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Enhancing Decision Making 
by Implementing Likelihood 

Alarm Technology in 
Integrated Displays 

Rylan M. Clark & 
Ernesto A. Bustamante 

University of Idaho 

Complex environments with automated systems, such as aircraft cockpits and nuclear 
control rooms, require critical decisions to be made about human intervention. Human 
monitors operating in these roles must interact with copious amounts of information. 
Decision support tools within integrated displays, especially alarms, aid people in 
monitoring these systems by capturing their attention to focus on possibly dangerous 
conditions. Once signaled, monitors choose whether they wish to acknowledge the alarm 
and search for more process status, or ignore it. This study investigates the impact of 
likelihood alarm technology versus traditional binary alarms on decision making accuracy 
and response bias in this acknowledgement phase using a two-stage Signal Detection 
Model. Participants performed two low-fidelity, twenty-min flight missions consisting of 
dual primary tasks, compensatory tracking and fuel management, and a secondary 
engine-monitoring task. Probability of engine malfunctions (10%, 90%) and type of alarm 
system (Binary vs. Likelihood) were manipulated for each participant. It was 
hypothesized that the probability of engine malfunctions (P), and likelihood alarm 
technology (LAT) would interact with decision making accuracy. Additionally, a main 
effect of P on decision making bias was expected. Results showed that LAT significantly 
increased accuracy, especially under low P conditions, but had no effect on response 
bias. The results of this study support prior literature's findings on the superiority of LAT 
over binary alarms in complex tasks characterized by high workload, translating to better 
monitoring performance for many practical applications. 

Technology has granted the ability to allocate 
functions, traditionally carried out by humans, to 
automated systems. Nearly every facet of our 
infrastructure is impacted by automation, as its 
supplements to human performance are well 
established (Sheridan, 2002; Sheridan & 
Parasuraman, 2006). For examples of 
implementation, consider nuclear power, ground 
transportation, air traffic control, aviation, and 
collision-warning systems (Parasuraman, Hancock, 
& Olofinboba, 1997), as well as medical diagnosis 
(Li, Lin, & Chang, 2004), luggage screening (Drury,  

Ghylin, & Holness, 2006), and cockpit display 
monitoring (Bailey & Scerbo, 2005). 
Automation and Human Performance 

Automation harnesses computational power to 
perform tasks otherwise apportioned to human 
operators, with the intent of a higher performing 
human-machine system. This is especially true in 
complex environments characterized by high levels 
of workload. Humans and computers have unique 
strengths for specific tasks that, once identified, can 
be properly merged into a smoothly functioning 
team. For instance, the employment of alarms in 
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complex task scenarios has augmented human 
performance as well as safety (Sorkin, Kantowitz, & 
Kantowitz, 1988). Nevertheless, as the field of 
human factors demonstrates, there is always room 
for improvement, and concerns over traditional 
binary alarm systems (BAS) have rallied support for 
new technology. Likelihood alarm technology (LAT) 
provides differing alarm signals based on the 
predicted validity ofthere being an actual problem. 
One main concern with BAS is unreliability. LAT 
offers superior decision support because human 
monitors tend to match their response rates to the 
indicated probability of a real problem existing. This 
study provides evidence for the superiority of LAT, 
in terms of decision making, over traditional BAS. 

A definite benefit of automated systems is 
executing specific tasks in a more accurate and 
reliable manner than sole human operators. 
However, it is important to understand that 
automation must be applied properly, considering 
both its own and the human operator's limitations. 
Empirical research shows that humans tend to trust 
overly-reliable alarm systems too much, becoming 
complacent to the extent that performance degrades 
(Parasuraman & Riley, 1997; Wickens and Dixon, 
2007). Wickens and Dixon also remind us that when 
diagnostic automation is too imperfect and unreliable 
(their analysis concludes .70), it can literally be 
useless, or even result in worse than baseline human 
performance. Judicious function allocation among 
humans and automation is required to profit from the 
merits of automated systems. Sorkin and Woods 
(1985) also advocate the importance of designing 
automated monitoring systems around total human-
machine performance instead of just automated 
subsystem performance. 
System Operators to System Monitors 

Along with procuring traditional operator 
functions, automation has qualitatively transformed 
the role of people in complex tasks from operators 
to monitors (Parasuraman & Riley, 1997). 
Technological development has changed the human 
role to chiefly that of supervisory control (Sheridan 
& Hennessy, 1984; Woods, 1982), whose main 
function is to monitor a number of automated 
displays. Automated factories using extensive 
robotics, the flight decks of commercial aircrafts,  

and power plant control rooms are examples 
described by Sorkin and Woods (1985) of 
decision-making environments in which human 
operators act an alerted-monitor role. Xiao and 
Seagull (1999) assert that monitoring is not a passive 
task but rather the act of maintaining continual 
situational awareness. In these settings, an 
automated monitor subsystem assists human 
operators by executing preprogrammed decisions 
about system conditions. These decisions are made 
based on inputs, such as incoming data and process 
state, which are weighed against expectations of 
what constitutes normal and abnormal operating 
conditions (Woods, 1995). This shift of humans' 
roles into a supervisory monitoring state necessitates 
dynamic fault management. 
Dynamic Fault Management 

The above examples of environments where 
humans interact with and rely on automation are 
permeated with what is called dynamic fault 
management. As the name denotes, dynamic fault 
management represents a situation where a complex 
system's conditions are being monitored to identify 
and address problems that arise. In complex 
environments, such as the control room of a nuclear 
power plant, there are safety-critical tasks that 
demand more resources than a lone human operator 
can provide. It is important to monitor the conditions 
of a nuclear reactor for more than just safety 
reasons, as millions of people are relying on it for 
power, and the monetary costs of compromising 
system integrity are extreme. Humans are infamous 
for conducting poor dynamic fault management. This 
occurs for a variety of reasons, many being related 
to the problem of sustaining vigilance while 
monitoring some type of display. Decision support 
tools (DSTs) were created to combat this 
inadequacy. In addition, legal concerns and 
technologies' rapid development compel system 
designers to incorporate alarm systems into dynamic 
fault management situations. Alarm systems are a 
type of DST that are discussed below. 
Decision Support Tools 

Previously active system users, human operators' 
now-common role of vigilant attention tasks in 
complex environments is made even more difficult 
by high levels of workload. Consequently, DSTs 
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were created to aid human monitors for these types 
of environments. Alarm systems are a major form of 
DST. According to Xiao and Seagull (1999), they 
are affixed to displays and devices on human-
machine interfaces (out of direct consideration to 
human performance limitations) to report process 
status. Woods (1995) argues the alarm role in 
dynamic fault management settings as that of 
functioning to create an attentional capture effect on 
alerted human monitors. The usefulness of alarm 
systems lies in their plausible ability to enhance 
human performance in numerous complex tasks 
(Bustamante & Bliss, 2004; Gupta, Bisantz, & 
Singh, 2002; Sorkin, Kantowitz, & Kantowitz, 
1988). Especially in complex systems, human 
operators may become overwhelmed with status 
information that taxes memory, attention, and 
decision-making capacities (Fallon, Bustamante, Ely, 
& Bliss, 2005). In this study, two types of DST's we 
compared, BAS and LAS, are discussed after the 
succeeding section. We used the EICAS engine 
monitoring alarm system, which is currently being 
used in commercial aviation, and manipulated it as 
either a binary or likelihood system with 10% or 
90% probabilities of engine malfunctions. 
Positive Predictive Value of Alarm Systems 

Alarm signal 'reliability' is a common term for 
positive predictive value (PPV). PPV is defined as 
the conditional probability that given an alarm, a 
problem actually exists (Bustamante & Bliss, 2005). 
A phenomenon known as 'probability matching' 
occurs when people approximately match their 
response rate to a given alarms' PPV (Bliss, Gilson, 
& Deaton, 1995). For instance, a human monitor 
that knows a particular alarm system's PPV is 80% 
will tend to acknowledge about four out of five 
alarm signals. Similarly, if he or she knows an alarm 
system's PPV to be 20%, then roughly one in five 
signals will get acknowledged. Evidence for altered 
acknowledgement frequencies, motivated by PPV, 
has been documented by researchers (Bliss & Dunn, 
2000; Bliss, Gilson, & Deaton, 1995; Getty, Swets, 
Picket, & Gonthier, (1995). PPV is dependent on 
three factors: accuracy, threshold, and the 
probability of problematic conditions. Problematic 
condition probabilities (or base rates) cannot be 
manipulated by alarm designers, but thresholds and  

accuracy can. Accuracy is now a minor issue owing 
to sophisticated fault diagnosis algorithms and sensor 
technologies that are so highly developed as to 
operate nearly perfectly. Threshold is the 
predetermined limit ofthese sensors and algorithms 
that, when exceeded by system-condition cues, 
trigger an alarm's signal. To ensure that most 
dangerous system conditions are detected, alarm 
designers are forced to set thresholds at low levels in 
a so called "fail-safe approach." This means that 
given an actual problem, there is a very high 
probability that the alarm will transmit it to the human 
monitor. However, given an alarm, the probability of 
an actual problem is quite low, because a whole 
range of system conditions may exist falling above 
the threshold but not necessarily indicating a real 
problem. Probability of problematic conditions, 
PPV's third determining factor, is self explanatory. 
Also known as the 'base rate' of dangerous 
conditions, this factor represents the likelihood of 
dangerous conditions actually occurring. For 
instance, take an overly sensitive car alarm that 
activates nearly every day. Most of its alerts are 
false alarms because the probability, or base rate, of 
dangerous conditions may only be 5%. That is, only 
five percent of the time will there actually be an 
attempted break in—which is what the car owner 
purchased the alarm for. It is not difficult to identify 
the conundrum of setting thresholds too 
conservatively in systems with low base rates; false 
alarms (FAs) are frequent. A high number of FAs 
impart numerous undesirable effects on the human 
monitor. Stressed factory workers may easily learn 
to ignore various systems known to generate many 
FAs, figuring they are probably not indicating a true 
problem among more pressing issues. PPV is often 
low for alarm systems due to low base rates in most 
settings, and preprogrammed sensitive thresholds. 
The result of alarms' undesirable ratio of FAs to true 
alarms (TAs) is explained in more detail later. 
Binary Alarm Technology 

Sorkin & Woods (1985) parsimoniously explain 
BAT: automated monitors display messages to the 
system operator when a preset threshold value is 
surpassed by measured conditions. Engineers have 
traditionally utilized this alerting approach, which has 
now come to be known as the binary alarm 
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tradition. BAT produces only one type of alarm 
signal, regardless ofthe underlying conditions. When 
that preset threshold (determined by system 
designers) is violated, an alarm is activated. This is a 
problem when considering how most systems emit a 
high amount of false alarms. Out-of-the-loop human 
monitors encounter much trouble trying to distinguish 
true from false alarms. In fact, Sorkin and Woods 
(1985) go on to cite that BAT monitors often have 
problems identifying, prioritizing, and reacting to 
novel situations with this type of alarm (Banks & 
Boone, 1981; Cooper, 1977; Kragt & Bonten, 
1983). Decision making under circumstances of 
complexity and stress becomes further confounded 
when considering monitors' out of the loop role. 
Likelihood Alarm Technology 

As opposed to BAT, LAT emits various signals 
indicating PPVs that depend on the extent of 
sensitivity-threshold violation. Sorkin, Kantowitz, & 
Kantowitz (1988) explain LAT as an automated 
monitoring system that encodes dangerous event 
likelihood into an alerting signal for the human 
operator. In their study of LAT displays, results 
showed improved primary and secondary task 
performance as well as decision making impacts 
without compromising attentional load. In a previous 
study, Sorkin & Woods (1985) contend that if an 
automated subsystem could provide multiple criteria 
indicating the conservatism ofthreshold violation, 
human monitors could re-evaluate resource 
allocation strategies. Support exists for the 
contention that people change their responsiveness 
depending on differing alarm system outputs (Meyer 
& Ballas, 1997; Robinson & Sorkin, 1985), which 
is the basis for LAT development. This is useful in 
situations characterized by high workload, where 
several tasks must be monitored and limited 
attention must be allocated based on critical 
decisions. Summarily, LAT is valuable because it 
empowers human monitors with PPV knowledge 
that they can use to respond more often to true 
alarms compared to false alarms (Bustamante & 
Bliss, 2005; Bustamante, Fallon, & Bliss, 2005). 
Display Integration and Out-of-the-Loop 
Performance 

Again, it is imperative to apportion automation's 
roles accordingly. Improper function delegation  

within complex tasks, such as an aircraft cockpit, 
may cause more mayhem then no automation at all. 
Two issues of concern here are reliance, explained 
earlier in concurrence with PPV, and compliance. 
Compliance is the degree to which monitors follow 
alarm advisories (which are typically unreliable given 
low PPV). Given low base rates and consequent 
PPV found in most task settings, display integration 
has become popular. Display integration is the 
inclusion of many displays into one or few, based on 
the proximity compatibility principle. This principle, 
as explained by Wickens & Carswell (1995), 
declares that displays relevant to a similar mental 
operation or task should be located close together. 
Although display integration has many merits, 
operator compliance becomes an issue because it is 
difficult for the human monitor to know what is 
actually happening within the system. This is known 
as out-of-the-loop performance; where the human 
monitor/operator is one step removed from the 
system with an alarm conveying no information 
beyond one alarm signal. An overly compliant, or 
completely untrusting, monitor cannot be expected 
to make premium decisions under complex, high 
workload situations where the only information 
available is that an alarm threshold has been 
violated. Performance may suffer when users reduce 
compliance and begin to distrust alarm technology 
(Parasuraman & Riley, 1997). 
Alarms and the "Cry-Wolf Effect" 

To improve alarm effectiveness, consider the 
following. Since highly developed fault diagnosis 
algorithms and sensor technologies solve the 
accuracy factor of alarms, and base rates of 
problematic conditions are out of human's control, 
let's analyze threshold sensitivity. Traditional binary 
alarm displays emit one signal, regardless of how 
extreme thresholds have been violated, and 
minimally indicative of actual urgency. A large 
proportion ofBATs are unreliable because they emit 
so many false alarms (Getty, Swets, Pickett, & 
Gonthier, 1995). As Bustamante, Fallon, & Bliss 
(2005) point out, a common user response to this 
unreliability is distrust in the alarm- known as the 
"cry-wolf effect" (Bremitz, 1983). Obviously, 
human monitors working in vital roles would benefit 
from trustworthy alarm technology. Monitors falling 
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victim to the cry wolf effect may ignore true alarms, 
risking system integrity and even people's lives. 
Bustamante, Fallon, & Bliss (2005) go on to 
propose that one way to empower users in better 
distinguishing FAs from TAs is an alerting display 
that presents the likely validity of each alarm signal. 
LAT accomplishes this vision through urgency 
mapping (Edworthy & Adams, 1996), providing 
monitors with an indication of how hamdous system 
conditions may be based upon the degree of 
sensitivity-threshold violation. Decision making 
accuracy and response bias were calculated based 
on the a b Signal Detection Theory developed by 
Bustamante,A.E. (under review), which is specially 
adapted to these measures. 
Goal of this research 

This study sought to analyze the effects of LAT 
on human monitors' decision making during use of 
aviation displays in a complex, multi-task, flight 
simulation. Participants' decisions were analyzed in 
terms of response bias and accuracy using a two 
stage decision making model introduced by 
Bustamante, Bliss, and Newlin (2008). Dangerous 
condition probabilities, alarm reliability, and LAT 
versus BAT were manipulated in an effort to 
examine how much LAT impacts decision making. 
Hypothesis 

It was hypothesized that the probability of engine 
malfunction (P), and LAT would interact with 
decision making accuracy. Additionally, a main effect 
of P on decision making bias was expected. 
Manipulating P by default changes the EICAS 's 
PPV, so participant response rates were expected to 
parallel reliability levels, a tendency first noted by 
Dorfman (1969), and later by Bliss, Gilson, & 
Deaton (1995). A main effect of P on bias, which is 
the tendency of participants to affirmatively respond, 
was expected based on prior research by 
Bustamante & Bliss (2005) that found workload to 
have main effects on overall and true alarm response 
rates. 

Method 

Experimental Design 
A 2 x 2 between-groups design was used for this 

study. The reliability of the alarm system was 
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manipulated at two extremes ofthe continuum (i.e., 
10% and 90%) following a similar methodology as 
Bustamante, Bliss, and Anderson (2007). The use of 
LAT was manipulated following Bustamante 
(2005)'s methodology comparing two types of 
alarm systems (i.e., a BAS and a LAS). 
Participants 

A power analysis revealed that approximately 40 
participants would be necessary to obtain 
statistically significant effects at a .05 alpha level, 
assuming a power of .80 and a medium effect size 
for each factor (Cohen, 1988). Therefore, 40 (20 
females, 20 males) undergraduate and graduate 
students participated in this study. Participants 
ranged from 18 to 30 years of age (M= 21.90, SD 
= 3.28). They all had normal or corrected-to-normal 
vision and hearing. Participants were compensated 
with one and half research credits as a form of 
incentive to participate in this study. In addition to 
this, a $25.00 gift card was awarded to the 
participant with the best performance to motivate 
participants to perform at their maximum level. 
Materials and Apparatus 

This study took place in a laboratory with an 
average ambient noise level of 45 dB(A). As part of 
this experiment, participants completed a simulated 
roundtrip flight. Each simulated flight leg lasted 20 
min. To complete each simulated flight leg, 
participants had to perform two main flight tasks in 
addition to a secondary engine-monitoring task. 

Primary Flight Tasks. The primary flight tasks 
were simulated using the Multi-Attribute Task 
Battery (MATB) designed by Comstock and 
Arnegard (1992) and consisted of a dual-axis 
compensatory-tracking task and a resource-
management task (see Figure 4). 

Compensatory-Tracking Task. The main 
purpose of this task was to simulate the primary 
function that pilots need to perform to fly an 
airplane, which is to maintain level flight. Participants 
were tasked with keeping a circle that randomly 
fluctuated along the vertical and horizontal axes as 
close to the centre as they could. 

Resource-Management Task. The main purpose 
ofthis task was to simulate another important 
function that pilots need to perform as they fly an 
airplane, which is to make sure that they have an 



optimal level of fuel in their tanks. Participants were 
required to keep an optimal level of fuel on the two 
main tanks, while preventing any of the secondary 
tanks from being depleted. 

Secondary Engine-Monitoring Task. The main 
purpose of this task was to simulate a crucial 
secondary function that pilots need to perform to 
maintain flight safety, which is to ensure that they 
have at least one fully functioning engine at all times. 
Participants performed this task with the aid of a 
simulated Engine Indicating and CrewAlerting 
System (EICAS), which varied in its degree of 
reliability (i.e., 10% or 90%), which was 
manipulated through changes in the probability of 
engine malfunctions, and the use of LAT (i.e., BAS 
or LAS), which was implemented following the 
same methodology as the one used by Bustamante 
(2005). Participants were tasked with either 
acknowledging or ignoring alarms emitted by the 
EICAS. Each alarm was composed by a visual 
stimulus (see Figure 5) as well as an auditory 
stimulus, which was presented to participants at 55 
dB(A) through a set of sound-attenuated 
headphones. In case they decided to acknowledge a 
particular alarm, they gained access to additional 
system-status information (see Figure 6) to help 
them make a corrective action when necessary. 
Procedure 

Participants came to the laboratory individually. 
First, the experimenter greeted them and provided 
them with the informed consent form. Second, the 
experimenter asked participants to silence or turn off 
their cellular phones if they had one. Third, the 
experimenter assigned each participant an 
identification number. Fourth, the experimenter 
asked participants if they had any questions 
regarding the nature ofthe study. Ifparticipants 
decided to participate, the experimenter asked them 
to sign and date the informed consent form. Fifth, 
the experimenter asked participants to complete the 
background and contact information form. Sixth, the 
experimenter showed participants the instructions for 
completing the study and asked them to read them 
carefully. Seventh, the experimenter instructed 
participants to place the set of stereo headphones on 
their heads and adjust them to fit comfortably. 
Eighth, the experimenter showed participants the  

familiarization screen and instructed them about 
how to use the graphical user interface of the 
program. Ninth, the experimenter showed 
participants how to navigate through the program 
to the first session and explained all the information 
displayed on the screen. Last, the experimenter 
answered any final questions participants had 
regarding the completion of the study. 

Results 

Alarm Response Accuracy 
Table 1 shows the observed means and 

standard deviations of participants' alarm response 
accuracy across all four conditions. 

A 2 x 2 between-groups ANOVA was 
conducted to examine the effects of the probability 
of engine malfunctions (.10, .90) and the type of 
alarm system (BAS, LAS) on participants' alarm 
response accuracy. Results showed a statistically 
significant interaction effect, F(1, 36) = 34.17,p < 
.01, partial 12 = .49, observed power = .1.00. 
Results also showed statistically significant main 
effects for both factors (see Table 2). 

As shown in Figure 1, the use of the LAS 
significantly increased participants' alarm response 
accuracy only when the probability of engine 
malfunctions was .10. 
Alarm Response Bias 

Table 3 shows the observed means and 
standard deviations of participants' alarm response 
bias across all four conditions. 

A 2 x 2 between-groups ANOVA was 
conducted to examine the effects of the probability 
of engine malfunctions (.10, .90) and the type of 
alarm system (BAS, LAS) on participants' alarm 
response bias. Results showed a statistically 
significant interaction effect, F(1, 36) = .06,p < 
.01, partial 12  = .00, observed power = .1.00. 
There were no other statistically significant effects 
(see Table 4). 

As shown in Figure 2, response bias did not 
vary with the type of alarm system, but did depend 
on the probability of engine malfunction. 
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Discussion 

Results demonstrate that LAT improved decision 
making given a low, realistic base rate of dangerous 
conditions. Many applied settings are characterized 
by low base rates, which just happen to be ideal for 
realizing the benefits of LAT owing to its particular 
merits during high workload. This is especially true in 
free flight aviation cockpits, the applied aim of this 
study. Furthermore, LAT had no effect on decision 
making bias but a significant positive effect on 
accuracy during high operator workload. Using the 
DM model as an assessment tool, participants 
acknowledged more true alarms and ignored more 
false alarms when assisted by LAT. According to 
Xiao & Seagull (1999), this is desirable in that high 
rates of false alarm acknowledgments (and low 
PPVs) have been empirically shown to decrease 
performance of human-machine systems (Sorkin & 
Woods, 1985; Lawless, 1994; Breznitz, 1984; 
Bliss, Gilson, & Deaton, 1995; Bliss, Dunn, & 
Fuller, 1995). 

Likelihood alarm technology has workload-
minimizing and efficiency-maximizing benefits too. 
These findings also have more implications for 
minimal attentional costs of LAT compared to BAT, 
because workload and attention are similar 
constructs (Kantowitz & Casper, 1988). Consider 
that if an alarm inflicts a high enough mental 
workload, performance decreases on other parts of 
the human-machine system too (Kantowitz & 
Casper). This is where LAT really excels, because it 
provides the monitor with a PPV that permits him/ 
her to prioritize tasks and decide whether to 
acknowledge the alarm in an effort to save cognitive 
resources, or respond and take possible action. 
Using the a-b Signal Detection Theory Model in this 
study as a more robust framework than traditional 
SDT theory allowed accuracy and response bias to 
be analyzed independently in the acknowledgement 
stage. This was advantageous because most alarm 
interactions are divided into two stages: recognition/ 
acknowledgment and corrective/evasive action. 
More research into the second stage of corrective or 
evasive action (post alarm-acknowledgement) is 
forthcoming. 

The results of this experiment, showing that 
decision making accuracy can be enhanced with 
LAT, apply to many practical domains. For instance, 
implementing LAT into the cockpits of commercial 
and military aircraft may reduce risk because of its 
positive impact on situational awareness. Tumer & 
Bajwa (1999) conducted a survey of Engine Health 
Monitoring (EI-IM) literature and concluded that 
automated EHM is hindered primarily by too much 
uncertain monitoring data and too many false alarms 
that cause humans' reluctance to rely on the system. 
This study implies that EHM systems could 
specifically benefit from likelihood alarm technology 
because of the higher decision making accuracy, 
which translates to more hits and less false alarms, 
displayed by EICAS users in the experiment. 
Additionally, display monitors interacting with LAT in 
any similar function would trust alarms more and 
better resist the cry wolf effect because of the higher 
PPV. Given high degrees of display integration with 
current automated systems, LAT's mitigation of out-
of-the-loop performance has been demonstrated 
further with this experiment's first stage analysis of 
Dr. Bustamante's a-b SDT decision making model 
of accuracy and bias. Decision support tools in all 
domains requiring similar human monitoring roles of 
dynamic fault management would better serve if 
outfitted with LAT. Considering the delicate and 
crucial delegation of tasks between humans and 
automation, discussed in the introduction, it is not a 
far leap to acknowledge the positive role that LAT 
may play in better coalescing human monitors and 
alarm systems. 

One potential limitation of this study lies in the 
low-fidelity flight simulation, which had to be so 
because of participant pool limitations. Training 
student participants to interact with EICAS in a high 
fidelity flight simulation is unreasonable because mo 
are unfamiliar with commercial aviation practices. 
Additionally, this study only examined the first stage 
of the DM model. Analyzing how humans make 
decisions under the conditions of this experiment is 
part of a larger line of research in the University of 
Idaho's Cognitive Engineering and Decision Making 
Laboratory, under direction of principle investigator 
Dr. Ernesto A. Bustamante. One intention along this 
research line is to examine the DM model's second 
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stage when gauging performance during an engine 
malfunctions-correction task. Another suggestion for 
future research is to directly assess the attentional 
costs of LAT versus BAT and task-critical 
information provisions. 
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Table 1 

Means and Standard Deviations of Participants ' Alarm Response Accuracy 

Alarm System 
BAS 	 LAS 

Probability of Engine Malfunctions 	M 	SD 	 M 	SD 

	

.10 	 0.51 	0.10 	 0.77 	0.09 

	

.90 
	

0.50 	0.00 	 0.50 	0.01 

Table 2 

Analysis of Variance Source Table for Participants' Alarm Response Accuracy 

Source 
	

df 	SS 	MS 	F 	Partia1112  

Probability of Engine Malfunctions (P) 	1.00 	0.20 	0.20 	39.63* 	.52 

Alarm System (AS) 	 1.00 	0.16 	0.16 	31.90* 	.47 

P x AS 	 1.00 	0.17 	0.17 	34.20* 	.49 

Error 	 36.00 	0.18 	0.01 

< .01 
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Table 3 

Means and Standard Deviations o Partici s ants' Alarm Res onse Bias 

Alarm System 
BAS 
	

LAS 
Pi1:)LmilLLALEngine Malfunctions 	M 	SD M SD 

 

.10 0.41 0.37 0.43 0.12 

.90 1.00 0.00 1.00 0.01 

Table 4 
Analysis of Variance Source Table for Participants ' Alarm Response Bias 

Source df SS MS F Partial 112  

Probability of Engine Malfunctions (P) 1.00 3.31 3.31 89.13* .71 

Alarm System (AS) 1.00 0.00 0.00 0.03* .00 

P x AS 1.00 0.00 0.00 0.06* .00 

Error 36.00 1.34 0.04 
*p<.01 
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Figure 1. Multi-attribute task battery. 

Figure 2. Simulated EICAS display. 

System Status 

Frlqine 1 	 Engine 2 

Temp 	 lenip 

Figure 3. System status information. 
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Figure 4. Participants' alarm response accuracy as a function of the probability of 
engine malfunctions and the type of system. 
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Figure 5. Participants' alarm response bias as a function of the probability of engine 
malfunctions. 
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