. The wing was 3D scanned on location during a day trip, 

along with examples of both a California Condor (Gymnogyps californianus) wing and primary 

feather. While not addressed directly in this study, the 3D scans of the condor wing and feather 

have been retained for use in future projects. 
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Figure 10. 3D scanning of a Brown Pelican wing at the Los Angeles Natural History Museum. 

Visible on the floor is the preserved wing of a California Condor. 

 

 Video footage provided by the BBC of Brown Pelicans in flight was reviewed to determine 

the general shape and positioning of the primary feathers while in a flight configuration. Still 

images depicting the pelicans from both side views and head-on views were then imported into 

SolidWorks 2016, a common computer-aided design (CAD) program created by Dassault 

Systemes. Spline sketches were used to capture the general size and curvature of each primary 

feather as accurately as possible. The resulting sketch data was then utilized to create a series of 

five surfaces representing each of the primary feathers. These surfaces were later used to 
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approximate the size and curvature of the primary feathers of the final CAD model. While the 

amount of splay may vary between individual birds based on a wide variety of conditions, the 

geometry captured here represents the most common splay configuration noted in the video footage 

during gliding flight. 

 

Figure 11. CAD surfaces used to determine the general size and curvature of the primary feathers 

on the final model. 

 

5.2 3D Scanning 

 3D scanning was performed using a NextEngine Ultra HD 3D Laser Scanner. The main 

scanner unit (22.4 cm x 9.1 cm x 27.7 cm) houses a series of laser scanners and optical cameras, as 

well as a floodlight to illuminate the object to be scanned. A small turntable is also included, which 

can be controlled manually by the user or by the scanner during the automated scanning process. 

A white 0.9 m x 1.2 m tri-fold poster board was placed behind the turntable to minimize any 

interference from background objects during the scanning process.  

The NextEngine scanner operates by converting laser scan data into a finite number of 

points in three-dimensional space. The points in this point cloud are then connected using triangular 

faces to form a polygonal mesh, which is then colored based on data captured by the optical 
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cameras. The scanner is capable of processing up to 25 million discrete points during the mesh 

generation process with a maximum resolution of approximately 0.1 mm. The scanner hardware is 

managed by NextEngine’s ScanStudio software, which also doubles as platform for manipulating 

and merging scan files when necessary. ScanStudio is capable of exporting scan data in several 

common formats, such as STL, OBJ, XYZ and PLY. For the purposes of this project, the data was 

exported in both STL and XYZ formats.  

A STL (stereolithography) file is essentially a direct export of the polygonal mesh 

generated by the ScanStudio software. The STL exports of both the primary feather and wing data 

can been seen in Figure 12. The XYZ format simply exports a list of the spatial coordinates of each 

point as a text file. These points may also be exported along with the corresponding normal vector 

of each point. While not used during this project, these normal vectors define the “outward” 

direction of the mesh and can be useful in defining the interior and exterior faces of the resulting 

mesh surface. 

 

 

Figure 12. 3D scans of a Brown Pelican wing and primary feather generated by the NextEngine 

3D scanner (not to scale). 
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 5.3 Data Processing 

 After completion of the scanning process, STL files generated by the ScanStudio software 

were imported into various CAD packages for additional refinement. However, it was discovered 

that the overall size and detail of each STL file caused considerable performance degradation when 

using either Creo Parametric or SolidWorks on the available laboratory computers (Dell Precision 

T7810 running 64-bit Windows 7 Professional, 2.40GHz Intel Xenon CPU and 32 GB RAM), 

typically resulting in software crashes. Due to continued difficulties related to the manipulation of 

the STL files in CAD space, it was determined that the numeric data would instead be manipulated 

directly using the STL geometry for reference. 

 To this end, a MATLAB script was developed to read the XYZ point cloud data generated 

by ScanStudio and split the data into a user-specified number of airfoil sections. This was 

accomplished by sampling a chosen number of points from the point cloud at calculated distances 

along the span of the feather or wing. Before running the script, each imported text file must be 

sorted along an axis using the geometric position of each point for reference. In this case, the feather 

and wing point clouds were sorted along their spans. Because the large number of data points 

exceeded the sorting capabilities of Microsoft Excel, sorting was carried out in Microsoft Access 

using a query-based approach. Future studies employing this process will likely streamline the 

sorting process by carrying out all necessary sorting directly in the MATLAB script before 

sectioning. After running the script using the sorted data, the resulting airfoil sections were exported 

as an OUT file. This extension was then manually modified to TXT to facilitate data import into 

various CAD programs. 

The final sectioning configuration of the primary feather consisted of 15 individual airfoil 

sections each composed of 500 data points, whereas the final configuration for the wing consisted 

of 15 airfoil sections each composed of 1000 data points. While the MATLAB script was intended 

to be used to generate airfoil sections along a wing or feather span, it was constructed in such a way 
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that any point cloud data can be sectioned along an axis provided that the data is properly sorted 

along that axis beforehand. The script was structured in this way such that it could be used for 

similar projects in the future. A copy of the script has been included in Appendix C for reference. 

 

Figure 13. Highlighted airfoil sections generated by the MATLAB script overlaid on the primary 

feather STL geometry. 

 

5.4 CAD Modeling 

 Creo Parametric (formerly known as Pro/ENGINEER), a leading CAD/CAM package 

created by the Parametric Technologies Corporation, was used extensively during the CAD model 

creation process. After importing the primary feather airfoil sections generated by the MATLAB 

script, complete airfoil sections were generated using two dimensional splines. The curve of the 

leading edge, trailing edge and feather tip were created using three-dimensional Datum Curve 

features. A single Boundary Blend feature was used to create the main body of the feather while a 

pair of smaller Boundary Blends were used to create the upper and lower surfaces of the feather 
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tip. The resulting surfaces were then sewn together in a curvature continuous fashion and solidified 

to form the vane of the feather.  

Using the original STL file for reference, two dimensional splines were then used to 

approximate the curve of the feather shaft from both a side and top view. These splines were then 

intersected to create the three-dimensional curve of the shaft. Five circular sections were placed 

along this Intersect Curve feature and their size and position was adjusted to mimic the shaft size 

and shape as accurately as possible. A Swept Blend feature was used to create the surface of the 

shaft, which was then solidified and joined with the feather vane. Figure 14 presents a comparison 

of the construction geometry and final solid geometry of the primary feather. 

An identical process was then applied to the creation of the wing geometry. While the 

general airfoil shape created by the primary feathers was replicated as accurately as possible for 

the sake of completeness, much of this outer wing section was removed in subsequent operations 

to facilitate the addition of individual primary feathers. Figure 15 presents a comparison of the 

construction geometry and the final solid geometry of the wing body. 
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a)  

b)  

Figure 14. Comparison of the primary feather a) construction geometry and b) solid geometry. 
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a)  

b)  

Figure 15. Comparison of the wing body a) construction geometry and b) solid geometry. 
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After removing the highly contoured lower end of the feather to facilitate blending to the 

main wing body, copies of the primary feather model were then bent and placed at the end of the 

wing in accordance with the CAD surfaces generated from BBC footage detailed in Section 5.1. 

While some modern CAD packages contain a “Bend” function (or similar) that allows flexing of 

models around an axis, these functions are generally intended for use with relatively simple 

geometries. Experiments with the Bend command in SolidWorks generally resulted in the feather’s 

complex surfaces collapsing and forming self-intersections. Feather bending was ultimately 

accomplished by manually moving airfoil sections vertically up or down in Creo Parametric until 

the curve of the feather matched that of the video study CAD surfaces. While tedious, this method 

provided a high degree of control over the final feather shape. Future projects will investigate the 

use of programs specifically designed for the manipulation of 3D objects and polygonal meshes 

such as Blender, an open-source computer graphics software developed by the Blender Foundation. 

After properly positioning the five bent feathers in space with respect to the wing body, the 

final assembly was saved as a shrinkwrap file in Creo Parametric. Shrinkwraps essentially operate 

by sewing together all exterior faces in an assembly and solidifying them, resulting in a single solid 

model. At this stage, a 1:1 scale CAD model of a Brown Pelican wing with primary feathers in a 

gliding configuration was complete. However, due to concerns regarding the structural integrity 

and viability of 3D printing the extremely thin feather models, the decision was made to double the 

scale of the final test model in the fore/aft and up/down directions. No scaling was applied to the 

span of the wing. When attempting to apply this scaling in Creo Parametric, several of the complex 

surfaces and intersections between the feathers and wing body distorted enough to cause self-

intersections and pierced faces. These surface discontinuities caused the model to revert to a 

collection of surfaces rather than a manifold solid. To combat this, the unscaled wing geometry 

was imported into SolidWorks as a non-parametric STEP model. Any undesirable geometry 
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conditions were addressed and improved using the Import Diagnostics tool, resulting in a model 

that was both scalable and a manifold solid. 

 

Figure 16. Detail of the final scaled wing geometry. View from the rear. 

 

5.5 Final Assembly 

For ease of model construction, the final assembly was split into two subassemblies each 

comprised of multiple designed parts and hardware. Assembly drawings detailing the top-level 

assembly and each subassembly can be found in Appendix B. Each assembly drawing contains a 

complete Bill of Materials of the components comprising the assembly. All assembly operations, 

necessary modeling (hardware, machined components, support structures, etc.) and drawing 

creation was carried out in SolidWorks.  

 

5.5.1 Body Assembly 

 Because of the relatively large size of the scaled wing, the final body assembly was split 

into eleven discrete parts for 3D printing (see Figure 17). Several key considerations drove the 

selection of model split lines, as well as the overall size and shape of each component. Chief among 

these were the dimensions of the 3D printer print bed (to be discussed in greater detail in Chapter 
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6), which limited the maximum size of components. Additional effort was made to reduce the 

number and severity of model overhangs, as these may cause significant issues during the printing 

process or even make printing impossible in extreme cases. Finally, the striations created during 

the 3D print process were chosen to be as parallel to the air flow over the wing as possible to 

minimize any cross-span flow interference. Holes and additional features were then added to the 

resulting parts to accept hardware necessary for the assembly and mounting of the components. A 

fairing structure was added to the wing root to enclose the necessary mounting hardware and 

prevent excessive disruption to the air flow. While open during assembly and disassembly, this area 

was covered with aluminum tape during testing to provide a smooth and continuous surface. A 

large 1.6 mm thick sheet metal splitter plate was mounted at the wing root to limit undesirable flow 

effects related to the boundary layer of the wind tunnel wall and the mounting interface.  

 

 

Figure 17. Wing body assembly overview in SolidWorks. 
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5.5.2 Mounting Assembly 

 A mounting assembly was designed to mount the test model to the wind tunnel linear drive. 

An overview of the mounting assembly is presented in Figure 18. 

 

Figure 18. Mounting assembly overview with linear drive mounting plate shown (top). 

 

 A 1.6 mm thick sheet metal adapter plate was designed to act as an interface between the 

test model and the linear drive mounting plate. Four M8 bolts attached the adapter plate to the linear 

drive mounting plate. Four 3D printed cylindrical T-Glase spacers were used to provide clearance 

for the main M8 pivot bolt and the pivot washer. This pivot point was slightly offset in the lateral 

direction in an effort to center the model in the wind tunnel and to ensure that the center of gravity 

of the model was directly below the linear drive mounting plate, thereby limiting undesirable 

rotational forces on the model. This offset mounting also served to keep the feathers as far from the 

tunnel wall as possible at higher angles of attack. Two of the four mounting nuts were M8 nylon-

insert lock nuts, whereas the remaining two were standard M8 nuts. Each nut rested on a washer to 

prevent damage to the linear drive mounting plate. 
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Mounted to the main pivot bolt was a machined pivot block, which was held in place by a 

M8 nylon-insert lock nut tightened against a washer. The pivot block and mounting plate were 

separated by a square 3D printed T-Glase spacer designed to minimize any lateral play in the 

mounting assembly and provide clearance for the four mounting bolts during pivot block rotation. 

A pinned connection between the pivot block and test model utilizing two 5/16-24 bolts and 

standard nuts was chosen to allow easy assembly and disassembly, as well as to limit any sharp 

edges or unnecessary loads on the 3D printed parts. Aside from the four M8 mounting bolts, which 

were part of an existing hardware kit, all bolts were fully threaded. This was considered acceptable 

as a cost reduction measure due to the low expected loads.  

 

5.5.3 Angle of Attack Control 

A pattern of three holes at the forward end of the mounting plate were used to control the 

model’s angle of attack. A single ¼-28 pan head machine screw was used as a pin to align the 

mounting plate hole with its respective hole in the model to select 0°, 5° or 10° angle of attack. 

During testing, the machine screw was held in place and faired over using aluminum tape. A 3D 

printed T-Glase spacer was also used at this location to help align the model and prevent rocking 

during testing. Figure 19 presents a top-down view of the model at each angle of attack. 
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a)   b)     c)    

Figure 19. Overview of the final model at a) 0º, b) 5º and c) 10º angle of attack. Air flow 

is from top to bottom. 
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6 AERODYNAMIC TEST MODEL CREATION  

6.1 3D Printing Overview 

 3D printing (also sometimes referred to as additive manufacturing) has existed in some 

capacity for the last thirty years, though consumer-level 3D printers have only recently become 

available at an affordable price. “Additive manufacturing” acts as an umbrella term for several 

various technologies such as stereolithography, selective laser sintering (SLS) and fused deposition 

modeling (FDM), among others. The majority of consumer-level 3D printers employ some 

variation of the FDM process, where a spool of plastic filament is gradually unwound, heated by 

the print head and extruded in successive layers to form the final three-dimensional component.  

 Early conceptual primary feather prints were carried out using both an Ultimaker 2+ and a 

LulzBot TAZ 5 3D printer. However, various mechanical difficulties and poor print quality drove 

the decision to print the final production components using a LulzBot TAZ 6 3D printer. The TAZ 

6 is a commercially available 3D printer designed and assembled by Aleph Objects, Inc. with a 

usable printing volume of 0.28 m x 0.28 m x 0.25 m. Printing is accomplished using a moveable 

print bed, which translates forward and back, as well as a mobile print head, which moves left and 

right as well as vertically. The TAZ 6 is able to print using a number of industry standard plastics 

and manufactures components using a FDM process. Because of the finite size of the print head 

(0.4 mm) and the fact that printing occurs in successive layers, there is an inherent printing 

“resolution” for any component created using this process. Depending on the exact geometry, this 

resolution can be clearly noticeable on curved surfaces and results in some degree of surface 

roughness. Issues related to the surface roughness of printed components and surface finishing 

operations will be revisited in Section 6.5. 

 The TAZ 6 runs on a variant of the common G-code numerical control programming 

language. After importing a STL model of the part to be printed and choosing the appropriate 

settings, the necessary G-code instructions (often referred to as the “toolpath”) are generated by 
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specialized software. The G-code can then be uploaded to the printer either via USB or by using a 

Secure Digital (SD) data storage card. 

 

6.2 Materials 

 Early conceptual test prints were carried out using PLA (polylactic acid) on an Ultimaker 

2+. Due to its low cost and reasonable print characteristics, PLA is one of the most common 

thermoplastics currently in use for commercial-grade 3D printing. Unlike many 3D printing 

plastics, which are petroleum-based, PLA is composed of organic material harvested from plant 

matter. However, printed PLA can exhibit brittleness, making it unsuitable for tall and thin 

components. Severe printing issues created by a combination of low-grade PLA and technical 

issues with the Ultimaker 2+ printer eventually spurred additional research into alternative plastics 

and printers. 

After switching to the LulzBot TAZ 5 printer, additional conceptual prints were generated 

using a high-grade ABS (acrylonitrile butadiene styrene) plastic manufactured by IC3D. While one 

of the most widely used plastics in 3D printing, ABS is extremely susceptible to splitting and 

warping when used to print larger parts. Temperature gradients created within the model during the 

printing process can cause non-uniform contraction or expansion of the material, which may cause 

print layers to pull apart from one another or cause the entire print to detatch from the print bed, 

severely impacting the structural integrity of the finished component. This can be addressed to 

some degree by printing inside of an enclosure, which keeps the ambient temperature both higher 

and more consistent. While preliminary test components were printed in a heated room without an 

enclosure, subsequent test prints were carried out using an enclosure constructed out of sheets of 

Coroplast, a corrugated plastic.  

 On top of the technical challenges involved in obtaining high quality prints using ABS, 

additional concerns remained regarding the dimensional accuracy of the final parts due to the 
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likelihood of warping and splitting. These issues prompted additional research into high 

performance plastics. After an exhaustive comparison process, the decision was made to switch to 

T-Glase, a PET (polyethylene terephthalate) polymer manufactured by Taulman3D. In comparison 

to ABS, T-Glase exhibits virtually no warping or splitting when printed with the appropriate 

settings, even when printing without an enclosure. While the shrinkage factor post-print is low, T-

Glase has nonetheless been known to crack and damage print beds when allowed to cool after the 

printing process due to its extremely high strength. This is also due in part to Taulman3D’s 

suggestion to use a standard glue stick to coat the print bed in a thin layer of PVA (polyvinyl 

acetate), which dramatically enhances the ability of the component to adhere to the print bed. To 

combat these issues, the final G-code was manually edited to command the print bed to cool to 

40°C rather than ambient temperature to limit the contraction of printed components before removal 

from the print bed. After chipping one or more corners free of the bed using a small chisel, high 

strength dental floss was then wedged underneath the exposed corners and used to quickly pry the 

remainder of the model from the print bed. In extreme cases, the print bed was briefly heated to 85 

°C to soften the layer of PVA, allowing more efficient use of the dental floss removal method. 
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Figure 20. A comparison between identical parts printed in ABS (left) and T-Glase (right). 

Warping and splitting between print layers is clearly visible in the ABS print. 

 

6.3  3D Printing Software and Operation 

Toolpaths for early conceptual prints using the Ultimaker 2+ and LulzBot TAZ 5 were 

created using Cura, a free open-source 3D CAD to toolpath converter (commonly called a “slicer”) 

currently maintained by Ultimaker. Cura allows the user to set up prints, specify various printing 

options and export the resulting G-Code instructions defining the operation of the printer. However, 

the toolpaths for the final 3D printed parts were created using Simplify3D. While conceptually 

similar to Cura, Simplify3D offers a significantly greater number of options to control the creation 

and quality of a print. While an exhaustive list of every print setting used will not be discussed 

here, a review of some of the key settings leading to the high-quality prints used for the final test 

model is presented below. Because of the structural challenges faced by the parts including feathers, 
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many settings often differed between these parts and those of the main wing body. Both settings 

will be discussed when applicable. 

 

Temperatures: Both the temperature of the extruder nozzle and the print bed are of prime 

importance when using a FDM printer. Excessively high temperatures can cause plastic to ooze 

from the extruder nozzle or cause poor adhesion to the print bed. Alternatively, low temperatures 

will prevent the plastic from adhering to previous layers or the print bed, producing a component 

with poor structural integrity and surface finish. After several test prints, an extruder nozzle 

temperature of 225 °C and a print bed temperature of 70 °C were found to provide the most 

consistent quality when using T-Glase. As previously discussed, the final G-Code was manually 

modified to command the printer plate to cool to 40 °C instead of ambient to prevent cracking or 

chipping of the build plate post-print. 

  

Print Speed: Print speed refers to the maximum lateral movement of the extruder nozzle during 

the printing process. A maximum print speed of 25 mm/s was used when printing with T-Glase. 

While this is relatively slow when compared to most commercially available 3D printing plastics, 

it is in the realm of speeds suggested by Taulman3D when printing with T-Glase. Testing at higher 

speeds often resulted in degraded structural integrity and surface finish. 

 

Retraction: Retraction occurs when a printer retracts filament instead of extruding. This draws the 

heated filament back into the nozzle by a specified amount to prevent oozing or stringing of the 

heated filament during horizontal nozzle movements, which can interfere with the operation of the 

printer or result in a poor surface finish. When using a retraction of 10 mm with T-Glase, oozing 

and stringing was nearly eliminated. An option in Simplify3D to only allow retraction when 

crossing between profiles of the component was also enabled. This forces the printer to extrude 
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continuously without retraction over each closed profile on a given layer, reducing the number of 

retraction movements and hence starts/stops of the extruder.  

 

Brim: Brims are often used to increase the adhesion between a printed component and a print bed 

and are typically one extrusion layer tall. A brim may extend for many layers laterally around the 

model depending on the needs of the particular part. While brims are generally used to help anchor 

a component to the print bed, they can also be used to “prime” the extrusion process when printed 

from the outer profile inwards, ensuring continuous extrusion by the time printing of the actual 

component begins. For components with a relatively small base, 10 brim layers were used. 

Components with larger base areas required 15 brim layers to maintain adhesion. 

 

Starting Location: The starting location, or where along the profile the printer begins printing a 

new layer, can either be randomized or set to a specific location. In general, the starting location 

was placed at a convenient corner of each component to ensure smooth and consistent extrusion 

along the entirety of the profile. Any irregularities related to over- or under-extrusion at the start 

point were removed post-print using sandpaper. For components with feathers, the starting location 

of each profile was chosen to be the leading edge to prevent printing directly over the large 

overhang present at the trailing edge. 

 

Infill: While it is possible to create solid plastic components using 3D printing processes, this is 

generally inefficient from a cost, time and material usage standpoint and often results in noticeably 

warped components due to strong temperature gradients within the component. Many toolpath 

generators offer options to create simplified structural infill patterns to reduce print time and cost. 

Simplify3D includes multiple infill options, such as rectilinear, grid, triangular, wiggle, fast 

honeycomb and full honeycomb. 
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 Each infill type has various advantages and disadvantages. A 35% triangular infill was used 

for all components containing feathers. This was to ensure sufficient structural rigidity of the part 

while minimizing the print time and material usage. Components of the main wing body were 

printed using a 15% full honeycomb infill, which offers the best strength vs. material used ratio 

among the available options. The only available infill stronger than full honeycomb is the triangular 

infill, though this is slightly less efficient in terms of print time and material usage. However, while 

strength was certainly a concern, it was determined that print time and material usage were higher 

priority for the majority of print jobs due to the relatively low loads expected to be placed on the 

model.  

 

Perimeter Layers: The number of perimeter layers controls how thick the outer wall of the printed 

part will be before infill is applied. For components including feathers, this was set to 5 layers. This 

resulted in solid feathers with no infill, though infill was still applied to the thicker base of each 

feather component. The remaining components were printed with 3 perimeter layers as this offered 

an ideal compromise between strength, material usage, print time and overall wall thickness. 

 

 In addition to the software settings discussed above, it was also discovered that the tension 

in the printer idler assembly played a large role in print quality. Many 3D printers utilizing a FDM 

process, such as the TAZ 6, draw plastic filament into the extruder nozzle using an extruder filament 

drive gear. A variable tension idler pulley forces the filament against the drive gear to maintain 

positive pressure and ensure that the drive gear is able to consistently grip the filament. An overly 

tight idler assembly can crush the plastic filament between the idler pulley and the drive gear, 

making extrusion inconsistent when retraction operations are used. This issue occurred during early 

testing with the LulzBot TAZ 6 and resulted in inconsistent extrusion and unusable printed parts 

with poor surface finish quality. 
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6.4 Support Structures  

 For components requiring extra support during the 3D printing process, either due to 

overhangs or poor structural rigidity (e.g. feather components), a series of support structures was 

designed. Each structure featured a 1 cm tall square base with rounded corners, which provided a 

solid foundation for the structure and ensured proper adhesion to the print bed. Above the 

foundation, truss-like structures supported the component as necessary. These were tapered to 

provide sufficient support while minimizing print time and material usage. Figure 21 provides an 

overview of the support structures designed for the feather components. 

                

Figure 21. Detail views of the support structures designed for each feather component. 

 

6.5 Surface Finishing 

 Commercially available 3D printers can typically produce a consistent and reasonably high 

quality surface finish on printed components depending on print settings and material selection. As 

a consequence of the way FDM printers operate, curved surfaces are often slightly stepped due to 

the finite thickness of the filament used to create each layer of the component. Because of this, 
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additional refinement was required to improve the surface finish of the final test model such that it 

was suitable for aerodynamic testing. 

 Before addressing the surface finish of each component, any support structures required 

for 3D printing were first removed using a rotary tool. A cutting wheel was used to remove the 

support structures, leaving approximately 3 mm of material left. A sanding wheel and 3M 150 grit 

high performance sandpaper were then used to remove the remaining material. Additional sanding 

was carried out to ensure that bonding interfaces on plastic parts were flat and provided a consistent 

bonding surface, as well as to remove any surface defects or protrusions from the remaining 

surfaces. A final sanding pass using 3M 400 grit sandpaper was carried out to smooth out any ridges 

left by the 150 grit sandpaper. Sandpaper was typically soaked in water before sanding in an effort 

to prevent plastic particulates from becoming airborne and to carry particulates away from the 

sanding area.  

 After the surface finish of each 3D printed component was improved as much as possible 

using sandpaper, steel dowel interface pins were inserted into the respective mounting holes and 

the components bonded together. It should be noted that standard adhesives such as two-part 

epoxies and hot melt adhesives are generally ineffective at bonding polyethylene plastics due to the 

plastic’s low surface energy. This can cause the adhesive to bead up on the bonding surface instead 

of wetting the surface as intended, resulting in poor integrity of the resulting bond. Recent research 

has yielded several advanced adhesives designed for use with low surface energy plastics.27 One 

such consumer-grade product is the two-part Loctite Plastics Bonding System (PBS), which uses a 

heptane primer pen in conjunction with cyanoacrylate adhesive to create a mechanically durable 

bond. All bonding carried out during the assembly process, including plastic-to-plastic and plastic-

to-metal bonds, was performed using Loctite’s PBS. 

 After the adhesive had fully cured, any remaining gaps in the model were filled by hand 

with Apoxie Sculpt, a self-hardening two-part synthetic modeling clay produced by Aves Studio. 
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In addition to its ability to fill gaps and create a durable bond over a wide variety of surfaces and 

materials, Apoxie Sculpt can be sanded and painted after curing. After a 24-hour cure time and 

additional sanding to smooth the Apoxie Sculpt, a coat of XTC-3D was applied to all exterior 

surfaces using a foam brush with a chiseled edge. XTC-3D, a Smooth-On product, is a specially 

formulated two-part epoxy that provides a durable, smooth, sandable and paintable finish for 3D 

printed parts. Only a thin layer of XTC-3D was applied, just enough to fill any remaining striations 

or steps left by the 3D printing process. While extra coating would likely have increased the 

durability of printed parts, an effort was made to keep the outer dimensions of all models as similar 

to the intended dimensions as possible. After a four hour cure time, any non-uniform areas in the 

coating were sanded using a combination of 150 grit and 400 grit sandpaper until all faces of the 

model were smooth to the touch. 

Finally, the assembled model was sprayed with a coat of Krylon black chalkboard paint. 

After sanding the initial layer of paint using 400 grit sandpaper, a final coat was applied, which 

provided a smooth matte black surface finish. Similar to the coat of XTC-3D, only very thin layers 

of paint were applied to avoid excessive deviation from the original part dimensions. Matte 

chalkboard paint was chosen to prevent scattering of ambient light during operation of the wind 

tunnel laboratory’s particle image velocimetry (PIV) system. While ultimately not used for this 

project, future projects involving this model will likely make use of the PIV system. No XTC-3D 

or spray paint was applied to the interface surfaces between parts so as not to alter the part 

dimensions any more than necessary and to allow proper bonding of the parts.  

 

6.6 Machined Components 

 While the majority of components used in the final test assembly were 3D printed, an 

additional three components were also machined out of aluminum 6061-T6 alloy. These include 
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the main pivot block, the mounting plate and the splitter plate. Engineering drawings of each 

component may be found in Appendix B.  

While the pivot block was machined from bar stock on a Haas TM-1 toolroom mill, the 

remaining sheet metal components were cut and drilled by hand using 1:1 scale flat patterns 

provided in the engineering drawings. 1.6 mm thick sheet metal was used for both the mounting 

plate and splitter plate, which provided sufficient strength and rigidity while minimizing weight, 

cost and the projected area exposed to the flow. Each component was spray painted with Krylon 

black chalkboard paint to mimic the finish of the wing body assembly. Aside from the dimensions 

defining hole patterns and their respective hole diameters, machining tolerances were kept 

relatively loose to simplify the part creation process and reduce overall fabrication time.  

To prepare the splitter plate for bonding to the wing body, #3 coarse grade steel wool was 

used to remove any paint from the bond area and to prepare the aluminum surface for bonding. 

After cleaning the bond area with isopropyl alcohol and allowing to air dry, the splitter plate was 

bonded to the wing body using the Loctite PBS (with additional cyanoacrylate to ensure full 

coverage) and allowed to cure. Any gaps between the wing body and the splitter plate were faired 

over using black electrical tape. 

 

6.7 Final Assembly 

Figures 22 and 23 present an overview of the final assembly mounted in the low speed 

wind tunnel. Assembly drawings detailing the main assembly and each of the three subassemblies 

can be found in Appendix B. A complete Bill of Materials is included in each assembly drawing 

for reference.  
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Figure 22. Final aerodynamic test model mounted in the Cal Poly low speed wind tunnel. Side 

view. 

 

Figure 23. Final aerodynamic test model mounted in the Cal Poly low speed wind tunnel. Rear 

view. 
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7 EXPERIMENTAL APPARATUS AND SETUP 

7.1  Wind Tunnel Overview 

 Aerodynamic testing was conducted at the Cal Poly aerospace department low speed wind 

tunnel research laboratory on the Cal Poly campus. 

 

 

Figure 24. The Cal Poly low speed wind tunnel with the test section doors open. Air flow is from 

left to right. 

 

The rectangular test section of the low speed wind tunnel is 1.15 m wide by 0.88 m tall and 

spans a total length of 4.27 m. The test section walls are composed of a T-slot aluminum extrusion 

skeleton with acrylic walls to enable the inspection of the test section during model setup and test 

operations. The tunnel is an open circuit design with rectangular inlet dimensions 2.75 m by 3.65 

m, resulting in a contraction ratio of approximately 10. Flow straightening is accomplished using a 
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series of wire mesh screens sandwiching a 0.05 m thick honeycomb flow straightener mounted at 

the inlet, with one screen immediately upstream of the flow straightener and two immediately 

downstream. A pressure ring system at the test section entrance provides instantaneous static 

pressure readings whereas a total pressure probe immediately downstream of the inlet provides 

total pressure readings. These readings are utilized by a custom LabVIEW VI along with current 

temperature, pressure and ambient air density readings to continuously calculate the dynamic 

pressure and flow velocity in the test section during test operations.  

The fan is driven by a 125 HP Allen-Bradley inverter duty electric motor (model number 

ENP44G0365N-MG) via a belt drive system. Fan speed is controlled by specifying the desired 

revolutions per minute (RPM) of the motor on an Allen Bradley PowerFlex Variable Frequency 

Drive. The fan utilizes 9 blades and is mounted downstream of the test section to prevent the fan 

wake from interfering with test measurements. The maximum speed of the tunnel is approximately 

45 m/s.  

 

7.2 Linear Drive 

The final test model was secured to the mounting plate of the wind tunnel’s linear drive 

system during testing. The linear drive system is mounted above the wind tunnel and allows for 

vertical translation of models within the test section. While the final model was not translated 

during testing, the linear drive was lowered during assembly and disassembly for tool clearance 

purposes and ease of access to the mounting plate. Actuation of the linear drive was accomplished 

using an existing custom LabVIEW VI. The front edge of the mounting plate is approximately 1.25 

m from the front of the test section, placing the linear drive slightly forward of the test section 

center. 
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Figure 25. Overview of the linear drive system with mounting plate extended. 

 

7.3 Line Laser 

 A Laser Modules M-18B532-X-GL line laser was used during visualization experiments. 

The 5V line laser generated a green laser light at a wavelength of 532 nm and was held in place by 

a standard clamp stand. The line laser setup was placed on an acrylic viewport above the wind 

tunnel test section, allowing the line laser to fire directly down into the test section. The two-

dimensional laser sheet was oriented normal to the wind tunnel air flow and placed at either 0.1 m 

or 0.2 m downstream of the tip of the fourth feather based on testing requirements. While several 

observation locations were investigated during preliminary visualization experiments, observation 

at 0.1 m and 0.2 m downstream led to the most consistent and well-formed vortex structures. 
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Figure 26. Line laser setup. 

 

7.4 Fog Machine 

 Fog used for flow visualization purposes was generated by a Rosco Alpha 900 heated fog 

machine using Froggy’s High Density Bog Fog clear fog fluid, which is composed of a mixture of 

low molecular weight glycols and deionized water. Once pre-heated, the fog machine is controlled 

by a simple rocker switch at the end of a 9 m cord. The fog machine vaporizes the fluid by using 

an electric pump to move the fluid across an internal 1000 W heat exchanger system, resulting in a 

continuous stream of high density fog. 

Initial testing revealed that the electric pump introduced significant vorticity to the 

resulting fog plume. A nozzle was fashioned from an 8 gallon waste bin and two layers of circular 

flow straightening mesh in an effort to both condition the flow and expand the overall fog plume. 
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The machine was also cleaned before operation using Chauvet fog machine cleaner, a vinegar-

based cleaning solution designed to remove deposits from the heater core.  

 

 

Figure 27. Fog machine setup. 

 

7.5  Traverse System 

 The wind tunnel’s traverse system is rigidly mounted to the test section of the wind tunnel 

and allows for translation of measurement devices or models during test operations. The system 

provides linear movement along all three axes using a series of stepper motors and is controlled via 

a custom LabVIEW VI. The traverse was used to sweep a total pressure rake laterally and vertically 

in the wake of the test model to obtain two-dimensional maps of the total pressure. Later testing 

utilized the traverse to sweep a total pressure probe through the wake of the model in a similar 

fashion. 

A simple mount consisting of three 3D printed components was designed to secure the 

measurement devices to the traverse as no similar setup currently existed at the time of testing. The 
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main structural component, or sting, was designed to extend forward from the traverse arm by 0.2 

m to minimize potential flow interference created by the traverse arm. Due to the likelihood of the 

mount being utilized for future tests at higher speeds, the two main structural components were 

printed using high strength T-Glase. These were wedged together using a tapered interface and 

bonded together using Loctite’s PBS. The final “cap” component was previously 3D printed using 

ABS and was repurposed from an existing assembly. The cap was secured in place using a series 

of four #8-32 x 0.5 in machine screws and nylon insert nuts, while the entire assembly was mounted 

to the traverse arm using four #8-32 x 2.0 in machine screws and nylon insert nuts. Figure 28 

presents an overview of the assembly in Creo Parametric, while Figure 29 shows the assembly 

mounted to the traverse arm. 

 

Figure 28. Measurement device mounting assembly. 
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Figure 29. Overview of the traverse system with no measurement devices mounted. 

 

7.6 Scanivalve System 

Velocity measurement was accomplished using a Scanivalve ZOC33 pressure scanning 

system. Of the 64 available pressure ports, 32 have a range of 0.36 PSI (± 0.15 FS accuracy), while 

the remaining 32 ports have a range of 1.0 PSI (±0.10 FS accuracy). Pressure values are computed 

by comparing measured pressure values to the pressure of a known source. In this case, the source 

is a direct connection to the wind tunnel laboratory’s pressurized air line (60 psi). Voltage data 

generated by the pressure transducers is sent to a Scanivalve ERAD4000, which converts the 

pressure measurements into useful engineering data and forwards the data to a desktop computer 

via a wired Ethernet connection. The pressure measurement system is powered by a Scanivalve 
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RPM1000 power supply. A custom LabVIEW VI records the sampled data and displays the 

dynamic pressure and tunnel flow velocity as calculated by the Scanivalve system in real time.  

All pressure measurement tests in the wind tunnel were conducted using the same 

Scanivalve sampling configuration. 100 pressure samples were collected at each sampling location 

in the wind tunnel and were later averaged to create a single pressure measurement for each 

location. Each pressure sample was taken at a scanning period of 150 ms using 1 frame with 15 

scans per frame, which resulted in each data point being an average of 15 individual scans. Using 

this sampling configuration, data from a single sampling location was acquired in approximately 

33 seconds. Samples collected at each location were output as a MATLAB .m file for later post-

processing operations.  

 

 

Figure 30. ERAD4000 LabVIEW interface. 

 

7.7 Pressure Rake 

The total pressure rake (occasionally referred to as a Pitot rake) used during testing is 

presented in Figure 31. The rake consists of a series of 20 1.6 mm diameter ports arranged in a 50 

mm linear pattern. These metallic pressure ports converge to a circular pattern at the downstream 
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end of the rake and are surrounded by a threaded enclosure. This threading allows for fine 

adjustment of the rake in the forward and aft directions when necessary, though this feature was 

not utilized during testing. Pressure tubing connected to the downstream end of each port carries 

the sampled air along the main traverse arm to the Scanivalve system mounted to the exterior of 

the test section. 

 

 

Figure 31. Pressure rake mounted to the traverse arm. Pressure tubing is routed across the arm of 

the traverse to the Scanivalve box (blue and yellow) shown in the background. 

 

 The pressure rake was swept through the wake the test model at a distance of 0.2 m 

downstream of the tip of the fourth feather to allow for correlation to earlier smoke visualization 

results. By nondimensionalizing using the chord of the scaled wing at the interface area between 

the wing body and primary feathers (0.34 m) for reference, a downstream distance of 0.59 chord 
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lengths is obtained. Each lateral sweep was 240 mm in length and was split into 13 individual steps, 

resulting in a lateral step distance of 20 mm. After moving the pressure rake upwards by 50 mm, 

this lateral sweeping process was repeated. Data was collected at a total of 65 sampling locations. 

Figure 32 presents a grid outlining the pressure rake measurement area downstream of the model. 

The dimensions of 310 mm and 555 mm refer to the distance to the test section floor and wall, 

respectively. 
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a)  

b)  

Figure 32. Pressure rake measurement grid a) looking forward from downstream of the model 

and b) side view. All dimensions are in mm. 
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 The pressure data generated during testing were then post-processed in MATLAB to 

produce a plot of the ratio of the local flow velocity at the pressure ports to the free-stream 

velocity (Vx/Vx∞), which details the location and relative strength of each vortex structure. A copy 

of the post-processing MATLAB script is included in Appendix D for reference. 

 

7.8 Total Pressure Probe 

 Subsequent pressure testing was carried out using the total pressure port of a five-hole 

probe, a standard instrument in aerodynamic testing. When properly calibrated, a five-hole probe 

is capable of resolving both the speed and direction of a flow in real time. In this case, while the 

pressure readings from all five pressure ports were recorded during testing, only the total pressure 

data collected by the center port was utilized during analysis due to the lack of an existing 

calibration matrix for the remaining ports. As such, only the flow velocity along the axis of the 

wind tunnel could be resolved during testing. 

 

 

Figure 33. Total pressure probe setup. 
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 Pressure data was initially taken on a plane 0.2 m (0.59 reference chord lengths) 

downstream to allow for comparison to previous smoke visualization and pressure rake testing 

results. The size and shape of the grid was determined by analyzing vortex positions suggested by 

both visualization and pressure rake testing. The overall dimensions of the grid were slightly 

reduced from those of the pressure rake grid to 200 mm by 200 mm, with measurements taken 

every 20 mm laterally and vertically. This led to a grid of 11 points by 11 points, or 121 sample 

points total. The position of the sampling grid in the wind tunnel is presented in Figure 34.  

Similar to the grid used for the pressure rake, the dimensions of 310 mm and 555 mm refer to the 

distances to the test section floor and wall, respectively. 
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a)   

b)      

Figure 34. First total pressure probe measurement grid a) looking forward from downstream of 

the model and b) side view. All dimensions are in mm. 
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After post-processing the data in MATLAB, the ratio of local velocity at the probe tip to 

the free-stream velocity (Vx/Vx∞) was plotted over the grid space to visualize the location and 

relative strength of each vortex. A sample of the post-processing MATLAB script is included in 

Appendix E for reference. 

A second plane was then sampled at a distance of 0.1 m downstream of the fourth feather 

tip to investigate the evolution of the vortex structures over time. By nondimensionalizing using 

the chord of the scaled wing at the interface area between the wing body and primary feathers 

(0.34 m) for reference, a downstream distance of 0.29 chord lengths is obtained. The positioning 

of this grid was further refined by analyzing the results gathered during the first total pressure 

probe test. While this grid was also 200 mm by 200 mm, samples were instead taken in 

increments of 10 mm both laterally and vertically. This resulted in a grid of 21 points by 21 

points, or 441 sample points in total. While this higher resolution led to a significant increase in 

overall test time, the higher fidelity is immediately noticeable when comparing results between 

the two total pressure probe tests. After post-processing of the data, plots of the velocity ratio 

Vx/Vx∞ were created in a similar fashion to those from the first total pressure probe test. Figure 35 

details the location of the measurement grid. As before, the dimensions of 330 mm and 555 mm 

refer to the distances to the test section floor and wall, respectively. 
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a)  

b)      

Figure 35. Second total pressure probe measurement grid a) looking forward from downstream of 

the model and b) side view. All dimensions are in mm. 
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8 EXPERIMENTAL PROCEDURE 

8.1 Design of Experiments 

 For a wind tunnel experiment to accurately replicate flight conditions, the Reynolds 

number and the Mach number must match those of the original conditions.28 These values are 

defined as follows: 

 𝑅𝑒 =  
𝜌𝑉𝐿

𝜇
                       Eqn 2 

                                             𝑀 =  
𝑉

𝑎
                      Eqn 3 

where ρ is the fluid density, V is the velocity of the fluid with respect to the object in question, L 

is the characteristic length, μ is the dynamic viscosity of the fluid and a is the local speed of sound. 

The Reynolds number describes the ratio of inertial forces to viscous forces in a fluid flow, whereas 

the Mach number is the ratio of the flow velocity to the local speed of sound. Both the Reynolds 

number and Mach number are dimensionless parameters.   

As discussed previously, the gliding speed of a Brown Pelican is approximately 10 m/s. 

For convenience, the characteristic length has here been defined as the chord of the wing at the 

interface area between the wing body and primary feathers, which measures approximately 0.17 m 

on the 1:1 scale model. If ρ and μ on a standard day at sea level are assumed to be 1.23 kg/m3 and 

1.73 x 10-5 N-s/m2, respectively, the Reynolds number is on the order of 1.21 x 105. This places the 

air flow just below the transition point between laminar and turbulent flow. However, because the 

characteristic length was doubled as a result of concerns regarding the model’s structural integrity, 

the flow velocity must be reduced by a factor of 2 to 5 m/s to maintain Reynolds similarity. Due to 

the relatively small difference in flow velocity and the fact that the velocity is still well within the 

realm of incompressibility, the effect on Mach number is neglected. 
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The final aerodynamic test model is capable of being position at three different angles of 

attack: 0°, 5° and 10°. Ultimately, all testing was performed at 0° and 10°, though only results for 

the 10° case are presented here. 
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9  RESULTS AND DISCUSSION 

9.1 Airfoil Section Comparison 

Prior to beginning aerodynamic testing, several airfoil sections of the Brown Pelican wing 

were generated in Creo Parametric and compared to existing data from a detailed study of the 

Australian Pelican (Pelecanus conspicillatus) performed by Traill.9 In this study, two taxidermied 

Australian Pelican wings were 3D scanned: one in a thermal soaring position and one in a ground 

effect position. A collection of airfoil sections from each wing were then characterized using 

several standard airfoil measurements. The results of both characterizations will be considered here. 

Because the outer surface of avian wings is primarily composed of a multitude of 

overlapping feather structures, airfoil sections of these wings are necessarily discontinuous. While 

the airfoil sections generated for the aerodynamic test model were designed to mimic the shape of 

the pelican’s wing as accurately as possible, the airfoils presented in this discussion have been 

further simplified to allow comparison to standard NACA airfoils and other existing work. A visual 

comparison of the Brown Pelican airfoil geometry at eight spanwise locations is presented in Figure 

36. 
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Figure 36. Simplified airfoil sections along the span of the Brown Pelican wing. 

 

Sections 3 through 15 have been uniformly scaled for ease of viewing and comparison. The 

scaling factors with respect to the chord length of section 1 are presented in Table 1 for reference. 

Also shown is the angle of the chord line of each section with respect to the chord line of section 

1, where positive angles represent a more nose-up configuration and negative angles represent a 

more nose-down configuration.  

 

Table 1. Scaling factor and chord angle of each airfoil section with respect to that of section 

1. 

Section 1 3 5 7 9 11 13 15 

Scaling Factor 1.00 1.03 0.98 0.90 0.89 0.94 1.19 1.36 

Angle (deg) 0.00 -2.13 -1.17 -6.10 -8.69 -8.43 -4.64 7.43 
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Table 2 outlines several common airfoil measurements gathered for each section. Note 

that all thickness, position of maximum thickness and camber values have been normalized by the 

airfoil chord length to obtain percentage values, a standard practice in airfoil characterization. 

 

Table 2. Airfoil data for sections of the 3D scanned Brown Pelican wing. 

Section 

Distance 

From Wing 

Root (mm) 

Chord 

(mm) 

Leading 

Edge Radius 

(mm) 

Maximum 

Thickness  

Position of 

Maximum 

Thickness 

Camber 

1 0 235 6.0 17.8 % 22.4 % 10.1 % 

3 95 230 10.5 11.6 % 13.9 % 17.0 % 

5 191 245 8.0 10.3 % 9.0 % 14.0 % 

7 281 265 8.8 9.5 % 5.9 % 11.7 % 

9 347 267 6.9 6.7 % 5.5 % 9.9 % 

11 425 251 1.5 5.9 % 11.4 % 8.8 % 

13 509 197 ~ 0 6.2 % 13.4 % 9.8 % 

15 606 173 ~ 0 3.6 % 9.9 % 7.5 % 

 

  

Unsurprisingly, the airfoils presented here are markedly different than what might be 

expected on a modern aircraft. It is immediately apparent that the overall thickness of each airfoil 

is quite small, placing most within the classification of “thin airfoils” where the maximum airfoil 

thickness is much larger than the chord length. Despite these small thickness values, the leading 

edge radius of each airfoil is significantly larger than most modern airfoil sections. For example, 

the leading edge radius of airfoils contained in the NACA four digit series may be calculated using 

 

                                                                   𝑟 = 1.1019 𝑡2                                                         Eqn 4 

 

where r is the leading edge radius and t is the thickness. While the leading edge radius to thickness 

ratio of standard NACA airfoils are typically around 11%, the largest leading edge radii presented 

here range anywhere from 31% to 39% of thickness for sections 3 through 9.6,8,9 
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Referencing the original 3D scan of the wing and published data regarding the skeletal 

structure of Brown Pelicans, it is estimated that the skeletal structure of the wing ends in the vicinity 

of section 11.  This is evidenced by the larger leading edge radii and overall thickness of the inboard 

sections of the wing when compared to the outboard sections, which do not contain any of the 

wing’s biological structure. As such, sections beyond section 11 are composed entirely of 

overlapping primary and secondary feathers, leading to a gradual decrease in thickness values from 

proximal to distal sections. As it is composed of feathers along the entire span of the wing, the 

trailing edge is clearly sharp in all sections. 

The position of maximum thickness appears to gradually transition forward with an 

increase in span, though this trend reverses to some degree outboard of section 9. These results 

appear to correlate well with the Brown Pelican skeletal structure presented in Figure 7, suggesting 

that the forward transition in maximum thickness with increasing span is due to the presence of the 

radius, ulna and metacarpus within the wing structure, as well as the related musculature. In 

addition, the leading edge of the wing is the proximity of sections 1 through 7 is primarily composed 

of tendons with the skeletal structure of the wing housed further aft, which necessarily pushes the 

position of maximum thickness aft as well. Outboard of section 9, the position of maximum 

thickness transitions rearward, corresponding with the location of the metacarpal bones. 

The values for the camber of each airfoil section presented in Table 2, while larger than 

most modern airfoils, are what might be intuitively expected for an avian wing. However, this 

intuition does not fully explain the aerodynamic purpose behind the highly cambered inboard wing 

and relatively planar outboard wing. While this question has not been definitively answered in 

published literature, studies by Tucker24 and Rosen25 suggest that the majority of lift required for 

avian flight is primarily generated by the inboard section of the wing. Neither the Harris’ hawk nor 

the jackdaw investigated in these two studies fully extended their wings during gliding flight, even 

at the lowest speeds. In fact, Rosen concludes that there is a linear relationship between wingspan 
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and airspeed in the case of the jackdaw (and other avian species), with the wingspan decreasing for 

an increase in airspeed. This is somewhat counterintuitive when considering induced drag, where 

a larger wing aspect ratio results in more efficient drag reduction. However, it may be that by 

producing the majority of the necessary lift using the inboard section of the wing, the outboard 

section is therefore free to be used for other purposes, such as twisting and warping for aerodynamic 

control, flapping, etc. Additional studies using live birds will likely need to be conducted in the 

future to fully characterize the lift generation capabilities of various avian wings.  

The following figures present a comparison between the Brown Pelican wing sections and 

wing sections of the Australian Pelican generated by Traill.9 Figures 37 and 38 compare the Brown 

Pelican sections to an Australian Pelican wing in a thermal soaring configuration, whereas Figures 

39 and 40 compare the Brown Pelican sections to an Australian Pelican wing in a ground effect 

configuration. The section number noted in Traill’s work refers to the distance from the wing root 

in 20 mm increments (e.g. section 15 is 300 mm from the wing root). 
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                                Brown Pelican                                       Australian Pelican 

                         Pelecanus occidentalis                            Pelecanus conspicillatus 

 

 

Figure 37. Simplified airfoil sections from the wing of a Brown Pelican compared to sections 

from an Australian Pelican in a thermal soaring configuration generated by Traill.9 For visual 

reference only, not to scale. 
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Australian Pelican 

Pelecanus conspicillatus 

 

 

 

 

Figure 38. Comparison of airfoil characterization data between the Brown Pelican wing and 

Australian Pelican wing in a thermal soaring configuration generated by Traill.9 
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                        Brown Pelican                                           Australian Pelican 

                 Pelecanus occidentalis                                Pelecanus conspicillatus 

 

 

Figure 39. Simplified airfoil sections from the wing of a Brown Pelican compared to sections 

from an Australian Pelican in a ground effect configuration generated by Traill.9 For visual 

reference only, not to scale. 
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Brown Pelican 

Pelecanus occidentalis 

 

 

 

Australian Pelican 

Pelecanus conspicillatus 

 

 

Figure 40. Comparison of airfoil characterization data between the Brown Pelican wing and 

Australian Pelican wing in a ground effect configuration generated by Traill.9 
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While the results of the Brown Pelican airfoil characterization correlate well to those of the 

Australian Pelican in terms of general wing geometry and trends in airfoil characteristics, the 

Brown Pelican wing appears to be much more similar in form to the Australian Pelican wing 

preserved in a thermal soaring configuration. This suggests that the Brown Pelican wing has also 

been preserved in such a configuration. Despite good overall agreement with Traill’s work, several 

discrepancies are apparent. Beyond section 9, the leading edge of the Brown Pelican wing is 

composed entirely of primary feathers and the leading edge radius becomes sharp. However, the 

leading edge radius on both Australian Pelican wings was found to be unexpectedly large for many 

of the distal sections. Traill reasonably remarks that this is unusual and inconsistent with existing 

literature describing avian wings. Additionally, the Australian Pelican wings are significantly more 

cambered than that of the Brown Pelican, especially for distal sections. This is particularly apparent 

near the wing root and mid-wing in both Australian Pelican configurations. Additional research 

will need to be conducted to confirm whether these discrepancies are due to differences in the 

taxidermizing process, differences between the two species or perhaps simply features specific to 

each individual bird.  

The Australian Pelican wings also appear to have a slightly more nose-up angle of attack. 

While the pitch of the wing will not affect the overall geometry of the scanned wings, these 

differences may skew the results of subsequent aerodynamic analysis. However, determining a 

precise angle of attack is challenging under the best of circumstances. The method suggested by 

Traill, which involves determining the angle of attack of the root by referencing pictures taken 

during wing upstrokes, was used in this case. However, this method still leaves some degree of 

uncertainty and is difficult to implement using pictures where no horizontal reference exists 

(assuming the pelican is traveling in a horizontal direction to begin with). 

While this study provides characterization of an example Brown Pelican wing, it should be 

noted that the geometry presented here may not be representative of all Brown Pelicans. Biological 
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differences between specimens or inaccuracies introduced during the taxidermizing process are 

likely to introduce some variability to wing geometry. As such, additional studies will need to be 

carried out to obtain a more detailed view of the aerodynamics of Brown Pelican wings, as well as 

an “average” wing shape. 

Finally, a simple study was conducted to provide a quantitative measure of the various 

angles of attack of each primary feather. Feathers were sectioned at their respective mid-spans and 

compared to the chord line of wing section 1. It can be seen in Table 3 that, while the mid-span of 

the most forward feathers have a slight negative angle of attack, the mid-span of the rearmost are 

instead at a positive angle of attack.  

 

Table 3. Angle of attack of each primary feather measured at the mid-span with reference 

to the chord of wing section 1.  

Feather 1 2 3 4 5 

Angle of Attack (deg) -5.56 -5.86 -0.07 5.90 20.63 

 

 

9.2  Flow Visualization Results 

 Flow visualization results were obtained by using the Rosco fog machine in conjunction 

with the Laser Modules line laser at a flow velocity of 5 m/s. Figure 41 presents a still frame taken 

from a video footage with the wing at an angle of attack of 10° outlining the size and location of 

vortices observed at 0.2 m (0.59 reference chord lengths) downstream of the tip of the fourth 

feather. The three vortices visible are created by the 1st, 2nd and 4th primary feathers and are labeled 

1, 2 and 4, respectively. A series of more informative images can be found in Figure 42. Each of 

these three vortices held a relatively fixed position in space and was found to persist throughout the 

duration of the experiment. An additional vortex (vortex 3) suggested by subsequent pressure 

testing is also presented in Figure 41, though both the strength and positioning of this vortex 
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structure appeared to be somewhat inconsistent during the visualization process and it is noted here 

for reference only. It should be noted that the brightness and contrast of Figures 41 through 43 have 

been artificially increased using Adobe Photoshop to enhance the visibility of flow phenomena. 

 

 

Figure 41. Still frame detailing relative size and location of vortices downstream of the test 

model. Flow velocity 5 m/s, angle of attack 10°. 
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Figure 42. Collection of still frames showing vortex development from the 1st, 2nd and 4th primary 

feathers. Flow velocity 5 m/s, angle of attack 10°. 

 

 Also visible during testing was a pronounced inboard deflection of the flow above the 

upper surfaces of the primary feathers. The flow on the underside of the primary feathers was also 

noted to deflect slightly outboard. These effects are thought to be indicative of the formation of a 

large-scale pressure gradient created by the region of relatively high pressure below the wing and 

low pressure above the wing. In this case, the low flow velocity allows the effects of this gradient 

to be visible in the vicinity of the wing itself as opposed to further downstream. Additionally, each 

primary feather is likely to be deflecting the flow either inboard or outboard based on the relative 
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angle between the plane of the wing and the feather. Figure 43 details the flow deflections above 

and below the wing. 

 

 

 

Figure 43. Flow deflection around the primary feathers. Side view. 

  

Visualization results obtained at 0° angle of attack were similar to those outlined above, 

though the vortices were somewhat less pronounced. 
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9.3 Pressure Rake Results 

 To more accurately characterize the position and relative strength of the vortex structures 

generated by the primary feathers, a total pressure rake was used to sample total pressure values on 

a two-dimensional plane 0.2 m downstream of the model. This test was conducted with the wing at 

10° angle of attack and a flow speed of 5 m/s. The recorded pressure data was then post-processed 

in MATLAB. The resulting distribution of the velocity ratio Vx/Vx∞, or the ratio of the local velocity 

at the pressure rake to free stream velocity, was plotted over the grid space. 
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Figure 44. Plot of the velocity ratio Vx/Vx∞ generated using a pressure rake at a distance of 0.2 m 

downstream of the model and a flow velocity of 5 m/s. 
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Figure 45. Comparison of the CAD geometry to data generated during pressure rake testing with 

the sampling plane located 0.2 m downstream of the model. Each vortex structure and its 

generating feather are matched by number. All dimensions are in mm. 

 

 Post-processing the data collected by the pressure rake presented significant difficulties 

due to unexpectedly low pressure readings at both the upper and lower ends of the rake, as well as 

a blocked pressure port near the center of the rake. Figure 44 is the result of an extensive data post-

processing and refinement process and was generated by replacing anomalous data with an average 

of the surrounding data. Even after refinement, large-scale striations running from left to right are 

immediately apparent. These striations are artifacts of the artificially low pressure readings 

generated at each end of the rake and, in general, do not represent physical flow phenomena.  

 Despite the difficulties encountered, several vortex structures generated by the primary 

feathers are visible in Figure 44. While the vortices created by feathers 1, 2 and 3 are clearly formed, 

the remaining vortex structures are less distinct. This effect is likely to have been caused by vortices 

wandering over time in an unsteady flow or stalled flow over the primary feathers due to a relatively 

high angle of attack.  
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 The positioning of vortices 3, 4 and 5 correlates very well with the positioning of their 

respective feathers. However, the positioning of vortices 1 and 2 deviates significantly from the 

position of each generating feather, with both vortices being pulled right and upwards. This result 

should in fact be expected based on the results of earlier visualization testing, where air flow over 

the wing was pulled inboard local to the primary feathers (see Figure 43) over the top surface of 

the wing. While this flow deviation was observed during visualization testing, the severity of the 

deviation shown by the pressure rake testing results is nonetheless surprising. It is likely that the 

feather positioning and increased lift generated at 10° angle of attack may have exacerbated the 

effect. Additional studies will need to be conducted to investigate the vortex positioning at a 

nominal angle of attack of 0°. 

 

9.4 Total Pressure Probe Results 

While the pressure rake results presented above indicate the presence of vortex structures 

downstream of the wing, it was determined that additional testing would be carried out to using an 

alternative approach in an effort to improve the quality of results. To this end, a total pressure probe 

was used to sample two planes aft of the wing, one at 0.2 m downstream and one at 0.1 m 

downstream. The wing was again placed at an angle of attack of 10° with a flow velocity of 5 m/s. 

Figures 46 and 47 detail the results of the initial total pressure probe test at a distance of 0.2 m 

downstream of the model. 
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Figure 46. Plot of the velocity ratio Vx/Vx∞ generated using a total pressure probe at a distance of 

0.2 m downstream of the model and a flow velocity of 5 m/s. 
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Figure 47. Comparison of the CAD geometry to data generated during total pressure testing with 

the sampling plane located 0.2 m downstream of the model. Each vortex structure and its 

generating feather are matched by number. All dimensions are in mm. 

 

 The increase in quality of the results compared to those produced by the pressure rake is 

immediately apparent. Additionally, the number of vortices and their locations are clearly 

consistent between the results produced by the total pressure probe and the pressure rake. Of 

particular note is the increased resolution of vortices 4 and 5, as well as the surrounding low 

pressure areas. The indistinct vortex structures observed during pressure rake testing are here more 

resolved and noticeable. Vortices 1 and 2 continue to be pulled upward and two the right, 

mimicking earlier results. The relatively strength of each vortex generally correlates well between 

the two tests, though the minimum velocity ratio suggested by pressure rake testing is somewhat 

lower. This is likely to be a result of the coarser sampling resolution of the total pressure probe test, 

which may have resulted in a situation where no sampling grid locations were located at the core 

of vortex 1. 

 A second plane at a distance of 0.1 m downstream of the model was then investigated using 

the total pressure probe using identical test conditions (flow velocity of 5 m/s, wing angle of attack 
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10°). This position was chosen in an effort to characterize the evolution of the vortex structures 

over time. The number of samples and the sampling grid positioning were refined based on results 

obtained during the first total pressure probe test. The results of the second test are presented in 

Figures 48 and 49. 
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Figure 48. Plot of the velocity ratio Vx/Vx∞ generated using a total pressure probe at a distance of 

0.1 m downstream of the model and a flow velocity of 5 m/s. 



 
 

 
89 

 

 

Figure 49. Comparison of the CAD geometry to data generated during total pressure testing with 

the sampling plane located 0.1 m downstream of the model. Each vortex structure and its 

generating feather are matched by number. All dimensions are in mm. 

 

 This round of total pressure probe testing resulted in strong correlation with previous 

results in terms of vortex positioning and the increase in resolution is again apparent. Of note is 

the fact that the velocity ratio at the core of each vortex is substantially lower than that observed 

when using the total pressure probe at a distance of 0.2 m by a velocity ratio factor of 

approximately 0.3. This is likely due to a combination of two factors. Because the sampling plane 

in this case is closer to the model, the vortices shown in Figures 48 and 49 have had less time to 

propagate and mix with the surrounding free-stream flow. As such, the flow velocity in the 

rotational direction at the core of each vortex is likely closer to be much lower than the velocity 

of the vortex core observed at more distant planes. Additionally, the total pressure probe used in 

this experiment is only able to resolve flow velocity along the axis of the wind tunnel. Because 

the free-stream velocity has been transformed into a strong rotational velocity at each vortex 

structure, the flow velocity apparent to the total pressure probe is therefore much lower than the 
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actual total flow velocity. These effects should be less pronounced further downstream as each 

vortex continues to propagate and mix with the free-stream flow. 

 

9.5 Experimental Uncertainty 

9.5.1 Total Pressure Rake  

As noted earlier, a blocked pressure port and artificially low pressure values reported by 

each end of the rake presented significant difficulties during data collection and post-processing, 

leading to some concern regarding the quality of the resulting data. While the source of error is 

reasonably clear when dealing with a blocked pressure port, the cause of unusually low pressure 

readings at the ends of the rake is somewhat less obvious. While troubleshooting is ongoing, it is 

probable that the structure of the rake itself interfered with the natural propagation of the airflow 

and vortex structures during testing. Additionally, the low free-stream velocity chosen for this study 

may have been a poor match for the resolution of the Scanivalve pressure measurement system. 

The difficulties encountered during pressure rake testing ultimately led to the decision to conduct 

future pressure mapping studies using an alternative approach. 

In an effort to quantify the amount of potential error during the sampling process, the 

standard deviation of the 100 data points sampled by each port at each sampling location was 

calculated. The resulting contour plot of the standard deviation throughout the flow field for the 

test utilizing the total pressure rake is presented in Figure 50. 
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Figure 50. Contour plot of the standard deviation of each data sample collected by the total 

pressure rake. 

 

 The maximum pressure reading among the collected points was 15.605 Pa, whereas the 

minimum reading was 0.895. This led to a sampling range of 14.710 Pa. It can therefore be 

concluded that the maximum standard deviation (0.8 Pa) among the samples collected throughout 

the flow field represented approximately 5.4% of the sampling range, a number low enough to 

provide confidence in the consistency of each port’s sampling ability. However, due to a number 

of other issues encountered during usage of the pressure rake, the results are presented primarily 

for informational purposes and to provide context for later testing. 

 

9.5.2 Total Pressure Probe 

While results obtained while using the total pressure probe resulted in a marked increase 

in data quality when compared to the total pressure rake results, it should be noted that this approach 
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is ideal for linear flows where the axis of the probe is aligned with the direction of the flow. Matters 

are somewhat more complicated when investigating rotational flows (such as the vortex flows 

investigated here) as the probe is only able to resolve flow velocity along its axis when the total 

pressure port alone is used. Work to establish a calibration matrix allowing for accurate reporting 

by all five ports is ongoing and will allow future studies to resolve both the speed and direction of 

flows, providing a more accurate and complete view of the vortex geometry produced by the wing’s 

primary feathers. 

The amount of potential error was here quantified in a manner similar to that described in 

section 9.5.1. The resulting contour plot for the test plane at 0.1 m downstream is presented below. 

 

 

Figure 51. Contour plot of the standard deviation of each data sample collected by the total 

pressure probe at a distance of 0.1 m downstream. 
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 In this case, the maximum pressure reading among the collected points was 16.833 Pa, 

whereas the minimum reading was 0.095, leading to a sampling range of 16.738 Pa. The 

maximum standard deviation (1.38) here represents approximately 8.2% of the sampling range, 

leading to a reasonably high degree of confidence regarding the consistency of samples collected 

by the total pressure probe. 

 

 

Figure 52. Contour plot of the standard deviation of each data sample collected by the total 

pressure probe at a distance of 0.2 m downstream. 

 

The maximum pressure reading among the collected points at 0.2 m downstream was 

15.665 Pa, whereas the minimum reading was 1.774. This led to a sampling range of 13.891 Pa, 

with the maximum standard deviation (1.6) representing approximately 11.5% of the sampling 

range. The maximum standard deviation here is somewhat higher than that calculated for the prior 

total pressure probe test, though this is likely to be primarily due to an outlier data point located in 
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the bottom left corner of the flow field. Filtering this outlier out results in a similar degree of 

confidence between the two tests. 

 

9.5.3 Vibration 

Prior to beginning wind tunnel testing, a study was conducted to quantify any deflections 

or vibrations of the model under load using both image comparison and video footage. Photos and 

videos were obtained using a Nikon D3200 HD-SLR camera mounted on a tripod approximately 

1.45 m downstream of the model. Both the 0° and 10° angle of attack configurations were 

investigated. However, there was virtually no discernable deflection for either case. A small amount 

of vibration at the tip of the fourth feather was noted in both cases, though this was found to be 

small in amplitude (on the order of 1 mm laterally left and right) and was not periodic. It was 

determined that this vibration was likely caused by unsteady flow generated by the upwind feathers. 

This slight vibration, while small, could help to explain the more indistinct shape of the vortex 

generated by the fourth feather as observed during testing. 

Both the pressure rake and total pressure probe were securely mounted to the traverse and 

checked for vibration at a flow velocity of 5 m/s. No discernable vibration of either measurement 

device was detected. 
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10 CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions 

 A novel process to develop the most biologically accurate model of a slotted primary 

feather geometry constructed to date was investigated and defined using a combination of 3D 

scanning, 3D printing and CAD technologies. To test the derived process, an aerodynamic test 

model was successfully created and tested in the Cal Poly low speed wind tunnel at a flow velocity 

of 5 m/s and wing angle of attack of 10°. Flow characterization was carried out using a combination 

of smoke and laser visualization coupled with total pressure rake and total pressure probe testing.  

 Before beginning testing, characterization of several airfoil sections generated using 3D 

scan data of a Brown Pelican wing was carried out. The resulting measurements were compared to 

an existing study detailing the morphology of the Australian Pelican (Pelecanus conspicillatus). 

While several discrepancies did exist, the resulting measurements correlated well with the results 

of the prior study and with published literature detailing the skeletal and muscular layout of the 

wings of Brown Pelicans, providing a high degree of confidence regarding the representativeness 

and veracity of the preserved Brown Pelican wing. However, the specimens compared here should 

not be assumed to be wholly representative of both pelican species, but rather two distinct 

individuals. Additional studies will need to be conducted to obtain more average measurements 

and airfoil sections for comparison. 

Flow visualization at a distance of 0.2 m downstream of the model revealed that vortices 

were created by multiple feather tips as expected. In addition, a large-scale pressure gradient caused 

by the generation of high pressure under the wing and lower pressure over the wing caused the 

airflow above the primary feathers to curve inboard towards the wing root, while the flow below 

the feathers was simultaneously deflected outwards. This visualization testing provided invaluable 

data and provided crucial information that was used to clarify results suggested by later pressure 

tests. 
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 Aerodynamic testing using a total pressure rake at a distance of 0.2 m downstream 

confirmed the presence of multiple clearly defined vortex structures in the wake of the model. 

These were visualized by plotting the velocity ratio Vx/Vx∞, or the ratio of the local velocity along 

the axis of the wind tunnel at the probe tip to the free-stream velocity. Of particular note was the 

position of the vortices created by the first and second feather. Both vortices were deflected 

upwards and to the right, correlating well with the flow deviation around the primary feathers noted 

during smoke visualization experiments. However, some testing difficulties lead to additional 

pressure testing being carried out using a total pressure probe. 

 Subsequent testing using a total pressure probe at a similar sampling plane and flow 

velocity provided a marked increase in resolution and data quality. A plot of the velocity ratio 

Vx/Vx∞ was again created and compared to previous pressure rake results. While the positioning of 

each vortex and the surrounding low pressure areas correlated very well with results produced 

during prior testing, the relative strength of each vortex structure was slightly higher than predicted 

by the pressure rake by a velocity ratio factor of approximately 0.10. This result is explained by the 

relative coarseness of the total pressure probe test when compared to the total pressure rake test 

and it is likely that the core of vortex 1 was not adequately captured by the probe. 

 A final total pressure probe test at a distance of 0.1 m downstream yielded results consistent 

with the previous two tests. However, the velocity ratio distribution of each vortex core was found 

to be significantly lower than that recorded at a distance of 0.2 m by a velocity ratio of 

approximately 0.3. This is likely due to the fact that the vortices have had less time to mix with the 

free stream flow, leading to a vortex core velocity that is much closer to zero in the rotational 

direction. As the vortex structures propagate downstream, the rotational velocity will be slowly 

converted to free-stream velocity, which subsequently results in a higher velocity ratio. In addition, 

the total pressure probe used is only capable of resolving flow velocity along the axis of the wind 
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tunnel. Because the flow velocity in these newly-formed vortices is primarily rotational instead of 

free-stream, the velocity resolved by the total pressure probe will appear to be lower. 

 An additional study was carried out to investigate the flex of a Brown Pelican primary 

feather at various flow velocities, angles of attack and sweep angles. The results of this study may 

be found in Appendix A. 

 

10.2 Simplifications and Recommendations for Future Work 

 This study focuses on characterizing the aerodynamic effects of a single, static geometry 

of slotted primary wing tip feathers of the Brown Pelican. In reality, avian feathers are dynamic 

structures and can not only be articulated by the pelican’s skeletomuscular system, but may also 

twist and flex under aerodynamic loading. A prime example of this can be found in the primary 

feather deflection experiment described in Appendix A. Future studies will investigate different 

Brown Pelican primary feather configurations and flow velocities in an effort to characterize the 

effect of feather position on vortex generation and potential drag reduction in various flight 

configurations. A properly calibrated five-hole probe could provide valuable data regarding the 

vorticity downstream of the model, further clarifying the strength of each vortex. 

It should be noted that all primary feathers on the test model were created using the single 

primary feather as reference. In actuality, each primary feather has a slightly different geometry (as 

can be seen in Figure 6). Additionally, the wing and feathers were modeled as perfectly smooth 

objects, which is certainly not the case for their biological counterparts. Future studies will 

investigate various surface textures mimicking that of an avian feather, with the textures either 

created during the 3D printing process or as a secondary operation.  

 Finally, 3D scans of the wing and primary feather of a California Condor obtained during 

this project could ultimately lead to a similar series of studies investigating the aerodynamic 

characteristics of the condor’s wing tip feathers. The model creation process, analytical tools and 
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wind tunnel testing results outlined here provide a strong foundation for the continued elucidation 

of our understanding of the aerodynamics of avian flight and the potential aerodynamic benefits 

offered by the slotted primary feather geometry. 
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APPENDICES 

 

A. Feather Deflection Study 

 In the case of this study, the aerodynamic test model can essentially be assumed to be a 

rigid structure. In reality, avian wings and feathers are dynamic structures with a highly variable 

morphology based on coordinated movement provided by the skeletomuscular system and the twist 

and flex of individual feathers during flight. To better understand the deflections experienced by 

the primary feathers of Brown Pelicans in flight and to gather information for possible future 

projects, a simple aerodynamic study was conducted in the Cal Poly low speed wind tunnel.  

 A Brown Pelican primary feather (P-9 on the left wing, second feather from the front) 

provided by the Santa Barbara Museum of Natural History was held by a small clamp stand. This 

stand was mounted in the wind tunnel such that the feather was centered in the test section laterally 

and as close to the test section centerline as possible vertically. The quill was wrapped with a rubber 

band and a strip of 1 cm thick foam tape to lessen the force exerted by the clamp jaws on the feather 

and to prevent any potential damage or movement.  

 The feather was tested in four different configurations: at a nominal 0° angle of attack 

(where the vane of the feather was placed as flat as possible), a slightly positive angle of attack, a 

slightly negative angle of attack and 0° angle of attack with approximately 12° of sweep. After 

focusing the camera at the correct area using a rectangular reference grid, images were taken using 

two different cameras to obtain both a side view and top view. The results of each test are presented 

below. Each square of the measurement grid represents 1 cm x 1 cm. 
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a)     b)   

a)        b)   

Figure A.1. Side and top views of a Brown Pelican primary feather at 0° angle of attack: a) flow 

velocity of 5 m/s and b) flow velocity of 10 m/s. 
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Between the 5 m/s and 10 m/s configuration, the feather tip deflects approximately 6 cm 

upwards and 2 cm aft. Note that at the pelican’s cruising speed of 10 m/s, the feather displays a 

significant amount of flex, which is likely due to the lift generated. A slight amount of sweep during 

loading is clearly visible from the top view as well, though this occurs gradually over the span of 

the feather unlike sweep in a conventional aircraft. 
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a)      b)   

c)   

a)     b)     c)   

Figure A.2. Side and top views of a Brown Pelican primary feather at a slightly positive angle of 

attack: a) wind off, b) flow velocity of 5 m/s and c) flow velocity of 10 m/s. 
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Between the wind off and 10 m/s configuration, the feather tip deflects 8.5 cm upwards 

and 3 cm aft, approximately 45% more than the 0° angle of attack case. In addition to the lift 

generated by the feather, airflow impingement on the underside of the feather likely increases the 

amount of deflection when compared to the previous case. As before, a slight amount of sweep can 

be observed from the top view. 
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a)    b)   c)  

 

a)     b)     c)   

Figure A.3. Side and top views of a Brown Pelican primary feather at a slightly negative angle of 

attack: a) wind off, b) flow velocity of 5 m/s and c) flow velocity of 10 m/s. 
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 When placed at a slightly negative angle of attack, the feather tip deflects approximately 

1.5 cm downwards and 0.2 cm aft. While using a positive angle of attack led to a large amount of 

vertical flex, a negative angle of attack clearly leads to significantly less flex. These results are to 

be expected as feathers are rarely loaded in this fashion and are more resistant to flexing in this 

direction. The deflection in this case is primarily due to the impingement of the flow on the upper 

surface of the feather. 
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a)     b)           

c)   

a)     b)     c)   

Figure A.4. Side and top views of a Brown Pelican primary feather at 0° angle of attack and 12° 

backwards sweep: a) wind off, b) flow velocity of 5 m/s and c) flow velocity of 10 m/s. 
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 In this configuration, the feather tip deflects approximately 6.5 cm upwards and 3 cm aft. 

Depending on the gliding configuration of the pelican, it is not at all unusual to observe primary 

feathers with some degree of rearwards sweep. At a flow velocity of 10 m/s, the familiar 

straightening of the feather is visible. Additional sweep is visible under load, though this too 

appears gradually over the span of the feather. 

Clearly, the primary feathers of the Brown Pelican exhibit significant flex under 

aerodynamic loading. While the aerodynamic test model that was constructed exhibits virtually no 

flex, other 3D printing materials exist that may allow flex similar to that of a Brown Pelican feather 

while maintaining structural rigidity. Alternative prototyping methods could also be considered. 

Future studies will need to be conducted if more accurate test models are to be constructed. 
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B. Engineering Drawings 
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C. Sectioner3D MATLAB Script 

%Sectioner3D.m 

%David S Martin 

%Graduate Student Researcher 

%California Polytechnic State University, San Luis Obispo 

%1/12/2017 

 

%Sectioner3D imports a .txt file of coordinate data sorted in 

%ascending/descending order along a vector and outputs a user-

%specified number of point cloud sections along that vector. 

  

%USER INPUTS: 

  

%InputFileName is the name of the .txt file to be read in. This 

%must be specified in string format. The file should be sorted 

%numerically by a vector of your choice (typically X, Y, Z). 

%NumRows is the number of rows of data to be read in. 

%SampleSize sets the number of data points obtained for each wing 

section. 

  

%User Input------------------------------------------------------ 

  

InputFileName='Pelican_Feather_SortedY.txt'; 

NumSect=15; %ODD NUMBERS ONLY, number of sections to take 

SSize=500; %Sample size 

OutputFileName = 'Pelican_Feather_Sections.out'; 

  

%Program--------------------------------------------------------- 

while mod(NumSect,2)==0 

    disp('Specify an odd number of sections.') 

    disp('Script terminated.') 

    return 

end 

     

disp('Importing text file data...') 

A = textread(InputFileName); 

disp('Calculating sections...') 

  

NumRows = size(A,1); 

step = floor(NumRows/NumSect); 

hsize = SSize/2; 

  

S = zeros(SSize*NumSect,3); %Initialize S matrix 

  

%Center row of matrix A 

RangeA = abs(A(1,2)) + abs(A(NumRows,2)); 

HalfRangeA = RangeA / 2; 

MidPointA = A(1,2) + HalfRangeA; 

DeltaA = abs(A(1:NumRows,2)) - abs(MidPointA); 
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CenterRowA = knnsearch(DeltaA,0); %Find the data row 

corresponding to the geometric center of the object 

  

A1 = A(1:CenterRowA,1:3); 

A2 = A(CenterRowA:end,1:3); 

DivLength1 = floor(length(A1(1:end,1:3)) / (NumSect-

ceil(NumSect/2))); 

DivLength2 = floor(length(A2(1:end,1:3)) / (NumSect-

ceil(NumSect/2))); 

  

%Center row of matrix A1 

RangeA1 = abs(A1(1,2)) - abs(A1(end,2)); 

HalfRangeA1 = RangeA1 / 2; 

MidPointA1 = A(1,2) + HalfRangeA1; 

DeltaA1 = abs(A(1:end,2)) - abs(MidPointA1); 

CenterRowA1 = knnsearch(DeltaA1,0); %Find the data row 

corresponding to the geometric center of A1 

  

%Center row of matrix A2 

RangeA2 = abs(A2(1,2)) + abs(A2(end,2)); 

HalfRangeA2 = RangeA2 / 2; 

MidPointA2 = A(1,2) + HalfRangeA2; 

DeltaA2 = abs(A(1:end,2)) - abs(MidPointA2); 

CenterRowA2 = knnsearch(DeltaA2,0); %Find the data row 

corresponding to the geometric center of A2 

  

%Data sections 

S(1:SSize,1:3) = A(1:SSize,1:3); %Beginning section 

  

for i=1:floor(NumSect/2)-1 

    S(DivLength1*i-hsize:DivLength1*i+hsize,1:3) = 

A1(DivLength1*i-hsize:DivLength1*i+hsize,1:3); 

end 

  

S(CenterRowA-hsize:CenterRowA+hsize,1:3) =  A(CenterRowA-

hsize:CenterRowA+hsize,1:3); %Center section 

  

for i=1:floor(NumSect/2)-1 

    S(DivLength2*i-hsize:DivLength2*i+hsize,1:3) = 

A2(DivLength2*i-hsize:DivLength2*i+hsize,1:3); 

end 

  

S(SSize*NumSect-SSize:SSize*NumSect,1:3) = A(NumRows-

SSize:NumRows,1:3); %End section 

  

%Remove zero rows from S 

SFinal = S(any(S,2),:); 

  

disp('Writing output file...') 

dlmwrite(OutputFileName,SFinal,' ') 

disp('Complete.') 
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D. Total Pressure Rake Post-Processing MATLAB Script 

%Total_Rake_Map.m 

%David S Martin 

%Graduate Student Researcher 

%California Polytechnic State University, San Luis Obispo 

%6/10/2017 

  

%Test Day Ambient Conditions------------------------------------- 

  

Vinf = 5;          %Tunnel speed (m/s) 

P_amb = 100500;   %Ambient pressure (Pa) 

T = 295;   %Ambient temperature (K) 

rho = 1.186;    % Air density (kg/m^3) 

  

%Wind Off Data--------------------------------------------------- 

  

ImportInit = importdata('windoff1.mat'); 

ImportFinal = importdata('windoff2.mat'); 

WindOffInit = ImportInit.P; 

WindOffFinal = ImportFinal.P; 

  

WindOff = (mean(WindOffInit) + mean(WindOffFinal))/2; 

  

%Compile Pressure Matrix----------------------------------------- 

  

for i = 1:13 

     

    n = num2str(i); 

    s = strcat('position',n,'.mat'); 

    temp5 = importdata(s); 

    STD5Work(:,i) = std(temp5.P); 

    AVG5Work(:,i) = mean(temp5.P); 

    P5(:,i) = mean(temp5.P) - WindOff; 

     

end 

     

    P5 = P5(:,any(P5)); 

    P5 = P5(2:end,:); 

    P5(10,:) = (P5(9,:)+P5(11,:))/2; 

    P5(20,:) = P5(18,:); 

    P5(1,:) = P5(2,:); 

    STD5Work = STD5Work(2:end,:); 

    STD5 = STD5Work(:,any(STD5Work,1)); 

    AVG5Work = AVG5Work(2:end,:); 

    AVG5 = AVG5Work(:,any(AVG5Work,1)); 

    AVG5(10,:) = (AVG5(9,:)+AVG5(11,:))/2; 

     

for i = 14:26 

     

    n = num2str(i); 
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    s = strcat('position',n,'.mat'); 

    temp4 = importdata(s); 

    STD4Work(:,i) = std(temp4.P); 

    AVG4Work(:,i) = mean(temp4.P); 

    P4(:,i) = mean(temp4.P) - WindOff; 

  

end 

  

    P4 = P4(:,any(P4)); 

    P4 = P4(2:end,:); 

    P4(10,:) = (P4(9,:)+P4(11,:))/2; 

    P4(20,:) = P5(18,:); 

    P4(1,:) = P4(2,:); 

    STD4Work = STD4Work(2:end,:); 

    STD4 = STD4Work(:,any(STD4Work,1)); 

    AVG4Work = AVG4Work(2:end,:); 

    AVG4 = AVG4Work(:,any(AVG4Work,1)); 

    AVG4(10,:) = (AVG4(9,:)+AVG4(11,:))/2; 

  

for i = 27:39 

     

    n = num2str(i); 

    s = strcat('position',n,'.mat'); 

    temp3 = importdata(s); 

    STD3Work(:,i) = std(temp3.P); 

    AVG3Work(:,i) = mean(temp3.P); 

    P3(:,i) = mean(temp3.P) - WindOff; 

  

end 

  

    P3 = P3(:,any(P3)); 

    P3 = P3(2:end,:); 

    P3(10,:) = (P3(9,:)+P3(11,:))/2; 

    P3(20,:) = P3(18,:); 

    P3(1,:) = P3(2,:); 

    STD3Work = STD3Work(2:end,:); 

    STD3 = STD3Work(:,any(STD3Work,1)); 

    AVG3Work = AVG3Work(2:end,:); 

    AVG3 = AVG3Work(:,any(AVG3Work,1)); 

    AVG3(10,:) = (AVG3(9,:)+AVG3(11,:))/2; 

  

for i = 40:52 

     

    n = num2str(i); 

    s = strcat('position',n,'.mat'); 

    temp2 = importdata(s); 

    STD2Work(:,i) = std(temp2.P); 

    AVG2Work(:,i) = mean(temp2.P); 

    P2(:,i) = mean(temp2.P) - WindOff; 

  

end 
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    P2 = P2(:,any(P2)); 

    P2 = P2(2:end,:); 

    P2(10,:) = (P2(9,:)+P2(11,:))/2; 

    P2(20,:) = P2(18,:); 

    P2(1,:) = P2(2,:); 

    STD2Work = STD2Work(2:end,:); 

    STD2 = STD2Work(:,any(STD2Work,1)); 

    AVG2Work = AVG2Work(2:end,:); 

    AVG2 = AVG2Work(:,any(AVG2Work,1)); 

    AVG2(10,:) = (AVG2(9,:)+AVG2(11,:))/2; 

  

for i = 53:65 

     

    n = num2str(i); 

    s = strcat('position',n,'.mat'); 

    temp1 = importdata(s); 

    STD1Work(:,i) = std(temp1.P); 

    AVG1Work(:,i) = mean(temp1.P); 

    P1(:,i) = mean(temp1.P) - WindOff; 

  

end 

  

    P1 = P1(:,any(P1)); 

    P1 = P1(2:end,:); 

    P1(10,:) = (P1(9,:)+P1(11,:))/2; 

    P1(20,:) = P1(18,:); 

    P1(1,:) = P1(2,:); 

    STD1Work = STD1Work(2:end,:); 

    STD1 = STD1Work(:,any(STD1Work,1)); 

    AVG1Work = AVG1Work(2:end,:); 

    AVG1 = AVG1Work(:,any(AVG1Work,1)); 

    AVG1(10,:) = (AVG1(9,:)+AVG1(11,:))/2; 

  

q = [P1;P2;P3;P4;P5]; 

STD = [STD1;STD2;STD3;STD4;STD5]; 

AVG = [AVG1;AVG2;AVG3;AVG4;AVG5]; 

CoeffVar = STD./AVG; 

CoeffVar(40,2) = 0.0731; 

CoeffVar(60,5) = 0.1805; 

CoeffVar(61,5) = 0.1805; 

CoeffVar(62,5) = 0.1610; 

CoeffVar(63,5) = 0.1610; 

  

%Calculate Velocity Ratio---------------------------------------- 

  

V = sqrt(q*(1/(0.5*rho))); 

Vratio = V/Vinf; 
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%Plots----------------------------------------------------------- 

  

x = 0:20:240; 

y = 0:2.4242:240; 

  

[X,Y] = meshgrid(x,y); 

  

%Standard Contour Plot 

figure(1) 

contourf(X(4:end,:),Y(4:end,:),Vratio(4:end,:)) 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Velocity Ratio Distribution') 

c = colorbar; 

c.Label.String = 'V_x / V_{x\infty}'; 

c.FontSize = 10; 

colormap 'jet' 

caxis ([0.3, 1]) 

  

%Plot With Gaussian Filter Applied 

figure(2) 

Resize = imresize(Vratio(4:end,:),20,'nearest'); 

Filtered = imgaussfilt(Resize,10); 

imagesc(x,y,Filtered) 

set(gca,'YDir','normal') 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Velocity Ratio Distribution') 

c = colorbar; 

c.Label.String = 'V_x / V_{x\infty}'; 

c.FontSize = 10; 

colormap 'jet' 

caxis ([0.3, 1]) 

  

%Standard Deviation Plot 

figure(3) 

contourf(X,Y,STD) 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Standard Deviation Distribution') 

c = colorbar; 

c.Label.String = 'Standard Deviation (Pa)'; 

c.FontSize = 10; 

colormap 'hot' 

  

%Coefficient of Variance Plot 

figure(4) 

contourf(X,Y,CoeffVar) 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Coefficient of Variance Distribution') 



 
 

 
127 

 

c = colorbar; 

c.Label.String = 'Coefficient of Variance'; 

c.FontSize = 10; 

colormap 'cool' 
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E. Total Pressure Probe Post-Processing MATLAB Script - Example 

%Probe_Map_Far.m 

%David S Martin 

%Graduate Student Researcher 

%California Polytechnic State University, San Luis Obispo 

%5/9/2017 

  

%Ambient Conditions---------------------------------------------- 

  

Vinf = 5; %Tunnel speed (m/s) 

P_amb = 100300; %Ambient pressure (Pa) 

T = 293; %Ambient temperature (K) 

rho = 1.192; % Air density (kg/m^3) 

  

%Wind Off Data--------------------------------------------------- 

  

Import = importdata('Windoff.mat'); 

WindOff = Import.P; 

WindOff = mean(WindOff(:,6)); 

  

%Compile Pressure Matrix----------------------------------------- 

  

for i = 1:11 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp1 = importdata(s); 

    P1Import = temp1.P; 

    P1Work(:,i) = P1Import(:,6); 

    STD1(:,i) = std(P1Work(:,i)); 

    AVG1(:,i) = mean(P1Work(:,i)); 

    P1 = mean(P1Work) - WindOff; 

     

end 

  

for i = 12:22 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp2 = importdata(s); 

    P2Import = temp2.P; 

    P2Work1(:,i) = P2Import(:,6); 

    P2Work2 = P2Work1(:,any(P2Work1,1)); 

    STD2Work(:,i) = std(P2Work1(:,i)); 

    STD2 = STD2Work(:,any(STD2Work,1)); 

    AVG2Work(:,i) = mean(P2Work1(:,i)); 

    AVG2 = AVG2Work(:,any(AVG2Work,1)); 

    P2 = mean(P2Work2) - WindOff; 

     

end 
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for i = 23:33 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp3 = importdata(s); 

    P3Import = temp3.P; 

    P3Work1(:,i) = P3Import(:,6); 

    P3Work2 = P3Work1(:,any(P3Work1,1)); 

    STD3Work(:,i) = std(P3Work1(:,i)); 

    STD3 = STD3Work(:,any(STD3Work,1)); 

    AVG3Work(:,i) = mean(P3Work1(:,i)); 

    AVG3 = AVG3Work(:,any(AVG3Work,1)); 

    P3 = mean(P3Work2) - WindOff; 

     

end 

  

for i = 34:44 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp4 = importdata(s); 

    P4Import = temp4.P; 

    P4Work1(:,i) = P4Import(:,6); 

    P4Work2 = P4Work1(:,any(P4Work1,1)); 

    STD4Work(:,i) = std(P4Work1(:,i)); 

    STD4 = STD4Work(:,any(STD4Work,1)); 

    AVG4Work(:,i) = mean(P4Work1(:,i)); 

    AVG4 = AVG4Work(:,any(AVG4Work,1)); 

    P4 = mean(P4Work2) - WindOff; 

     

end 

  

for i = 45:55 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp5 = importdata(s); 

    P5Import = temp5.P; 

    P5Work1(:,i) = P5Import(:,6); 

    P5Work2 = P5Work1(:,any(P5Work1,1)); 

    STD5Work(:,i) = std(P5Work1(:,i)); 

    STD5 = STD5Work(:,any(STD5Work,1)); 

    AVG5Work(:,i) = mean(P5Work1(:,i)); 

    AVG5 = AVG5Work(:,any(AVG5Work,1)); 

    P5 = mean(P5Work2) - WindOff; 

     

end 

  

for i = 56:66 
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    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp6 = importdata(s); 

    P6Import = temp6.P; 

    P6Work1(:,i) = P6Import(:,6); 

    P6Work2 = P6Work1(:,any(P6Work1,1)); 

    STD6Work(:,i) = std(P6Work1(:,i)); 

    STD6 = STD6Work(:,any(STD6Work,1)); 

    AVG6Work(:,i) = mean(P6Work1(:,i)); 

    AVG6 = AVG6Work(:,any(AVG6Work,1)); 

    P6 = mean(P6Work2) - WindOff; 

     

end 

  

for i = 67:77 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp7 = importdata(s); 

    P7Import = temp7.P; 

    P7Work1(:,i) = P7Import(:,6); 

    P7Work2 = P7Work1(:,any(P7Work1,1)); 

    STD7Work(:,i) = std(P7Work1(:,i)); 

    STD7 = STD7Work(:,any(STD7Work,1)); 

    AVG7Work(:,i) = mean(P7Work1(:,i)); 

    AVG7 = AVG7Work(:,any(AVG7Work,1)); 

    P7 = mean(P7Work2) - WindOff; 

     

end 

  

for i = 78:88 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp8 = importdata(s); 

    P8Import = temp8.P; 

    P8Work1(:,i) = P8Import(:,6); 

    P8Work2 = P8Work1(:,any(P8Work1,1)); 

    STD8Work(:,i) = std(P8Work1(:,i)); 

    STD8 = STD8Work(:,any(STD8Work,1)); 

    AVG8Work(:,i) = mean(P8Work1(:,i)); 

    AVG8 = AVG8Work(:,any(AVG8Work,1)); 

    P8 = mean(P8Work2) - WindOff; 

     

end 

  

for i = 89:99 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp9 = importdata(s); 
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    P9Import = temp9.P; 

    P9Work1(:,i) = P9Import(:,6); 

    P9Work2 = P9Work1(:,any(P9Work1,1)); 

    STD9Work(:,i) = std(P9Work1(:,i)); 

    STD9 = STD9Work(:,any(STD9Work,1)); 

    AVG9Work(:,i) = mean(P9Work1(:,i)); 

    AVG9 = AVG9Work(:,any(AVG9Work,1)); 

    P9 = mean(P9Work2) - WindOff; 

     

end 

  

for i = 100:110 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp10 = importdata(s); 

    P10Import = temp10.P; 

    P10Work1(:,i) = P10Import(:,6); 

    P10Work2 = P10Work1(:,any(P10Work1,1)); 

    STD10Work(:,i) = std(P10Work1(:,i)); 

    STD10 = STD10Work(:,any(STD10Work,1)); 

    AVG10Work(:,i) = mean(P10Work1(:,i)); 

    AVG10 = AVG10Work(:,any(AVG10Work,1)); 

    P10 = mean(P10Work2) - WindOff; 

     

end 

  

for i = 111:121 

     

    n = num2str(i); 

    s = strcat('Position',n,'.mat'); 

    temp11 = importdata(s); 

    P11Import = temp11.P; 

    P11Work1(:,i) = P11Import(:,6); 

    P11Work2 = P11Work1(:,any(P11Work1,1)); 

    STD11Work(:,i) = std(P11Work1(:,i)); 

    STD11 = STD11Work(:,any(STD11Work,1)); 

    AVG11Work(:,i) = mean(P11Work1(:,i)); 

    AVG11 = AVG11Work(:,any(AVG11Work,1)); 

    P11 = mean(P11Work2) - WindOff; 

     

end 

  

q = [P11;P10;P9;P8;P7;P6;P5;P4;P3;P2;P1]; 

STD = [STD11;STD10;STD9;STD8;STD7;STD6;STD5;STD4;STD3;STD2;STD1]; 

AVG = [AVG11;AVG10;AVG9;AVG8;AVG7;AVG6;AVG5;AVG4;AVG3;AVG2;AVG1]; 

CoeffVar = STD./AVG; 
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%Calculate Velocity Ratio---------------------------------------- 

  

V = sqrt(q*(1/(0.5*rho))); 

Vratio = V/Vinf; 

  

%Plots----------------------------------------------------------- 

  

x = 0:20:200;  

y = 0:20:200; 

  

[X,Y] = meshgrid(x,y); 

  

%Standard Contour Plot 

figure(1) 

contourf(X,Y,Vratio) 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Velocity Ratio Distribution') 

c = colorbar; 

c.Label.String = 'V_x / V_{x\infty}'; 

c.FontSize = 10; 

colormap 'jet' 

caxis ([0.4, 1]) 

  

%Plot With Gaussian Filter Applied 

figure(2) 

Resize = imresize(Vratio,20,'nearest'); 

Filtered = imgaussfilt(Resize,10); 

imagesc(x,y,Filtered) 

set(gca,'YDir','normal') 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Velocity Ratio Distribution') 

c = colorbar; 

c.Label.String = 'V_x / V_{x\infty}'; 

c.FontSize = 10; 

colormap 'jet' 

caxis ([0.4, 1]) 

  

%Standard Deviation Plot 

figure(3) 

contourf(X,Y,STD) 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Standard Deviation Distribution') 

c = colorbar; 

c.Label.String = 'Standard Deviation (Pa)'; 

c.FontSize = 10; 

colormap 'hot' 
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%Coefficient of Variance Plot 

figure(4) 

contourf(X,Y,CoeffVar) 

xlabel('Lateral Location (mm)') 

ylabel('Vertical Location (mm)') 

title('Coefficient of Variance Distribution') 

c = colorbar; 

c.Label.String = 'Coefficient of Variance'; 

c.FontSize = 10; 

colormap 'cool' 

 


