

 DEVELOPMENT OF A REMOTE IOT LABORATORY FOR CYBER PHYSICAL

SYSTEMS

By

Amee Mayur Patel

Dr. Thomas (Daniel) Loveless Dr. Donald Reising

UC Foundation Assistant Professor Assistant Professor

(Chair) (Committee Member)

Dr. Raga Ahmed

Assistant Professor

(Committee Member)

ii

DEVELOPMENT OF A REMOTE IOT LABORATORY FOR CYBER PHYSICAL

SYSTEMS

By

Amee Mayur Patel

A Thesis Submitted to the Faculty of the University of

Tennessee at Chattanooga in Partial

Fulfillment of the Requirements of the Degree

of Master of Science: Engineering

The University of Tennessee at Chattanooga

Chattanooga, Tennessee

August 2017

iii

Copyright © 2017

By Amee Mayur Patel

All Rights Reserved

iv

ABSTRACT

A remote Internet of Things (IoT) laboratory has been developed for use in teaching and

research of cyber physical systems. The laboratory is configured such that users interact via the

web to control and collect data from connected devices. The concept and technology of the remote

IoT lab is successfully demonstrated in two applications. First the laboratory is configured for

UTChattSat, a ground model small-satellite system (CubeSat) designed to enhance K-12 learning

in the space sciences. The system utilizes real-time communication and web-based user control to

create a distributed multi-user interface. Second, the laboratory is configured for a distributed

sensor network with a single-user interface. The interconnected, real time, and smart system with

embedded sensors and processors is used to provide data for assessment of current building energy

models. Finally, challenges posed by interconnected and reconfigurable systems and the

implementable future works are discussed.

v

DEDICATION

This work is dedicated to my family.

vi

ACKNOWLEDGEMENTS

I would first like to thank the supporter of this work in part, the Tennessee Higher

Education Commission (THEC) through Center of Excellence in Applied Computational Science

and Engineering (CEACSE) program. Next, I would like to thank my thesis advisor Dr. Daniel

Loveless for his continual support, encouragement, and guidance throughout this thesis. Dr.

Loveless has always been an amazing teacher, shaping and enriching my journey of graduate

school with his tireless efforts and dedication. Thank you Dr. Loveless for the most special “out-

of-this” world experiences!

 I would also like to thank Dr. Donald Reising who has been the co-advisor in this work.

Dr. Reising has always guided me through his inspirational words and experiences to not only be

a sharp technical person but also be a good person in life. I would like to thank Dr. Raga Ahmed

who has been constantly an enormous support throughout my graduate school.

I would like to thank Dr. Loveless, Dr. Reising and Dr. Raga Ahmed for reviewing this

work. Their valuable inputs in this paper had much more improvements. Also, I would like to

thank Dr. Charles Margraves to be a great support in this work. Also, I would like to thank

Department of Electrical Engineering, University of Tennessee, Chattanooga (UTC), for providing

all the support and wonderful professors. I would also thank my companions Ellis Richards, Daniel

Johnson and Mathew Joplin for making this experience more enjoyable and memorable. Also, I

would like to thank Pratiksha Patel for providing moral support and companionship at every

moment of this journey. This journey at UTC was more beautiful because of you, Pratiksha.

vii

My life and the journey at UTC as a graduate student have been always incomplete without

my family. I would like to thank my parents, parents-in-law for being a tremendous source of

inspiration and guidance. My father lives in me forever to support and inspire me. My brother, Het

has supported me in a lot of the technical aspects that I was not able to visualize. My husband,

Mayur is always at my side to encourage me and support me in all ways I ever imagined. Thank

you Mayur for being so patient and sacrificing all the time which was yours.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ...x

LIST OF FIGURES ... xi

CHAPTER

I. INTRODUCTION ...1

Overview ..1

Science Education ..2

Distributed Sensor Networks ...3

II. REMOTE IOT LABORATORY ...5

Introduction ..5

Internet of Things and Cyber Physical Systems ..5

System Structure ..8

 Single User Multi Node Interface ..8

 Multi User Single Node Interface ..9

System Components...10

 Main Controller ..10

 Sensor Controller ...10

 Hub ...11

Networking Devices...11

Inter-controller Communications ...12

 Command Word (From User) ..12

 Data Word: Single User Multi Node Interface (To User)......................................12

 Data Word: Multi User Single Node Interface (To User)......................................13

Conclusion ...15

III. EXAMPLE IMPLEMENTATION 1: UTCHATTSAT...16

Introduction ..16

 Specifications ...16

Block Diagram ...18

ix

 Adafruit Ultimate GPS ...19

 Adafruit 10-DOF ..20

Software Development...21

 Main Controller Algorithm ..21

 Sensor Controller Algorithm..23

Results ..25

 Passive Monitoring System..25

 Remote Monitor and Control ...26

Conclusion ...28

IV. EXAMPLE IMPLEMENTATION 2: DISTRIBUTED SENSOR NETWORKS29

Introduction ..29

 Specifications ...29

Block Diagram ...30

 Adafruit BME280 ..34

Main/Sensor Controller Software Development ..35

Hub Software Development ...36

Results ..38

Conclusion ...41

V. CALIBRATION ..42

Argumentation ...42

Experiment Details and Results ...43

 Experiment 1 ..44

 Experiment 2 ..49

Conclusion ...54

VI. FUTURE WORKS ...57

Single User Multi Node Interface ..57

Multi User Single Node Interface ..58

VII. CONCLUSION ..59

REFERENCES ..60

APPENDIX

A. SOFTWARE ..62

VITA ..88

x

LIST OF TABLES

2.1 Multi User Single Node Interface: Communication Protocol: Data Word

Field Description ..14

3.1 UTChattSat: Connection network for MC, SC, GPS sensor, 10-DOF sensor,

XBee, Battery ...19

4.1 DSN: Node connection network. Arduino UNO, Adafruit BME280 and XBee

interconnections for Nodes 2, 3 and 4 ...32

4.2 DSN: Node connection network. Arduino UNO, Adafruit BME280 and XBee

interconnections for Node 1 ...33

4.3 DSN: Node connection network. Arduino UNO, Adafruit BME280 and XBee

interconnections for Node 5 ...33

4.4 DSN: Sensor A through H positions in the laboratory ..34

5.1 February 2nd, 2017 Temperature Data: Mean and Standard Deviation42

5.2 Sensor Calibration Experiment 1: Accuracy and Standard Deviation48

5.3 Sensor Calibration Experiment 2: Accuracy and Standard Deviation54

6.1 Comparison of present and future high precision sensors ...57

xi

LIST OF FIGURES

1.1 Remote Collaboration: Concept Visualization ..2

2.1 Internet of Things was “Born” Between 2008 & 2009 ..7

2.2 IoT and CPS: where each lie ..7

2.3 Distributed Sensor Single User Multi Node Interface structure diagram8

2.4 Multi User Single Node Interface structure diagram ...9

2.5 Command word format for communication between Node and Hub. Each data

field separated by commas and ended with a new line character ‘\n’ in

transmission ...13

2.6 Data word format for communication between Node and Hub. Each data field

is separated by commas and ended with a new line character ‘\n’ in

transmission ...13

2.7 Multi User Single Node Interface: Data Word format. Each field is separated

by comma and ended with a new line character in transmission14

3.1 UTChattSat: 3D printed model ..17

3.2 UTChattSat: 3D exploded view ...17

3.3 UTChattSat: Block Diagram, Interfacing and implemented example of IoT

communication and passive monitoring display ..18

3.4 Adafruit Ultimate GPS Breakout Board ..20

3.5 Adafruit 10-DOF Breakout Board ...21

3.6 UTChattSat: Main Controller Software Algorithm ...22

3.7 UTChattSat: Sensor Controller Algorithm ..24

3.8 UTChattSat: Local Computer Display. The left side shows a live display of

cube orientation. The right side shows real-time plots for various entities

xii

measured at the cube location ..26

3.9 UTChattSat: Webpage for IoT applications. The webpage can be accessed in

a computer or phone...27

4.1 DSN: Block Diagram of full network for one laboratory with 8 sensing nodes

and 1 hub. Sensors A to H are connected to the sensor controllers

respectively ..31

4.2 DSN: An Arduino UNO Sensor Controller connected to an XBee S2C and a

BME280 sensor via Sparkfun Arduino Shield modified prototype area

(Node Hardware) ...31

4.3 3D view of the laboratory with DSN mounted ..32

4.4 Adafruit BME280 Sensor ..35

4.5 DSN: Node Software Development Algorithm ...36

4.6 DSN: Hub Software Algorithm ...37

4.7 Temperature plots form data measured at eight spots across the room on

February 2nd, 2017. The placement of the sensors is described in the

legend as shown in Figure 4.3..39

4.8 Pressure plots form data measured at eight spots across the room on February

2nd, 2017. The placement of the sensors is described in the legend as shown

in Figure 4.3 ...39

4.9 Humidity plots form data measured at eight spots across the room on February

2nd, 2017. The placement of the sensors is described in the legend as shown

in Figure 4.3 ...40

5.1 Temperature plots for February 2nd, 2017 from 6:00 to 9:00 am. Clear difference

can be seen between the sensors that are connected through different

hardware configurations...43

5.2 Calibration Experiment Results: Test Run. Powered ON without warmup44

5.3 Calibration Experiment 1: Microcontroller #1 connected to only Sensor A46

5.4 Calibration Experiment 1: Microcontroller #2 connected to only Sensor C47

5.5 Calibration Experiment 1: Microcontroller #1 connected to only Sensor A & B47

5.6 Calibration Experiment 1: Microcontroller #2 connected to only Sensor

xiii

F, G & H ..48

5.7 Calibration Experiment 2: Microcontroller #1 connected to only Sensor A51

5.8 Calibration Experiment 2: Microcontroller #1 connected to only Sensor A & B51

5.9 Calibration Experiment 2: Microcontroller #1 connected to only Sensor

A, B & C ..52

5.10 Calibration Experiment 2: Microcontroller #5 connected to only Sensor G52

5.11 Calibration Experiment 2: Microcontroller #5 connected to only Sensor G & H53

5.12 Calibration Experiment 2: Microcontroller #5 connected to only Sensor

G, H & F ..53

5.13 Temperature plots from data measured on February 2nd, 2017 with error bars

derived from a controlled temperature experiment. The overlapping error

bars show the data as same values with offset due to inaccuracy of sensors55

5.14 Temperature plots from data measured on February 2nd, 2017 with error bars

spanning period of 4 hours from 5:30 to 9:30 am ..56

A.1 UTChattSat: MC Software Algorithm ..64

A.2 UTChattSat: SC Algorithm ...73

A.3 UTChattSat: SC Algorithm subroutine takereading() ..74

A.4 DSN: Node Software Development Algorithm for Sensor Controller 1 with

Sensor A and B ..77

A.5 DSN: Hub Software Algorithm main flow ...84

A.6 DSN: Startup() subroutine ..85

A.7 DSN: RPi2_SensorLog() subroutine part-1 ..86

A.8 DSN: RPi2_SensorLog() subroutine part-2 ..87

1

CHAPTER I

INTRODUCTION

Overview

The remote collaboration concept is a project where, from any corner of the world it can

be interfaced, controlled and utilized by researchers as seen in Figure 1.1. This thesis develops a

remote Internet of Things (IoT) laboratory that uses the concept of Cyber Physical Systems (CPS)

to connect physical projects and networks via Internet. The laboratory exhibits features such as

remote access, sensor networking, real-time communication and data retrieval. This idea is

demonstrated in two example implementations. The first implementation demonstrates the use for

science education by allowing for remote connection to space technology in classrooms. The

second implementation demonstrates a distributed sensor network project, which involves

development of real-time sensor networks used to assess building energy dissipation. The next

sections describe the problem statement for each implementation.

2

Figure 1.1 Remote Collaboration: Concept visualization

Science Education

The shifting emphases of debate in science education over the past 40-50 years is clearly

reflected in numerous slogans and rallying calls including ‘Being Scientist for a Day’, ‘Learning

by Doing’, ‘Science for all’, Children Making Sense of World’ and ‘Science as a Way of

Knowing’[1]. Exposure to science technology is critical for student engagement. Models are

important in scientific research both in formulating hypotheses to be tested and in describing

scientific phenomena. Model-based teaching is any implementation that brings together

information resources, learning activities, and instructional strategies intended to facilitate mental

model-building both in individuals and groups of learners [2]. This thesis presents a space science

based model, which helps learners understand the basics of space science and trains them to use,

modify and present the ideas.

3

CubeSats (or nanosatellites) are small satellites with a standard unit size of 10 x 10 x 10

cm3 and weight of less than 1 kg per unit. They are low-cost and highly compact by design, size

and weight when compared to conventional satellites. They can be used with a high-altitude

balloon or placed in a low-earth orbit in space. CubeSat model-based learning is a part of technical

future from which the students can learn about space sciences. Getting familiar with space science

impacts the students’ thought process and their determination to advance in the fields of science

and engineering.

UTChattSat is an educational kit that provides interactive learning of space sciences to

students in their crucial stage of career advancement. UTChattSat is an Internet of Things (IoT)

device that provides real-time communication and user interfacing using low cost components and

off-shelf electronics. The model feature meets CubeSat standards, which enable multiple uses. The

basic building blocks, network devices, topologies and protocols used for this implementation are

explained in Chapter 2. Further, Chapter 3 describes the block diagram, hardware and software.

Distributed Sensor Networks

The phrase “smart city” has a broad meaning and can refer to any of the various assets such

as people, activities, organizations, facilities, services and resources that comprise a city [3]. It

refers to an urban development initiative that leverages secure CPS as a means of improving life

of the people who live, work and play within the city [4]. Achieving the goal of the Better Building

Challenge will require use of secure CPS for the specific purpose of developing “Smart Buildings”

that have the capability of monitoring and reporting energy and resource usage in real-time.

4

The development of an interconnected real-time smart system with embedded sensors and

processors presented here will be used to assess current building energy models in the remote

laboratory. The data produced and collected will be used to improve existing building energy

models to facilitate real-time, high fidelity energy usage and effective analysis.

The basic building blocks, network devices, topologies and protocols used for this

implementation are explained in Chapter 2. Chapter 4 explains the block diagram, hardware

development and the software algorithms and the results for the distributed sensor networks.

5

CHAPTER II

REMOTE IOT LABORATORY

Introduction

This chapter provides the general structure of the remote IoT laboratory. A short

introduction of IoT and CPS provides the background for the concept. Then the system structure,

main system components used in the system, networking devices used and inter-controller

communication patterns are discussed.

Internet of Things and Cyber Physical Systems

IoT marks a new era of computing technology where physical systems and projects

embedded with electronics, sensors, actuators and software are connected to the Internet. The

Cisco Internet Business Solutions Group (IBSG) says IoT is at point in time when more objects

will be connected to the Internet than people. Cisco IBSG estimates IoT was “born” sometime

between 2008 and 2009 as shown in Figure 2.1 and predicted that there will be 50 billion devices

connected to the Internet by 2020. The world cares about IoT because it has and will transform the

way people, companies and institutions are going to interact with the objects surrounding them in

their personal, social and economic lives [5].

6

Smart objects are autonomous physical/digital objects augmented with sensing, processing,

and network capabilities. In contrast to RFID tags, smart objects carry chunks of application logic

that let them make sense of their local situation and interact with human users. They sense, log,

and interpret what’s occurring within themselves and the world, act on their own,

intercommunicate with each other, and exchange information with people, like the sensor networks

developed here perform.

CPS refer to a new generation of systems with integrated computational and physical

capabilities that can interact with humans through new modalities. The ability to interact and

expand the capabilities of the physical world by efficient use of computation, communication, and

control is a key for future technology developments [6]. CPS are comprised of interconnected real-

time “smart networked systems with embedded sensors, processors and actuators that are designed

to sense and interact with the physical world, cyber world and support real-time, guaranteed

performance in safety-critical applications” [7]. CPS provide a means by which to monitor

resource consumption to enable improved asset management and facilitate real-time response to

challenges, which leads to the efficient allocation and usage of these assets and a subsequent

reduction in operating costs and resource consumption. The buildings, that comprise a city, are a

significant asset in which CPS can be leveraged to reduce operating costs and resource

consumption [8, 9].

7

Figure 2.1 Internet of Things Was “Born” Between 2008 & 2009 [5]

Figure 2.2 IoT and CPS: where each lie [10]

8

System Structure

The remote IoT laboratory developed here is structured in two types of interfaces based on

accessibility and measurability, i.e., Single User Multi Node Interface and Multi User Single Node

Interface. These interface structures are used in different applications that explained in Chapter 3

and 4. The next two sections explain these two interfaces:

Single User Multi Node Interface

The Single User Multi Node Interface allows a single authorized user to access a system.

It consists of a distributed sensor network that consists of multipoint measurements via several

sensors connected to a hub in a star topology. All sensor nodes are affixed at multiple points in the

laboratory. The nodes are wireless. A basic structure is shown in Figure 2.3.

Figure 2.3 Distributed Sensor Single User Multi Node Interface structure diagram

9

Multi User Single Node Interface

The Multi User Single Node Interface is a system where multiple remote users can access

the system. The device hardware is unified and consists of single point measurements. The data

transmission is encrypted and decrypted by only authorized users. Point-to-point communication

is used for command and data transmissions. This system is wireless using a battery power. A

basic structure is shown in Figure 2.4 and the modules mentioned above are explained in the

System Components section.

Figure 2.4 Multi User Single Node Interface structure diagram

10

System Components

The system structures explained in the previous section consist of three controlling

components explained here: Main Controller, Sensor Controller and Hub.

Main Controller

The Main Controller (MC) interfaces with all of the peripherals attached to a given node.

The MC is comprised of a ATmega328. The prototype was developed using Arduino

Duemilanove/UNO boards. The MC receives commands from the user via the controlling device

and if separate, sends the commands to the Sensor Controller (SC).

The MC and SC are kept separate such that the MC handles the tasks of command and data

pipelining and data storage, and handling other SCs. The SC handles the complexity of interfacing

with the sensors. Several SCs can be connected to a single MC. The MC receives data from the

SC and transmits to the output device via the communication device. It interfaces with the SC via

a defined protocol for command and data as described in the Protocols section. The peripherals

include sensor controllers, power, communication device, storage devices, etc. as required by the

implementation. The MC is powered by a battery to facilitate mobile applications.

Sensor Controller

The sensor controller (SC) interfaces with different sensors and fetches data to and from

MC when required. It works as an interfacing unit between the MC and sensors. The SC consists

of a ATmega328 chip. The prototype is built using an Arduino Duemilanove board. The main

task performed by the SC is to interface with sensors by serial communication.

11

The data from these sensors are collected as configured by the sensor configuration field

in the command word received from the MC. It transmits the data collected from the sensors in the

format specified by the data word to the MC. Additional sensors can be added to the sensor

controller via minor changes in the software. The SC is powered through the MC.

Hub

The Hub is a computer for collecting data from the Nodes via a communication device.

The Hub software is explained in Chapter 4. Briefly, the Hub parses, decrypts and stores the data

and controls the data rate. The Hub acts as a client when client JSON (JavaScript Object Notation)

files are loaded providing the capability to stream real-time data to the Internet. The Raspberry Pi

3 Model B is used as the Hub and remains connected to the Internet.

Networking Devices

The networking devices used for laboratory communication are Digi XBee S2. The XBee

S2 Modules are engineered to meet ZigBee Mesh standards and support the unique needs of low-

cost, low-power wireless sensor networks. ZigBee is an open global standard built on the IEEE

802.15.4 MAC/PHY standard. ZigBee defines a network layer above the IEEE 802.15.4 layers to

support advanced mesh routing capabilities. IEEE 802.15.4 specifies the physical and media access

control layers. It is ideal for applications requiring low latency and predictable communication

timing [11]. The modules require minimal power (40mA at 3.3V) and provide reliable delivery of

data between devices. The modules operate within the ISM 2.4 GHz frequency band and are pin-

for-pin compatible with each other [12].

12

Inter- Controller Communications

This section explains the inter controller communication patterns used for the commands

from the user and data to user for both types of interfaces.

Command Word (From User)

The command word has three fields, Experiment time (16 bit), Sample time (16 bit) and

Sensor configuration (16 bit) as shown in Figure 2.5. The Experiment Time and Sample Time are

entered by the user via the web interface, and the Sensor Configuration is entered by the user in

integers from 0 to 31, 0 being all sensors OFF and 31 being all sensors ON. Only 8 bits from the

Sensor Configuration word are used for defining the sensor configuration out of which 3 bits are

reserved for spare sensors and 5 bits are used for existing sensors as shown in Figure 2.5.

Configuration bits set to 1 correspond to data requests from the noted sensor. For example,

a request from the Gyroscope (bgy), Altitude (balt) and GPS (Global Positioning System) (bGPS)

sensors requires a configuration word of 10101 (integer 21). This command turns Pressure (bp)

and Temperature (btemp) sensors OFF.

Data Word: Single User Multi Node Interface (To User)

The data word protocol for the single user multi node interface is comprised of five data

fields as shown in Figure 2.6. The sensor ID is a discrete alphabet ID which corresponds to each

of the sensors connected through SC. This ID is used in the software algorithms to identify the

data source. The values D1 to D4 are the corresponding sensing values from the sensors in float

data type. As this data is retrieved by only the authorized user, no encryption is provided.

13

Figure 2.5 Command Word format for communication between Node and Hub. Each data field is

separated by commas and ended with a new line character ‘\n’ in transmission

Figure 2.6 Data word format for communication between Node and Hub. Each data field

is separated by commas and ended with a new line character ‘\n’ in transmission

Data Word: Multi User Single Node Interface (To User)

The data word for the multi user HMI has 10 fields, each field describes data from each

sensor as described in Table 2.1. The data transmitted is encoded in integer step numbers and is

decoded at the user end (client side). The step numbers are the quantization level numbers

calculated for each data value in software algorithms using the Equation (2.1).

14

𝑆𝑡𝑒𝑝 𝑛𝑢𝑚𝑏𝑒𝑟 =
(𝑀𝑎𝑥−𝑀𝑖𝑛)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 (2.1)

where, numerator (Max – Min) = Measurement range of the sensor, denominator (Resolution) =

Resolution of the sensor.

Figure 2.7 Multi User Single Node Interface: Data Word format. Each field is separated by

comma and ended with a new line character ‘\n’ in transmission

Table 2.1 Multi User Single Node Interface: Communication Protocol: Data Word Field

Description

Data Field Data Type Sensor

D0 Roll Gyroscope

D1 Pitch Gyroscope

D2 Heading Gyroscope

D3 Altitude Altitude

D4 Pressure Pressure

D5 Temperature Temperature

D6 Fix Time GPS

D7 Latitude GPS

D8 Longitude GPS

D9 Altitude GPS

15

Conclusion

The chapter gives a background, structure and detailed description of the remote IoT

laboratory. These components can be used in many different applications. Chapter 3 and Chapter

4 provide two examples of how the IoT laboratory can be applied/ implemented/ or configured.

16

CHAPTER III

EXAMPLE IMPLEMENTATION 1: UTCHATTSAT

Introduction

An example implementation of a distributed multi user single node interface is UTChattSat,

a ground model small-satellite (CubeSat) for use in classrooms to transform the way students learn

space technology. It provides usability, functionality and research from a middle school up to

space-expert levels. The hardware and sensor development are explained in the following sections.

The GUI operation and live data streaming are explained in the results section of this chapter. The

3D printed housing model of UTChattSat is shown in Figure 3.1 and its 3D explosion is shown in

Figure 3.2.

Specifications:

• Usability for middle school level and functionality for experts.

• Manipulability in programs

• Self-starting program for unexpected resets

• Real-time control of Sensor Controller

• Transmission time at 9600 baud rate: 25.5 milliseconds.

• User defined:

o Experiment Time

o Sample Time

17

o Sensor Selection

o Board Selection

Figure 3.1 UTChattSat: 3D printed model

Figure 3.2 UTChattSat: 3D exploded view

18

Block Diagram

The hardware of UTChattSat is explained in the block diagram in Figure 3.3. It comprises

of the Main Controller (MC), the Sensor Controller (SC), Adafruit GPS and 10-DOF (Degrees of

Freedom) sensors, XBee and 4.8 VDC rechargeable battery. An example implementation for IoT

communication and local computer display are presented in the Results section of this chapter. The

connections of UTChattSat are shown in Table 3.1.

Figure 3.3 UTChattSat: Block Diagram, Interfacing and implemented example of IoT

communication and passive monitoring display

19

Table 3.1 UTChattSat: Connection network for MC, SC, GPS sensor, 10-DOF sensor, XBee,

Battery

Arduino

Duemilanove

(MC)

Arduino

Duelimanove

(SC)

Adafruit

GPS

Breakout

Adafruit

10-DOF

Breakout

XBee
Battery

(4.8 VDC)

Vin Vin Vin - Vin Positive

GND GND GND GND GND Negative

Digital 2 Tx (Dig1) - - - -

Digital 3 Rx (Dig0) - - - -

- Digital 2 Rx - - -

- Digital 3 Tx - - -

- Analog 4 - SDA - -

- Analog 5 - SCL - -

- Digital 4 - - - -

- 3.3 V - Vin - -

- - 3.3 Vo - - -

Tx (Dig 1) - - - DOUT -

Rx (Dig 0) - - - DIN -

The sensor boards selected in this implementation are described in the following sub-

sections. These breakout boards were selected in this implementation as they carry the sensors,

interfacing controllers and pinouts. Moreover, these boards have libraries that can be used in the

software algorithms with the selected microcontroller (ATMega328P) for easy interface.

Adafruit Ultimate GPS

The breakout is built around the MTK3339 chipset, a high-quality GPS module that can

track up to 22 satellites on 66 channels, has an excellent high-sensitivity receiver and a built-in

antenna. It can sample up to 10 location updates per second for high speed, high sensitivity logging

or tracking and requires less than 20 mA current during navigation.

20

It also comprises of an ultra-low dropout 3.3V regulator, ENABLE pin, a footprint for

optional CR1220 coin cell to keep the RTC running and allows warm starts and a tiny bright red

LED. The LED blinks at about 1 Hz while it's searching for satellites and blinks once every 15

seconds when a fix is found to conserve power. The 3 MTK3339-based module has the external

antenna functionality and the built-in data-logging capability. The Adafruit Ultimate GPS is shown

in Figure 3.4. [13]

Figure 3.4 Adafruit Ultimate GPS Breakout Board [13]

Adafruit 10-DOF

Adafruit's 10DOF (10 Degrees of Freedom) breakout board allows to capture ten distinct

types of motion or orientation related data. The sensor board is shown in Figure 3.5. It comprises

of following sensors:[14]

• LSM303DLHC: a 3-axis accelerometer (up to +/-16g) and a 3-axis magnetometer (up to

+/-8.1 gauss) on a single die

• L3GD20: a 3-axis gyroscope (up to +/-2000 degrees per second)

21

• BMP180: A barometric pressure sensor (300-1100 hPa) that can be used to calculate

altitude with an onboard temperature sensor.

Figure 3.5 Adafruit 10-DOF Breakout Board [14]

Software Development

The UTChattSat software can be segmented into two main blocks: Main Controller (MC)

and Sensor Controller (SC). The algorithms for the software of the MC and SC are explained here.

Main Controller Algorithm

The algorithm for MC software flow shown in Figure 3.6 can be explained as follows:

• A: The MC waits for the command word to be received via XBee from the remote

controller.

• B: Once the data is available, it parses the command word (configuration word) from the

XBee.

• C: The MC transmits the parsed word to the SC.

22

• D: The serial timeout for the SC is set to 1.5 times of the Sampling Time to avoid data

congestion and long delays.

• E: The number of experiment iterations is calculated using Equation (3.1),

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒

𝑆𝑎𝑚𝑝𝑙𝑒 𝑇𝑖𝑚𝑒
 (3.1)

• F: It then waits for serial data coming from the SC.

• G: The MC performs the operation of parsing data stream for the number of Experiment

Iterations calculated. Once the counter created to count the iterations reaches the value of

Experiment Iterations, the MC stops the data receive-transmit functions and waits for a

new command.

• H: Once the data is available, it is parsed and sent to the XBee.

• I: The XBee transmits the data to the User via the remote device. [15-18]

Figure 3.6 UTChattSat: Main Controller Software Algorithm

A. Wait for
Command
Word from

User

B. Parse
Comman
d Word

C. Tx.
Comman
d Word

to SC

D.
Calculate

Serial
Timeout

E.
Calculate

Experimen
t Iteration
number

F. Wait
for Data

Word
from SC

G. Check
Exp.

Counter

H. Parse
Data
Word

from SC

I.
Transmit
Data to

User

23

Sensor Controller Algorithm

The algorithm for sensor controller software flow shown in Figure 3.7 can be explained as

follows:

• A: All sensors are initialized to a pre-defined baud rate and waits for command word to be

available from the MC via serial communication.

• B: When available, the command word is parsed in three variables: Experiment Time,

Sample Time and Sensor Configuration.

• C: Sample and Iteration counters are reset. The SC proceeds to calculate the number of

experiment iterations by Equation (1).

• D: The SC compares the sample counter to the experiment iterations and if the counter has

not reached the iterations value, the takereading() function is called and if it has reached

the number of iterations, it stops the experiment and waits for serial data form the MC.

• E: takereading() subroutine:

o E1: Decode sensor configuration word and set the sensors ON/OFF as per the word

by comparing the value of 1 for bit level comparisons of the configuration word.

The Sensor Configuration word is compared for each bit by logical AND function.

Two switch case statements are designed, first for invoking sensors and retrieving

data and second for setting the data values to zero for corresponding sensor values.

o E2: Parse readings from sensors that are ON. The sensor values parsed by the

microcontroller are converted to quantization levels by using the upper and lower

limits of each sensing value and the resolution required by using Equation (3.2).

𝑆𝑡𝑒𝑝 𝑛𝑢𝑚𝑏𝑒𝑟 =
(𝑀𝑎𝑥−𝑀𝑖𝑛)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 (3.2)

24

Max and Min are the upper and lower limits of each sensor values the sensor can

parse correctly. The resolution is the number of bits of resolution required, 16-bit

resolution is used here.

o E3: Format the readings into the data word format.

o E4: Transmits the output array to the MC and return to the main program.

• F: After returning the function, a delay of sample time is generated and the experiment

counter is incremented. [15-18]

Figure 3.7 UTChattSat: Sensor Controller algorithm

Results

UTChattSat can be interfaced by the user’s choice of technology and standards; however,

two example interfaces are shown here. The first interface is with a local computer display and the

second is through a website setup using a remote server and Raspberry Pi client. These two

A.
Initialize
Sensors

B. Parse
Comma
nd Word

C.
Iteration
number

D.
Check

sample
Counter

E.
takeread
ing()

E1.
Decode
Configu
ration

E2.
Parse

required
Sensors

E3. Append
Sensor

values to
Data Word

E4.
Transmit

Data Word
to MC

F.
Ready

for next
sample

25

interfaces are explained independently in the following Passive Monitoring and Remote Monitor

and Control sections:

Passive Monitoring System

An XBee connected to a computer within range provides a local interface of the

UTChattSat system. The computer runs a MATLAB script that provides user inputs for

Experiment Time, Sample Time and Sensor Configuration. The script opens the serial COM port

through which the XBee is connected to the computer and enables communication. The command

data input by the user is arranged in the command word format and transmitted to UTChattSat.

Two figures are created, one for the 3D cube display and the other for plotting data in real time. A

snapshot of the figures is shown in Figure 3.11. As the data streams to the computer, the 3D cube

and all data plots are updated at the specified sampling rate set by the user. The 3D cube plot is a

mirroring of the UTChattSat cube. As the UTChattSat is rotated along an axis in any directions (x,

y, z or roll, pitch, heading), the 3D cube plot also rotates live from the gyroscope in the

UTChattSat.

26

Figure 3.8 UTChattSat: Local Computer display. The left side shows a live display of cube

orientation. The right side shows real-time plots for various entities measured at the cube

location

Remote Monitor and Control

A server using JSON files can be setup in a computer connected to the Internet. A

Raspberry Pi works as the client using a Python script. It receives the command from the user

connected to the Internet via JSON communication files. It transmits this command word to

UTChattSat via XBee. Note that the Raspberry Pi has an XBee connection and is co-located with

the UTChattSat. The Python code then receives the data word and converts the step numbers to

the actual data value by multiplying the step values to the received data that is in the form of step

numbers.

27

Data is transmitted to the server using the JSON format and stored in text-based log files.

The picture of the webpage is shown in Figure 3.12.

Figure 3.9 UTChattSat: Webpage for IoT applications. The webpage can be accessed in a

computer or phone

28

Conclusion

This example achieves the multi user HMI by enabling access control to multiple users

with a unified hardware via the Internet. This can be used as a kit for education purposes as a

student can use this platform to learn: how the controllers communicate with each other, the

sensors, modify the hardware or software, or to add functionality to another device. This

development kit is also used by local science schools in their ongoing experiments.

29

CHAPTER IV

EXAMPLE IMPLEMENTATION 2: DISTRIBUTED SENSOR NETWORKS

Introduction

The implementation of the distributed sensors single user multi node interface is used to

provide data for evaluation of current building energy modeling techniques. This task requires the

development of CPS-based support to assess the deficiencies within the existing building model.

The hardware and software development for the CPS and the data collected are explained in

succeeding sections.

Specifications:

• Measure Temperature, Pressure, Humidity

• Network covers important places of energy dissipation in the area to be monitored.

• Data collection for 24 hours with time stamp.

• Sample Rate: 4 to 5 samples/minute.

• Data resolution of least two decimal places.

• Data storage in text files separate for each sensor.

• No. of sensors: 8 mounted in EMCS 303.

• Quantities measured: Temperature, Pressure, Humidity

• Altitude is calculated from Pressure and stored.

30

• Placed at: Door, Ceiling Corner, Right Side Wall, Left Side Wall, Room Center, Vent,

Between Windows, Window

• Date: February 2nd 2017

Block Diagram

The hardware of the distributed sensor networks (DSN) is shown in Figure 4.1. It comprises

of five Main/Sensor Controllers, eight Sensors and XBees which all together are referred to as

Node 1, 2, 3, 4, 5. The Raspberry Pi is designated as the Hub. The inter-connections for each node

are shown in Table 4.1 (Node 2, 3, 4), Table 4.2 (Node 1) and Table 4.3 (Node 5). Each node is

designated using the letters A through H and are all BME 280. The developed node is shown in

Figure 4.2. Each sensor corresponds to a specific position in the laboratory as described in Table

4.4 and shown in Figure 4.3.

31

Figure 4.1 DSN: Block Diagram of full network for one laboratory with 8 sensing nodes

and 1 hub. Sensors A to H are connected to the sensor controllers respectively

Figure 4.2 DSN: An Arduino UNO Sensor Controller connected to an XBee S2C and a

BME 280 Sensor via Sparkfun Arduino Shield modified prototype area

(Node Hardware)

32

Figure 4.3 3D view of the laboratory with DSN mounted

Table 4.1 DSN: Node connection network. Arduino UNO, Adafruit BME280 and XBee

interconnections for Nodes 2, 3 and 4

Arduino

UNO # 2, 3, 4

Adafruit

BME 280

(C, D, E)

XBee

Vin - Vin

3.3 V Vin -

GND GND GND

Tx (Dig1) - DOUT

Rx (Dig0) - DIN

Digital 13 SCK -

Digital 12 SDO -

Digital 11 SDI -

Digital 10 CS -

33

Table 4.2 DSN: Node connection network. Arduino UNO, Adafruit BME280 and XBee

interconnections for Node 1

Arduino

UNO # 1

Adafruit

BME 280

(A)

Adafruit

BME 280

(B)

XBee

Vin - - Vin

3.3 V Vin Vin -

GND GND GND GND

Tx (Dig1) - - DOUT

Rx (Dig0) - - DIN

Digital 13 SCK SCK -

Digital 12 SDO SDO -

Digital 11 SDI SDI -

Digital 10 CS - -

Digital 9 - CS -

Table 4.3 DSN: Node connection network. Arduino UNO, Adafruit BME280 and XBee

interconnections for Node 5

Arduino

UNO # 5

Adafruit

BME 280

(F)

Adafruit

BME 280

(G)

Adafruit

BME 280

(H)
XBee

Vin - - - Vin

3.3 V Vin Vin Vin -

GND GND GND GND GND

Tx (Dig1) - - - DOUT

Rx (Dig0) - - - DIN

Digital 13 SCK SCK SCK -

Digital 12 SDO SDO SDO -

Digital 11 SDI SDI SDI -

Digital 10 - CS - -

Digital 9 - - CS -

Digital 8 CS - - -

34

Table 4.4 DSN: Sensor A through H positions in the laboratory

Sensor Location Node

A At Door 1

B Ceiling corner 1

C Right Side Wall 2

D Room Center 3

E Left Side Wall 4

F At Vent 5

G Between Windows 5

H At Window 5

The sensor board BME280 is described in the following sub-section. This breakout board

was selected in this implementation as they carry the sensors, interfacing controllers and pinouts.

Moreover, these boards have libraries that can be used in the software algorithms developed for

the Main/Sensor Controller (ATmega328). The BME280 are low cost precision sensor with

accuracy adequate for this application.

Adafruit BME280

The BME 280 is a precision sensor, made by Bosch, that measures humidity with ±3%,

barometric pressure with ±1 hPa, and temperature with ±1.0°C. As pressure changes with altitude,

it can be used as an altimeter with ±1 meter accuracy, with a low altitude noise of 0.25m. The

Adafruit BME 280 is assembled using the three sensors (temperature, pressure and humidity),

which provides pinout, I2C, and SPI interface. It is shown in Figure 4.4 [19].

35

Figure 4.4 Adafruit BME280 sensor

Main/Sensor Controller Software Development

The algorithm for Main/Sensor Controller #1 is shown in Figure 4.5. The same logical flow

is used for all main/sensor controllers (M/SC). The software development for M/SC is explained

as follows:

• A: The M/SC waits until RPi (Raspberry Pi) broadcasts the sensor IDs.

• B: Once a sensor ID is available, it is parsed.

• C, D: A switch case statement is used to switch through the sensors connected and parse

the corresponding sensor. When the sensor ID does not match to the sensors attached, it is

neglected and waits for the next sensor ID.

• E: This data is transmitted to Raspberry Pi in float data types in the format of data word

for single user multi node interface as explained in Chapter 2.

The M/SC repeats the flow for every code received. The sampling rate is controlled by the

Raspberry Pi hub software. Hence, one data reception and transmission takes approximately 13

seconds to complete one cycle including data fetch and store by Raspberry Pi. This state a sampling

rate of 4 to 5 samples per minute. This is a two-way communication with the hub as master and

the node as slave [15-18].

36

Figure 4.5 DSN: Node Software Development Algorithm

Hub Software Development

A Python program is composed using the Hub Software algorithm. The main outline

algorithm is shown in Figure 4.6. The software development of hub is explained as following:

• A: At startup, the Python configures the ‘/dev/ttyUSB0’ port for XBee communication at

9600 baud rate. Then creates and/or open ‘Sensor Log’ directory at specified path and

creates separate files for each sensor with date and timestamp on the file name, writes the

start time and date stamp to each log file and initializes the text files.

• B, C: The sensor IDs from 101 to 108 are transmitted and incoming data is read for every

code.

A. Wait for
Serial Data

B. Parse
sensor ID

C. Parsed
ID

Matches
Sensor ID?

D. Parse
Sensor

data

E. Transmit
data

37

• D: The incoming data read is stored in a variable called RxSamp. The size of RxSamp is

measured to detect and discard corrupted samples and flush the input buffer of XBee.

• E: The RxSamp is split into array with 5 elements by detecting ‘,’. The first element, the

sensor ID is an alphabet from A to H for corresponding sensors.

• F: The sensor ID is used for comparison and mapping to the correct log file for the

corresponding sensor. Also, the subroutine runs an error counter whenever corrupted data

is received.

• G: The timestamp is compared to 23:59:59 at the end of each code transmission and data

reception iteration. Once the timestamp reaches the comparison value, new files are created

for logging. At midnight, when new files are created, the total number of errors for that day

is written to a new error log file created each day [15-18].

Figure 4.6 DSN: Hub Software Algorithm

A. Startup

B. Prepare
Sensor IDs

C. Transmit
the sensor
ID, Read
Sample

D. Sample
Size = 50
bytes?

E. Update
Time Stamp,
Split Rx Samp

by “,”

Extract
Sensor ID

F. Write
Data to file

G. Create
new files at

end of
each day

No

Yes

38

Results

The data collected by the DSN are temperature, pressure and humidity measurements at 8

spots in a laboratory. These data will be used to assess current building energy models. The data

is logged for 24 hours and runs continuously for the duration required and stored in separate text

files for each sensor named by the Sensor ID, the date and time stamp when it was created. A

sample of data shown in following figures is logged on February 2nd, 2017 in the laboratory for 24

hours.

Figure 4.7 shows the temperature plots from data measured by respective sensors. The

sensor at the door (A) is mounted exactly above the door such that the energy dissipation due to

open/close movement of the door can be determined. The sensor at ceiling corner (B) senses the

conditions near the ceiling to determine the dissipation due to elevation of buildings. The sensors

at right side wall (C) and left side wall (E) can be used to determine the dissipation due to the walls

and adjacent rooms/area. The sensor at room center (D) can determine the average temperature

and other conditions in the room, whereas the sensor at the A/C vent (F) senses the input energy

to the room. The sensor between windows (G) senses the affect due to outside wall and

environment. The sensor at window (H) can be used to determine the possible highest dissipation

area in the room. All these sensors can be used to create a energy model of the room and determine

the highest and lowest points of the room for power dissipation and energy absorption.

39

Figure 4.7 Temperature plots from data measured at eight spots across the room on February 2nd,

2017. The placement of the sensors is described in the legend and shown in Figure 4.3

Figure 4.8 Pressure plots from data measured at eight spots across the room on February 2nd,

2017. The placement of the sensors is described in the legend as shown in Figure 4.3

40

As seen in these data, the temperature at the vent has the most deviation, as it is the area

most affected by the temperature change. The Pressure plots can be seen in Figure 4.8. The

pressure data has a similar trend for all locations. The offsets may be due to the sensor inaccuracy

which is discussed in next chapter. Humidity plots can be seen in Figure 4.9. They are inverse

functions of the Temperature plots. Humidity levels at the vent vary indirect proportion to the

Temperature variation.

Figure 4.9 Humidity plots from data measured at eight spots across the room on February

2nd, 2017. The placement of the sensors is described in the legend as shown in Figure 4.3

41

Conclusion

The implementation of the distributed sensors single user multi node interface is used to

provide data for evaluation of current building energy modeling techniques. The CPS-based multi

node interface is development to assess the existing model. The web-based control of the interface

can be used for industrial and professional research for personalized experiments.

42

CHAPTER V

CALIBRATION

Argumentation

Figure 5.1 shows the data from Figure 4.7, spanning the period of 4 hours from 5:30 - 9:30

am. It shows two different variation groups within the data. Three sensors, i.e. Ceiling Corner (B,

σ2 = 0.64), At Window (H, σ2 = 1.41) and At Vent (F, σ2 = 1.98) are much more stable than the

rest of the sensors. The three sensors are connected to the main controller and communication

device using cables (off board) whereas the other five sensors are mounted on the electronics

directly. Hence, the thermal noise of the electronics adds measurement noise and the sensor data

may not be accurate. Table 5.1 shows the mean and standard deviation for each sensor.

Table 5.1 February 2nd, 2017 Temperature Data: Mean and Standard Deviation

Sensor Location Configuration Mean Std. Dev.

Sensor A At Door On Board 25.39 0.70

Sensor B Ceiling Corner Off Board 22.27 0.80

Sensor C Right Side Wall On Board 25.92 0.59

Sensor D Room Center On Board 25.78 0.68

Sensor E Left Side Wall On Board 25.31 0.56

Sensor F At Vent Off Board 21.26 3.61

Sensor G Between Windows On Board 24.82 1.14

Sensor H At Window Off Board 22.07 1.19

43

Figure 5.1 Temperature data for February 2nd, 2017 fr0m 6:00 am to 9:00 am. Clear

difference can be seen between the sensors that are connected through different hardware

configurations

Experiment Details and Results

In order to quantify the bias in these data, a set of calibration experiments were conducted

where the sensors were mounted in a controlled environment alongside a K-type thermocouple.

Initially, the cold start characteristics of sensors A to H were measured. The sensors were

connected to respective microcontrollers powered from the same power supply and all sensors,

regardless of on-board or off-board mounting, exhibit increasing temperature immediately

following a cold start due to self-heating of sensors and the electronics as shown in Figure 5.2. All

44

sensors appear to asymptotically approach a stable value. Off board sensors show an average initial

slope of 0.0583°C per minute whereas on-board sensors show an average initial slope of 0.1452°C

per minute. The sensors exponentially approach a stable value.

Figure 5.2 Calibration Experiment Results: Test Run. Powered ON without warm up

 Two additional calibration experiments were performed as described below:

Experiment 1:

• No. of sensors: 8 placed at a same location in a room.

• Sampling Rate: 1 sample/second.

• Temperature reference device: K-type Thermocouple.

45

• Quantities measured: Temperature, Pressure, Humidity. Altitude is calculated from

Pressure and stored.

• Date: February 10th 2017.

• Data collected for 20 minutes after warm up of 10 minutes and cool down of 5 minutes

between each configuration.

• A summary of findings for each sensor is provided for the following configurations:

1. Sensor A: On Board (Figure 5.3).

➢ Microcontroller#1 connected to Sensor A on board only.

➢ Sensor A On board has a average bias of 4.77°C.

2. Sensor C: On Board (Figure 5.4).

➢ Microcontroller#2 connected to Sensor C on board only.

➢ Sensor C On board has an avereage bias of 4.85°C.

3. Sensor A: On Board, Sensor B: Off Board (Figure 5.5).

➢ Microcontroller#1 connected to Sensor A on board and Sensor B off board.

➢ Sensor A On board has a increased bias of 5.34°C when compared to

configuration 1.

➢ Sensor B Off board has an avereage bias of 3.58°C.

4. Sensor F: On Board, Sensor G: Off Board, Sensor H: Off Board (Figure 5.6).

➢ Microcontroller#5 connected to Sensor F on board, Sensor G and Sensor H

off board.

➢ Sensor F On board has an avereage bias of 4.71°C

➢ Sensor G Off board has an avereage bias of 3.29°C

➢ Sensor H Off board has an avereage bias of 3.34°C

46

As seen in Figure 5.3 and 5.4, different microcontrollers connected to individual sensors

on board configuration exhibit similar bias in temperature, i.e. 4.77°C for Sensor A and 4.85°C for

Sensor C. When off-board Sensor B is included alongside Sensor A as shown in Figure 5.5, the

bias in Sensor A increases to 5.34°C. Microcontroller #2 is connected to Sensor G, H and F. The

bias for on board Sensor F is 4.71°C and off board Sensors G and H is 3.29°C and 3.34°C

respectively. The off board bias values are similar for both microcontrollers [20]. Table 5.2

summarizes the data.

Figure 5.3 Calibration Experiment 1: Microcontroller #1 connected to only Sensor A

4.77°C

47

Figure 5.4 Calibration Experiment 1: Microcontroller #2 connected to only Sensor C

Figure 5.5 Calibration Experiment 1: Microcontroller #1 connected to Sensor A & B

5.34°C 3.58°C

4.85°C

48

Figure 5.6 Calibration Experiment 1: Microcontroller #2 connected to Sensor F, G & H

Table 5.2 Sensor Calibration Experiment 1: Accuracy and Standard Deviation

Sensor Accuracy Std. Dev.

Sensor A 5.37 0.21

Sensor B 3.58 0.44

Sensor C 4.85 0.49

Sensor D 5.08 0.65

Sensor E 5.28 0.17

Sensor F 4.71 0.47

Sensor G 3.29 0.13

Sensor H 3.34 0.28

Thermocouple -- 0.07

4.71°C 3.34°C 3.29°C

49

Experiment 2:

• No. of sensors: 6 placed at a same place in a room.

• Sampling Rate: 1 sample/second.

• Temperature reference device: K-type Thermocouple.

• Quantities measured: Temperature, Pressure, Humidity. Altitude is calculated from

Pressure and stored.

• Date: May 29th 2017.

• Data collected for 20 minutes after warm up of 10 minutes and cool down of 5 minutes

between each configuration.

• A summary of findings for each sensor is provided for the following configurations:

1. Sensor A: On Board (Figure 5.7).

➢ Microcontroller#1 connected to Sensor A on board only.

➢ Sensor A has an average bias of 5.10°C.

2. Sensor A: On Board, Sensor B: Off Board (Figure 5.8).

➢ Microcontroller#1 connected to Sensor A on board and Sensor B off board.

➢ Sensor A On b oard has a decreased bias of 4.46°C.

➢ Sensor B Off board has a bias of 0.90°C.

3. Sensor A: On Board, Sensor B: Off Board, Sensor C: Off Board (Figure 5.9).

➢ Microcontroller#1 connected to Sensor A on board, Sensor B and Sensor C

off board.

➢ Sensor A On board has a decreased bias of 3.33°C.

➢ Sensor B Off board has a decreased bias of 0.49°C.

➢ Sensor C Off board has a negative bias of -0.49°C

50

4. Sensor G: On Board (Figure 5.10).

➢ Microcontroller#5 connected to Sensor G on board only.

➢ Sensor G On board has a bias of 4.85°C.

5. Sensor G: On Board, Sensor H: Off Board (Figure 5.11).

➢ Microcontroller#5 connected to Sensor G on board and Sensor H off board.

➢ Sensor G On board has a decreased bias of 3.01°C.

➢ Sensor H Off board has a bias of 0.06°C.

6. Sensor G: On Board, Sensor H: Off Board, Sensor F: Off Board (Figure 5.12).

➢ Microcontroller#5 connected to Sensor G on board, Sensor H and Sensor F

off board.

➢ Sensor G On board has a increased bias of 5.49°C.

➢ Sensor H Off board has a bias of 1.79°C.

➢ Sensor F Off board has a bias of 2.71°C.

• Table 5.3 summarizes the accuracy and precision data for Experiment 2.

51

Figure 5.7 Calibration Experiment 2: Microcontroller #1 connected to Sensor A

Figure 5.8 Calibration Experiment 2: Microcontroller #1 connected to Sensor A & B

4.46°C

0.90°C

5.10°C

52

Figure 5.9 Calibration Experiment 2: Microcontroller #1 connected to Sensor A, B & C

Figure 5.10 Calibration Experiment 2: Microcontroller #5 connected to Sensor G

4.85°C

3.33°C

-0.44°C

0.49°C

53

Figure 5.11 Calibration Experiment 2: Microcontroller #5 connected to Sensor G & H

Figure 5.12 Calibration Experiment 2: Microcontroller #5 connected to Sensor G, H and F

3.01°C

0.06°C

5.49°C

2.71°C 1.79°C

54

Table 5.3 Sensor Calibration Experiment 2: Accuracy and Standard Deviation

Group Sensor Configuration Accuracy Std. Dev.

1

Sensor A On Board 5.10 0.51

Thermocouple -- -- 0.21

2

Sensor A On Board 4.46 0.23

Sensor B Off Board 0.94 0.17

Thermocouple -- -- 0.13

3

Sensor A On Board 3.33 0.36

Sensor B Off Board -0.44 0.34

Sensor C Off Board 0.49 0.31

Thermocouple -- -- 0.20

4

Sensor G On Board 4.85 0.23

Thermocouple -- -- 0.13

5

Sensor G On Board 3.01 0.58

Sensor H Off Board 0.06 0.45

Thermocouple -- -- 0.15

6

Sensor G On Board 5.49 0.34

Sensor H Off Board 1.79 0.19

Sensor F Off Board 2.71 0.24

Thermocouple -- -- 0.15

Conclusion

Even though the experiment is run for different sensors in the similar configurations, the

specific behavior cannot be determined based on the bias in temperatures. This shows the

inconsistency of the sensor accuracy. There is no predicable behavior, but these data can be used

to create distributions of the real-time data to estimate uncertainty.

55

From the derived standard deviations, error bars are plotted for each sensor plot as shown

in Figure 5.13 and Figure 5.14 (from 5:30 – 9:30 am). For the sensor data group (with thermal

noise) at the top overlaps within the error bars. It can be determined from this behavior that the

data sensed is not accurate and the sensor data, with overlapping error bars, has offsets in the

measurements.

Figure 5.13. Temperature plots from data measured on February 2nd, 2017 with error bars

derived from a controlled temperature experiment. The overlapping error bars show the data as

same values with offset due to inaccuracy of sensors

56

Figure 5.14. Temperature plots from data measured on February 2nd, 2017 with error bars

spanning the period of 4 hours from 5:30 to 9:30 am

57

CHAPTER VI

FUTURE WORKS

Single User Multi Node Interface

Based on the single user multi node interface calibration experiment and data analysis, the

currently used sensors, i.e. BME280 can be calibrated via software or hardware to meet the

accuracy and precision requirements. This can be achieved if the slope correction technique is

established.

Also, high precision sensors can be used as an alternative to meet the accuracy and

precision requirements. If separate sensors for measuring temperature, pressure and humidity are

used, high accuracy and precision sensors are available. Some work has been performed in

selection of sensors:

Table 6.1 Comparison of present and future high precision sensors

Parameter Sensor Accuracy Precision

Temperature, Humidity, Pressure BME280 ±1°C, ± 3%, ± 1 hPa -

Temperature MCP9809 + 0.25°C +0.0625°C

Pressure MPL3115A2 ± 0.4 kPa 1.5 Pa

Humidity SHT31-D ± 2% 0.01%

58

Multi User Single Node Interface

The Multi User Single Node Interface can be expanded by development of multiple nodes

that are similar to a single node developed here. These nodes can be at same place or at different

places operating tree or star topology with the hub. Different ID’s will need to be provided for

each node for their identification. Each node can have different types and numbers of

sensors/actuators or electronics attached as per the user requirements.

59

CHAPTER VII

CONCLUSION

A remote Internet of Things (IoT) laboratory has been developed and used in teaching and

research of Cyber Physical Systems (CPS) while successfully demonstrating the concept and

technology of the laboratory in two applications. First the laboratory is configured as a Multi User

Single Node Interface where multiple remote users can access the unified remote sensing hardware

with single point measurements. The example implementation of this system is the UTChattSat

that utilizes real-time communication and web-based user control to create a distributed multi-user

interface. Second, the laboratory is configured for a Single User Multi Node Interface where a

single user can access multiple remote sensing nodes. The example implementation of this system

develops the distributed sensor networks that consists of interconnected, real time, and smart

system with embedded sensors and processors. This network is used to provide data for assessment

of current building energy models.

As a conclusion, experiments can be controlled and monitored across the world using

authorized access. Multi-dimensional uses of the laboratory support a wide range of research.

Single User Interface provides remote access to industrial and professional research for a

personalized experiment. Example: Smart Buildings Challenge at UTC. Multi User Interface

provides distributed user measurement/data collection techniques for educational research.

Example: Local Science Schools, UTChattSat.

60

REFERENCES

[1] D. Hodson, "Time for action: Science education for an alternative future," International

Journal of Science Education, vol. 25, no. 6, 2003.

[2] J. D. Gobert and B. C. Buckley, "Introduction to model-based teaching and learning in

science education," International Journal of Science Education, vol. 22, no. 9, 2000.

[3] R. Giffinger, "Smart cities - Ranking of European medium-sized cities," Vienna: Centre

of Regional Science, 2007.

[4] S. Musa, "Smart City Roadmap," [Online] Available:

https://www.academia.edu/21181336/Smart_City_Roadmap

[5] S. Bhardwaj and A. Kole, "Review and Study of Internet of Things: It's the Future,"

presented at the International Conference on Intelligent Control Power and

Instrumentation (ICICPI), 2016.

[6] R. Baheti and H. Gill, "Cyber-physical Systems," The Impact of Control Technology,

IEEE Control Systems Society, 2011.

[7] National Science Foundation, "Cyber Physical Systems," Directorate for Computer &

Information Science & Engineering Vision Statment, 2015. [Online] Available:

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286

[8] N. Komninos, "What makes cities intelligent?," Smart Cities: Governing, Modelling and

Analysing the Transition: Taylor & Francis, 2013.

[9] "Building a Smart City + Equitable City," New York City Mayor's Office of Technology

& Innovation: Department of Citywide Administrative Services, 2015.

[10] J. Soldatos, "IoT vs. M2M, CPS, WoT...: Are these terms synonyms?," LinkedIn, 2015.

[Online] Available: https://www.linkedin.com/pulse/iot-vs-m2m-cps-wot-terms-

synonyms-john-soldatos

[11] Digi XBee Hardware, 2017. [Online] Available: https://www.digi.com/lp/xbee/hardware

[12] "Product Manual v1.xEx - 802.15.4 Protocol," IEEE 802.15.4 RF Modules, Digi

International, 2009.

[13] L. Ada, "Adafruit Ultimate GPS," Adafruit Industries, learn.adafruit.com, 2016.

61

[14] K. Townsender, "Adafruit 10-DOF IMU Breakout," Adafruit Industries,

learn.adafruit.com, 2015.

[15] A. Dennis, Raspberry Pi Home Automation with Arduino, First Edition, USA: Packt

Publishing, 2013.

[16] P. Justo and E. Gertz, S. Ellis and B. Jepson, Atmospheric Monitoring with Arduino, First

Edition, USA: O'Reilly Media Inc., 2013.

[17] E. Gertz and P. Justo, S. Ellis and B. Jepson, Eds. Environmental Monitoring with

Arduino, First Edition, USA: O'Reilly Media Inc., 2012.

[18] R. Faludi, Building Wireless Sensor Networks, First Edition, USA: O'Reilly Media Inc.,

2011.

[19] L. Ada, "Adafruit BME280 Humidity + Barometric Pressure + Temperature Sensor

Breakout," Adafruit Industries, learn.adafruit.com, 2015.

[20] H. Stark and J. Woods, Probability and Random Processes with Applications to Signal

Processing, Third Edition. USA: Prentice Hall Inc., 2002.

62

APPENDIX A

SOFTWARE

63

UTChattSat Main Controller Software:

The software for Main Controller of UTChattSat is as given below. The algorithm is shown

in Figure A.1.

#include <SoftwareSerial.h>

#include <SD.h>

 SoftwareSerial sensorcont(4,5);

 void setup() {

 Serial.begin(9600);

 sensorcont.begin(9600);

 while(!Serial);

 }

 void loop() {

 int SensorData[10], SensorConfig[3];

 int sensor_SampTime = 0, ExpIter, ExpCounter;

 while(!Serial.available());

 if (Serial.available()){

 for (int i = 0; i<3 ; i++){

 SensorConfig[i] = Serial.parseInt(); // Read Configuration Word form XBee, Digital 0

pin

 }

 for (int i = 0; i<3 ; i++){

 sensorcont.print(SensorConfig[i]); // Write Configuration Word to SC, Digital 5 pin

 if (i < 2) sensorcont.print(",");

 else sensorcont.println(" ");

 }

 sensor_SampTime = SensorConfig[1] * 1500;

 sensorcont.setTimeout(sensor_SampTime);

 ExpIter = trunc(SensorConfig[0]/SensorConfig[1]);

 while(!sensorcont.available());

 for(ExpCounter = 0; ExpCounter<ExpIter; ExpCounter++){

 int j, k;

 for (j = 0; j<10 ; j++){

 SensorData[j] = sensorcont.parseInt(); // Read Data Word form SC, Digital 4 pin

 }

 j=0;

 for (k = 0; k<10 ; k++){

 Serial.print(SensorData[k]); // Write Data Word to XBee, Digital 1 pin

 if (k < 9) Serial.print(",");

 else Serial.println(" ");

 }

 k=0;

 }

64

 }

}

**

Figure A.1 UTChattSat: Main Controller Software Algorithm

65

UTChattSat Sensor Controller Software:

The software for Sensor Controller of UTChattSat is as given below. The algorithm is

shown in Figure A.2 and A.3.

#include "MsTimer2.h"

//#include <TimerOne.h>

#include <SoftwareSerial.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_LSM303_U.h>

#include <Adafruit_BMP085_U.h>

#include <Adafruit_L3GD20_U.h>

#include <Adafruit_10DOF.h>

#include <Adafruit_GPS.h>

SoftwareSerial mySerial(3, 2);

Adafruit_GPS GPS(&mySerial);

#define GPSECHO true

/* Assign a unique ID to the sensors */

Adafruit_10DOF dof = Adafruit_10DOF();

Adafruit_LSM303_Accel_Unified accel = Adafruit_LSM303_Accel_Unified(30301);

Adafruit_LSM303_Mag_Unified mag = Adafruit_LSM303_Mag_Unified(30302);

Adafruit_BMP085_Unified bmp = Adafruit_BMP085_Unified(18001);

sensors_event_t accel_event;

sensors_event_t mag_event;

sensors_vec_t orientation;

sensors_event_t bmp_event;

float seaLevelPressure = SENSORS_PRESSURE_SEALEVELHPA;

boolean usingInterrupt = false;

float alt, temp1,prs1,roll,pitch,head,alt1;

int ExpTime, SampTime,ExpTime_milli, SampTime_milli, SensorConfig;

uint32_t timer = millis();

int fixtime, latitude, longitude, GPS_alt;

bool gyro_flag=false, GPS_flag=false;

int GetData[10];

// Function declaration

void useInterrupt(boolean);

void initSensors();

void gyro();

int temperature();

int pressure();

int altitude();

66

void GPS_parse();

void takeReading();

void setup() {

 Serial.begin(9600); // Serial Comm Baud Rate

 GPS.begin(9600); // GPS Baud Rate

 GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA); // RMC and GGA

ON

 GPS.sendCommand(PMTK_SET_NMEA_UPDATE_10HZ); // NMEA Update rate:

10 Hz

 GPS.sendCommand(PMTK_API_SET_FIX_CTL_5HZ); // Fix Update rate: 5 Hz

 initSensors(); // Initialise the sensors

 useInterrupt(true);

 delay(900);

 mySerial.println(PMTK_Q_RELEASE); // Initialize the GPS

}

SIGNAL(TIMER0_COMPA_vect) {

 char c = GPS.read(); // GPS read data

 return;

}

void loop()

{

 int ExpCounter; //keeps track of how many samples have been collected

 int ExpIter; //total number of samples to be taken

 while(!Serial.available());

 if(Serial.available())

 {

 ExpCounter = 0; // Reset the counters for a new transmission request

 ExpIter = 0;

 ExpTime = Serial.parseInt(); // Save Experiment Time

 SampTime = Serial.parseInt(); // Save Sample Time

 SensorConfig = Serial.parseInt(); // Save Sensor Configuration

 ExpTime_milli = ExpTime * 1000;

 SampTime_milli = SampTime * 1000;

 ExpIter = trunc(ExpTime/SampTime);

 }

 if (ExpCounter < ExpIter){ // Check for the current transmission complete

 for(ExpCounter = 0; ExpCounter<ExpIter; ExpCounter++) // Run through for

Experiment time

 {

 takeReading(); // collect and transmit readings as per Sensor Configuration

 //char c = Serial.read();

 //while (c != '$');

67

 delay(SampTime_milli); // stay here for Sample time

 }

 }

 }

void takeReading(){

 bool CompVal = 1; // Compare Value = '1' for checking whether

sensor is ON

 int j;

 for (int j = 0; j < 8; j++) // Roll through all sensors(8); 0 = Gyro, = Alt, 2 = Press, 3 =

Temp, 4 = GPS

 { // 5,6,7 = Extra sensor 1,2,3 respectively

 if (CompVal && bitRead(SensorConfig, j)) // Check sensor j state (1 = ON, 0 =

OFF)

 {

 switch (j)

 {

 case 0 : // Gyroscope ON

 gyro(); // Call function to get the Gyroscope data

 if(gyro_flag){

 GetData[0] = orientation.roll;

 GetData[1] = orientation.pitch;

 GetData[2] = orientation.heading;

 }

 else{

 GetData[0] = 0;

 GetData[1] = 0;

 GetData[2] = 0;

 }

 gyro_flag = false;

 break;

 case 1 :

 GetData[3] = altitude(); // Altitude ON. Call function to get Altitude

data

 break;

 case 2 :

 GetData[4] = pressure();

 break;

 case 3 :

 GetData[5] = temperature(); // Temperature ON. Call function to get

Temperature data

 break;

 case 4 :

 useInterrupt(true); // GPS Interrupt enabled

 GPS_parse(); // GPS ON. Call function to get GPS data

68

 if(GPS_flag){

 GetData[6] = fixtime;

 GetData[7] = latitude;

 GetData[8] = longitude;

 GetData[9] = GPS_alt;

 }

 else{

 GetData[6] = 0;

 GetData[7] = 0;

 GetData[8] = 0;

 GetData[9] = 0;

 }

 GPS_flag = false;

 useInterrupt(false); // GPS Interrupt disabled

 break;

 case 5 : // Extra Sensor 1 ON

 break;

 case 6 : // Extra Sensor 2 ON

 break;

 case 7 : // Extra Sensor 3 ON

 break;

 default: // Default State. Do Nothing.

 break;

 }

 }

 else // Transmit '0' for the sensors that are turned OFF

 {

 switch (j)

 {

 case 0 : // Gyroscope OFF

 GetData[0] = 0;

 GetData[1] = 0;

 GetData[2] = 0;

 break;

 case 1 : // Altitude OFF

 GetData[3] = 0;

 break;

 case 2 : // Pressure OFF

 GetData[4] = 0;

 break;

 case 3 : // Temperature OFF

 GetData[5] = 0;

 break;

 case 4 : // GPS OFF

 GetData[6] = 0;

 GetData[7] = 0;

69

 GetData[8] = 0;

 GetData[9] = 0;

 break;

 case 5 : // Extra Sensor 1 OFF

 break;

 case 6 : // Extra Sensor 2 OFF

 break;

 case 7 : // Extra Sensor 3 OFF

 break;

 default: // Default State. Do Nothing.

 break;

 }

 }

 }

//Serial.print("$");Serial.print(",");

 for (int i=0; i<10 ; i++){

 Serial.print(GetData[i]); // Print the data stream, each field seperated by

commas

 if (i < 9) Serial.print(",");

 else Serial.println(" ");

 }

// while(!Serial.available());

 // Serial.println(" "); // Enter a new line for every transmission

 return;

}

void gyro()

{

 int gyro_data_c[3];

 /* Calculate pitch and roll from the raw accelerometer data */

 accel.getEvent(&accel_event);

 if (dof.accelGetOrientation(&accel_event, &orientation))

 { // 'orientation' should have valid .roll and .pitch fields

 roll = (orientation.roll/2000)*(65536); // Step number for 16 bits

 // gyro_data_c[0] = roll;

 gyro_data_c[0] = orientation.roll;

 pitch = (orientation.pitch/2000)*(65536); // Step number for 16 bits

 //gyro_data_c[1] = pitch;

 gyro_data_c[1] = orientation.pitch;

70

 }

 /* Calculate the heading using the magnetometer */

 mag.getEvent(&mag_event);

 if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation))

 {

 /* 'orientation' should have valid .heading data now */

 head = (orientation.heading/2000)*(65536); // Step number for 16 bits

 //gyro_data_c[2] = head;

 gyro_data_c[2] = orientation.heading;

 }

 gyro_flag = true;

 return;

}

int temperature(){

 int temp_data_c;

 bmp.getEvent(&bmp_event);

 float temperature;

 if (bmp_event.pressure)

 {

 /* Get ambient temperature in C */

 float temperature;

 bmp.getTemperature(&temperature);

 temp1 = (temperature/90)*256; // Step number for 8 bits

 temp_data_c= temp1;

 }

return temp_data_c;

}

int pressure(){

 int prs_data_c;

 bmp.getEvent(&bmp_event);

 float temperature;

 if (bmp_event.pressure)

 {

 /* Get pressure in hPa */

 prs1 = (bmp_event.pressure/1100)*256; // Step number for 8 bits

 prs_data_c = prs1;

 return prs_data_c;

 }

}

int altitude(){

 int alt_data_c;

 bmp.getEvent(&bmp_event);

71

 float temperature;

 if (bmp_event.pressure) // Calculate the altitude using the barometric pressure sensor */

 {

 float temperature;

 bmp.getTemperature(&temperature); // Get ambient temperature in C

 alt = bmp.pressureToAltitude(seaLevelPressure, // Convert atmospheric pressure,

SLP and temp to altitude */

 bmp_event.pressure,

 temperature);

 alt1 = (alt/9000)*65536; // Step number for 16 bits

 alt_data_c = alt1;

 return alt_data_c;;

 }

}

void GPS_parse(){

 float GPS_data_raw[4];

 if (! usingInterrupt) {// read data from the GPS in the 'main loop'

 }

 if (GPS.newNMEAreceived()) {

 if (!GPS.parse(GPS.lastNMEA())) {

 }

 // approximately every 0.2 seconds or so, print out the current stats

 if (millis() - timer > 200) {

 //GPS_data_raw[0]=

(int(GPS.hour)*10000)+(int(GPS.minute)*100)+int(GPS.seconds);

 GPS_data_raw[0] = GPS.hour;

 fixtime = GPS_data_raw[0];

 if (GPS.fix) {

 GPS_data_raw[1]= (GPS.latitudeDegrees/90)*65536; // Step number for

16 bits

 latitude = GPS_data_raw[1];

 GPS_data_raw[2]=(GPS.longitudeDegrees/90)*65536; // Step number

for 16 bits

 longitude = GPS_data_raw[2];

 GPS_data_raw[3] = GPS.altitude;

 GPS_alt = GPS_data_raw[3];

 }

 }

 }

 GPS_flag =true;

 return ;

72

}

void useInterrupt(boolean v) {

 if (v) {

 OCR0A = 0xAF;

 TIMSK0 |= _BV(OCIE0A);

 usingInterrupt = true;

 } else {

 TIMSK0 &= ~_BV(OCIE0A);

 usingInterrupt = false;

 }

 return;

}

void initSensors()

{

 if(!accel.begin())

 {

 /* There was a problem detecting the LSM303 ... check your connections */

 Serial.println(F("Ooops, no LSM303 detected ... Check your wiring!"));

 while(1);

 }

 if(!mag.begin())

 {

 /* There was a problem detecting the LSM303 ... check your connections */

 Serial.println("Ooops, no LSM303 detected ... Check your wiring!");

 while(1);

 }

 if(!bmp.begin())

 {

 /* There was a problem detecting the BMP180 ... check your connections */

 Serial.println("Ooops, no BMP180 detected ... Check your wiring!");

 while(1);

 }

 return;

}

**

73

Figure A.2 UTChattSat: Sensor Controller algorithm

74

Figure A.3 UTChattSat: Sensor Controller algorithm subroutine takereading()

75

DSN Node Software for Sensor Controller 1 with sensors A and B:

The software for DSN Node Sensor Controller 1 with sensors A and B is as given below.

The algorithm is shown in Figure A.4.

#include <Wire.h>

#include <SPI.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BME280.h>

#define BME_SCK 13

#define BME_MISO 12

#define BME_MOSI 11

#define BME_CS_A 10

#define BME_CS_B 9

#define SEALEVELPRESSURE_HPA (1013.25)

Adafruit_BME280 bme_A(BME_CS_A); // hardware SPI

Adafruit_BME280 bme_B(BME_CS_B); // hardware SPI

void setup() {

 Serial.begin(9600);

 bme_A.begin();

 bme_B.begin();

 if (!bme_A.begin()) {

 Serial.println("Could not find a valid BME280 sensor, check wiring!");

 while (1);

 }

 if (!bme_B.begin()) {

 Serial.println("Could not find a valid BME280 sensor, check wiring!");

 while (1);

 }

}

void loop() {

 int code = 0;

 float CV_A = -4.5, CV_B = -2.7;

 while(!Serial.available());

 if (Serial.available()){

 code = Serial.parseInt();

 switch(code)

 {

 case 101:

 // Start parsing sensor A

 Serial.print("A,");

 Serial.print((bme_A.readTemperature())+CV_A);

76

 Serial.print(",");

 Serial.print((bme_A.readPressure() / 100.0F));

 Serial.print(",");

 Serial.print((bme_A.readAltitude(SEALEVELPRESSURE_HPA)));

 Serial.print(",");

 Serial.println((bme_A.readHumidity()));

 break;

 case 102:

 // Start parsing sensor B

 Serial.print("B,");

 Serial.print((bme_B.readTemperature())+CV_B);

 Serial.print(",");

 Serial.print((bme_B.readPressure() / 100.0F));

 Serial.print(",");

 Serial.print((bme_B.readAltitude(SEALEVELPRESSURE_HPA)));

 Serial.print(",");

 Serial.println((bme_B.readHumidity()));

 break;

 }

 }

**

77

Figure A.4 DSN: Node Software Development Algorithm for Sensor Controller 1 with

Sensor A and B

DSN Hub Software:

The software for DSN Hub is as given below. The algorithm is shown in Figure A.5, A.6,

A.7 and A.8.

libraries ##

import os.path, serial, time, datetime, socket, sys, threading, linecache

time_start = time.time()

time_start_string = datetime.datetime.fromtimestamp(time_start).strftime('-

%Y%m%d%H%M%S')

78

ser = serial.Serial('/dev/ttyUSB0', 9600)

ser.timeout = 1

 ##files

Dir_SDL = '/home/pi/Desktop/Sync/SensorLog'

SDL_name_A = '/Sens_A_' + time_start_string + '.txt'

SDL_name_B = '/Sens_B_' + time_start_string + '.txt'

SDL_name_C = '/Sens_C_' + time_start_string + '.txt'

SDL_name_D = '/Sens_D_' + time_start_string + '.txt'

SDL_name_E = '/Sens_E_' + time_start_string + '.txt'

SDL_name_F = '/Sens_F_' + time_start_string + '.txt'

SDL_name_G = '/Sens_G_' + time_start_string + '.txt'

SDL_name_H = '/Sens_H_' + time_start_string + '.txt'

Err_log = '/Err_' + time_start_string + '.txt'

functions ##

def Startup():

 time_start = time.time()

 time_start_string = datetime.datetime.fromtimestamp(time_start).strftime('-

%Y%m%d%H%M%S')

 print 'Running Startup() at' + time_start_string

 if not os.path.exists(Dir_SDL):

 os.makedirs(Dir_SDL)

 log = open(Dir_SDL + SDL_name_A, 'w')

 log.write('Sensor A Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_B, 'w')

 log.write('Sensor B Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_C, 'w')

 log.write('Sensor C Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_D, 'w')

 log.write('Sensor D Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_E, 'w')

 log.write('Sensor E Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

79

 log.close()

 log = open(Dir_SDL + SDL_name_F, 'w')

 log.write('Sensor F Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_G, 'w')

 log.write('Sensor G Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_H, 'w')

 log.write('Sensor H Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

def RPi2_SensorLog():

 i = 0

 err = 0

 while True:

 code = 100

 j = 0

 for j in range(1,9):

 code = 100 + j;

 ser.write(str(code))

 i = i+1

 time.sleep(0.25)

 print "Sample:" + str(i) + " : " + str(code) + "\n"

 RXSamp = ser.readline()

 print RXSamp

 sze_RXSamp = sys.getsizeof(RXSamp)

 print sze_RXSamp

 if sze_RXSamp != 50:

 print RXSamp

 err = err+1

 RXSamp = "0,0,0,0,0"

 print err

 ser.flushInput()

 SampDataList = RXSamp.split(',')

 SplitVar = SampDataList[4].split()

 SampDataList[4] = SplitVar[0]

 time_sample = time.time()

 time_sample_string =

datetime.datetime.fromtimestamp(time.time()).strftime('%H:%M:%S')

80

 compare_time = "23:59:59"

 SensorID = SampDataList[0]

 print SampDataList

 if SensorID == 'A':

 Sen_A_data = SampDataList

 with open(Dir_SDL + SDL_name_A, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_A_data[1] + '\t')

 log.write(Sen_A_data[2] + '\t')

 log.write(Sen_A_data[3] + '\t')

 log.write(Sen_A_data[4] + '\n')

 log.close()

 elif SensorID == 'B':

 Sen_B_data = SampDataList

 with open(Dir_SDL + SDL_name_B, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_B_data[1] + '\t')

 log.write(Sen_B_data[2] + '\t')

 log.write(Sen_B_data[3] + '\t')

 log.write(Sen_B_data[4] + '\n')

 log.close()

 elif SensorID == 'C':

 Sen_C_data = SampDataList

 with open(Dir_SDL + SDL_name_C, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_C_data[1] + '\t')

 log.write(Sen_C_data[2] + '\t')

 log.write(Sen_C_data[3] + '\t')

 log.write(Sen_C_data[4] + '\n')

 log.close()

 elif SensorID == 'D':

 Sen_D_data = SampDataList

 with open(Dir_SDL + SDL_name_D, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_D_data[1] + '\t')

 log.write(Sen_D_data[2] + '\t')

 log.write(Sen_D_data[3] + '\t')

 log.write(Sen_D_data[4] + '\n')

 log.close()

 elif SensorID == 'E':

81

 Sen_E_data = SampDataList

 with open(Dir_SDL + SDL_name_E, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_E_data[1] + '\t')

 log.write(Sen_E_data[2] + '\t')

 log.write(Sen_E_data[3] + '\t')

 log.write(Sen_E_data[4] + '\n')

 log.close()

 elif SensorID == 'F':

 Sen_F_data = SampDataList

 with open(Dir_SDL + SDL_name_F, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_F_data[1] + '\t')

 log.write(Sen_F_data[2] + '\t')

 log.write(Sen_F_data[3] + '\t')

 log.write(Sen_F_data[4] + '\n')

 log.close()

 elif SensorID == 'G':

 Sen_G_data = SampDataList

 with open(Dir_SDL + SDL_name_G, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_G_data[1] + '\t')

 log.write(Sen_G_data[2] + '\t')

 log.write(Sen_G_data[3] + '\t')

 log.write(Sen_G_data[4] + '\n')

 log.close()

 elif SensorID == 'H':

 Sen_H_data = SampDataList

 with open(Dir_SDL + SDL_name_H, 'a') as log:

 log.write(time_sample_string + '\t')

 log.write(Sen_H_data[1] + '\t')

 log.write(Sen_H_data[2] + '\t')

 log.write(Sen_H_data[3] + '\t')

 log.write(Sen_H_data[4] + '\n')

 log.close()

 if time_sample_string == compare_time:

 with open(Dir_SDL + Err_log, 'a') as log:

 log.write("Total numbers of errors: " + str(err))

 log.close()

 return

 time.sleep(0.5)

82

main ##

Startup()

time_start = time.time()

time_start_string = datetime.datetime.fromtimestamp(time_start).strftime('-

%Y%m%d%H%M%S')

while True:

 time_start = time.time()

 time_start_string = datetime.datetime.fromtimestamp(time_start).strftime('-

%Y%m%d%H%M%S')

 SDL_name_A = '/Sens_A_' + time_start_string + '.txt'

 SDL_name_B = '/Sens_B_' + time_start_string + '.txt'

 SDL_name_C = '/Sens_C_' + time_start_string + '.txt'

 SDL_name_D = '/Sens_D_' + time_start_string + '.txt'

 SDL_name_E = '/Sens_E_' + time_start_string + '.txt'

 SDL_name_F = '/Sens_F_' + time_start_string + '.txt'

 SDL_name_G = '/Sens_G_' + time_start_string + '.txt'

 SDL_name_H = '/Sens_H_' + time_start_string + '.txt'

 Err_log = '/Err_' + time_start_string + '.txt'

 print 'Running Polling() at' + time_start_string

 log = open(Dir_SDL + SDL_name_A, 'w')

 log.write('Sensor A Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_B, 'w')

 log.write('Sensor B Data log \n\nstarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_C, 'w')

 log.write('Sensor C Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_D, 'w')

 log.write('Sensor D Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_E, 'w')

 log.write('Sensor E Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

83

 log.close()

 log = open(Dir_SDL + SDL_name_F, 'w')

 log.write('Sensor F Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_G, 'w')

 log.write('Sensor G Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 log = open(Dir_SDL + SDL_name_H, 'w')

 log.write('Sensor H Data log \n\nStarted: ' + time_start_string + '\n Time \t\t Temp \t Press \t

Alt \t Hum\n')

 log.close()

 RPi2_SensorLog()

 time.sleep(3)

**

84

Figure A.5 DSN: Hub Software Algorithm main flow

85

Figure A.6 DSN: Startup() subroutine

86

Figure A.7 DSN: RPi2_SensorLog() subroutine part-1

87

Figure A.8 DSN: RPi2_SensorLog() subroutine part-2

88

VITA

Amee Patel was born in Gujarat, India, to the parents Sharadaben and Maheshkumar Patel.

She is the first of the two children, a younger brother. She attended L.J. Primary School and

continued to Devashish Sankul in Ahmedabad, Gujarat. After the 10th grade, she pursued Diploma

of Engineering in electronics and Communication from Government Girls Polytechnic in

Ahmedabad, Gujarat and graduated in June 2010. She completed her Bachelors of Engineering in

June 2014 in Electronics and Communication from Gujarat Technological University,

Ahmedabad. Meanwhile, she worked for one year and five months for the Institute of Plasma

Research as a Technical Assistant and then continued pursuing her Bachelor’s Degree. Amee got

admitted in University of Tennessee at Chattanooga in August 2015 and accepted a graduate

research assistantship in January 2016. She graduated with a Masters of Science degree in

Electrical Engineering in August 2017. Amee is working with La-Z-Boy Residential as Electrical

Engineer in the Research and development department.

