
Durham E-Theses

Supporting Project Comprehension with Revision

Control System Repository Analysis

BURN, ANDREW,JAMES

How to cite:

BURN, ANDREW,JAMES (2011) Supporting Project Comprehension with Revision Control System

Repository Analysis, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/716/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/716/
 http://etheses.dur.ac.uk/716/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Supporting Project Comprehension with

Revision Control System Repository Analysis

PhD Thesis

Andrew Burn

Technology Enhanced Learning

School of Engineering and Computing Sciences

Durham University

Copyright

The copyright of this thesis rests with the author. No quotation from this

thesis should be published without prior written consent. Information derived

from this thesis should also be acknowledged.

Declaration
No part of the material provided has previously been submitted by the author

for a higher degree in Durham University or in any other university. All the

work presented here is the sole work of the author and no-one else.

Acknowledgements

This dissertation was begun six years ago, and would never have been com-

pleted without the support, guidance and endless patience of my supervisor,

Liz Burd.

I would also like to thank Stephen Cummins for the time and effort spent

reviewing the thematic analysis, potentially the least interesting task I have

ever asked of anybody.

Further thanks go to David Budgen, Barbara Kitchenham and the rest

of the EPIC team for the advice and feedback they gave me, and also for

helping me to fully understand the necessity of clear, repeatable empirical

research in Computer Science.

An honourable mention goes to Sidhe Interactive and Module for their

“80’s new wave, stadium rock and intergalactic space rock opera” soundtrack

to the video game “Shatter”, which seems specifically crafted to help me

write, code and think.

Finally, my gratitude and love go to my wife Tamora, who has supported

me throughout my PhD with the continuous provision of pies, cakes and

drinks.

Abstract

Context: Project comprehension is an activity relevant to all aspects of software

engineering, from requirements specification to maintenance. The historical, trans-

actional data stored in revision control systems can be mined and analysed to

produce a great deal of information about a project.

Aims: This research aims to explore how the data-mining, analysis and presentation

of revision control systems can be used to augment aspects of project comprehension,

including change prediction, maintenance, visualization, management, profiling,

sampling and assessment.

Method: A series of case studies investigate how transactional data can be used

to support project comprehension. A thematic analysis of revision logs is used

to explore the development process and developer behaviour. A benchmarking

study of a history-based model of change prediction is conducted to assess how

successfully such a technique can be used to augment syntax-based models. A

visualization tool is developed for managers of student projects with the aim of

evaluating what visualizations best support their roles. Finally, a quasi-experiment

is conducted to determine how well an algorithmic model can automatically select

a representative sample of code entities from a project, in comparison with expert

strategies.

Results: The thematic analysis case study classified maintenance activities in 22

undergraduate projects and four real-world projects. The change prediction study

calculated information retrieval metrics for 34 undergraduate projects and three real-

world projects, as well as an in-depth exploration of the model’s performance and

applications in two selected projects. File samples for seven projects were generated

by six experts and three heuristic models and compared to assess agreement rates,

both within the experts and between the experts and the models.

Conclusions: When the results from each study are evaluated together, the

evidence strongly shows that the information stored in revision control systems

can indeed be used to support a range of project comprehension activities in a

manner which complements existing, syntax-based techniques. The case studies

also help to develop the empirical foundation of repository analysis in the areas of

visualization, maintenance, sampling, profiling and management; the research also

shows that students can be viable substitutes for industrial practitioners in certain

areas of software engineering research, which weakens one of the primary obstacles

to empirical studies in these areas.

Contents

Declaration of Authorship i

Acknowledgements ii

Abstract iii

List of Figures ix

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Background . 1

1.2 Research Aims . 3

1.2.1 Profiling Projects . 7

1.2.2 Change Prediction and Impact Analysis 8

1.2.3 Software Visualization 9

1.2.4 Sampling . 9

1.3 Summary . 10

2 Literature Review 11

2.1 Introduction . 11

2.2 Overview . 12

iv

CONTENTS v

2.3 Project Comprehension:

Understanding Software . 13

2.4 Software Change – Evolution and Maintenance 15

2.4.1 Software Evolution . 15

2.4.2 Software Maintenance 19

2.5 Impact Analysis and Change Prediction 21

2.5.1 Syntax-Based Impact Analysis 22

2.6 Software Visualization . 24

2.6.1 Types of Visualization 25

2.6.2 Software Visualization Tools 27

2.6.3 Empirical Studies on Software Visualization 29

2.7 Summary . 33

3 Mining Revision Control Repositories 34

3.1 Introduction . 34

3.2 Revision Control . 35

3.3 Structured Review . 35

3.3.1 Overview . 36

3.3.2 Data Mining . 37

3.3.3 Impact Analysis and Change Prediction Using Histori-

cal Data . 42

3.3.4 Supplementary Data Sources 46

3.3.5 Revision Control in Education 47

3.4 Summary . 49

4 Design and Implementation 50

4.1 Introduction . 50

4.2 Requirements . 51

4.2.1 Thematic Analysis . 51

4.2.2 History-Based Change Prediction 51

4.2.3 File Sampling . 52

4.2.4 Software Visualization 52

CONTENTS vi

4.3 Data Extraction and Storage 52

4.4 Perceive . 57

4.4.1 Preprocessing . 58

4.4.2 Class Design and Data Structures 59

4.4.3 File Information . 59

4.4.4 Limitations and Future Development 60

4.5 Workflow . 60

4.6 Summary . 61

5 Case Study: Thematic Analysis 63

5.1 Introduction . 63

5.2 Case Study Design . 64

5.2.1 Research Goals . 64

5.2.2 Research Questions . 65

5.2.3 Evaluation Paradigm and Techniques 66

5.2.4 Practical Issues . 66

5.2.5 Ethical Issues . 67

5.2.6 Evaluation and Discussion of Results 67

5.3 Thematic Analysis . 67

5.4 Study 1.1: 12 Group Projects 68

5.4.1 Research Questions . 69

5.4.2 Design . 70

5.4.3 Limitations and Threats to Validity 73

5.4.4 Evaluation . 73

5.4.5 Conclusions . 78

5.5 Study 1.2: 22 Group Projects and Four

Open Source Projects . 81

5.5.1 The Projects . 82

5.5.2 Research Questions . 83

5.5.3 Thematic Analysis . 84

5.5.4 Limitations and Threats to Validity 85

5.5.5 Evaluation . 85

CONTENTS vii

5.5.6 Conclusions . 92

5.6 Study 1.3: A Complete Open Source Project Analysis 93

5.6.1 Research Questions . 94

5.6.2 Thematic Analysis . 94

5.6.3 Limitations and Threats to Validity 94

5.6.4 Evaluation . 95

5.6.5 Conclusions . 102

5.7 Case Study Discussion . 104

5.7.1 Research Question 2 105

5.7.2 Research Question 3 106

5.8 Case Study Conclusions . 107

5.9 Summary . 107

6 Case Study: History-Based Change Prediction 108

6.1 Introduction . 108

6.2 Case Study Design . 110

6.2.1 Research Goals . 111

6.2.2 Research Questions . 112

6.2.3 Evaluation Paradigm and Techniques 113

6.2.4 Practical Issues . 113

6.2.5 Ethical Issues . 116

6.2.6 Evaluation and Discussion of Results 116

6.3 Perceive . 116

6.4 Study 2.1: Empirical Benchmarking Study 117

6.4.1 Research Questions . 117

6.4.2 The Models . 118

6.4.3 Phases . 119

6.4.4 Implementation Details 121

6.4.5 Limitations and Threats to Validity 122

6.4.6 Results . 123

6.4.7 Evaluation . 125

6.4.8 Discussion . 140

CONTENTS viii

6.4.9 Conclusions . 143

6.5 Study 2.2: Project Applications 144

6.5.1 Introduction . 144

6.5.2 The Projects . 145

6.5.3 Overview of Perceive 146

6.5.4 Case Study 2.2A: SEG 146

6.5.5 Case Study 2.2B: PuTTY 152

6.6 Study 2.3: Improving Perceive 154

6.6.1 Research Questions . 155

6.6.2 Perceive . 155

6.6.3 Study Design . 155

6.6.4 Results . 156

6.6.5 Evaluation . 156

6.6.6 Discussion . 157

6.6.7 Conclusions . 158

6.7 Case Study Discussion . 158

6.7.1 Research Question 4 158

6.7.2 Research Question 5 159

6.7.3 Research Question 6 159

6.8 Case Study Conclusions . 160

6.9 Future Work . 160

6.10 Summary . 162

7 Case Studies: Project Management and Assessment 163

7.1 Introduction . 163

7.2 Case Study: Software Visualization and Project Management . 164

7.2.1 Case Study Design . 164

7.2.2 Study 3.1: Software Visualization and Project Manage-

ment Using Perceive 167

7.2.3 Case Study Discussion 187

7.2.4 Case Study Conclusions 188

7.3 Case Study: Project Sampling 189

CONTENTS

7.3.1 Case Study Design . 189

7.3.2 Study 4.1: Supporting Group Project Assessment . . . 191

7.3.3 Case Study Discussion 204

7.3.4 Case Study Conclusions 205

7.4 Conclusions . 205

7.5 Summary . 206

8 Conclusions and Future Research 208

8.1 Introduction . 208

8.2 Case Study 1: Profiling Projects 209

8.2.1 Research Question 2 210

8.2.2 Research Question 3 211

8.2.3 Summary . 211

8.3 Case Study 2: Change Prediction 212

8.3.1 Research Question 4 212

8.3.2 Research Question 5 213

8.3.3 Research Question 6 213

8.3.4 Summary . 214

8.4 Case Study 3: Software Visualization 214

8.4.1 Research Question 7 215

8.4.2 Research Question 8 216

8.4.3 Summary . 216

8.5 Case Study 4: Sampling . 217

8.5.1 Summary . 218

8.6 Future Research . 220

8.7 RQ 1 : How Can Data Mining of Revision Control Systems be

Applied to Support Project Comprehension? 221

A Structured Literature Review References 223

ix

List of Figures

1.1 Study Structure . 5

1.2 Structure of the research questions and studies 6

2.1 Dependency Graph . 28

2.2 SeeSoft . 29

2.3 sv3D . 30

3.1 A manual classification of large commits 39

3.2 Correlation between grade and LOC 41

3.3 Cluster analysis based on modification request relationships . 44

4.1 The MySQL design . 54

4.2 A simple web interface for Perceive 56

4.3 The complete Perceive workflow 61

4.4 The simplified Perceive workflow 61

5.1 Structure of the research questions and studies of the project

profiling case study . 65

5.2 Activity types broken down by group 76

5.3 Activity over time . 76

5.4 Comparison of activity types across campuses 79

5.5 A broad comparison of work levels on each campus over time . 79

5.6 C1 students – Breakdown of the various activity types 80

5.7 C2 students – Breakdown of the various activity types 80

5.8 Activity Types Between SEG Project Years 87

x

LIST OF FIGURES

5.9 Breakdown of activity types between campuses 89

5.10 Activity Types Between Sets of Projects 90

5.11 Breakdown of desirable and undesirable activities 91

5.12 Distribution of activity types for PuTTY 95

5.13 How the activity distribution of the primary activities changes

over the course of the project 96

5.14 Cumulative activity breakdown over the development history

of PuTTY . 97

5.15 Comparison of activity distributions for SEG, PuTTY1 and

PuTTY2 . 98

5.16 Activities preceding project milestones 99

5.17 Breakdown of activity types by the PuTTY developers. 100

5.18 Breakdown of activity types by the PuTTY developers 101

5.19 Owner Visualization of PuTTY 103

6.1 Structure of the research questions and studies of the change

prediction case study . 111

6.2 Phase 1: Effects of the support parameter on academic projects129

6.3 Phase 1: Effects of the confidence parameter on academic projects129

6.4 Phase 1: Effects of the support parameter on FOSS projects . 131

6.5 Phase 1: Effects of the confidence parameter on FOSS projects 131

6.6 Phase 1: Effects of the support parameter on large projects . . 132

6.7 Phase 1: Effects of the confidence parameter on large projects 133

6.8 Phase 2: Effects of the support parameter on academic projects136

6.9 Phase 2: Effects of the confidence parameter on academic projects136

6.10 Phase 2: Effects of the support parameter on FOSS projects . 137

6.11 Phase 2: Effects of the confidence parameter on FOSS projects 137

6.12 Phase 2: Effects of support and file selection 138

6.13 Phase 2: Effects of confidence and file selection 139

6.14 Phase 2: Overview of support and confidence on precision . . 139

6.15 Phase 2: Overview of support and confidence on recall 140

6.16 Phase 2: Effects of support on Perceive and Perceive2 . . . 141

xi

LIST OF FIGURES

6.17 Phase 2: Effects of confidence on Perceive and Perceive2 . . 141

7.1 Structure of the research questions and studies of the software

visualization case study . 164

7.2 Overview of a student project 169

7.3 The list of revisions . 170

7.4 File activity . 171

7.5 Developer information . 172

7.6 File information . 172

7.7 Project overview . 173

7.8 The Modified Icicle Plot (MIPVis) 174

7.9 The MIPVis with a single user selected 175

7.10 Radial Visualization . 176

7.11 Files plotted along a Hilbert Curve 177

7.12 HilbertVis with coloured by activity 178

7.13 HilbertVis with the files coloured by change type 179

7.14 Flow Visualization . 180

7.15 Owner Visualization . 181

7.16 Bar chart – cumulative revision 183

7.17 Line chart – changes by time 184

7.18 Pie chart – change types . 185

7.19 Progress report . 185

7.20 Structure of the research questions and studies of the file

sampling case study . 190

7.21 Sampling agreement rates . 199

7.22 Overall performance of the three Perceive models 202

xii

List of Tables

5.1 Distribution of maintenance activities using the second set of

codes . 70

5.2 Distribution of maintenance activities 74

5.3 Distribution of maintenance activities 86

6.1 Map of research questions to studies 112

6.2 Phase 1: Overview . 123

6.3 Phase 1: All models, code files 123

6.4 Phase 1: All models, extended file set 124

6.5 Phase 1: Project category, code files 124

6.6 Phase 1: Project category, extended file set 124

6.7 Phase 1: Correlation between metrics and performance 125

6.8 Phase 2: Overview . 126

6.9 Phase 2: Effects of file selection 126

6.10 Phase 2: Effects of project category 126

6.11 Phase 2: Effects of fail-weight (FW) 126

6.12 Phase 2: Correlation between metrics and performance 127

6.13 Overview of the projects . 145

6.14 Performance of Perceive for various project groups 147

6.15 Performance of Perceive for various project groups 152

6.16 Overview of the performance of the new change-prediction

models . 156

6.17 Peak F-Scores of each model for the two project sets 156

xiii

7.1 Allocations of projects to assessors 193

7.2 Summary of the number of files suggested for each project . . 197

7.3 Number of files suggested for each project by each assessor . . 197

7.4 Coverage achieved by each expert and model 198

7.5 Agreement rate . 200

7.6 Agreement rate in singles, doubles and triples 201

A.1 Overview of the results of the structured literature review . . . 227

List of Abbreviations

1. GQM : Goal Question Metric

2. HBCP : History-Based Change Prediction

3. RCS : Revision Control System

4. RQ : Research Question

5. RQCP : Research Question: Change Prediction

6. RQFS : Research Question: File Selection

7. RQTA: Research Question: Thematic Analysis

8. SEG : Software Engineering Group

Chapter 1

Introduction

1.1 Background

As a process from beginning to end, from specifying requirements to ongoing

maintenance, software engineering activities require a high degree of under-

standing and the construction of complex mental models (Paul et al., 1991).

For some software projects, the necessary level of comprehension can be main-

tained by expertise and experience alone, but this quickly becomes untenable

as a project grows and evolves. As a project grows larger, a developer’s model

of it will become less and less complete; as more people work on the project

their contributions must be constantly melded into the developer’s model.

Even more challengingly, a new developer must construct this model, and

gain this understanding of the project completely from scratch (Anvik and

Murphy, 2007). With a high quality project – one with proper documentation,

structured, well-commented code and access to the experience or “group mem-

ory” of the current developers – this is a tractable problem. In many cases

the project is not so well documented, the original developers are no longer

involved with the project, the new developer lacks experience or resources are

constrained and comprehension becomes unachievable (Cubranic and Murphy,

2003).

The activity of comprehension has a number of applications and support-

1

Chapter 1. Introduction 2

ing concepts in software development, such as code comprehension, project

comprehension, software visualization, impact analysis, change prediction or

unit testing. A number of techniques, methods, tools and systems have there-

fore been researched and implemented to support developers; the underlying

concepts behind these, and examples of their implementation and evaluation

are discussed in depth in the literature review in Chapter 2. Considerable re-

search effort has been conducted on program comprehension – understanding

the code which makes up a project, either at design-time or run-time – and

such research tends to focus on analysing one or more (or all) code entities.

With knowledge of the syntax and functionality of a programming language

or paradigm, analysing source code can support program comprehension in a

range of ways (Storey et al., 2000; Soloway and Ehrlich, 1989). At a simple

level these methods mimic the strategies used by the programmers, but do so

faster and at greater scale than the programmer can achieve unsupported,

presenting the results at a sufficient granularity or abstraction to be most

useful. An example of this is calculating dependencies – a human can maintain

a model of how code entities are related, but algorithmically generating a

dependency graph (Ferrante et al., 1987) can provide the same information

more rapidly and across an entire project. At a more complex level, com-

prehension tools can use software metrics to calculate cohesion and coupling

(Gall et al., 1998), make suggestions for refactoring or predict error-prone

code (Graves et al., 2000).

A growing field of research is that of data mining, which has significant

application in program comprehension, as discussed in Chapter 3. Revision

control systems (RCS), such as SubVersion (Collins-Sussman, 2002) or CVS

(Beck, 2003) contain a great deal of information about a project’s history,

transactional information which can be extracted and analysed to facilitate

program comprehension activities. When a tool analyses a single version of a

project it is restricted to data from that one snapshot of the project and can

only extract information from the project’s structure, existing documentation

and syntactic knowledge of the programming platform; a tool analysing many

Chapter 1. Introduction 3

versions of a software project can expand on this in two ways – by being

able to perform the same processes across a range of versions, and by being

able to analyse the actual development processes themselves (Glassy, 2005).

Such systems are of use not just to developers but to users across all stages

of a project, as research has demonstrated that even related artefacts such

as requirements documents can be analysed in this fashion (Dekhtyar et al.,

2004). Project managers can use such analyses to make decisions on how

the project should proceed or how to allocate resources; maintainers can use

historical data to create and access an artificial “group memory” to make use

of the expertise and experience of previous developers (Cubranic and Murphy,

2003).

1.2 Research Aims

The research presented in this dissertation seeks to address the question:

• RQ 1: How can data mining of revision control systems be applied to

support project comprehension?

Specifically, this research aims to explore the methods by which data

mining of historical project data from revision control system repositories,

and demonstrate empirically that analysis of transactional data – the metadata

associated with changes, such as comment logs, rather than the source code

itself – can support a range of project comprehension activities in educational,

industrial and academic contexts. As Chapters 2 and 3 describe, much of

the research in these fields does not have a strong evidence-based foundation,

and where empirical research exists there are often inconclusive or conflicting

results.

In order to address this research question, four activities which require

or support project comprehension have been identified – project profiling,

change prediction, software visualization and file sampling. These activities

are described in more detail in the following sections. For each of these four

Chapter 1. Introduction 4

activities a case study is designed and conducted to evaluate the degree to

which data-mining RCS repositories can be used to support the activity under

study. Each case study identifies one or more research questions, which will

be used to feed back to the overall research question, RQ 1.

These studies will use a range of established empirical techniques, both

qualitative and quantitative, with the dual goals of answering a series of

research questions regarding data mining and the expansion of the empirical

landscape of the field by designing methodical, structured and repeatable

studies using clearly defined and representative subjects and data.

The subject of each case study is one or more sub-studies, which will di-

rectly evaluate the specific application of a technique based on RCS repository

analysis; these sub-studies will identify their own research questions. The

success or failure of the sub-studies to apply repository analysis to support

the activity under study will form the basis of the evaluation of the parent

case study. If a sub-study shows no benefit in using repository analysis to

support the activity under study, then the case study will have no evidence

to suggest that repository analysis is able to support project comprehension.

Conversely, if a sub-study finds that the activity under study benefits from

repository analysis then the parent case study will be able to show – for that

particular activity – that repository analysis can be used to support project

comprehension.

Figure 1.1 outlines the structure of the studies, showing how each case

study evaluates the findings of a particular technique used to support a project

comprehension activity, which in turn feed into the overall research goal.

The outline of the case studies, sub-studies and research questions are

shown in more detail in Figure 1.2.

The DECIDE Framework will be used to structure the research aims,

questions and studies (Sharp et al., 2002). Like the Goal Question Metric

(GQM) approach (Basili et al., 1994) the DECIDE Framework outlines a

process and structure for conducting research; however, the components of

the framework are more fine-grained than that of GQM, and are as follows:

Chapter 1. Introduction 5

Figure 1.1: Each case study evaluates an RCS-based technique to conduct a

project comprehension-related activity to assess whether repository analysis can

successfully support project comprehension activities.

Chapter 1. Introduction 6

Figure 1.2: Structure of the research questions and studies

Chapter 1. Introduction 7

• Determine the goals the evaluation addresses;

• Explore the specific questions to be answered;

• Choose the evaluation paradigm and techniques to answer the questions;

• Identify the practical issues;

• Decide how to deal with the ethical issues;

• Evaluate, interpret and present the data.

The following sections provide an overview of the four case studies, their

goals and the research questions they seek to address. The research methods,

metrics and evaluation techniques are described in the relevant chapters.

1.2.1 Profiling Projects

Examining a project to profile or categorize it – or aspects of it – has

several applications in project comprehension, either in terms of increased

understanding of the subject project, or to learn more about the nature of

software development. For example, Hindle et al. (Hindle et al., 2008) have

used profiling to explore the nature of large revisions; while the results are

directly applicable to the sample projects, they use the conclusions they draw

to teach us about the wider role of large revisions.

The first case study has the goal of determining how analysis of repository

change logs can be used to support project comprehension, in terms of

effectiveness, cost and application scope. The case study described in Chapter

5 uses thematic analysis (Braun and Clarke, 2006) to profile a series of

projects to examine the distribution of maintenance activities; the study seeks

to investigate the development processes and management of student group

projects, and how the technique can be applied to the assessment process,

but it also aims to explore the application of thematic analysis to software

projects in general.

Successfully using thematic analysis to profile software projects will demon-

strate the technique as a powerful tool in project comprehension, both in

terms of understanding individual projects and software development as a

Chapter 1. Introduction 8

whole. This study aims to answer the following questions:

• RQ 2 : Can the process of thematic analysis be applied to RCS repository

data?

• RQ 3 : Can profiling support project comprehension in student and

open source projects?

1.2.2 Change Prediction and Impact Analysis

As projects grow in size and complexity, developers and maintainers find it

increasingly difficult to predict the impact of a change to the project, whether

the change will require further changes, and whether the developer has missed

a necessary change. Current techniques to support change prediction can use

knowledge of a programming language’s syntax to detect links between code

entities, so that a change to one will imply a necessary change to another; an

overview of these processes and techniques is given in Section 2.5. Research

into the concept of using historical project data such as RCS transactions,

detailed in Section 3.3.3, has shown that the technique is viable and can be

made to perform sufficiently well to augment syntax-based methods.

The second case study is conducted with the goal of determining if transac-

tional data from software repositories is sufficient to perform change prediction.

Chapter 6 reports a series of benchmarking studies on a set of student and

open source projects, followed by a detailed exploration of the technique on

one student project and one open source project. The case study aims to

confirm current research into history-based change prediction, while further

exploring how the technique can be applied to different tasks and project types;

it also seeks to identify areas in which it outperforms syntax-based techniques,

and thus show how a hybrid technique might provide better change-prediction

than a syntax- or history-based technique in isolation. Finally, the case study

evaluates a history-based change prediction model augmented with data from

thematic analyses to determine whether maintenance activity data can be

used to improve prediction performance.

Chapter 1. Introduction 9

The case study reported in Chapter 6 seeks to answer the following research

questions:

• RQ 4 : Is history-based change prediction a viable technique?

• RQ 5 : When does the technique outperform syntax-based methods?

• RQ 6 : Can project profiling be used to improve history-based change

prediction?

1.2.3 Software Visualization

Software visualization is the process of creating a mental model of software

or of a particular aspect of that software (Price et al., 1998). Section 2.6

discusses software visualization and examples of software visualization tools,

exploring the lack of an empirical foundation and the lack of evidence-based

research in the field.

The third case study has the goal of determining if the data contained

in RCS repositories can be visualized to support project managers. Chapter

7 describes a study in which a project comprehension tool including a suite

of visualization tools is provided to student project managers to support

their roles. The case study seeks to investigate which visualization techniques

based on repository data mining are successful, both in terms of performance

and adoption, and addresses the following research questions:

• RQ 7 : Which RCS-based visualization techniques best support student

project managers?

• RQ 8 : Are student project managers suitable subjects for evaluating

software visualization techniques?

1.2.4 Sampling

As projects increase in size, with thousands of code files, millions of lines

of code and gigabytes of additional assets such as graphics, documentation

and data, it becomes more and more necessary to be able to identify a

Chapter 1. Introduction 10

representative subset of a project. For example, calculating complex metrics

on an entire project can be computationally intensive and time-consuming,

while processing a smaller sample of the project can rapidly produce accurate

results if the sample is sufficiently representative of the project as a whole.

The fourth case study has the goal of exploring how successfully an

automated tool can select a representative subset of files from a software

project. Chapter 7 details an experiment in which a model using transactional

data from a project’s history is compared to models used by experts in process

of selecting files from student group projects for assessment. The performance

of the models in automating a currently challenging aspect of assessment is

measured to determine if an automated process can successfully identify a

subset of a project which is representative of the whole. A successful model

will have an impact in both education and industry, as there are a number of

activities in which generating a representative sample of a project is either

beneficial or necessary.

This study seeks to answer the following research question:

• RQ 9 : Can the data contained within RCS repositories be used to

automate file sampling?

1.3 Summary

This chapter has laid out the context and aims of this research and described

the case studies with which these aims shall be approached. Each study is

designed to answer specific research questions in order to achieve a stated

goal, but also to explore the viability of the research methods and data mining

techniques used in them, and to provide support to future empirical work in

this field.

Chapter 2 contains a review of the literature of the fields in which this

research is grounded. It is followed in Chapter 3 by a structured literature

review of research concerned with data mining and analysis of revision control

system repositories.

Chapter 2

Literature Review

2.1 Introduction

Areas of research very rarely stand alone and project comprehension is no

exception. It is related to a number of other fields – including software

evolution and visualization – and this chapter provides a background for

each of them, as well as describing the relationships between them. A great

deal of research has been carried out in these fields and a number of tools,

models and techniques exist to apply this research. This chapter explores

this research in depth, identifying and evaluating the tools and methods used

to support project comprehension.

This chapter is divided into four main sections – program comprehension,

software change, software visualization and impact analysis. Program com-

prehension sets the stage for the fields that follow, and various models of how

developers understand software are described. This leads into the software

change section, which discusses the inevitability of evolution and maintenance

in software systems. The various difficulties and problems this presents to

project managers, developers and – especially – maintainers are described.

Software change leads on to research into impact analysis, change propagation

and change prediction, all concerned with the understanding of how a change

to a project – whether in the requirements or in the code – will generate other

11

Chapter 2. Literature Review 12

necessary changes. Finally, software visualization – in the context of program

comprehension – is described, and research covering a number of tools and

methods for supporting software change and change prediction is explored.

Chapter 3 follows this literature review with a structured literature review

of the primary field of this research – mining revision control systems.

2.2 Overview

One of the immutable laws of software is that it changes. As it does so it

almost invariably grows larger and more complex (Lehman, 1996). A typical

software project can consist of tens or hundreds of thousands of lines of

code, far beyond the capacity of even an experienced developer to maintain a

complete understanding of. These factors give rise to several fields of software

engineering, including:

• Software Evolution: “All programming activity that is intended to

generate a new software version from an earlier operational version”

(Lehman and Ramil, 2000).

• Software Maintenance: “The process of modifying a software system

or component after delivery to correct faults, improve performance or

other attributes, or adapt to a changed environment” (IEEE Standard

610.12-1999).

• Program Comprehension: “The task of recapturing the abstract design

of a system, in part or in full, from its source code” (Paul et al., 1991).

• Impact Analysis: “Estimating the potential consequences of carrying

out a change” (Ajila, 1995).

• Change Propagation: “As developers modify software entities... they

must ensure that other entities in the software system are updated to

be consistent with these new changes” (Hassan and Holt, 2004).

Chapter 2. Literature Review 13

• Software Visualization: “The use of the crafts of typography, graphic

design, animation, and cinematography with modern human-computer

interaction technology to facilitate both the human understanding and

effective use of computer software” (Price et al., 1998).

This research is centered around the concept of project comprehension,

which is related to program comprehension, but is not focussed exclusively on

capturing information solely from source code, but from other project data

and artefacts.

2.3 Project Comprehension:

Understanding Software

The human brain is an astounding thing, capable of feats that the most

powerful computers and most elegant software in the world cannot hope to

imitate, but it has its limits. These limits are unfortunately evident in the

world of software development. Working on a small piece of software, in the

order of thousands of lines of code, it is not hard for a developer to construct

and maintain a perfect understanding or mental model of the code, how each

of its elements work together, what each section does, and what the effects of

changes or additions may be (Jørgensen and Sjøberg, 2002). This perfection

can quickly decay however, in a number of ways. Simply leaving the code

and returning to it weeks or months later can greatly reduce this level of

comprehension. Adding another developer can lead to confusion and conflicts

Cubranic and Murphy (2003), while increasing the size can exceed the brain’s

ability to maintain a good understanding of the whole. Unfortunately, in real

life development all of these situations can and do happen (Jørgensen, 2006).

A million lines of code, being worked on by a development team is beyond

the human mind to fully understand.

Much research has been carried out to determine how developers and

programmers understand software (Storey et al., 1999). Following observa-

Chapter 2. Literature Review 14

tional studies of programmers various cognitive models have been proposed

to describe their behaviour (Storey et al., 2000). These models include the

following:

• Bottom-up: Programmers read the source code and mentally form

higher-level understanding of the software by grouping code together.

• Top-down: Rather than working from the code up, programmers apply

knowledge of the application domain to a mapping of the source code.

It has been observed (Soloway and Ehrlich, 1989) that this model is

applied more when the application domain is familiar to the developer.

Other models use a combination of these two approaches, acknowledging

that developers are flexible and capable of altering their approach depending

on factors such as the depth of understanding required, the resources available

and existing familiarity.

A number of tools exist to aid developers in attaining program comprehen-

sion; software visualization tools, by definition, are to some extent program

comprehension tools (see Section 2.6).

Program comprehension has special importance in the field of software

maintenance (Section 2.4) – maintenance activities are frequently assigned

to teams with no prior experience of the project at hand. They are required

to gain a familiarity with the software sufficient to carry out non-trivial

maintenance tasks on it without degrading the codebase. Given that a typical

software project consists of many thousands – possibly millions – of lines of

code (for example, Microsoft Windows Vista has in the region of 50 million

lines of code (Lohr and Markoff, 2006)) it is impossible for a single person to

have a complete understanding of the whole system, even a developer who

has worked on it since the beginning. The situation is much worse when

the developer in question has little to no experience with the software, as

is frequently the case during software maintenance, which is usually carried

out by a separate team (or an individual). Maintainers may have formal

training, but this rarely makes up for their lack of experience with the software

Chapter 2. Literature Review 15

itself (Jørgensen, 2006). This is typically compounded by frequent lack of

access to the original developers, poor documentation, poor comments, badly

formatted/styled code and previous maintenance efforts.

It is unsurprising therefore that a maintainer given a complex system and

limited resources has difficulty in carrying out maintenance tasks without

negatively impacting the system in unpredictable ways. Any tool or model

which is capable of assisting a maintainer in developing a more complete and

accurate understanding of the software is invaluable in reducing the need for

future maintenance tasks.

2.4 Software Change – Evolution and Main-

tenance

“To most people, software is the code that is the end result of the software

development process,” (Reiss, 2001). This view of software is not limited

to end users, but an unfortunate number of developers and managers see

the actual implementation of software as being the most significant aspect

of development, and therefore dedicate the bulk of the available time and

resources to coding. This is counter-productive as better specification and

design lead to greatly reduced implementation time, easier testing, and much

better maintenance in the future (Bennett and Rajlich, 2000). Although the

situation is improving thanks to software engineering maturing as a discipline

the development of software, particularly of large systems, is still problematic

and badly understood (Jørgensen, 2006).

2.4.1 Software Evolution

Software evolution lacks a standard definition. According to RISE (Research

Institute for Software Evolution) it is defined as “the set of activities, both

technical and managerial, that ensures that software continues to meet orga-

nizational and business objectives in a cost effective way” (Burd and Munro,

Chapter 2. Literature Review 16

2003). Another description (Bennett and Rajlich, 2000) notes that evolution

and maintenance are often used interchangeably, although evolution refers to

a specific phase in development. A third definition (Girard et al., 2004) states

that “evolution subsumes a range of activities from realizing new or changed

requirements down to fixing small bugs in the code”. Girard et al also make

an interesting distinction – “The key difference between the development of a

product from scratch and the evolution of a product is that a developer must

ensure compatibility with former releases of the same product”.

In recent years studies have shown that the changes software undergoes

through its life cycle, both before and after delivery, conform to a number

of laws (Lehman, 1996) (see Section 2.4.1.1 “Laws of Software Evolution”).

This concept has given rise to the practice of viewing software not only in

terms of its current state and its goals but in terms of the correlation between

the software’s development and its predicted development based on the laws

of software evolution.

The idea of software evolution is, and will continue to be a key element in

improving the state of software development. At the beginning of a project,

there will likely be well-defined specifications, designs, constraints and test

cases. As the project develops, the code will change and often the other

aspects of the software have not changed to match. This means that further

along the implementation phase there will be growing inconsistencies between

the design, the specification, the implementation and the evaluation (this is

obviously not true for all project models – ones that place a strong emphasis

on prototyping, for example, will obviously have a different development

process). New techniques and tools are being created that tie the evolution

process to the rest of the project – a single framework for the whole project

ensures that changes in any aspect of the system are automatically reflected in

the other aspects. For example, a change in the requirements for the interface

of a program will ensure that the developers update the design as well as the

implementation. This increased consistency results in an overall improvement

in the development process. While it may initially seem to require more effort

Chapter 2. Literature Review 17

and time, the benefits later on greatly outweigh the early costs.

2.4.1.1 Laws of Software Evolution

Although software evolution is a process rather than a problem to be solved, it

does generate some significant difficulties which research and tools can help to

mitigate. Lehman’s research (Lehman, 1996) has uncovered a number of laws

and trends that are consistent in any sufficiently complex real-world software

project, and as such opens up a whole realm of research into dealing with

software evolution. After a series of studies, Lehman formulated the eight

Laws of Software Evolution (Lehman, 1996) which apply to E-type programs

(those that are “actively used and embedded in a real world domain”) and

these laws are as follows:

• Continuing Change:

An E-type program that is used must be continually adapted else it

becomes progressively less satisfactory.

• Increasing Complexity :

As a program is evolved its complexity increases unless work is done to

maintain or reduce it.

• Self-Regulation:

The program evolution process is self-regulating with close to normal

distribution of measures of product and process attributes.

• Conservation of Organizational Stability :

The average effective global activity rate on an evolving system is

invariant over the product lifetime.

• Conservation of Familiarity :

During the active life of an evolving system, the content of successive

releases is statistically invariant.

Chapter 2. Literature Review 18

• Continuing Growth:

Functional content of a program must be continually increased to

maintain user satisfaction over its lifetime.

• Declining Quality :

E-type programs will be perceived as of declining quality unless rigor-

ously maintained and adapted to a changing operational environment.

• Feedback System:

E-type Programming Processes constitute Multi-loop, Multi-level Feed-

back systems and must be treated as such to be successfully modified

or improved.

These laws cover E-type systems and were arrived at following observations

of a range of systems over a number of years and describe the pressures that

dictate the changes that will take place in an evolving piece of software.

Although the laws are not based on any statistically significant models the

number of studies that have been carried out since, as well as on-going research,

mean that “the laws represent an emerging theory of software process and

software evolution based on many inputs including the reality of software

development” (Lehman, 1996).

Lehman also formulated the Uncertainty Principle (Lehman and Ramil,

2001), which states that “the real world outcome of any E-type software

execution is inherently uncertain with the precise area of uncertainty also not

knowable”. Considering the complexity of much software, and the fact that

hardware is not infallible, this principle is incontrovertible. By accepting the

truth of the Uncertainty Principle the risks and unpredictability of even the

simplest software can be reduced, or at least acknowledged so that the issues

may be addressed.

Despite Lehman’s work, software evolution is still remarkably unquantifi-

able. However, there is an increasing amount of work being done on applying

metrics to evolving software. Mens and Demeyer break evolution metrics into

Chapter 2. Literature Review 19

two types, predictive and retrospective analysis (Mens and Demeyer, 2001).

Predictive analysis uses metrics to assess which parts of a piece of software

need to be evolved, which ones are likely to be evolved and which areas may

suffer from evolution. Retrospective analysis falls into two categories. Firstly,

metrics can be applied to deduce what changes were made, where and when.

Secondly, metrics can be used to assess the effects of those changes, in terms

of complexity or size for example.

Reiss (Reiss, 2001) discusses three approaches that may be employed to

ensure consistent software evolution. The first method is to create a language

that covers all aspects of software, from specification to implementation.

Forays have already been made into this idea. Projects written in Java

can have automatically generated documentation, while recent versions of

Borland’s Delphi IDE (Integrated Development Environment) are able to

create diagrams based on the code being written. However, such an all-

encompassing language is likely to fail as there is simply too much to cover and

not everything can be represented by a programming language. The second

method for achieving consistency is to develop a “semantic representation for

software development that handles all the dimensions and maintains their

consistency.” Reiss argues that this approach is also likely to fail, as it requires

re-implementing a range of tools so that they could be aware of all aspects of

the software, regardless of methodology, language and notation. The third

approach is to develop a mechanism that integrates tools appropriate to the

different aspects of software.

This third approach is far more practical as it requires only a framework

rather than an entire new system. The benefits of a framework are that new

tools, methods, notations and languages can easily be integrated as needed

without having to redevelop an entire system.

2.4.2 Software Maintenance

Software maintenance has been defined as “the process of modifying a software

system or component after delivery to correct faults, improve performance or

Chapter 2. Literature Review 20

other attributes, or adapt to a changed environment” (IEEE Standard 610.12-

1999). Maintenance is one of the most costly and lengthy aspects of software

development, often accounting for as much as two thirds of all development

effort (Lientz et al., 1978), but maintenance is also one of the lowest-profile

and badly supported aspects: “Many personnel believed that maintenance

activities have low prestige, are poorly supported by management, and have

a low priority at the corporate level” (Dart et al., 1993).

Maintenance is an integral part of software evolution – in fact the RISE

definition of software evolution implies that maintenance is the set of activities

that make up evolution – since in many instances the majority of work that

changes a piece of software takes place in the maintenance phase (Economics,

1981). Not only that, but as maintenance is frequently badly performed, these

changes often create the need for more changes.

The distinction between evolution and maintenance is not always clear,

but at a very high level, evolution is the changing of software over its life while

maintenance is the set of activities that comprise those changes. Even then,

whether evolution and maintenance begin at conception or only after initial

delivery is still debated. In this research, both maintenance and evolution

are defined as beginning at the first point of release.

Software maintenance can be divided into four main types, namely per-

fective, corrective, adaptive and preventative (BS ISO/IEC 14764:2006), as

follows:

• Perfective maintenance involves adding or improving functionality,

• Corrective maintenance is fixing errors or bugs in the software,

• Adaptive maintenance is updating the software to meet a changed

environment, such as a new operating system,

• Preventative maintenance is altering the software to facilitate future

maintenance efforts.

Chapter 2. Literature Review 21

2.5 Impact Analysis and Change Prediction

When a developer makes a change to a piece of software, that change can have

knock-on effects. Changing a variable from an integer to a double requires

the developer to ensure that each reference to that variable is expecting a

double, otherwise the program will fail. While modern compilers can catch

simple cases sometimes the effects are more subtle, such as the problems

introduced by inheritance and polymorphism. If the change is made and

the program compiles it can be tempting to assume that the change had

no unintended effects, but this is rarely the case, especially in larger, more

complex systems. The more experience a developer has on the project being

modified the more likely he is to anticipate the necessary changes, whereas a

maintainer, new to the system and still trying to understand the code, would

be unable to anticipate the effects. In this case he would either have to review

the code by hand, carry out strict and thorough testing for each change, or

use tools to analyse the code for him. Taking a more project-wide view, the

impacted area may not even be in the code – for example, a change to a piece

of code may require an alteration to the documentation or test cases.

Impact Analysis is the term for anticipating the effects that a change will

have on the software. Developers carry out mental impact analysis every time

they make a change, no matter how trivial, but there are limitations to their

capacity for this. To this end, a number of tools and techniques exist that

analyse code and perform a more algorithmic impact analysis.

Ajila (Ajila, 1995) cites a number of reasons for carrying out impact

analysis:

• Estimating the cost of a change; it may become necessary to attempt a

different, safer change.

• Identifying the parts of software that must be modified, and the parts

of the software than may be modified for a given change.

• Recording the history of change information and evaluating the quality

of changes.

Chapter 2. Literature Review 22

• Determining the sections of the software that must be tested after a

change has been made.

Even if an impact analysis is successfully carried out and every effect

discovered, dealing with these effects will frequently require further changes,

each of which may require more changes, and so on. This is an example of

change propagation and is known as the ripple effect (Black, 2001). Efforts are

usually made to reduce this effect during design time by compartmentalizing

functionality, limiting the interactions between these blocks, a process for

which object-oriented programming is well-suited. However, case studies

have shown that up to a third of all requirements are only discovered during

the development process (Rajlich, 2000). This means that, despite new

programming paradigms and the best efforts of designers, change propagation

is still a very real issue.

The typical approach to impact analysis is to look at the source code and

apply syntactic knowledge of the programming language to determine which

other areas of the code will be affected by a change to any given entity. For the

remainder of this thesis such techniques shall be referred to as “syntax-based”

techniques. Program slicing1 is one such method, which aims to extract

from a program statements which are relevant to a particular computation

(Weiser, 1979). Another method is to create a dependency graph (a graph

relating functions and methods) and use it to determine which entities have

a connection to the entity/entities being changed. Several such methods and

tools for carrying them out are described below.

2.5.1 Syntax-Based Impact Analysis

Program slicing was first introduced in 1979 by Weiser (Weiser, 1979); in

the decades since then numerous new methods of program slicing have been

developed (Xu et al., 2005). There are several types of slicing: executable,

non-executable, forward, backward, static and dynamic to name a few. The

1A broad term, as there are a large number of slicing techniques available.

Chapter 2. Literature Review 23

different types of slicing produce different sets of code. Some methods are

more complex than others, some produce larger outputs, while some output

more easily comprehensible code.

An example of a tool for program slicing is the Surgeon’s Assistant

(Gallagher, 1996), “a CASE2 tool that uses decomposition slicing3 to assist

maintainers in limiting the scope of changes”. It works on ANSI C programs,

but the concept is easily extended to other languages. In itself, the Surgeon’s

Assistant allows the user to select one or more variables, and it will output

a text-based display of the decomposition slices. The Decomposition Slice

Display System is a component of the Surgeon’s Assistant which creates a

visual display of the results, in graph form. It deals with the issues of scaling by

allowing the user to collapse regions of the graph. However, the visualization

was seen as often being too complex, so a new version was designed (Hutchins

and Gallagher, 1998) which offered a new type of visualization. This one

was grid-based, with an emphasis on ordering the components. This ordering

allowed a general rule of thumb to be applied – “When making a change to a

variable, look right to see what variables will interfere with the change, and

look up to see what variables will be affected by the change”.

Ajila (Ajila, 1995) has proposed an “approach to impact analysis of

object change”, which can differentiate between a variety of change types (e.g.

deletion, variable redefinition, merging, etc...), and operates over four separate

life-cycle phases – requirements, specification, design and implementation,

with views for each phase. For example, the requirements phase deals with

changes to segments of the requirements documentation, rather than code. It

allows various types of query to be made of the system, the most important

of which being the ‘WHAT-IF’ query, which assesses the impact of a change

type being applied to a code entity, regardless of the actual change. Query

results are given textually, in sufficient detail to allow the user to see what

effects there will be, where they will occur and why.

2Computer Aided Software Engineering
3A decomposition slice captures all computation on a variable.

Chapter 2. Literature Review 24

The creators of the WHAT-IF model admit that their prototype has

performance issues, but suggest methods for improving on it (including a

relational database and a better graphical interface). Another significant

issue with the prototype (only the tool, not the model itself) is the lack of

a good visualization. The textual output of queries does not lend itself well

to quickly assessing the impact of a change, nor for exploring this impact to

follow its ‘knock-on’ effects.

Chapter 3 describes a number of impact analysis and change-prediction

techniques which make use of project development histories to perform impact

analyses less dependent on syntax and programming language.

2.6 Software Visualization

In Section 2.3 it was stated that there exist a number of tools and techniques

for aiding program comprehension. Many of these fall into the category of

software visualization.

Software visualization is the process of creating a mental model of software

or an aspect of it (Price et al., 1998). Although the name implies that

visualization tools use graphics this is not necessarily the case. Price et

al argue that software visualization refers to mental models, as opposed to

external pictures – looking at the Oxford English Dictionary definitions of

visual, they note that: “The seventh definition suggests the formation of a

mental image which is not necessarily related to something in one’s visual

field.”

This process can have a number of aims: aiding program comprehension,

facilitating code writing or project navigation, to name just a few. From the

most basic diagram scribbled on the back of an envelope to a full worldwide,

multi-user project workflow visualization system, tools can cover a vast range

of complexity, functionality and application.

To further make the case that software visualization may not necessarily

require graphics there are a number of text-based tools which many people

Chapter 2. Literature Review 25

(and studies) claim are at least as effective – perhaps even more so – as

graphical tools. Section 2.6.3 discusses empirical research into the relative

benefits of textual versus graphical systems.

To a certain extent, software visualization is a naturally occurring concept

– it is the nature of people to use diagrams, sketches and drawings to aid

in understanding, to complement a description or to help solve a problem

(Blackwell et al., 2001). Software visualization is merely the formalization

of this concept which has in turn led to the growth of an entire field within

software engineering. Experts will sometimes create their own representation

of software (even if it is nothing more than a sketch on a scrap of paper) to

solve a particular problem, moving the argument away from “are visualization

tools necessary?” and towards “what visualization tools or techniques are

most useful?” The issue is one of user skill level and experience; tools move

experience into an automated form and can result in a cognitive reallocation

of skills and functions.

2.6.1 Types of Visualization

Visualizations can be primarily divided into algorithm visualizations (AV)

and program visualizations (PV) (Mulholland, 1993; Lanza, 2003). PVs

represent the code or the architecture itself, while AVs use a higher level

of abstraction to display the workings of an algorithm. Lanza notes that

AVs have become less common and less important in recent years due to the

increase in shared, reusable code libraries which has “shifted the focus away

from the implementation of such algorithms”. Therefore, the term software

visualization will be used here to mean PV.

Both PVs and AVs break down into two types, static and run-time (Anslow

et al., 2004). Static visualizations are derived from the source or compiled

code and typically centre on the structure and hierarchy of the code, the

variables, functions, inheritance and dependencies. Run-time visualizations

are created by analysing the software as it runs and gathering data from the

way the program behaves. This can include such things as execution time,

Chapter 2. Literature Review 26

resources used, variable assignments and function calls. PVs typically use

data extracted from the source code and are therefore usually static, while

AVs tend to follow an algorithm as it executes and are usually dynamic.

Both types of model have extensive uses. For the most part, static rep-

resentations are more useful for program comprehension, while run-time

visualizations are well suited to debugging and optimizing – “statically ex-

tracted visualizations are wide but shallow, while dynamically extracted

visualizations are narrow but deep” (Pacione et al., 2003). That is not to say

that there is no cross-over between the two – for example, a tree of function

calls derived at run-time can be a very powerful method for understanding

the way the software works, while a dependency graph created from source

code can be just as effective at uncovering ways of streamlining the code as a

run-time visualization.

Mulholland (Mulholland, 1993) explains that there are four ways in which

a visualization tool can affect a developer. They are as follows:

• Firstly, the nature of the tool affects the way the developer uses the

tool itself – is it a graph, a chart, a 3D model? The developer may also

decide that the tool would perform better if it presented its data in a

different manner.

• Secondly, the visualization may lead to changes in the source code of

the software – the tool may highlight a particularly inefficient piece of

code, or a dependency graph may prompt a change of the structure of

the whole system.

• Thirdly, the tool may alter the nature of the task, change the problem

that the software is to solve, or change the way the software solves it.

This is particularly true if the aim of the visualization tool is program

comprehension, as the developer may then take a different approach to

finishing the task.

• Finally, the tool can affect the developer’s knowledge, both in the

immediate case of the software and the task, and in a more long-term

Chapter 2. Literature Review 27

change in the developer’s understanding of the language being used, or

their field of work.

Mulholland also notes that the effects can work both ways – the code, the

task and the developer’s knowledge can all affect the visualization tool as well

– for example, the developer may be using a standard tool that is applied to

all of their projects, but then discovers that the tool may be altered to better

suit the nature of the current project.

This leads to the discussion as to what visualization tools are appropriate

to a task, how many should be used, and how much difference familiarity can

make. Some believe that different visualizations are useful at different stages

of development or for different tasks, and therefore advocate familiarity with a

range of tools (Petre et al., 1998). On the other hand, Mulholland notes that

while different representations may be more appropriate for different tasks, it

may be preferable that “a ‘best bet’ representation be used throughout in order

to remove the necessity to translate between a large range of representations”.

While use of a “best bet” tool reduces the usefulness of the visualization –

either a generic one is chosen which will do many things but not brilliantly,

or one specific to a task that will do it well, but leave other tasks without

suitable tools – it reduces the time necessary to familiarize oneself with new

tools. This is not simply a case of learning how the tool works, but also of

learning how it applies to the software being analysed. With common use a

developer gains a much deeper, more intuitive understanding not only of the

software but of how the visualization tool reflects that software.

2.6.2 Software Visualization Tools

There are a number of methods for graphically modelling a software appli-

cation. Dependency graphs (Horwitz and Reps, 1992) (for example, Figure

2.1) are a common methods of software visualization and highlight both the

immense advantages and severe shortcomings of software visualization. They

work by representing the source code as a collection of nodes and edges,

Chapter 2. Literature Review 28

where nodes are divisions of the code (files, objects, functions or classes, for

example) and edges represent links between these divisions (Ferrante et al.,

1987). Such a graph is useful in that it shows the structure of the software

on one diagram and can easily show bottlenecks, uncover problem areas of

code or simply highlight bad design (Balmas, 2003).

Figure 2.1: Dependency Graph

However, dependency graphs also suffer from drawbacks. For example,

while they make it possible to effectively analyse a variety of aspects of a

piece of software, they quickly become too big and complex to draw, let alone

understand. Balmas (Balmas, 2003) describes an experience where he was

unable to use a popular and powerful graph drawing tool, dot (Gansner et al.,

2002), to “draw the dependence graph for a 3000 LOC program with 1700

control dependencies and 2000 data dependencies” on a reasonably powerful

computer. To solve this problem a number of solutions have been presented,

including splitting the model into separate views (Knight and Munro, 1999)

or by varying the level of detail presented to the user (Balmas, 2003). Marcus

et al (Marcus et al., 2003) explore the idea of using 3D visualizations instead

of 2D and discuss the advantages of such a system.

Other tools which seek to address this problem are SeeSoft (Eick et al.,

Chapter 2. Literature Review 29

1992) (see Figure 2.2), which visualizes individual lines of code as small lines

of pixels whose lengths reflect the length of the line of code, using colour

to represent information for that line, and sv3D (Marcus et al., 2003) (see

Figure 2.3), which uses the SeeSoft metaphor but replaces graphs with colour

and pixel maps in 3D.

Figure 2.2: SeeSoft

2.6.3 Empirical Studies on Software Visualization

Empirical research into software visualization takes two forms. Firstly, there

is fundamental research into whether or not visualization systems are superior

to textual systems, and secondly there is research into specific techniques or

tools.

There is little empirical research into the fundamental application and

Chapter 2. Literature Review 30

Figure 2.3: sv3D

Chapter 2. Literature Review 31

adoption of software visualization. In his 2002 meta-study of software visu-

alization effectiveness (Hundhausen et al., 2002), Hundhausen discusses the

problems of “orphan systems” and “system roulette” – citing early research

from Price et al. (Price et al., 1993), he notes that while more than a hundred

visualization prototypes had been built by that time, only a particularly small

number were in production use. He ascribes the orphaned systems to “system

roulette”, a development strategy by which technical challenges and a desire

for innovation, rather than serving genuine needs, are the motivating force

behind system design. In 1993 he conducted a study (Hundhausen, 1993)

into user perceptions of a visual debugging system, and found that “given

the choice between (a) textual debugging . . . and (b) LENS (Mukherjea and

Stasko, 1994) debugging . . . programmers will choose the former.” The LENS

system “occupies a unique niche” (Mukherjea and Stasko, 1994) – the desire

for novelty was the driving force behind the development rather than the

desire to address a problem or support a task.

In the early 80s Shneiderman (Shneiderman, 1982) conducted an experi-

ment to determine if graphical documentation of the source code improved

understanding of that code. Groups of subjects were given the same source

code and a variety of documentation types (including pseudocode, data struc-

ture diagrams, control flow information and macro flowcharts) and asked

a series of questions on the code. For the test code, the subjects found

data structure more useful than control flow data, but the format (textual

or graphical) made no significant difference. This reinforced the results of

an earlier experiment which again showed no performance benefit from a

graphical format over a textual one (Shneiderman et al., 1977).

There is a marked tendency in research and systems development to

assume that visualization techniques are inherently useful, that “accepted

wisdom” is correct. For example, a systematic literature review of the UML

(Budgen et al., 2010) found that the overwhelming majority of empirical

research addressed extensions, variations, metrics and adoption, without

examining if the use of UML was innately appropriate or beneficial, to any

Chapter 2. Literature Review 32

class of user or task.

A systematic literature review of the software visualization (Burn et al.,

2009) empirical landscape has shown that, in comparison to other software

engineering fields, software visualization has received very little empirical

research. From the initial mapping study based on titles and abstracts,

37 papers were included and classified. Of these, the 15 papers related to

structure visualization were examined in detail; all but five were rejected

as they did not report sufficiently empirical research. The remaining five

studies had no replication or reinforcement, making the conclusions difficult

to accept with any confidence. Only one of these studies examined the use

of visualization compared to the absence of visualization, and found that

it was indeed beneficial; the other studies began with the assumption that

visualization was beneficial and studied the use of tools. One other paper

compared actual visualization techniques, rather than the tools themselves,

while the remainder were testing tools and implementations.

The visualization systematic literature review demonstrates that the find-

ings of early research conducted in the 80s and 90s has not been contradicted

since, and there is little supporting evidence to show that visualization tech-

niques should be simply accepted as a solution without consideration of

the task, user or requirements. More recent research has in fact supported

Shneiderman’s early work, such as Krinke’s conclusion that as visualization

techniques often “suffer from the sheer amount of data to be visualised”, a

text-based approach is often preferred as programmers are more accustomed

to extracting information from large amounts of text (Krinke, 2004).

In conclusion, software visualization tools are commonly used to support

project comprehension; however, research has shown that software visualiza-

tion systems, especially academia-driven systems, tend to be innovation-driven

rather than problem-driven, and the majority of systems will never see pro-

duction use. Even the scarce evidence-based research into the appropriateness

of visualization systems has shown that they are not automatically the best

approach.

Chapter 2. Literature Review 33

2.7 Summary

Research surrounding project comprehension and related fields has been

discussed and evaluated, providing the context of this dissertation. Chapter

3 continues the literature review with a structured analysis of research into

the field of data-mining revision control systems and subsequent analysis.

Chapter 3

Mining Revision Control

Repositories

3.1 Introduction

Chapter 2 discussed the research covering program comprehension, software

change and software visualization, setting the context for this research. This

chapter provides a structured analysis of the research surrounding the mining

and analysis of revision control systems.

The research presented in this thesis is primarily concerned with the

data-mining and analysis of historical data contained within revision control

repositories to support traditional methods of project comprehension, with

an additional focus on application in an educational context. Section 3.3.2

discusses current techniques for mining historical data for a variety of tasks;

Section 3.3.3 examines research in using historical data to perform change

prediction and impact analysis and Section 3.3.5 explores research using RCS

data mining in educational contexts.

34

Chapter 3. Mining Revision Control Repositories 35

3.2 Revision Control

An integral element of a software development project beyond a certain level

of complexity – especially in team-based or distributed environments – is

that of source control. Examples of such tool include CVS (Beck, 2003),

SubVersion (Collins-Sussman, 2002), BitKeeper (Henson and Garzik, 2002),

Mercurial (Mackall, 2006) and Git (Swicegood, 2008). CVS and SubVer-

sion, are centralized repositories, while BitKeeper, Git and Mercurial are

decentralized. Requirements for revision control systems have changed over

time, as more modern systems are placing more emphasis on scalability and

decentralization. However, the central functionality remains the same – to

allow multiple developers to work concurrently on the same project, to provide

version management, and to allow code to be reverted to previous versions.

The filesystems underpinning revision control systems typically use file

deltas, storing only the differences from one version of a file to the next; this

works well on textual files, but less effectively on binary files such as compiled

executables, images or word-processing documents. At the same time that

modern systems are incorporating additional functionality to better process

these formats, other developments such as XML-based documents are helping

to mitigate these drawbacks (Rönnau et al., 2005).

3.3 Structured Review

Chapter 2 contained a review of research and literature in the fields surround-

ing this research; this chapter consists of a more structured review. While it

is not a complete systematic literature review (SLR) as described by Kitchen-

ham et al. (Dyb̊a et al., 2005), a more thorough data extraction process is

applied than an informal process, which allows for a deeper analysis of trends

and patterns in the research. The data extracted includes the following:

• Year : Software changes very quickly, which has an effect on the research

taking place, such as the systems being examined and the nature of the

Chapter 3. Mining Revision Control Repositories 36

objects under test.

• Topic: There are a number of sub-topics in this field; the data extraction

categorizes each paper by the theme or area of research.

• System: As previously described, there are a number of revision control

systems in use, some proprietary, some open source, and each has

advantages and disadvantages in comparison to others.

• Domain: Whether the research covers proprietary systems, FOSS (Free,

Open Source Software) or educational systems or environments.

• Test Objects : In a more human-centred field this item would be “sub-

jects”, but here the subjects tend to be software projects.

• Description: A summary of the aims and method of the research

• Conclusions : The outcome of the research, the evaluation of the results

and any challenges or further questions proposed.

3.3.1 Overview

Using a combination of automatic and manual searches, existing domain

expertise and iteratively examining references, 48 studies were identified for

inclusion (a duplicated study was later removed from this list, leaving 47

references). Appendix A shows the complete list of the results from this

review. In the “System” column, Multiple Sources refers to revision control

systems, bug tracking software, mailing lists, forums and documents. This

is not necessarily a complete collection of the literature, but represents a

comprehensive view of the field. For example, some of the included studies

are not concerned with RCS repositories but with version snapshots; while

not directly relevant to this review these studies provide useful comparisons

with other techniques and frequently draw highly relevant conclusions.

A preliminary analysis shows some basic trends in the field:

Chapter 3. Mining Revision Control Repositories 37

• CVS is the most common system for data mining, largely due to its

early and rapid rise to ubiquity. Although newer systems have begun

to replace it in many environments recently, it remains a common basis

for research due to the large amount of freely available data.

• Studies using industrial projects tend to use either version snapshots or

proprietary version control systems.

• The most common domain is open source software, due to the large

amount of freely available data for use. A sample of open source projects

occur repeatedly in different studies – such as Apache, Eclipse, GCC

and Linux – which serves to provide a useful context for future research.

• There is significant research in the use of supplementary information

channels such as bug tracking software, mailing lists and forums.

• Visualization is often used to support mining and comprehension of

repository data.

• There are supplementary research topics, such as the value and draw-

backs of the focus on open source software (German, 2004), and sup-

porting acknowledged limitations of repository systems, such as the

name identity problem (Van Rysselberghe et al., 2006) or lack of user

experience (Thomson and Holcombe, 2008).

• Some of the studies use snapshots of projects rather than mining version

control systems, but they are included as their findings and applications

can equally be used with version control systems.

The following sections will discuss specific findings and topics within the

field of RCS data mining.

3.3.2 Data Mining

A 1997 paper by Ball et al. (Ball et al., 1997) is an early example of mining

a revision control system to learn more about a project using the contextual

Chapter 3. Mining Revision Control Repositories 38

information it provides. The paper set out a series of proposals for future

research, including visualization, time-series analysis, development process

investigation and static program analysis, all using historical data. In 2004

Godfrey et al. (Godfrey et al., 2004) highlighted a set of challenges facing

the field – scale, automation and syntactic understanding. The recent trend

towards using open source software as the basis for research has given rise

to a number of papers discussing the advantages, challenges and needs of

open source projects in the field of repository mining. Gasser et al. (Gasser

et al., 2004) make a series of recommendations to both researchers and the

open source community which they claim would be of benefit to both. These

recommendations include the development of standards for metadata and

the creation of additional instrumentation for current tools. Howison and

Crowston (Howison and Crowston, 2004) specifically addressed the problems

they faced in mining the open source platform SourceForge, finding that even

a development community as open as SourceForge had obstacles which had

to be overcome by researchers wishing to access and analyse data.

Exploratory research has been conducted to determine to what extent

existing techniques and models can be applied to historical version data. For

example, Dekhtyar et al. (Dekhtyar et al., 2004) hypothesized that while

most work on mining historical data focussed on analysing software, due to

its structured and parsable nature, other text stored in repositories, such

as requirements documents, could also be analysed using existing natural

language processing techniques. The research showed that such analysis was

“not too difficult” and therefore repositories should be augmented with all

available natural language text used in development.

Hindle et al. (Hindle et al., 2008) described a study in which large commits

– revisions in which a large, anomalous number of changes are made – were

manually classified (as shown in Figure 3.1) to investigate how they could

affect a project. They discovered that large commits were much more likely

to consist of perfective changes than are small commits, which tend to be

more corrective in nature.

Chapter 3. Mining Revision Control Repositories 39

Figure 3.1: A manual classification of large commits

Research by Bachmann and Bernstein (Bachmann and Bernstein, 2010)

investigated the relationship between the quality of process data, such as

repository comment logs, with the quality of the actual product. Among other

findings, they reported that there was a correlation between empty commit

messages and both bug report quality and product quality. This evidence

of links between human-generated meta-data and the actual project code

demonstrate the potential for repository data mining to provide information

regarding software development, to reflect on existing work, to support current

work and to guide future work.

However, the outcomes of version analysis are limited by the correctness

of the data stored. Thomson and Holcombe (Thomson and Holcombe, 2008)

conducted a case study in which the code repositories of 17 student teams

were analysed to determine what errors – human or technical – occurred.

They classified the errors into “type one errors which relate to the non-use of

the system; type two errors that emerged from the direct manipulation of the

Chapter 3. Mining Revision Control Repositories 40

repository; and type three errors from the limitation of CVS not to record file

name changes”. The type one errors were relatively common, and is reflected

in other research (Glassy, 2005; Reid and Wilson, 2005); both type one and

type two errors are more common in student or novice users, and do not

appear to occur in more experienced environments. Type three errors reflect

a well-known problem, that of the name identity problem (Van Rysselberghe

et al., 2006; Gorg and Weisgerber, 2005), which was common with CVS, but

has been partly addressed by more modern revision control systems.

Several researchers have discussed further potential problems with the

field of version control analysis. As early as 1997 Gall et al. (Gall et al.,

1997) discovered that a high level overview of system behaviour could mask

significantly different behaviour at lower levels, a finding which must be

carefully considered in a field where the large amounts of data generated tend

to lead to a compromise between detail and coverage. Despite the common

perception that repositories, with the scope of data they store, must allow

for models to be developed which can predict a range of factors related to

the project, this has not always proven to be the case. Mierle et al. (Mierle

et al., 2005) performed an analysis of over 200 repositories of student work,

calculating 166 features and metrics, and could find no effective predictor of

student performance. Figure 3.2 shows an example correlation of final grade

with total lines of code written – a correlation as strong as any other found

in the study.

Finally, as with software visualization (see Section 2.6.3) there is little

empirical research in the field of RCS mining. Most studies tend to consist of

an informal case study of one or more projects to which the tool or technique is

applied. Many of the empirical results which are available tend to come from

interviews and observations of the target user, such as students or developers.

Again, as with visualization, the performance of RCS mining – especially

in supporting project comprehension – can be difficult to quantify and to

compare to other techniques.

As repository analysis studies are concerned primarily with automated

Chapter 3. Mining Revision Control Repositories 41

Figure 3.2: Mierle et al. could find no better correlation between a calculated

metric and student performance than a simple “lines of code” count

Chapter 3. Mining Revision Control Repositories 42

systems applied to digital data, one important aspect of empirical research,

that of replicability, should be well supported in this field. However, research

by Robles (Robles, 2010) investigated the potential for replicating the studies

of repository analysis and found that the replicability of the studies examined

– covering six years – is currently very low, proposing a series of good practices

to enhance the state of research. For example, the replicability of a study in

this field depends on the publication of the raw data used, and the disclosure

of any processing performed on this data.

The lack of replicability in a field which is inherently well-suited to it is a

further example of the lack of depth and rigour that is typical of the current

state of research in many fields of Computer Science.

3.3.3 Impact Analysis and Change Prediction Using

Historical Data

The methods of impact analysis and change prediction discussed in the

previous chapter (see Section 2.5) used a static analysis of the source code as

their basis. Some methods allow the user to create their own rules to reflect

their knowledge of the system or the language, while others can do a more

dynamic analysis of code at run-time. However, these all rely on analysis of a

single version of the code, and learn nothing from past experience. When a

developer has been working on code for a long time the level of familiarity and

understanding she has attained allow her to perform an almost unconscious

analysis – she knows what the effects will be. This can be supported by tools

such as those described in this literature review, a combination which can

provide a very powerful impact analysis.

However, a maintainer new to the system has no such prior knowledge, and

has little or no access to the original developers. Instead he has to rely on very

rapid comprehension of the code, heavily supplemented by the tools available.

While these tools can be powerful and effective, they do have their drawbacks.

They can give false-negatives (missing an impact) or false-positives (declaring

an impact where none exists). The latter is more common, and while it may

Chapter 3. Mining Revision Control Repositories 43

seem harmless can result in wasted time and even needless changes. Studies

of various change propagation heuristics have shown that methods based on

code structure are not as reliable as once thought (Hassan and Holt, 2004;

Bieman et al., 2003).

Another limitation of code-based analysis tools is that they are limited

to analysing code and predicting effects solely within that code. However, a

change may require a non-code-based entity to be modified, such as documen-

tation. Further to this, code-analysis by definition requires the tool to have

some knowledge of the structure and syntax of the programming language in

use, which ties the tool to a single language or a set of languages.

To overcome these problems, a second type of analysis is available – mining

historical data for patterns. This type of analysis gives results familiar to

anyone who has used online shopping sites: “Users who searched for ‘x’ also

searched for ‘y’” or “users who bought ‘a’ also bought ‘b’”. By analysing

change records or version histories, a tool can tap into the habits and patterns

of the experienced developers and use this data to conduct the analysis. This

also overcomes the problem of language dependence – in the case of the tool

being applied to a language it has no knowledge of it can fall back to the

entities used by the version control software. In this way, the level of detail

drops from “Users who changed function ‘x’ also changed these functions...”

to “Users who changed file ‘x’ also changed files...”.

The concept of using historical developer data has been touched upon

in past research (Gall et al., 1998), where revision information was used

to discover common change behaviour of modules and to identify possible

structural changes. Such methods have been shown to be generally superior to

code structure analysis (Hassan and Holt, 2004) and yet the concept remains

relatively unexplored. Ball et al. (Ball et al., 1997) used modification records

to cluster files based on developer behaviour, as shown in Figure 3.3.

One tool that performs impact analysis using version histories is ROSE

(Zimmermann et al., 2005), a plug-in for the popular development platform

Eclipse. It uses “full-fledged data mining techniques to obtain association

Chapter 3. Mining Revision Control Repositories 44

Figure 3.3: Cluster analysis based on modification request relationships

Chapter 3. Mining Revision Control Repositories 45

rules from version histories”, and produces a confidence level for each impact

it finds. ROSE creates sets of transactions where two subsequent changes

by the same author are part of one transaction where they are at most 200

seconds apart (Zimmermann and Weissgerber, 2004). Each rule is given a

confidence (the proportion of times that changing ‘a’ requires changing ‘b’)

and a support (the number of times changing ‘a’ required changing ‘b’) level

which helps to determine how likely the suggested impact is.

Evaluation of ROSE (Zimmermann et al., 2005) has shown that for stable

systems (such as developing a mature product, or maintenance) ROSE is

useful at a detailed level, whereas for more immature systems (such as those

in early development) it is only useful at the file level, as otherwise it would

have to predict new functions and entities. However, ROSE is limited in part

by the nature of CVS, which does only allows one change per transaction,

requiring ROSE to perform preprocessing to make groups of transactions

using a “sliding window” algorithm (Zimmermann and Weissgerber, 2004).

This grouping process is necessarily imperfect; two transactions made within

a short period of time are assumed to be in the same transaction, which is

not always the case – they could be part of two separate jobs being carried

out back to back. Also, it can fail to make a link between two transactions

if they take place too far apart – such as resuming a job after a break or

the next day. This is less of a problem with more modern revision control

systems, especially when integrated bug-tracking or job-control is employed.

An advantage of ROSE is also a drawback – the speed of rule computation

can allow transactions to be added between two situations (a set of changed

entities) can cause a false-positive to be acted upon and give it an even higher

confidence level in the future (Zimmermann et al., 2005). A more flexible

system allowing rules to be computed using restricted sets of data (such as

transactions from specific users or data from specific versions) would allow

this effect to be minimized. For example, by using only version data from a

time when the software was structurally similar to the current version, but

before maintenance started may provide better, and less ‘corrupted’ data.

Chapter 3. Mining Revision Control Repositories 46

A recent study (Adams et al., 2010) used clustering techniques to perform

“concern mining”, the process of automatically identifying concerns where a

concern is a “conceptual unit” of code, such as logging or email. Concern

mining is an innate process in development, performed almost continuously

by developers on a manual basis as they work. The authors developed a new

technique called COMMIT to reduce the manual effort involved in identifying

concerns using historical code changes; it saw an 87.5% improvement over

existing techniques, although the concerns identified did not always overlap,

leading to the conclusion that the techniques actually complement one another.

Empirical, quantitative assessment of history-based impact analysis or

change prediction is as difficult as it is for existing, syntactic techniques,

as a definitive oracle or source of accurate results to use as a baseline is

difficult to come by. Experts can manually create such data, but it is a

lengthy, resource-intensive process which limits the breadth and depth of the

data available. However, as research continues and the corpus of evidence

grows, confidence in the veracity of the results will increase, and history-based

analysis is growing as a credible technique for change-prediction, able to

support and augment current methods. In this context, such techniques and

algorithms can be compared with one another and empirical conclusions can

be drawn.

3.3.4 Supplementary Data Sources

Revision control systems are not the only source of historical data for a

project. Much research has been conducted which combines RCS analysis

with other channels of data, such as bug reports, mailing lists, forums and

project documentation. Each of these sources contains large amounts of

information about a project’s history, and analysis of these channels can be

used to support results from other channels. Anvik and Murphy (Anvik and

Murphy, 2007) developed a system to suggest a set of developers with expertise

relevant to a bug report. They performed a study in which they compared

the results of their technique with those of experts from the project. Using

Chapter 3. Mining Revision Control Repositories 47

information retrieval metrics they found that two source repository-based

methods (SR-change and SR-package) had a precision (the proportion of

suggested items which are correct) of .59 and .39 and recall (the proportion of

the correct answers which are suggested) of .71 and .91 respectively. Analysis

of the bug network resulted in a precision of .56 and a recall of .79. According

to Hassan and Holt (Hassan and Holt, 2004), such systems should aim to

achieve at least “typical information retrieval practical boundaries where

precision usually lies in the 35-40% range and recall is around 60%”. A tool

developed by Cubranic and Murphy, Hipikat (Cubranic and Murphy, 2003)

was designed to suggest pertinent artefacts to a new user based on a generated

“group memory”; results showed it to be useful for newcomers to a project,

successfully suggesting “entry points” to the project based on their tasks.

Gousios et al. (Gousios et al., 2008) use a range of information channels to

measure developer contributions as part of a quality evaluation tool, with aims

to empirically assess its performance using questionnaires. A more thorough

description of the tool (Gousios and Spinellis, 2009) describes an informal case

study in which an increase in code submissions are noted following intense

discussion.

As already stated, RCS mining techniques are difficult to objectively

assess; incorporating data from additional channels provides an avenue for

validating the results from repository analysis.

3.3.5 Revision Control in Education

Much of the research into repository analysis is in the domain of industrial

or open source software. This is understandable, as FOSS (Free and Open

Source Software) makes an expansive quantity of projects freely available to

study, while industrial case studies will tend to have a greater impact for

practitioners, considering the differences between open source software and

commercial software development in terms of motivation, organization and

economics (Lerner and Tirole, 2002). However, there is a subset of research

taking place in an educational context, where project comprehension is an

Chapter 3. Mining Revision Control Repositories 48

important aspect for a range of users – students, teachers, assistants and

assessors. As discussed in Section 3.3.2 Thomson and Holcombe (Thomson

and Holcombe, 2008) used a number of student CVS repositories to identify

and classify errors in CVS data. Much of the problems came from student

inexperience with the tools, resulting either in them not using them or

corrupting the repositories. They discuss the implications of these findings

for future research involving student repositories – “In order to maintain the

goodwill of the students it may not be possible to require them to hand in

their projects on a more frequent basis, thus type one errors may be hard

to avoid.” Similarly, in earlier research, Glassy (Glassy, 2005) discovered

that it was necessary to “structure the assigned work in terms of concrete

milestones, and attach consequences (grade points) to the meeting of those

milestones.” Glassy also discovered that while the use of RCS in student

assignments did create an administrative overhead for the instructor, the

benefits – which included teaching students the use of industry standard “best

practice”, enabling a deeper insight into student work processes, providing

additional protection against plagiarism and encouraging students to manage

their progress more effectively – potentially outweigh the aforementioned

overhead.

Reid and Wilson (Reid and Wilson, 2005) compared a CVS-based submis-

sion system to an existing electronic assignment submission system, and found

that overall CVS is superior to the previous system for accepting submissions

and recommend that it should be used in the future. “It forces students to

adopt good working practice . . . it makes it feasible for us to assign team

projects much earlier . . . and it gives the instructors a powerful tool to manage

interactions with students, TAs, and each other”.

It is tempting to assume that with the amount of data available in student

project histories it should be possible to use metrics to predict performance,

and incorporate RCS use into the assessment. However, as described in

Section 3.3.2, Mierle et al. (Mierle et al., 2005) have shown using a large

project set, no effective predictor could be determined. Liu et al. (Liu et al.,

Chapter 3. Mining Revision Control Repositories 49

2004) also failed to uncover any measurable predictor of performance, despite

anecdotal correlation between some results and students’ work. As such,

instructors must be careful when incorporating version control into a project

in any summative manner – while it does indeed teach good industry practice,

there is no evidence that it in itself affects students’ performance in other

aspects of software development, or that it can be effectively assessed.

3.4 Summary

There has been extensive research carried out in the field of mining revision

control systems, and historical data has been shown to provide new approaches

to existing problems, with comparable performance and results. Change

prediction is one such application, where an approach using historical data can

augment – without replacing – traditional, syntax-based techniques. Further

research must be done, however, to explore the effects of the algorithms and

parameters of such techniques and to investigate how the approach can be

applied in different use-cases and to different classes of project.

Similarly, manual examination of historical data, such as that used by

Hindle et al. (Hindle et al., 2008), is a promising approach with applications

in a variety of contexts. By exploring the viability of such analysis it should

be possible to determine if manual classification of change data could be used

in an educational setting to allow assessors to better understand and assess a

collaborative assignment or project.

This chapter explored in depth the field of mining revision control systems

and highlighted some avenues for further research. Chapter 4 describes the

design and implementation of the tool which supports the case studies of

which this research consists.

Chapter 4

Design and Implementation

4.1 Introduction

Chapter 3 explored past and current work in the field of RCS data mining,

providing a context for this research. As described in Chapter 1 a series of case

studies are conducted to explore the use of revision control system repositories

in supporting various aspects of project comprehension. These case studies

require a range of software tools to extract, analyse and present the repository

data. This chapter describes in detail the design and implementation of a

tool, Perceive, which is used in the conduct of these case studies. The tool

was designed iteratively, incorporating feedback from users and adapting

to changing requirements and environments, and this chapter describes the

development process. As well as Perceive a number of supplementary tools

were developed to perform the data mining and preprocessing; these tools are

also described in this chapter.

Revision control systems contain a great deal of data which can be ex-

tracted and analysed by appropriate tools. As discussed in Chapter 3 these

tools vary depending on the system being used, as does the amount of pro-

cessing the data will need once extracting. For example, CVS treats each

changed file individually, so committing a set of changed files actually results

in a series of transactions, rather than one, whereas SubVersion allows each

50

Chapter 4. Design and Implementation 51

revision to contain a number of actions.

The projects used in this research all use SubVersion as their repository

system and so the tools developed are all implemented to access SubVersion

repositories. However, this is simply an implementation decision based on the

subject projects, and does not affect the nature of the research in any way.

4.2 Requirements

The research questions stated in Chapter 1 are addressed by the case studies

reported in Chapters 5, 6 and 7. This section discusses the requirements that

each of these case studies have in the context of tools and software.

4.2.1 Thematic Analysis

The thematic analyses conducted in Chapter 5 require that the author,

timestamp and comment for each revision in a project be extracted from the

project’s repository and presented to the user in a spreadsheet-like format

which the user can filter, sort and organize as necessary. For performance

and convenience, this will require the data from a repository to be previously

extracted and converted into a format which can be more readily presented to

the user. Section 4.3 describes the process by which a repository is analysed

and the data extracted. Section 4.4 details the implementation of a graphical

application which loads the extracted data and provides the user with the

revision data and features with which to conduct the thematic analysis.

4.2.2 History-Based Change Prediction

Chapter 6 reports a series of studies in which transactional repository data is

processed to create a network of file relationships within a project. This study

requires that the user must be able to select a project (or a set of projects),

select the model being used, define a set of parameters for that model and

begin the process. As with the thematic analyses, this requires the data to be

Chapter 4. Design and Implementation 52

extracted and stored before processing. However, no user interface is required

as the algorithm is non-interactive and simply processes the transactional

data to produce tabular output.

4.2.3 File Sampling

The file-selection experiment reported in Chapter 7 required no additional

features or data beyond that used in the change prediction case study. Section

7.3.2.4 describes the algorithms which were incorporated into the software;

again, these require no user interaction and simply generate tabular results

from an input project.

4.2.4 Software Visualization

The software visualization case study described in Chapter 7 requires a

more fully-featured application with a user-friendly interface. Section 7.2.2.2

describes how the initial spreadsheet interface was extended to create a project

management tool and visualization suite used by student project managers.

The software provided to the students contains the revision spreadsheet used

by the thematic analyses, but not the algorithms used in the change prediction

or file sampling case studies.

The following sections describe the tools and processes in use at each

stage – data mining, preprocessing, storage and presentation; the final section

describes the complete system and workflow.

4.3 Data Extraction and Storage

The first stage in the process is to extract the data from the RCS filesystem.

SubVersion offers three methods for accessing the data:

• Accessing the Database: When configuring a SubVersion database,

administrators can choose between FSFS (Fast Secure File System) or

Chapter 4. Design and Implementation 53

Berkeley DB. Using correct tools and knowledge of the systems, data

can be extracted directly from the repository.

• svnlook: SubVersion is supported by a utility called svnlook which

allows users to query repositories for information from the command

line, such as the number of the latest revision, the author of a particular

revision or the list of changes in a particular revision.

• Exporting a Log : SubVersion allows users to export a log of changes,

either in a native SubVersion format or in XML.

It was decided that svnlook would be the primary method for performing

the data mining, as the use of an included tool assures reliability and com-

patibility. Using the generated log was also considered, but the log does not

include as much information as is provided by svnlook.

A script was created which would, given a repository and an identifier

(typically the project name), extract the required information and store it in

a MySQL database. The database stage is useful as it allows highly flexible

and rapid querying of the data to acquire metrics and information about

projects, and is a common feature in repository mining research.

If the project has previously been analysed (such as in an ongoing student

project), the script first determines the last revision processed, and resumes

from that point. Each revision from that point to the most recent is then

queried using svnlook for a list of changes. This produces output in the

following style:

U trunk/Project/IO/XMLLoader.cs

A trunk/Project/Login.Designer.cs

A trunk/Project/Login.cs

A trunk/Project/Login.resx

U trunk/Project/Main.cs

U trunk/Project/Perceive.cs

U trunk/Project/Perceive.csproj

Chapter 4. Design and Implementation 54

The leading character shows the change type (in this case either ‘updated

file’ or ‘added file’) and the associated file. If the revision included a copy

operation, it appears as follows:

A + tags/2008-07-10/

(from trunk/:r199)

Which indicates a file (or directory in this case) was created as a copy

from the indicated file or directory, as it appeared in the given revision (e.g.

199). Finally, a move operation is stored simply as a delete and a copy:

D trunk/IO/

A + trunk/Project/IO/

(from trunk/IO/:r9)

The script processing these revisions makes no attempt to keep track of

the move and copy operations – that function is deferred to a later stage.

Figure 4.1: The MySQL database design used to store the data extracted from

SubVersion repositories

The structure of the database is shown in Figure 4.1. The project table

is a simple table of names mapped to identifiers, and the author table maps

users to projects. The revision table stores the date, author, number and

Chapter 4. Design and Implementation 55

project of each revision, as well as the accompanying log message. Finally,

the change table maps individual changes to revisions. The text field of

the change table stores the output of the svnlook commands. The output

is rewritten into a mark-up format to simplify future operations, and copy

operations are rewritten onto one line. The above example would become:

change type=’Deleted’ entity=’trunk/IO/’

copy dest=’trunk/Project/IO/’ source=’(from trunk/IO/:r9)’

The lines field in the revision table stores the “diff size” of the revision

– the number of lines in the difference between the project as it was before the

revision and afterwards. This metric has limited use, as a number of activities

can produce extremely numerous or zero lines of difference, but is included

as it can be a useful measure of activity when taken in aggregate over the

course of a project’s life.

With the basic data in the database, simple queries and metrics can be

made. An example of this is a web interface which students can use to get an

overview of their project and check for updates to their data, such as that

shown in Figure 4.2.

The next stage in the workflow is to export the data for a single project to

a compact, portable file which can be used by a front-end application. XML

was chosen as a format for this data file, due to the readily available tools,

APIs and software libraries, reducing the scope for introducing errors into

the process. The previous example would output an XML-formatted revision

as follows:

<revision number=’10’ author=’dcs0ab’

date=’2008-04-27 11:26:42 +0100 (Sun, 27 Apr 2008)’

changesize=’0’>

<message>Moved remotely</message>

<change type=’Deleted’ entity=’trunk/IO/’ />

<copy dest=’trunk/Project/IO/’

source=’(from trunk/IO/:r9)’ />

</revision>

Chapter 4. Design and Implementation 56

Figure 4.2: A simple web interface for project management, demonstrating

information available from the database before significant processing

Chapter 4. Design and Implementation 57

This file is not dissimilar to the output from the log function of svn

command, as shown here:

<logentry

revision="10">

<author>dcs0ab</author>

<date>2008-04-27T10:26:42.581030Z</date>

<paths>

<path

copyfrom-path="/trunk/IO"

copyfrom-rev="9"

action="A">/trunk/Project/IO</path>

<path

action="D">/trunk/IO</path>

</paths>

<msg>Moved remotely</msg>

</logentry>

The main differences are the absence of the changesize metric and the lack

of trailing slashes on the directory names (e.g. trunk/IO/ versus /trunk/IO),

which makes it hard to distinguish between directories and files and loses

some semantic information.

4.4 Perceive

Once a suitable data file is created, it can be loaded into the main front-end

application for full processing, analysis and presentation. This application is

called Perceive and is designed for a range of purposes. The majority of the

features of the system are used in Chapters 5, 6 and 7, and are described more

fully where appropriate. This section focuses on design and implementation

details of the core of the application and how it affects the data analyses

which follow.

Chapter 4. Design and Implementation 58

4.4.1 Preprocessing

By the XML stage, the data has undergone little processing, and the structure

of the project at each stage must be reconstructed. In a project consisting

of add, update and delete operations, this is a simple process – for each

revision the tool simply needs to take the list of current files from the previous

revision, add any newly created files and remove any deleted files. The

operation becomes more difficult when move and copy operations are used, as

the list of files copied must be inferred and retrieved from the given revision,

a complex process made more difficult by the fact that entire directories can

be copied in one command.

Because the research is focused on files, Perceive does not include directo-

ries in its processing; considering that many revisions consist of actions using

only directories, this results in “empty” revisions, which are ignored. However,

a copy or delete operation which appears to affect only a directory cannot be

ignored as it must also affect the files contained within that directory.

After early testing, Perceive was modified to allow users to specify a

list of exclusion criteria used to disregard certain files or types of files. An

example of this might be to ignore images, branches or code libraries. This

decision was taken primarily due to the numerous files in some projects –

one student group project contained over 9,000 files when a local workspace

and its local versioning system were accidentally checked in to the group’s

repository. As some of the processing functions described later involve file

networks – with unavoidable O(n2) complexity – a way to reduce the number

of files analysed became necessary. Later revisions of the software somewhat

mitigated the complexity, but the filtering system was retained due to its

ability to simplify project views.

To test whether or not the tool was able to maintain an accurate list of the

files at each stage, a final set of files for a sample of revisions and projects was

compared with the output of the svnlook tree --full-paths command,

which shows the file structure for a project. When the outputs matched, the

tool was determined to be functioning correctly.

Chapter 4. Design and Implementation 59

4.4.2 Class Design and Data Structures

Perceive is an object-oriented application written in C# using Microsoft

Visual Studio 2005 (and later, Microsoft Visual Studio 2008). The central,

eponymous class is Perceive, which manages a collection of projects, including

loading data files and performing operations which encompass all loaded

projects. The tool is capable of reading data files which contain more than

one project – for example, an entire year of student projects can be loaded at

once and switched between, enabling rapid and easy comparisons and batch

analysis. Each Project object contains collections of Revision, Change,

File and User objects, in a structure matching that of the database.

Each Change object is classified as one of the following:

1. Added

2. Updated

3. Deleted

4. PropertyChanged

5. Copied

6. Moved

7. Unknown

The first five change types are the SubVersion classifications, while Moved

is inferred from a combined Delete and Copy operation. Unknown is included

to handle changes to the SubVersion environment or corrupted data files.

4.4.3 File Information

Perceive is language agnostic in that it operates at a file level independent

of implementation or platform. This has the advantage of not limiting

the software to any specific language or paradigm, but limits the semantic

information it can access. To provide additional functionality, Perceive can

classify files into one of the following:

1. Code

Chapter 4. Design and Implementation 60

2. Document

3. Archive

4. Media

5. Data

6. Misc

This classification is done based on the file extension – by default

Perceive classifies 74 different file extensions, and this set is entirely user

configurable, allowing the system to deal with new languages, formats or user

choices.

4.4.4 Limitations and Future Development

As discussed in Section 4.4.1 Perceive contains data structures which require

O(n logn) or O(n2) space, and computations with O(n2) complexity. As

large projects can have extremely large numbers of files, these operations can

become infeasible. The example given was of a configuration error, but a

mature project can easily contain many thousands of files, especially with

branching (making a new copy of a module for concurrent development) and

tagging (marking specific versions, such as releases or milestones). Currently

Perceive fails gracefully when a project is too large, disabling certain features

and continuing with a recommendation that the user filter some files. Future

development, including improved data structures and algorithms, will increase

the scale of projects which Perceive can fully process.

4.5 Workflow

In summary, there are two workflow avenues which can be used, as shown

in Figures 4.3 and 4.4. The first, more complex workflow has the advantage

of retaining some semantic data lost by the svn log command, and contains

the diff size for each revision. The database step is also more suitable to a

Chapter 4. Design and Implementation 61

web-based interface and the additional features this permits, such as RSS

feeds.

Figure 4.3: The complete workflow process, from repository to database to XML

to Perceive

Figure 4.4: The simplified workflow process, generating XML directly from the

repository

4.6 Summary

This chapter detailed the nature and development of the tools used at each

step in this research, as necessitated by the requirements of each case study.

Chapter 4. Design and Implementation 62

Specific functionality, such as project management features or visualizations

are discussed in the Project Management case study in Chapter 7.

Chapter 5 contains the first of the case studies, a thematic analysis of the

revision logs of a series of projects from both educational and open source

domains.

Chapter 5

Case Study: Thematic Analysis

5.1 Introduction

As described in Chapter 1, RCS repositories contain much data which can

be extracted and analysed to support project comprehension. One source of

repository data is the comment log. These comments, which accompany each

revision in a SubVersion repository, contain a large amount of information

which can be used to gain an understanding of a project. The primary use of

these logs is to help determine a change history and to associate intention

and effects of a revision with the actual code changes, providing both a record

of and a guide to a project’s development. In many cases specific formatting

and vocabulary is mandated in the logs, which facilitates data mining, but it

is typical that the logs consist of free-form, unstructured comments, which

require natural-language processing. This makes automated analysis difficult

– keyword extraction for tag clouds are an example – and manual analysis of

a large collection of text can be a time consuming process.

In an educational setting, the assessment and reporting of collaboration

and progress in group projects often involves blogs, reports, diaries, interviews

and reports (Burd and Drummond, 2006; Drummond and Devlin, 2006).

However, even a cursory examination of the comment logs reveals a remarkably

open, honest and direct insight into the activities and dynamics of a group;

63

Chapter 5. Case Study: Thematic Analysis 64

given this finding a full analysis of a series of project logs was planned and

conducted.

The case study consists of three sub-studies; the first stage (Study 1.1,

see Section 5.4) performed an analysis of the projects of a single cohort of

students (Burn, 2008), and was expanded in the second stage (Study 1.2, see

Section 5.5) to include a second year of projects and subsections of four open

source projects, with the aim of replicating the first stage and investigating

further research questions (Burn, 2009). Finally, the third stage (Study 1.3,

see Section 5.6) performed an analysis of a complete open source project to

improve the quality of the comparisons with student projects.

5.2 Case Study Design

This section details the goals, techniques and evaluation of the case study

using the DECIDE framework. The case study uses as its subjects the three

sub-studies described above, and draws its conclusions from the outcomes of

those studies.

Figure 5.1 shows the structure of this case study, how the sub-studies feed

into the case study and how the case study feeds back to the overall research

question. While the three sub-studies can stand alone as a single piece of

research, the results and experiences are used to evaluate the use of repository

analysis in project profiling; the case study will use that evaluation to assess

whether or not repository analysis can make a useful contribution to project

contribution in this context.

5.2.1 Research Goals

The case study is conducted with the goal of determining how the repository

comment logs can be used to profile projects to support project comprehension.

This profiling will use the process of thematic analysis. More specifically,

issues such as how successfully thematic analysis can be applied to comment

logs, how this is affected by the domain or type of project and how complex

Chapter 5. Case Study: Thematic Analysis 65

Figure 5.1: Structure of the research questions and studies of the project profiling

case study

and resource-intensive the process is.

If the study determines that thematic analysis can be successfully and

usefully applied to comment logs, then this research will have an impact

in both educational and industrial contexts, as the range of applications is

potentially very broad.

5.2.2 Research Questions

The overall goal of this research is to evaluate techniques by which data

mining of project repositories can be used to support project comprehension.

Therefore, the following research questions are identified:

• RQ 2 : Can the process of thematic analysis be applied to RCS repository

data?

• RQ 3 : Can profiling support project comprehension in student and

open source projects?

Chapter 5. Case Study: Thematic Analysis 66

These questions are intentionally high level, exploring the application of

thematic analysis itself. The actual conduct of the technique is evaluated

using a series of thematic analyses each of which address more specific research

questions based on educational and industrial projects.

By addressing these research questions, thematic analysis can be evaluated

in the overall context of techniques which can support project comprehension,

and either be accepted or rejected as such a technique.

5.2.3 Evaluation Paradigm and Techniques

To address the stated research questions and evaluate whether or not thematic

analysis is a useful and viable technique, a series of studies were conducted,

using thematic analysis to categorize maintenance activities in student and

open source projects. The outcomes of these sub-studies are used to evaluate

the effectiveness of thematic analysis as a process in the context of project

comprehension.

5.2.4 Practical Issues

There are two primary practical issues involved in this case study: the selection

of the projects, and the application of the thematic analysis. Team-based

student projects were made available for analysis, and a number of open

source projects are freely available on the internet. For this reason, selections

of both student and open source projects were used for analysis, which allows

not only for analysis within project groups, but enables comparisons between

student and open source projects.

Secondly, there exists no research describing a formal thematic analysis

of RCS repository data, and it was not certain that the technique could

successfully applied (as reflected by the first research question - RQ 2 : Can

the process of thematic analysis be applied to RCS repository data?). The

technique, as described in detail in Section 5.3 involves iterative design, review

and revision stages, followed by a careful and lengthy manual categorization

Chapter 5. Case Study: Thematic Analysis 67

process. Therefore, this case study is also concerned with the time and effort

required to prepare and conduct a thematic analysis.

5.2.5 Ethical Issues

The open source projects used in this case study are freely available on the

internet, whereas the copyright for the student projects is owned by the

universities involved. Therefore, ethical clearance was sought and granted to

use the student projects, following sufficient anonymisation. As no human

subjects were involved with this case study, no further ethical clearance was

necessary.

5.2.6 Evaluation and Discussion of Results

After each of the sub-studies are conducted, the findings will be evaluated in

the context of the overall research questions and goals, to relate each thematic

analysis to the overarching aim of using thematic analysis to support project

comprehension.

5.3 Thematic Analysis

Thematic analysis (Braun and Clarke, 2006) is a qualitative analytic method

which aims to uncover patterns or “stories” in data. It is conducted over several

stages; firstly a set of codes is defined and each data item is labelled with one

of these codes. This code scheme is checked by a reviewer to determine if it is

balanced, repeatable and unambiguous. The codes are refined and reviewed

until the researcher and the reviewer reach a pre-determined agreement rate.

In this analysis, given the vagueness and ambiguity of the comments being

analysed, it was decided that an agreement rate of 80% would be desirable.

The data being coded in this study are the individual comments in the revision

logs.

While thematic analysis is not commonly utilized in the field of computer

Chapter 5. Case Study: Thematic Analysis 68

science, there are examples of research based on similar processes. In a

taxonomical study of large revisions (Hindle et al., 2008) Hindle et al. classified

the largest revisions from a series of repositories into the maintenance activities

they represented; this allowed the researchers to investigate the causes and

effects of the large revisions which are frequently excluded from revision

control system mining research projects. Similarly, in a study of open source

change logs (release summaries, as opposed to revision comments – the term

release notes will be used here to avoid ambiguity) (Chen et al., 2004) changes

were classified by type, e.g. corrective, enhancement, rearrangement or

comment. This classification was based on both the release notes and a direct

analysis of the source code, and the discrepancies found led the researchers

to conclude that additional data sources such as revision logs should be used

to verify the completeness and correctness of release notes. This research is

indirectly related to the work of Chen et al. in that the classification process

is performed using the revision messages, but the study lends credence to the

assumption that revision messages are an accurate measure of development

activity.

5.4 Study 1.1: 12 Group Projects

Each year, second year computer science students from Durham and Newcastle

universities carry out cross-site, collaborative software engineering group

(SEG) projects (Drummond and Devlin, 2006). Groups consist of a team from

Durham and a team from Newcastle. Each group has a similar requirements

specification, and implementation is partitioned between the teams. For

example, in the academic year of 2006/07 the project consisted of a desktop

application and a corresponding mobile application; the Durham teams

worked on the desktop aspect, while the Newcastle teams developed the mobile

portion. Each Durham team is managed by third year students from a Project

Management module, and these managers attempt to facilitate groupwork,

collaboration and communication, as well as guiding the development process

Chapter 5. Case Study: Thematic Analysis 69

(Burd and Drummond, 2006).

The implementation phase for each group was supported by a SubVersion

repository (Collins-Sussman, 2002) and every change to a project was reflected

in the group’s repository. Each time a revision is submitted, the student is

prompted for a message or comment to describe the changes. It was these

comments that formed the data for this analysis. A thematic analysis of the

revision logs of the 12 SEG projects from the 2006/07 academic year was

conducted. The campus, gender and group of each student were recorded,

as were the time and date of each revision. In this study, the campuses are

referred to as C1 and C2, assigned randomly.

5.4.1 Research Questions

The main aim of the first stage of this analysis was to determine how de-

velopment activity changed over the lifetime of a project. Sub-questions

include whether or not these activities are affected by campus, and if they

are consistent throughout the project or change over time. A secondary aim

was to determine how well students made use of software tools to facilitate

their projects, and whether this could be improved in future years.

• RQTA 1-1 : How are development activities distributed?

• RQTA 1-2 : How do development activities change over time?

• RQTA 1-3 : Does gender affect activity distribution?

• RQTA 1-4 : Does campus affect activity distribution?

• RQTA 1-5 : How well do software tools support student projects?

This study addresses these questions in the context of the SEG projects,

but the findings are equally applicable to any academic, group-based projects,

especially cross-site or cross-campus projects.

Chapter 5. Case Study: Thematic Analysis 70

5.4.2 Design

The first step of the analysis was to devise a set of codes which could result

in useful data and which were repeatable and clearly-defined. In a similar –

but independent – approach to the research of Hindle et al. (Hindle et al.,

2008) the initial codes were derived from the types of software maintenance:

perfective, preventative, adaptive and corrective (IEEE Standard 610.12-1999).

This set of codes did not fit the data however, and a new set was defined:

• Additive: For new features added to the project

• Progressive: For improvements or expansion to existing elements of the

project

• Preventative: Cleaning, testing or documenting of the project

• Corrective: Fixing bugs and errors in the project

• Misc: Anything which did not fit in the other codes1

An initial application of this scheme resulted in a distribution of codes

shown in Table 5.1.

Additive 18.8%

Progressive 44.7%

Preventative 13.2%

Corrective 13.7%

Misc 9.6%

Table 5.1: Distribution of maintenance activities using the second set of codes

In the SEG projects bug fixes tend to be carried out at the same time as

other changes and as such are not reported, which explains why corrective

1It should be noted that “Misc” codings are acceptable and expected, but should

typically form the smallest group – if it is too broad then this indicates a problem with the

codes.

Chapter 5. Case Study: Thematic Analysis 71

actions are so low. Progressive changes are dominant, partly because the

threshold for addition being counted as an additive change was quite high.

“Added a new constructor” or “Added drop-shadows” could both be counted

as additive, but because they alter existing functionality or features they are

counted as progressive. This vagueness was expected to lead to a lower than

acceptable agreement rate in code validation.

5.4.2.1 Code Validation

An independent reviewer was sent samples of the data – 10% from each

coding, 103 in all – and asked to code them based on the codes and definitions

provided.

The review gave a 67% agreement rate, below the acceptable level. Some

of the changes were simple mistakes in the initial application of the codes

(e.g. automatically assuming a comment beginning with “updated” would

be progressive), and some were results of a comment genuinely having two

possible codings (e.g. “Added a splash screen, and fixed the database bug”).

A small proportion came from misunderstandings of the code definitions,

especially in use of the Misc code. When the definitions were improved the

agreement rate rose to slightly over 70%. There were also some occasions where

contextual information such as comments on adjacent revisions suggested a

coding that differed if the comment was taken in isolation.

5.4.2.2 Revise Codes

Based on the initial review, it was clear that the codes needed revising. To

begin with, Misc was expanded to include “multiple possible codings”, to

cover situations where a large change cannot be slotted into one code. This

code may equally have been fixed by allowing multiple codings, but that is

beyond this analysis.

More importantly, Progressive was renamed Incremental and the definition

strengthened to emphatically include additions made to existing features.

This repaired the largest difference in the initial coding and the review.

Chapter 5. Case Study: Thematic Analysis 72

The alterations and corrections (prior to the big Progressive change)

brought the agreement rate up to 77%, nearly acceptable. If the alteration

of the Progressive change were successful, the agreement rate would be

acceptable in the second review.

5.4.2.3 Second Review

The second review using the revised codes actually had a slightly worse

agreement rate than the first – around 63%. This was caused by two issues.

Firstly, the reviewer was more likely to apply the Misc code where the data

was slightly ambiguous; often this ambiguity was removed when the data was

placed in context. Secondly, the problem with differentiating the Incremental

and Additive codes remained.

5.4.2.4 Second Code Revision

Preventative was renamed to Perfective. It was initially called preventative

to map to the well-documented maintenance activity, but the code expanded

to include other forms of maintenance and so the name changed to compen-

sate. Perfective includes testing, cleaning, refactoring, deleting, restructuring,

commenting and JavaDoc. Incremental and Additive were merged to form

Developmental. Due to the inability to reliably separate the two codes, it was

deemed sensible to merge them. Misc was split into Misc and Ambiguous.

Ambiguous is used when progress or changes have clearly been made and

are being reported, but it is not clear which activity type was carried out.

It is also applicable when there are clearly two or more codes applicable

(e.g. Corrective and Developmental). Ambiguous is kept separate from Misc

because even though it is not known what activity type it describes, the

presence of ambiguous messages and how frequently they occur is interesting

in itself, and so is considered for analysis. Misc is now solely for irrelevant or

out-of-scope comments. It also includes early instances of “test” and “initial

import” which are obviously SubVersion related and not directly connected

to the project itself.

Chapter 5. Case Study: Thematic Analysis 73

Vague comments such as “change”, “working now”, “Adam’s changes” or

“updates” are coded as Developmental – although they may seem ambiguous,

investigation of the source data reveals that the majority of these revisions

are developmental in nature.

5.4.2.5 Third Review

The third review, using the new codes and definitions, had a higher than 90%

agreement rate – well above the 80% minimum acceptable rate. Therefore the

codes were considered repeatable, balanced and unambiguous, and therefore

final.

5.4.3 Limitations and Threats to Validity

Although the data set is large it is only a quarter of the total set of activities.

Therefore a large amount of potential data is missing, which could theoretically

impact the results. In some cases, the comments were primarily from one

student within the group, and in others the comments came from a larger body

of students who commented less frequently. If the distribution of comments is

random or arbitrary then this would not be a problem – each activity would

be impacted equally. On the other hand, if people were systematically not

commenting minor bug fixes (for example) then that activity would be under-

reported. Looking at the data more closely, there seems to be no systematic

bias or selection occurring with comments – in some cases it is random and in

other cases it is determined by the individual student. Extending the study

with data from subsequent SEG projects will help to mitigate any unseen

problems.

5.4.4 Evaluation

5.4.4.1 RQTA 1-1: How are Development Activities Distributed?

The overall spread of activity types is described in Table 5.2. It was noted

previously that a Misc code should be the smallest group, but in this case

Chapter 5. Case Study: Thematic Analysis 74

it was not possible – one group had a disproportionate amount of revisions

concerning documentation unrelated to the implementation itself, and so they

were all classified as Misc. It would have been possible to provide those with

a separate coding, such as Documentation and ignored them for the purposes

of analysis, but as part of Misc it maintains their relevance to this analysis

in terms of “irrelevant comments”.

Developmental 53.8%

Perfective 14.3%

Corrective 13.2%

Misc 10.5%

Ambiguous 8.3%

Table 5.2: Distribution of maintenance activities

Figure 5.2 shows how the spread of activity types differed between the

groups of students, revealing how some groups were almost entirely focussed on

developmental activities, while other were much more balanced. It is probably

not a coincidence that the highest scoring group had the highest proportion

of corrective maintenance and fewer Misc and Ambiguous codes, although

there is little correlation between any particular activity and final group

score, supporting existing research (Mierle et al., 2005). Any correlations

which do exist are just as easily explained by better developers as opposed

to better practices. There was great variance of these categories within

groups (standard deviation ranged from 6.1% to 13.2%) reflecting the varied

developmental and commenting practices adopted by each group.

If the Misc and Ambiguous codes are ignored, then Developmental activi-

ties account for two thirds of the revisions, while Corrective and Perfective

each account for one-sixth.

Chapter 5. Case Study: Thematic Analysis 75

5.4.4.2 RQTA 1-2: How do Development Activities Change Over

the Course of a Project?

Figure 5.3 shows how the various activity types changed across the course of

the projects’ lifetimes.

Corrective is, as expected, low for the first 20% of each project, around

3-4%. As development continues, Corrective rises to 15-20%, where it remains

for the life of the projects.

Developmental varies quite widely, between 42% and 67%, with a low of

20% (this anomaly coincides with the Christmas holidays). Overall, devel-

opmental activities – adding, expanding and improving features – form the

majority of the work for the entire life of the project.

Perfective activities hover between 8% and 13%, with a very low variance.

In other words, students consistently appear to spend 10% of their effort

testing, documenting, commenting, cleaning and refactoring their code – low

compared to the ideal proportion, but expected in the context of inexperienced

developers working to a strict deadline with no scope for their code to be

maintained subsequently.

Ambiguous activities range between 1% and 13%, with no apparent pattern

– this is also to be expected as Ambiguous is not an activity in itself but the

inability to classify an activity based on the comment. Only by requiring

better commenting practices or by time-consuming investigation can this

group be reduced.

Misc begins very dominant, 42-64% in the first fifth of the project cycle,

then dropping off to much lower values of 0-14% for the remainder. This is

caused by several factors – students are still learning to use SubVersion and

the commenting system, and students are still working on other aspects of

the project, which crosses over into SubVersion when things like documents

are committed. Combined with the lower amount of revisions at that stage

of the projects, this makes Misc more pronounced before being overshadowed

by other activities.

Chapter 5. Case Study: Thematic Analysis 76

Figure 5.2: Activity types broken down by group

Figure 5.3: Activity over time

Chapter 5. Case Study: Thematic Analysis 77

5.4.4.3 RQTA 1-3: Does Gender Affect Activity Distribution?

Despite having gender data available, it was not possible to address this

question, as there were so few revisions and comments from females, due to

the gender disparity in the cohort. The low proportion of revisions committed

by females (43 out of 4,111, i.e. 1%) was compounded by the low proportion

of comments in total. The only relevant result was that women also accounted

for about 1% of the comments, and so were not over- or under-represented.

A total of 9 comments from females meant that no further analysis could be

conducted.

5.4.4.4 RQTA 1-4: Does Campus Affect Activity Distribution?

The SEG projects were carried out by teams consisting of students on two

campuses – C1 and C2. The teams were mixed so that development was

inevitably a cross-site process. In total students from C1 committed 63% of

the revisions – considering that the project was worth twice as much to C1

students as C2 students, this is a fair proportion.

In terms of the revision data, C1 accounted for 78% of the comments –

significantly above the expected proportion.

Figure 5.4 shows the breakdown of activity types differs between campuses.

Most categories were evenly matched between campuses, but C1 appeared to

do significantly more developmental work than C2, while C2 performed twice

as much perfective work as C1. This could be due either to differing software

engineering practices fostered by the respective universities, or if it is a result

of the nature of the different aspects of the project each team was working

on. Therefore, when talking about the difference between campuses, it is also

possible that we are talking about the difference between project domains.

Figure 5.5 shows an overview of how the work levels of the two campuses

changed over time. Both campuses increased their work rate towards the

end of the projects, but C1 hit a peak much earlier on and maintained it,

whereas C2 spiked much closer to the end. This had the result that for the

middle third of the project (40% – 70%) C1 were doing the majority of the

Chapter 5. Case Study: Thematic Analysis 78

work, even above the two-thirds ratio expected. Lastly, C1 began work much

earlier, and then dropped off again around the Christmas holidays.

Figures 5.6 and 5.7 show a more detailed breakdown of how the activity

breakdown of the campuses changed over time.

5.4.4.5 RQTA 1-5: How Well Do Software Tools Support Student

Projects?

The fact that only a quarter of all revisions were accompanied by a comment

suggests that students did not, on the whole, make full use of the tools provided

to aid them in their project. Equally, the prevalence of Misc and Ambiguous

activities shows that even when comments were supplied, SubVersion was

not being used properly. Ambiguous codes occur in two situations; either

the comment was ambiguous, or the revision itself consisted of more than

one maintenance activity. Misc codes occur when the comment is irrelevant

to the project implementation (e.g. flippant remarks, or work relating to

other project phases such as requirements). The fact that nearly a fifth of

all comments were Ambiguous or Misc suggests that students require further

training in the use of SubVersion, and a deeper education of the benefits of

proper software development practices.

5.4.5 Conclusions

Thematic analysis, by manually attaching additional information to a data set,

allows us to see patterns in that data that quantitative analysis itself could

not uncover. In the case of the SEG projects, by analysing activity types it is

possible to gain a better understanding of the development processes.

In comparison to ideal development practices, where feature development

is stopped prior to release to allow for bug fixing and “polish” to take place,

SEG projects actually saw an increase in developmental activity as the projects

drew to a close and while corrective activities did increase too, it was not

as significant as it should have been. There was also a marked increase in

Chapter 5. Case Study: Thematic Analysis 79

Figure 5.4: Comparison of activity types across campuses

Figure 5.5: A broad comparison of work levels on each campus over time

Chapter 5. Case Study: Thematic Analysis 80

Figure 5.6: C1 students – Breakdown of the various activity types

Figure 5.7: C2 students – Breakdown of the various activity types

Chapter 5. Case Study: Thematic Analysis 81

ambiguous comments towards the end of the project, possibly caused by

increased frustrations, or deadline pressure.

Overall, it is clear that students’ use of SubVersion is not optimal. In an

environment where there is no scope or requirement for future development

or maintenance of their projects there is little incentive to make proper use

of the software provided. Unfortunately communication is often cited as

one of the groups’ main problems in collaborative work. During the imple-

mentation phase, when communication and cohesion are highly important

to the development of a high quality, well-integrated software application,

students largely ignore the facilities provided by SubVersion which could

aid communication within groups. This is likely due to a lack of students’

awareness of the features offered by SubVersion, and how they could use them

to their advantage. As one student said in a SubVersion comment, “WHERE

DOES THIS MESSAGE SHOW UP?”

This has led to a tendency for students to be much less formal and rigorous

in their use of SubVersion comments. While this makes analysis in terms

of development activities difficult, it is a useful mine of information with

regard to social dynamics. There is scope for further thematic analysis using

different code groups to uncover more patterns. An example of this might

be to code based on the tone or mood of a comment, and investigate how

flippancy, competitiveness, aggression and frustration vary over time and

between demographic groups.

5.5 Study 1.2: 22 Group Projects and Four

Open Source Projects

Study 1.1 determined that thematic analysis of project logs could be suc-

cessfully used to examine the behaviour and patterns of academic group

projects. However, due to the fact that the 12 projects analysed were all

taken from one cohort, an expanded study was conducted with the aim of

investigating whether the findings were consistent with those of other years’

Chapter 5. Case Study: Thematic Analysis 82

projects. The expanded study also included four open source projects to

provide a comparison between real-world projects and projects from an edu-

cational environment. A second year’s data added to the original data set

and used in a repeat of the same analysis was expected to be of great help in

minimizing the problems caused by low comment ratios, especially among

women, and also help to uncover whether campus differences are caused by

the environment or by the project domain.

5.5.1 The Projects

14 additional projects were analysed: the 10 2007/08 SEG projects and four

open source projects.

5.5.1.1 2007/08 Projects

In the original study, there were potential threats to validity from the nature

of the projects – all 12 were from the same year and covered the same basic

specifications. By analysing an additional year’s projects it was possible to

reinforce the results from the original study.

5.5.1.2 Open Source Projects

Due to the nature of open source software, it is possible for members of the

public to access the SubVersion repositories and examine the source code

and history. In several cases it is possible to download and create a copy of

the entire repository, which allows much deeper analysis. Four such projects

were used: PuTTY (the popular SSH client), CapiSuite (a discontinued

Linux ISDN telecommunication suite), Parrot (a virtual machine for dynamic

languages) and GNUstep (part of the GNU project). While SEG projects are

developed over the course of weeks, these projects are developed over years

and can consist of thousands of revisions. Rather than perform a complete

analysis of each of them it was decided to analyse only the first 150 revisions

from each of them. This would allow a much more practical comparison with

Chapter 5. Case Study: Thematic Analysis 83

the SEG projects by covering a similar timeframe and stage of each project.

While the initial set of SEG projects averaged over 300 revisions per project,

when revisions with no comments were removed this number dropped to 85

revisions per project.

The open source projects are included to provide a real-world comparison

with the SEG projects – mature projects developed by experienced program-

mers in an environment demanding good collaboration provide an excellent

point of comparison to academic projects performed by students new to

collaborative development.

5.5.2 Research Questions

The original study aimed to explore how development activity changes over

the lifetime of a project, and what factors this might be affected by. This

study seeks to verify the first study with an expanded set of projects, and

then to expand it with a deeper analysis and comparison with projects

in other contexts. When the findings of Study 1.1 were published (Burn,

2008), feedback suggested that exploring the viability of thematic analysis

as an educational tool would be a worthwhile avenue of study. The research

questions are therefore:

• Verify the findings of the initial study:

– RQTA 2-1 : How are development activities distributed? (RQTA

1-1)

– RQTA 2-2 : How do development activities change over time?

(RQTA 1-2)

– RQTA 2-3 : Does campus affect activity distribution? (RQTA 1-4)

– RQTA 2-4 : How well do software tools support student projects?

(RQTA 1-5)

• RQTA 2-5 : How do SEG projects compare to mature, open source

projects?

Chapter 5. Case Study: Thematic Analysis 84

• RQTA 2-6 : Is thematic analysis of change-logs a useful and viable

method for assessing collaborative software development projects?

5.5.3 Thematic Analysis

Experience from the first study led to two slight revisions of the set of codes

being used. Firstly, to better reflect the activities it describes, “Perfective”

was renamed to “Administrative”. This is a minor change, and has no effect

on the results from the initial study. Secondly, while “Ambiguous” previously

referred to two meanings, in this study it was split into two codes:

1. Ambiguous : A change has clearly been made, and partially documented,

but the type is not clear

2. Multiple: Multiple activities – (e.g. corrective and developmental in the

same revision)

This is also a minor change, intended to help differentiate between desirable

and undesirable codes. Previously an “ambiguous” comment could be either

good (e.g. a clear, informative comment which refers to two types of activity)

or bad (an unclear comment), so it was decided to make this change.

The final set of codes used in this study are:

1. Developmental

2. Corrective

3. Administrative

4. Multiple

5. Ambiguous

6. Misc

The results from Study 1.1 were updated to use this new scheme for the

scope of this second study.

Chapter 5. Case Study: Thematic Analysis 85

5.5.4 Limitations and Threats to Validity

One of the aims of this study was to mitigate some of the limitations of the

first study – such as the homogeneous nature of the projects and the single

year of students. While the addition of a wider range of projects has indeed

addressed this, it has introduced a new set of limitations.

A direct comparison cannot be drawn between SEG projects and open

source projects due to their relative lengths. As discussed in Section 5.5.1

SEG projects run for weeks, while the open source projects run for years. By

taking only a slice of the revisions, significant results or behaviours could be

missed. Study 1.3 in Section 5.6 describes a thematic analysis of a complete

open source project, which addresses this issue.

Another limitation is that comments in the open source projects frequently

require domain-specific knowledge to understand properly. This problem was

addressed by coding a sample of revisions in each project outside of the set

selected for final analysis; the experience from this training exercise resulted

in a better knowledge of the project and the terminology used.

Finally, students were unaware that their change-logs would be analysed.

It is possible that if they knew the analysis was being carried out, especially

if it were to support assessment, that their behaviour would change. One of

the benefits of the change-logs at the moment is that they provide an honest,

open insight into student behaviour, which would likely change. Conversely, if

students knew that their change-logs were being used in assessment, it would

likely encourage them to apply the theories they have learnt. Future research

is planned which will investigate how student change-logs change when the

students are aware that the logs will be used to support assessment.

5.5.5 Evaluation

The 2006/07 SEG projects have a comment/revision ratio of around 25%,

while the 2007/08 SEG projects are around 60%. Contrasted with this, the

open source projects have a ratio of almost 100%, highlighting a crucial

Chapter 5. Case Study: Thematic Analysis 86

shortfall of SEG projects. Both open source and SEG projects are distributed,

collaborative environments with all the attendant difficulties this presents,

especially in communication. Open source projects make good use of tools

available to them – mailing lists, chatrooms and development tools such as

SubVersion – to work together, whereas SEG students cite communication as

a major difficulty and hindrance to development, despite not making good

use of the tools available to them.

5.5.5.1 RQTA 2-1: How are Development Activities Distributed?

Overall, the spread of activity aggregated over all 26 projects are shown in

Table 5.3:

Administrative 13.9%

Developmental 46.1%

Corrective 12.0%

Ambiguous 18.4%

Multiple 4.7%

Misc 5.0%

Table 5.3: Distribution of maintenance activities

As expected, developmental activity accounts for the largest amount

of revisions. However, by themselves these figures do not provide much

information. Figure 5.8 shows how the two years of SEG projects compare to

each other.

The distribution is largely similar between years aside from the spike in

ambiguous revisions in 2007/08, almost four times as high. Examination of

the individual groups shows that this is not caused by one anomalous group

but by a consistent increase in ambiguous comments. It is interesting to

consider that the ratio of comments to revisions was also much higher in

the 2007/08 projects – 60% compared with 25%. Whether this was due to

teaching or a factor inherent in the cohort cannot be known. However, an

Chapter 5. Case Study: Thematic Analysis 87

Figure 5.8: Activity Types Between SEG Project Years

ongoing question has been “how useful are automatically generated metrics

in supplementing assessment?”, with a specific sub-question being “is the

comment/revision ratio a useful indicator of performance?” These results

would suggest that this simple metric is not necessarily a useful measure

– a higher comment ratio has simply led to a disproportionate increase in

meaningless or unhelpful comments – “filler” in many cases.

5.5.5.2 RQTA 2-2: How Do Development Activities Change Over

Time?

In the initial study it was shown that, overall, activity was skewed towards

the deadline – more work was done at the end of the project than at the start.

This was an entirely expected result considering the subjects, and is repeated

in the 2007/08 SEG projects. A breakdown of the activity types over time

showed few patterns in the 2006/07 data – there was a lot of variation between

groups, leading to a confused overall view. In the 2007/08 data however, there

are some definite patterns evident. There is a decrease in the proportion of

developmental activities over time, while corrective and “multiple” (typically

Chapter 5. Case Study: Thematic Analysis 88

a combination of developmental and corrective) activities increase as the

deadlines approach. This is a much better trend than the previous year and

is closer to how theory states, i.e. as a release (final deadline in this case)

approaches, there should be less emphasis on adding new features and more

on polishing and fixing the existing code.

No comparisons can be drawn between the open source and SEG projects

in this respect due to the differences in the projects – SEG projects are closed

and finished, while the others are ongoing.

5.5.5.3 RQTA 2-3: Does Campus Affect Activity Distribution?

As stated earlier, the SEG projects are carried out by teams consisting of a

mix of students from Durham and Newcastle universities. One of the aims

of the original study was to discover if there were differences in behaviour

between students from these two campuses. It was found that there were

differences in activity distribution between the two campuses, but it was

not clear whether these were limited to that one year or showed consistent

differences between the departments. As was reported for the 2006/07 SEG

projects, the amount of work carried out by students from each campus was

in line with the relative weightings of the courses – the project was a larger

proportion of the year’s summative work on one campus, and the distribution

of work reflected this. On the other hand, C1 commented a significantly

higher proportion of their revisions than C2 – 63% of the revisions but 78% of

the comments. In contrast, while the distribution of activity types was similar

across campuses, C1 was responsible for significantly more developmental

work, while C2 performed twice as much administrative work as C1.

In the 2007/08 projects, the distribution of revisions was roughly the same,

and again the students from C1 were much more consistent in commenting

the revisions. On the other hand, as shown in Figure 5.9, maintenance types

were far more evenly balanced in the 2007/08 projects, with no significant

differences between the campuses. It is therefore still impossible to say what

factors affect the practices and behaviour of the different departments – cohort,

Chapter 5. Case Study: Thematic Analysis 89

training, experience, project domain, another factor entirely, or a combination

of these. Repeated studies on future projects will be able to explore this

further.

Figure 5.9: Breakdown of activity types between campuses

5.5.5.4 RQTA 2-4: How Well do Software Tools Support Student

Projects?

In Section 5.5.5.1 the differences between the two cohorts were discussed –

although there was a much higher comment-to-revision ratio in the second

year there was a corresponding increase in ambiguous comments, suggesting

that while students were perhaps more aware of the need for comments, they

did not understand or accept the purpose of them.

5.5.5.5 RQTA 2-5: How do SEG Projects Compare to Mature,

Open Source Projects?

Figure 5.10 shows how activity types are distributed between sets of projects –

SEG and open source projects. Again, in both cases developmental activities

Chapter 5. Case Study: Thematic Analysis 90

Figure 5.10: Activity Types Between Sets of Projects

are the largest group, while the open source projects have significantly more

corrective and administrative revisions than the others and much lower

proportion of ambiguous activities, coupled with consistently low “multiple”

activities. Overall, the desirable activities (administrative, corrective and

developmental) are more prominent and evenly divided in open source projects

than in the other projects, whereas they have a significantly lower proportion

of undesirable activities (ambiguous and misc). A breakdown of this is shown

in Figure 5.11.

It is also worth reiterating that the revisions analysed for the open source

projects are taken from early in their development, and so the higher incident

of corrective activities is even more noteworthy – the typical development

cycle for an open source project tends to include a “feature freeze” followed

by a “code freeze”, which restrict the development to existing features and

bug-fixing, respectively (Love, 2003). If the analysis covered a time period

later in the cycle where a release was being finished, the level of corrective

activities would be higher still.

Chapter 5. Case Study: Thematic Analysis 91

Figure 5.11: Breakdown of desirable and undesirable activities

5.5.5.6 RQTA 2-6: Is Thematic Analysis of Change-logs a Useful

and Viable Method for Assessing Collaborative Software

Development Projects?

The final purpose of this study is to explore whether or not an analysis

of project change-logs can be a valuable resource when assessing a group

project. It is hard to assess the development process, and attempts to do so

include having students keep logs of their work as they go on, but this simply

replicates functionality that already exists in provided support tools. The

comparison with real-world projects shows that students should definitely be

making better use of the software available as it would support communication

and facilitate groupwork. Considering that using descriptive, unambiguous

comments during development is demonstrably beneficial to the students

and groups, there is no reason why assessment should not make use of these

comments instead of an artificial, secondary progress log. At a minimum,

change-logs provide a useful insight into the development process and the

roles and behaviour of individual students that may not be clear from other

Chapter 5. Case Study: Thematic Analysis 92

sources of information, and it is recommended that instructors at least read

through change-logs when assessing group projects.

While a simple reading of change-logs is beneficial to assessment, a the-

matic analysis of those same logs is even more so. While requiring a greater

commitment from the assessor, a thematic analysis can be performed suffi-

ciently quickly as to be a viable tool. Once the coding scheme is understood

by the assessor it is a relatively simple task to perform the analysis, and the

results it produces allow for a deep, comprehensive outline of the develop-

ment and history of the project; this study has looked no deeper than the

campus level in the analysis, but it is entirely possible to examine the roles of

individual students within a group, allowing for even deeper understanding

of collaboration and contribution.

5.5.6 Conclusions

The results of Study 1.2 verify some of the findings of the original study,

but fail to verify others. The first study found that students did not employ

the practices they were being taught, a finding which has been borne out

by this research. In a comparison of the behaviour of the two campuses,

the overall differences are the same – the campuses both made contributions

commensurate with their respective assessment weightings, while one made

much better use of comments than the other. Conversely, the original study

found significant differences in the activity distributions, which did not exist

in the expanded analysis. In terms of exploring whether or not students make

good use of tools to support collaboration, the initial study found that they

did not – the aspects of SubVersion designed to support communication were

underused and often not understood. In the following year, students made

more use of the tools available, but the increased proportion of ambiguous

comments lead to the conclusion that while they understood the need to use

the mechanisms, the students did not know how to use them properly. This

research therefore suggests that changes in training from year to year have

been beneficial, and that improvements can be made to cover the remaining

Chapter 5. Case Study: Thematic Analysis 93

problems.

In comparing the SEG projects to open source projects, it was shown

that the open source projects were more structured and better commented

than the SEG projects. The real-world success of projects such as PuTTY

is an indication that the results of this research can be used to reinforce the

training students receive regarding development and collaboration practices.

Thematic analysis requires more time and effort than simply reading the

change logs, but the insight they can provide into a project – or a set of

projects – has been shown to be useful. Because the results confirm many

commonly-held beliefs about student work, such as the skewing of effort

towards the deadline, this lends weight to the belief that other results found

in this study are representative of student projects as well.

This study found that the differences between campuses for the 2007/08

SEG projects did not follow the same pattern as the 2006/07 projects; therefore

a study of the 2008/09 projects will be used to investigate this further. Section

5.6 describes a complete analysis of an open source project which allows a

more complete comparison between a real-world project and SEG projects.

Future research will examine a smaller number of SEG projects in much

greater detail to investigate the possibility of uncovering social roles that

emerge within groups and can address the question: can the comment log

discover facilitators, managers, hard workers, “fixers” and obstructers, or

subgroups of students?

5.6 Study 1.3: A Complete Open Source Project

Analysis

As noted in Study 1.2 a direct comparison between the SEG projects and the

open source projects cannot be directly drawn, as only a subsection of each

open source project was analysed. This study performs a thematic analysis of

over 5,000 revisions of PuTTY. It should be noted that since PuTTY was, at

the time of publication, still being maintained, this is a “complete” analysis

Chapter 5. Case Study: Thematic Analysis 94

of PuTTY as it existed at the time of the study.

5.6.1 Research Questions

This study addresses the following research questions:

• RQTA 3-1 : What is the distribution of maintenance types, and does

this change over the course of the project?

• RQTA 3-2 : Is the distribution of activities affected by milestone (e.g.

beta) releases?

• RQTA 3-3 : Do developers take on specific maintenance types?

• RQTA 3-4 : Is there a relationship between maintenance type and

change size?

Where appropriate, these questions will be addressed in comparison with

the previously analysed SEG projects.

5.6.2 Thematic Analysis

Initially, the same codes and definitions were used as before (developmental,

corrective, administrative, multiple, ambiguous and miscellaneous) but after

a preliminary analysis an extra code was introduced - documentation - to

reflect the fact that the PuTTY project includes documentation and a copy

of the project’s website in the repository. Rather than ignore these features,

the coding system was extended to include them, as they are in continual

development and are an integral part of the project. The revisions categorized

as documentation can be disregarded when making comparisons to projects

using the previous scheme.

5.6.3 Limitations and Threats to Validity

The primary threat to this study is the fact that only a single project was

analysed, which limits the ability to generalize the findings. Further studies

are planned which will expand the number of projects analysed.

Chapter 5. Case Study: Thematic Analysis 95

5.6.4 Evaluation

5.6.4.1 RQTA 3-1: What is the distribution of maintenance types,

and does this change over the course of a project?

Figure 5.12 shows the breakdown of activity types for the PuTTY project.

Documentation is clearly the most active type, covering nearly 40% of all

revisions, followed by corrective and then developmental. The low frequency

of miscellanious, multiple and ambiguous revisions matches the results of

the previous study. Likewise, the 100% ratio of comments to revisions is

continued.

Figure 5.12: Distribution of activity types for PuTTY

Figure 5.13 shows how the distribution of activities changes over the

course of the project. Only the main activities - developmental, corrective,

administrative and documentation - are included in this chart, which displays

the proportion of activities broken into segments of 200 revisions each. It

shows that:

• Documentation becomes more and more dominant as the project con-

Chapter 5. Case Study: Thematic Analysis 96

tinues

• Administrative activities remain relatively constant

• Corrective activities tend to correlate with developmental ones (Pearson

correlation coefficient of 0.76)

Figure 5.13: How the activity distribution of the primary activities changes over

the course of the project

Figure 5.14 shows the cumulative amount of revisions for each activity

type over the length of the PuTTY project. Each activity type grows linearly

over time, with the exception of documentation which only becomes significant

roughly 20% of the way through the project, and quickly dominates all other

activity types, becoming almost 40% of the total activity. This documentation

includes change-logs, wish-lists, the website, frequently asked questions and

the software manual. It is also interesting to note that developmental and cor-

rective activities are given roughly equivalent emphasis until midway through

the project, at which point corrective becomes dominant over developmental,

Chapter 5. Case Study: Thematic Analysis 97

reflecting a strong shift from feature implementation to security, stability and

reliability maintenance.

Figure 5.14: Cumulative activity breakdown over the development history of

PuTTY

What is perhaps most interesting is the comparison of activity types

between the previously reported SEG projects, the partial PuTTY analysis

(137 revisions, referred to here as P137) and the complete PuTTY analysis.

The SEG projects and P137 show a similar proportion of activity types,

particular with respect to developmental (SEG 48%, P137 49%) and - to a

lesser extent - corrective (SEG 11%, P137 17%). In comparison, PuTTY

displays a much reduced proportion of developmental activity (36%) and

increased corrective activity (41%). In summary, the initial series of revisions

for the PuTTY project have a markedly different distribution to the whole

project as developmental activities are replaced by corrective ones. Figure

5.15 compares the activity distributions of the three data sets.

The similarities between the SEG projects and the early revisions of

Chapter 5. Case Study: Thematic Analysis 98

Figure 5.15: Comparison of activity distributions for SEG, PuTTY1 and PuTTY2

PuTTY indicate that the distribution of activities in SEG projects are per-

haps simply representative of young projects rather than poorly managed

projects. The fact that, over time, PuTTY sees a reduction in ambiguous

and miscellaneous activities and an increase in corrective activities would

suggest that student projects could follow the same pattern. SEG projects

are extremely time-constrained; if they were to continue then we might see

the same trends as shown by PuTTY.

Whether this is due to inexperience, or whether it is inherent to young

projects cannot be known without further analyses of maintenance activities.

There are two main factors to consider: team experience, and project lifes-

pan. The PuTTY/SEG comparison shows the difference between projects of

differing lengths, but cannot control for developer experience.

Chapter 5. Case Study: Thematic Analysis 99

5.6.4.2 RQTA 3-2: Is the distribution of activities affected by

milestone releases?

It is interesting to examine the types of activities which precede a milestone,

when a tag is created to mark a new release (e.g. revision 180 by cvs2svn,

“This commit was manufactured by cvs2svn to create tag ’beta-0-46’.”). By

examining the activities which occur in the 10 revisions prior to the tag being

created, it is possible to see which actions commonly precede a release. The

results for both SEG and PuTTY are shown in figure 5.16. Developmental,

administrative, corrective and documentation activities remain dominant,

but there is an increase in developmental and corrective activities, while

documentation is reduced. Interestingly, administrative activities remain

constant, and are unaffected by upcoming releases.

Figure 5.16: Activities preceding project milestones in PuTTY and SEG projects.

Overall project values are included for comparison.

This can be compared to the SEG projects, where the milestone is con-

sidered to be the final revision, after which the project is submitted for

assessment. The SEG projects see a reduction of development activities from

48% overall to 23% in the final 10 revisions, and a doubling of ambiguous

Chapter 5. Case Study: Thematic Analysis 100

activities from 17% to 32%. Although they are not included in this analysis,

it is worth noting that as a percentage of the entire SEG project set, unknown

activites (i.e. revisions with no comment) also increase from 60% to 72%.

This increase in uncommented and ambiguous comments towards the end

of the projects is perhaps indicative of stress, tiredness, haste or a lowered

perceived importance of good practice.

5.6.4.3 RQTA 3-3: Do developers take on specific maintenance

types?

Figure 5.17 shows how the primary activity types are distributed between the

main developers. There are two additional developers not shown, one who

only has one revision, and another which is in fact a tool (cvs2svn) responsible

for tagging and branching. Figure 5.18 shows how developers activities are

broken down as a proportion of their total revisions.

Figure 5.17: Breakdown of activity types by the PuTTY developers.

It can be seen that Simon and Jacob are the most prolific developers,

committing 2,200 and 1,800 revisions respectively. Jacob is clearly responsible

Chapter 5. Case Study: Thematic Analysis 101

Figure 5.18: Breakdown of activity types by the PuTTY developers as a propor-

tion of each developer’s total revisions.

for the documentation, committing almost twice as many documentation revi-

sions as the rest of the team combined, and devoting nearly three-quarters of

his revisions to documentation. Similarly, Simon performs far more corrective

and developmental maintenance than the rest of the team. However, while

Simon commits more corrective revisions as a proportion of his total work,

his developmental work is in line with Ben and Owen, each devoting nearly

a third of their effort to development. All four developers devote a roughly

similar amount of their work to administrative revisions.

There are, in places, definite divisions of labour to be seen in this analysis.

This might suggest an equivalent degree of “file ownership”, where developers

tend to work on a set of files exclusively rather than sharing their development;

however, applying a visualization tool2 to the project (see Figure 5.19) shows

that there is a great deal of cross-development of files between developers.

This suggests that the developers tend to divide their work based more on

2This tool is and its use are described in more detail in Section 7.2.2.3.5.

Chapter 5. Case Study: Thematic Analysis 102

the type of maintenance rather than the file under development.

5.6.4.4 RQTA 3-4: Is there a relationship between maintenance

type and change size?

While there are some trends in the data, such as the fact that corrective

changes tend to have a lower than average change/revision ratio, while

administrative changes have a higher than average change/revision ratio,

there are no significant relationships that allow activity type to be an effective

predictor of change size, or visa versa. This is consistent with related workAlali

et al. (2008) which attempted to use keyword analysis of revision comments

to predict change size but failed to uncover any conclusive relationships.

5.6.5 Conclusions

The main findings of Study 1.3 are:

• The documentation process began some way into the development cycle

of PuTTY, but rapidly became the most common activity. There is

a correlation between corrective and developmental work; corrective

activities are given much more emphasis than in the SEG projects. All

maintenance activities have a linear growth, with no signs of change in

that trend.

• The early stages of PuTTY’s development are not dissimilar to those

of the SEG projects. Further analyses of other projects are needed to

determine if this is typical.

• As a milestone approaches, there is an increase in developmental and

corrective work. This is in contrast to the SEG projects where there

is a marked increase in ambiguous and uncommented revisions as the

deadline approaches.

• There are indicators that some developers take on specific activity

types; one PuTTY developer is responsible for more than half of the

Chapter 5. Case Study: Thematic Analysis 103

Figure 5.19: Owner Visualization of PuTTY: the large blue circles within green

circles represent files which are created an never changed; the lines indicate the

degree to which files change ownership. In this case, many files are worked on by

more than one developer. See Section 7.2.2.3.5 for details of this visualization.

Chapter 5. Case Study: Thematic Analysis 104

documentation activities, while another is responsible for half of the

corrective and developmental activities. This is in contrast to the lack

of file/module ownership in PuTTY - developers take on tasks based

more on the nature of the task than the files involved.

• There is no correlation between maintenance activity types and change

sizes.

In the context of the broader research question investigating whether or

not thematic analysis of RCS repositories is a useful process, this follow-up

study has demonstrated that a formal analysis of revision data can provide

deeper insight into the nature of software projects and the developers behind

them. A common concern regarding thematic analysis is whether or not the

process is viable in terms of difficulty and time. As previously reported, the

most time-consuming process is deciding on a repeatable and useful set of

codes; once this is performed they can be reused with no additional overhead.

As shown by this study, the data under analysis can require the codes to be

modified, but this will occur naturally and requires little additional effort.

As previously stated, the SEG projects were relatively quick to analyse,

with the small size of the data sets balancing the frequently informal nature of

the comments. There was a concern that a full open source project would take

much longer to analyse, due to the size of the data set and the more formal

nature of the comments, which more often require domain specific knowledge.

However, the formality of the comments proved beneficial to the analysis,

as recurring comments could be classified en-masse, and a more common

vocabulary left less room for ambiguity. Overall, PuTTY was more easily

classified than the SEG projects, with a similar total number of revisions

requiring less time to classify.

5.7 Case Study Discussion

This section aims to draw together the findings of the three thematic analysis

sub-studies to address the overall research questions of this case study. These

Chapter 5. Case Study: Thematic Analysis 105

research questions are restated here:

• RQ 2 : Can the process of thematic analysis be applied to RCS repository

data?

• RQ 3 : Can profiling support project comprehension in student and

open source projects?

5.7.1 Research Question 2

• RQ 2 : Can the process of thematic analysis be applied to RCS repository

data? Proven: Yes

As the literature reviews reported in Chapters 2 and 3 revealed no studies

reporting thematic analyses being performed on revision logs, it was not

certain whether or not the process, designed primarily for conversational text,

could be applied to this data. As has been demonstrated in each of the three

studies, there are no practical barriers to performing such analyses. Whether

the messages are in the informal, incomplete style of the student projects, or

the formal, domain-specific language of the open source projects, the thematic

analysis process can be used to extract patterns and information from the

logs.

An early concern was the time, effort and training required to perform the

analysis. As shown in Study 1.1 (Section 5.4) devising the initial codes can be

a time-consuming process involving repeated reviews and revisions. However,

once the base set of codes are created it is trivial to re-use it, or to modify it

to suit the needs of other analyses. For some of the open source projects it

was necessary to spend time gaining an understanding of the domain-specific

vocabulary used in the comments before the analysis could begin; this is

perhaps the most serious obstacle to using thematic analysis to aid project

comprehension. However, learning the vocabulary particular to a project

is a necessary step in understanding that project, and will be required of a

maintainer regardless of the tasks they seek to perform.

Chapter 5. Case Study: Thematic Analysis 106

The scale of the project being analysed is an issue: PuTTY, for example,

required over 5,000 comments to be classified. However, many of the comments

were sufficiently similar that they could be grouped and classified together,

saving significant amounts of time and effort. While this technique could not

be used on a less formal set of messages, such as those found in the student

projects, those projects tended to be smaller and less completely commented,

resulting in a smaller set to be classified.

As a direct consequence of the publication of Studies 1.1 and 1.2 (Burn,

2008, 2009), the thematic analysis process has been successfully used in a

study to evaluate a new technique for providing students with feedback from

programming courses (Cummins et al., 2010).

In summary, regardless of the type or scale of the project, it was possible

to use apply thematic analysis to the change logs of a range of projects,

following a rigorous, repeatable protocol through every step of the process.

5.7.2 Research Question 3

• RQ 3 : Can profiling support project comprehension in student and

open source projects? Proven: Yes

Demonstrating that a process can be applied to a data set is not the same

as showing that it is useful to do so. However, the data derived from the

three studies has been used to gain an insight into the development processes

and practices of both open source and student projects. For example, the

first study demonstrated that students do not make good use of provided

support tools or taught practices (Burn, 2008); these results were fed forward

to the following cohort, which showed improved use of tools and a better (if

not perfect) adherence to best practice (Burn, 2009).

Another application of thematic analysis is in the assessment of student

projects; the revision messages left by students provide a window into their

teams’ development processes, collaboration and social cohesion. With the-

matic analysis shown to be a viable technique it would be possible to use it

Chapter 5. Case Study: Thematic Analysis 107

to explore more completely students’ teamwork and social roles, as well as

their technical contributions.

5.8 Case Study Conclusions

The overall goal of this research is to identify and evaluate techniques which

use analysis of transactional repository data to support project comprehension,

using the following research question:

• RQ 1: How can data mining of revision control systems be applied to

support project comprehension?

By proving that thematic analysis can be applied to the comment log of a

revision control system, and that the outcomes of the analysis can provide

information about the development of a project, thematic analysis has been

demonstrated to be a technique which supports project comprehension; thus,

one answer to the above research question is:

• Profiling projects using the technique of thematic analysis of historical

project data supports project comprehension.

5.9 Summary

This chapter reported a case study in which thematic analysis of student and

open source projects was conducted to assess the viability and usefulness of

thematic analysis in supporting project comprehension. Thematic analysis

was successfully performed on the comment logs of a number of projects,

generating useful information in the context of assessment and management,

proving that profiling projects using thematic analysis is a technique which

can be used to support project comprehension.

The next chapter describes an empirical benchmarking study evaluating

the use of revision data to perform history-based change prediction.

Chapter 6

Case Study: History-Based

Change Prediction

6.1 Introduction

Chapter 5 explored the use of thematic analysis to profile projects and gain

a deeper understanding of their nature, structure and development. This

chapter investigates the use of a project’s historical data to perform change

prediction.

Predicting the effects of a change to a project’s source code is a vital skill

in software development. A developer familiar with the code will instinctively

know what knock-on effects a modification may have. Tools exist (Weiser, 1979;

Xu et al., 2005; Gallagher, 1996) to assist developers in performing impact

analysis, which typically function using static code analysis, i.e. syntactically

examining the source code and inferring programmatic links between software

entities, or by examining the behaviour of the software at run-time.

Models based on code-snapshot analysis have a number of drawbacks.

Firstly, they are language-dependent, in that they require knowledge of the

syntax and structure of a programming language to function. Secondly,

they cannot infer links that are not present in the code itself. As described

in (Zimmermann et al., 2005), code-snapshot models cannot uncover links

108

Chapter 6. Case Study: History-Based Change Prediction 109

between code and documentation. A study into “change-proneness” (Bieman

et al., 2003) demonstrates that the change structure and code structure do

not always match.

Another approach to change prediction is to use the history of a project

to discover links between software entities. By mining the sequences, groups

and patterns of changes over a project’s development, relationships can be

inferred between entities. As this analysis looks primarily at transactions and

files rather than source code, it approaches the problem in a different way

and can be used to support results from code-snapshot models.

Zimmermann et al (Zimmermann et al., 2005) have presented a model –

ROSE – of performing impact analysis using a combination of code-parsing

and history analysis to perform change prediction at the more fine-grained

level of variables, functions and classes. The model was shown to be effective

at predicting entities which would require changing based on a set of changes,

while rarely producing false alarms. When the model was used at a coarser

level – at the file level – the effectiveness improved significantly, although the

actual results are perforce less useful.

Another tool, Chianti (Ren et al., 2004), analyses the difference between

two versions to suggest a subset of regression tests affected by the changes,

successfully reducing the number of test-cases to be run following a change.

(Ball et al., 1997) demonstrated that the links discovered in history-based

analysis identify partitions of classes evident in the project structure. (Weiss-

gerber et al., 2005) visualizes the relationships between files based on their

change-histories, demonstrating the benefits of the process to program com-

prehension. (Cubranic and Murphy, 2003) extends this model beyond change

history and uses a range of archived information such as bug reports and

forum discussions to generate an implicit group memory and suggest artefacts

from that memory in response to a task; a case study identified advantages

and disadvantages to the approach – while it provided good “entry points”

to a task, newcomers were often confused or misled by the results.

A benchmarking study (Hassan and Holt, 2004) into various change

Chapter 6. Case Study: History-Based Change Prediction 110

prediction techniques, including developer-based, entity-based co-change,

entity-based code structure and hybrid heuristics demonstrated that a hybrid

technique could achieve results “in par with typical information retrieval

practical boundaries.” These results support those of (Zimmermann et al.,

2005), suggesting that history-based techniques are a viable avenue of research.

This chapter uses Perceive to measure the performance of history-based

change prediction, and to seek ways to improve this performance. The case

study is conducted using three sub-studies. The first measures the performance

of Perceive in conducting change prediction on a series of projects, exploring

what factors affect the success of the technique. The second is a more in-

depth study of the application of Perceive to two individual projects to more

accurately assess where history-based change prediction succeeds and fails.

The final study seeks to improve the performance of Perceive by augmenting

the algorithm using data created in Chapter 5, using maintenance activity

types to supplement the transactional data used by Perceive.

6.2 Case Study Design

This section details the goals, techniques and evaluation of the case study

using the DECIDE framework. As described above, this case study uses three

sub-studies as its subjects, and draws its conclusions from the outcomes of

those studies.

Figure 6.1 shows the structure of this case study, how the sub-studies feed

into the case study and how the case study feeds back to the overall research

question. The three sub-studies themselves form a piece of research that can

stand alone; however, the results and experiences are used to evaluate the

use of repository analysis in change prediction. The case study will use that

evaluation to assess whether or not repository analysis can make a useful

contribution to project contribution in this context.

Chapter 6. Case Study: History-Based Change Prediction 111

Figure 6.1: Structure of the research questions and studies of the change prediction

case study

6.2.1 Research Goals

The goals of this case study are to measure the performance of history-based

change prediction, to explore the factors which affect its success, and to

seek to improve the model using data generated by the thematic analyses in

Chapter 5.

The first study (Study 2.1, Section 6.4) will provide a baseline measure of

performance, which can be compared with other, existing research, such as

(Zimmermann et al., 2005), (Zhou et al., 2008) or (Kagdi et al., 2007b). By

focussing closely on the application of Perceive to two projects, the second

study (Study 2.2, Section 6.5) will explore what affects the performance of

history-based change prediction, which leads into the third study (Study

2.3, Section 6.6) which will seek to improve on the performance baseline

established in the first study by incorporating data generated in Chapter 5.

If the third study can improve the performance of history-based change

prediction, then maintenance activity types can be added to the set of factors

which can be used when performing history-based change prediction.

Chapter 6. Case Study: History-Based Change Prediction 112

6.2.2 Research Questions

The overall goal of this research is to identify techniques based on repository

analysis which support project comprehension. Therefore, history-based

change prediction must be evaluated in this context. The following research

questions have been identified to assess whether change prediction is a process

whereby repository analysis can support project comprehension:

• RQ 4 : Is history-based change prediction a viable technique?

• RQ 5 : When does the technique outperform syntax-based methods?

• RQ 6 : Can project profiling be used to improve history-based change

prediction?

Table 6.1 lays out which research questions are addressed by which study.

Research Question Addressed By...

RQ 4 2.1, 2.2

RQ 5 2.2

RQ 6 2.3

Table 6.1: Map of research questions to studies

RQ 4 and RQ 5 are designed to reinforce or refute existing research

which states that history-based change prediction can successfully support

project comprehension; by evaluating aspects of the technique which have

not been explicitly researched thus far the suitability of history-based change

prediction can be assessed. RQ 6 goes beyond existing research to evaluate

whether or not thematic analysis can be used to improve the performance

of history-based change prediction. If the answer to RQ 6 is proven to be

positive then history-based change prediction will be a proven technique by

which repository analysis can be used to support project comprehension.

Chapter 6. Case Study: History-Based Change Prediction 113

6.2.3 Evaluation Paradigm and Techniques

Study 2.1 is an empirical benchmarking study, which uses information retrieval

metrics to measure the performance of a series of permutations of change

prediction models. Due to differences in implementation and test projects,

it is difficult to directly compare the performance of Perceive with existing

studies, although the results will be compared with these. The performance

of each model configuration and application will be measured relative to the

other configurations, allowing for an investigation into which parameters and

configurations perform most strongly in which situation.

Study 2.2 is more exploratory and qualitative in nature, with empirical

measurements being a secondary outcome. The study primarily aims to

assess what factors affect the application of history-based change prediction,

highlighting use-cases and investigating where the performance of a traditional,

syntax-based technique might differ from a history-based one.

Study 2.3 is another empirical benchmarking study, whose outcomes will

be evaluated in a direct comparison with the baseline established in Study

2.1.

6.2.4 Practical Issues

The only practical issue with this case study is the selection of projects. As

with the Thematic Analysis studies two sets of projects will be used: three

open source projects and 35 student group projects. As the change-prediction

techniques applied in this chapter are automated, there are no scale limitations

on the projects, and so unlike Chapter 5 the entirety of each open source

project will be used, rather than a partial sample.

Each of these projects was stored in a SubVersion repository. In such

repositories, a change is a modification to a single file, including creating or

deleting the file, changing its contents, copying it or changing its properties.

A revision is one or more changes committed to the repository at once.

In previous research (Zimmermann et al., 2005) it was necessary to create

Chapter 6. Case Study: History-Based Change Prediction 114

transactions (revisions) algorithmically as the test objects were from CVS

repositories which stored each change individually.

In this research, only changes involving modifications to files are used

– creation, deletion and copying are not included, as change prediction is

primarily concerned with changes to code as opposed to creation or deletion

of files.

The test projects vary in size, maturity and duration – some of the

academic projects consist of less than a hundred revisions, whereas one open-

source project had over 13,000 revisions. It is expected that there will be

differences in the results between these groups of projects – the academic

ones are much shorter and as such have less scope for relationships to be

inferred (conversely, they also have fewer files, which serves to mitigate this

somewhat); more importantly, there are differences in programming styles and

behaviour – the open source projects have a much smaller change-to-revision

ratio than the academic projects. Such differences have been predicted to

have an effect on the effectiveness of history-based approaches, as have the

“quality” of revisions (Zimmermann et al., 2005).

6.2.4.1 Outcome Measures: Information Retrieval Metrics

As with previous research (Zimmermann et al., 2005), precision and recall will

be used to assess the effectiveness of the change prediction. Precision is the

accuracy of the suggestions, the proportion of suggestions that are accurate,

while recall is the proportion of the correct results which were returned. It is

trivial to construct a model with perfect recall – simply suggest every entity in

the project. Likewise, perfect precision is attainable by making no suggestions

at all. It is evident therefore that a good model will seek to optimize both

precision and recall, potentially requiring that one be prioritized over the

other. To this end, the F-Score measure is used, a weighted average of the

precision and recall. The F-Score can be modified to prioritize precision over

recall, or vice versa. Common variants on the F-Score are F2, which weighs

recall twice as much as precision, and F0.5, which weighs precision twice as

Chapter 6. Case Study: History-Based Change Prediction 115

much as recall.

A proposed benchmarking framework (Lessmann et al., 2008) discusses the

difficulties of comparing classification models, especially ones with variable

input parameters and threshold variables. Receiver operating characteristics

(ROC) curves are proposed as an effective visual method for comparing

classification models, with area under ROC curve (AUC) as a secondary

method. These methods require the models to be tested across a complete

range of threshold values to produce comparable curves. As the models in

this case study do not have an upper bound on all of their input values, these

methods can be applied. However, they highlight the reality that comparison

of information retrieval based studies is a complex matter and care must be

taken when making assertions based on the outcomes.

6.2.4.2 Measuring Success

To measure the precision and recall of a model, a set of known good results

must be available. This is achieved by assuming that the actual set of files

modified in each revision is correct – i.e. if a revision modifies files A, B

and C, then a correct prediction will be those three files, no more or less.

This assumption is problematic in that it may not actually be correct in

many cases. However, there is no realistic process by which absolutely correct

sets of files can be generated. Comparisons with results from other tools

is viable, but as stated previously, different methods investigate different

partitions of files. Using developer expertise is another method, but these

developers already used their expertise to make the revisions in the first place.

It can be argued that they would learn as they gain experience, in which

case the relationships between files would change over time. Future research

will attempt to address this problem using a combination of code analysis

tools and developer feedback. However, this measure has been used in other

research (Zimmermann et al., 2005), and so is considered suitable for use

here.

Chapter 6. Case Study: History-Based Change Prediction 116

6.2.5 Ethical Issues

The open source projects used in this case study are freely available on the

internet, whereas the copyright for the student projects is owned by the

universities involved. Therefore, ethical clearance was sought and granted to

use the student projects, following sufficient anonymisation. As no human

subjects were involved with this case study, no further ethical clearance was

necessary.

6.2.6 Evaluation and Discussion of Results

After each of the three studies are conducted, the findings will be evaluated

in the context of the overall research questions and goals, to relate each

analysis to the overarching aim of assessing and improving the performance

of history-based change prediction.

6.3 Perceive

This research uses the tool described in Chapter 4 to analyse project reposito-

ries and perform history-based change prediction using only the transactional

data, as opposed to analysing the source code and using a syntax-based

technique.

Change prediction involves a model, given one more changes as an input,

calculating the changes which might occur as a result. In the case of history-

based change prediction, the inputs are a set of code entities which have

changed, and suggesting a set of code entities which might therefore also

require changing. Depending on the model, the code entities might range

from the fine-grained (e.g. variables or functions) to the coarse-grained (e.g.

files). Perceive uses files as its code entities, as this allows the model to

remain language- and platform-agnostic - no additional code is required to

allow Perceive to function on different languages; this also has the benefit

that non-source code files can also be included in the prediction process.

Chapter 6. Case Study: History-Based Change Prediction 117

The costs and benefits of this approach have been explored in other research

(Zimmermann et al., 2005), and the benefits of being language-agnostic are

seen as outweighing the drawbacks of the coarse-grained results. In the

context of this case study, all models work on a file-level, and so the results

can be considered relative to one another.

Perceive functions by maintaining a network of files, with edge weights

being the number of revisions in which the pair of files were both modified.

For any given file, A, therefore, the edges from that file can be used to make

suggestions. Two metrics are used to make these suggestions – support and

confidence. For each linked file, B, support is the number of times A and

B were modified together, and confidence is support divided by the total

number of modifications of A. By modifying the required thresholds of support

and confidence before a link can be inferred, the precision and recall can be

affected – investigating the effects of changing these parameters is one of the

goals of this research.

Because Perceive, by its nature, cannot make change predictions early in

a project, the first half of each project is used to build a training set, while

the analysis is conducted using the latter half.

6.4 Study 2.1: Empirical Benchmarking Study

This section describes the first stage of this case study, an empirical bench-

marking study, in which Perceive is applied to a series of projects with

a variety of parameters to measure the model’s performance in terms of

information retrieval. The study has the goals of confirming or refuting

existing research which states that history-based change-prediction is a viable

technique and exploring which factors affect performance.

6.4.1 Research Questions

The research seeks to address the following research questions and associated

hypotheses:

Chapter 6. Case Study: History-Based Change Prediction 118

• RQCP 1-1 : How well does Perceive predict software changes?

– HCP 1-1 : Perceive is a better change-predictor then a random

control model.

• RQCP 1-2 : What factors affect the performance of Perceive?

– HCP 1-2 : Perceive performs better on projects with more revisions.

– HCP 1-3 : Perceive performs better on projects with more files.

– HCP 1-4 : Perceive performs better on open-source projects than

academic projects.

This study also has an exploratory aspect, addressing the following issues:

• Perceive can be used with a variety of parameters, which will have an

effect on the accuracy and completeness of the results. This research

will explore the effects of these parameters, without making predictions

as to the outcomes.

• It is expected that there will be situations where a history-based model

cannot reliably predict changes. This research aims to explore the effects

of these “blind spots”.

6.4.2 The Models

A set of models were devised to provide a comparison with Perceive.

• Random: This model simply selects a set of files at random from the n

available files, ranging from 0 to n. This model was predicted to be the

worst, and was devised as a naive baseline comparison.

• Random2: Like Random this model selects random files, but limits the

number to the average change-per-revision thus far. This model was

expected to be better than Random as it would have higher precision

without much reduction of recall.

Chapter 6. Case Study: History-Based Change Prediction 119

• Frequency (Frequency-based): This model selects a number of files

from the available pool based on how much they have been modified

thus far. By simply suggesting a number of the most active files, it

was expected that the results would be no worse than Random2, and

potentially significantly better, depending on the project.

As these three models are non-deterministic, i.e. they each contain a

random element, they are run multiple times and an aggregate of the results

is reported. These models are intended to provide control groups against which

to compare the performance of Perceive, and are not presented as viable

change-prediction strategies in their own rights. This allows the performance

of Perceive to be statistically compared to control models rather than simply

stated as absolute metric values. Therefore, the statistical significance testing

allows Perceive to be evaluated in terms of “Does the technique perform

better than a control model?”.

6.4.3 Phases

The experiment is conducted in two phases, which measure the performance

of history-based change prediction in two different use-cases.

6.4.3.1 Phase 1

This phase investigates the ability of each model to correctly predict all files

that will require changing based on a single file. For every revision, a set

of suggestions is made from each change in that revision. In this way, the

precision and recall can be measured in detail for every file in every revision

in every project. This phase is simply investigating the general predictive

ability of each model; as the aim is to predict an entire revision from a single

file, the success rate is expected to be low. However, relative success of each

model to the others is the important measure.

Phase 1 will be conducted using all four models: Perceive, Random,

Random2 and Frequency.

Chapter 6. Case Study: History-Based Change Prediction 120

6.4.3.2 Phase 2

Phase 2 explores the ability of Perceive to identify a missing change from

each revision. For every revision, change prediction will be performed once

for each file, to try and predict that it is the missing file. This phase aims to

measure the success of Perceive in a real-world use-case, that of suggesting a

missed change to a developer. This is similar to an experiment conducted in

(Zimmermann et al., 2005), and is intended to contribute to the existing set

of results as opposed to providing a novel technique.

Phase 2 will be conducted using four predictive models – Perceive,

Frequency, Random and a second variant of Perceive, named Perceive2.

Random2 is omitted as the differences between it and Random are examined in

sufficient detail in Phase 1. In this Phase Random and Frequency are designed

to generate only a single result, while Perceive functions in the same manner

as Phase 1, suggesting any file which fulfils the criteria. To account for the

difference between Perceive and the control models in this phase, Perceive2

is introduced.

• Perceive2: This model functions in the same manner as Perceive,

but only suggests the file with the highest confidence, using support

to resolve ties. This variant is used to provide a closer comparison of

performance to the control models in this phase, while still allowing the

performance of the primary Perceive model to be evaluated.

Both phases will be conducted repeatedly, measuring the effects of the

support and confidence parameters. In addition, each phase will be conducted

twice for each project. The first run will select only source code files, while

the second run will use code, documentation and data files. The aim is to

investigate whether Perceive is more effective when focussed on code alone,

or whether it is possible to broaden the application.

Chapter 6. Case Study: History-Based Change Prediction 121

6.4.4 Implementation Details

During the implementation and prototyping of the models, a number of issues

were encountered:

• If no files are suggested, precision is 1.

• If no files are expected, recall is 1.

As the parameters became stricter, fewer files were suggested and therefore

the precision tended towards 1. This was combined with the fact that a large

number of revisions consist of a single change, and therefore the recall was

always 1 in a non-trivial number of cases, regardless of model or configuration.

This led to the dilemma that there was a large portion of the data in which a

perfect model was indistinguishable from a failed model; to circumvent this

problem only revisions where more than one file was changed, and at least one

suggestion was made were counted. The effects of this decision are monitored

through the recording of the number of revisions skipped. This has led to the

introduction of a new measure:

Coverage: The percentage of revisions for which valid suggestions

can be made in which suggestions were made.

This metric is used only in Phase 1, as Phase 2 approaches the problem in

a different way. In Phase 2 only revisions which can have a suggestion made

are measured, so if a model fails to make a suggestion then the model has

failed in that revision. Therefore, the results will be measured in two ways,

using an additional parameter – the fail-weight (FWi), where i can be either

1 or 0. This parameter is used to determine the precision in the case that no

suggestion is made:

• If no files are suggested, precision is FW.

FW1 is correct in the definition of precision, whereas FW0 is correct in

that the model has failed to produce an accurate answer.

Chapter 6. Case Study: History-Based Change Prediction 122

As stated in Section 6.4.2 the Random, Random2 and Frequency are non-

deterministic, and as such require running multiple times to produce ag-

gregated results. In practice they were run 1,000 times, the most possible

considering performance and time constraints. Analysis of two separate

1,000-run sets shows very little variation between the results – precision has a

mean difference of 0.002 (standard deviation 0.003), while recall has a mean

difference of 0.001 (standard deviation 0.001).

6.4.5 Limitations and Threats to Validity

The primary limitation of this research is the lack of comparison with syntax-

based impact analysis or change prediction tools. While demonstrating the

effectiveness of Perceive against a random control and against user data is

useful from an academic viewpoint, comparisons with tools which are used

in actual development environments are necessary to provide results likely

to have value to industry practitioners. However, this research builds on

existing work in the field of history-based change prediction and the findings

contribute to that field.

As described in Section 6.4.4 a number of design decisions had to be

made which directly affected the results. The rationale behind these decisions

has been explained, but it must be borne in mind that the effects described

mean that any history-based analysis model seeking to be complete can give

perfect precision simply by failing, and that some projects will necessarily

lend themselves towards high recall. It is vital that any investigation or model

makes plain its handling of these cases, or no comparison with similar research

can be made.

The aim was to draw on as many projects as possible from which to

generate results. While there are a large amount of projects, the factors

investigated in RQCP2 are somewhat intertwined (e.g. the open-source

projects tend to have more revisions), and while efforts have been made to

account for this, there are simply not enough projects to be able to do so

with complete confidence.

Chapter 6. Case Study: History-Based Change Prediction 123

6.4.6 Results

This section summarizes the results for each phase. Only a brief overview of

the data is included – the full set of results is available in separate documents.

6.4.6.1 Phase 1

This phase consists of two sets of results, depending on the categories of file

being included in the analyses. The first set are code files only, while the

second set are code, document and data files.

Model Coverage Precision Recall

Perceive 0.293 0.662 0.219

Random 1.000 0.463 0.620

Random2 0.696 0.503 0.123

Frequency 0.632 0.500 0.140

Table 6.2: Phase 1: Overview

Model Coverage Precision Recall

Perceive 0.293 0.656 0.220

Random 1.000 0.473 0.621

Random2 0.684 0.498 0.127

Frequency 0.624 0.495 0.142

Table 6.3: Overall performance of all models: Phase 1, code files

Table 6.2 gives an overview of the results for Phase 1 broken down by

model. Table 6.3 shows the overall results for each model, aggregated across

all projects, when only code files are analysed. Table 6.4 shows the same

aggregated results when code, data and document files are analysed. Tables

6.5 and 6.6 break the results down into the two sets of projects – academic

and open source.

Chapter 6. Case Study: History-Based Change Prediction 124

Model Coverage Precision Recall

Perceive 0.293 0.669 0.218

Random 1.000 0.454 0.618

Random2 0.707 0.507 0.120

Frequency 0.639 0.506 0.138

Table 6.4: Overall performance of all models: Phase 1, code document and data

files

Academic Projects FOSS Projects

Model Coverage Precision Recall Coverage Precision Recall

Perceive 0.281 0.644 0.216 0.433 0.802 0.268

Random 1.000 0.483 0.623 1.000 0.360 0.599

Random2 0.671 0.490 0.128 0.837 0.595 0.104

Frequency 0.606 0.487 0.145 0.837 0.595 0.114

Table 6.5: Overall performance of all models, by project category: Phase 1, code

files

Academic Projects FOSS Projects

Model Revisions Precision Recall Revisions Precision Recall

Perceive 0.282 0.657 0.214 0.422 0.804 0.265

Random 1.000 0.461 0.619 1.000 0.373 0.608

Random2 0.696 0.500 0.121 0.835 0.597 0.115

Frequency 0.622 0.498 0.139 0.835 0.599 0.122

Table 6.6: Overall performance of all models by project category: Phase 1, code

document and data files

Chapter 6. Case Study: History-Based Change Prediction 125

6.4.6.2 Phase 2

As with Phase 1, there are two sets of results, one for code files only, and one

for code, document and data files.

Table 6.8 shows the overall mean precision and recall over every project

and configuration for Phase 2. Table 6.9 breaks this data down by the file

selection, giving precision and recall for each model depending on whether

the file set was code or code, documents and data.

Table 6.10 shows the differing performance of each model aggregated

across project categories. Table 6.11 shows how the FW parameter affects the

results.

6.4.7 Evaluation

6.4.7.1 Phase 1

Phase 1 seeks to assess the predictive ability of any given file when using

history-based analysis. The overall results, as shown in Tables 6.3 and 6.4,

demonstrate that there is no model with highest performance across all metrics.

Of the control models, Random has the worst precision by a narrow margin,

but the best recall – over four times better than Frequency. Perceive has

significantly better precision than Random, but poor recall – better than

Random2 and Frequency but far worse than Random. Statistical testing, using

a significance value (α) of 0.005, shows these conclusions to be statistically

significant.

The low precision and high recall of Random was predicted – by simply

Code Files Code, Documents and Data

Precision Recall Coverage Precision Recall Coverage

Revisions 0.25 0.27 0.45 0.24 0.27 0.44

Files 0.24 0.16 0.20 0.27 0.22 0.16

Table 6.7: Correlation between project factors and Perceive performance

Chapter 6. Case Study: History-Based Change Prediction 126

Model Precision Recall

Perceive 0.411 0.170

Perceive2 0.435 0.093

Random 0.016 0.016

Frequency 0.099 0.099

Table 6.8: Phase 2: Overview

Code Code, Documents and Data

Model Precision Recall Precision Recall

Perceive 0.418 0.166 0.404 0.173

Perceive2 0.439 0.091 0.431 0.094

Random 0.020 0.020 0.012 0.012

Frequency 0.108 0.108 0.089 0.089

Table 6.9: Phase 2: Effects of file selection

Academic FOSS

Model Precision Recall Precision Recall

Perceive 0.410 0.170 0.421 0.170

Perceive2 0.434 0.092 0.446 0.099

Random 0.017 0.017 0.002 0.002

Frequency 0.102 0.102 0.058 0.058

Table 6.10: Phase 2: Effects of project category

Model FW1 Precision FW0 Precision

Perceive 0.754 0.068

Perceive2 0.778 0.093

Random 0.016 0.016

Frequency 0.099 0.099

Table 6.11: Phase 2: Effects of fail-weight (FW)

Chapter 6. Case Study: History-Based Change Prediction 127

Code Files Code, Documents and Data

Precision Recall Precision Recall

Perceive
Revisions -0.17 0.14 -0.09 0.11

Files 0.05 -0.02 -0.09 0.16

Perceive2
Revisions -0.13 0.16 -0.07 0.14

Files 0.06 0.08 -0.06 0.23

Table 6.12: Correlation between project factors and Perceive performance

choosing a large number of files it can easily produce high recall, at the cost of

precision. Likewise, Random2 and Frequency are designed to choose smaller

amount of files with the intention of improving precision. The reduction

in recall was expected, but surprisingly their precision was almost identical.

Frequency was predicted to have a better precision than Random2 simply by

choosing the most active files, but in practice this was not the case.

In terms of file selection, the types and number of files selected for analysis

had little effect on the control models, and resulted in a slight improvement to

Perceive’s precision. From this it can be concluded that expanding the set of

files for analysis in no way negatively impacts the performance of Perceive

means that the benefits of content-agnostic analysis can be applied to an

entire project, not just source code, regardless of language or format.

Breaking the results down by project categories (academic and open

source) as shown in Tables 6.5 and 6.6 it can been seen that the open source

projects, which are larger and maintained by more experienced developers,

tend to receive better precision and recall from Perceive than do the academic

projects. It can also be seen that Random performs worse on the larger projects,

since it has more files to choose from and more scope to make errors, while

Random2 and Frequency actually perform better on the larger projects. This

is because both models select a random number of files in each revision up

to the average number of changes per revision by that stage in the project.

Until a number of revisions have passed and the average number of changes

per revision has increased, it is more likely that the model will select no files,

Chapter 6. Case Study: History-Based Change Prediction 128

and thus the revision will not be counted.

It is worthwhile noting that in every case Perceive processes far fewer

revisions than the other models. There are two reasons for this. Firstly, a

number of revisions are used to create a training set and typically only the

latter half of a project is analysed. This is to allow the model to develop

the links between files, and reflects a scenario where is it being used during

maintenance, or later in a project, rather than in its early days. Secondly, as

discussed in Section 6.4.4, a decision was made to ignore revisions where no

suggestions were made. The practical effects of this decision are discussed in

Section 6.4.7.2.

6.4.7.1.1 Effects of Parameters on Perceive

Overall, it has been demonstrated that Perceive outperforms the control

models in terms of Precision in every case, but is inferior to Random in terms

of recall. This section explores how modifying the parameters of Perceive

affects the precision and recall of the model. The following results use the

expanded file set (code, documents and data files) as this has been shown to

have, at worst, no impact on the results.

To describe a particular combination of support and confidence, the

following notation will be used:

• Ps,c, where:

– P is the F0.5 score of Perceive

– s is the support parameter

– c is the confidence parameter

Figure 6.2 shows the aggregated precision, recall and coverage of the

academic projects for different support values. It was expected that as support

rose, precision would increase as recall fell, due to the increased number of

revisions files would be required to have appeared in before Perceive would

infer a link. However, as the recall does fall as predicted, the precision rises

Chapter 6. Case Study: History-Based Change Prediction 129

Figure 6.2: The effects on precision, recall and coverage of changing the support

parameter on academic projects

Figure 6.3: The effects on precision, recall and coverage of changing the confidence

parameter on academic projects

Chapter 6. Case Study: History-Based Change Prediction 130

briefly then too begins to fall. The revision coverage also falls, as predicted.

From this set of results it can be inferred that, for smaller projects, a low

support parameter is required to make good change predictions.

Figure 6.3 shows the effects of changing the confidence parameter. The

trends are much the same as for Figure 6.2, although the magnitude of the

effects is smaller.

By combining these results it can be proposed that a lower support

parameter, around two or three, and a mid-range confidence, 0.5 to 0.6,

might produce the best results. Examining the individual results for the

support/confidence combinations, the absolute best (in terms of F0.5-Score)

combination for the academic projects is P1,0.8=0.649. However, this value

has a coverage of 0.56, meaning that almost 50% of the revisions are not

analysed. In a real-world scenario this could negatively impact the usefulness

of the model. If we aim to achieve a coverage of 0.75 – e.g. results are

generated for three-quarters of the revisions – then the best combination

is P1,0.5, with an F0.5-Score of 0.632. The absolute best coverage is, like

recall, at P1,0.1. If the user decides that precision is the most important

metric, then P2,0.8 provides the best precision, but relatively poor recall

(0.29) and coverage (0.36). It is clear that depending on the application and

the user, a trade-off between precision, recall and coverage will be required.

From a practical perspective, a high recall is important as the model should

suggest as many of the correct answers as possible. However, this recall comes

at the expense of precision, meaning a lot of false-positives will be made,

tending towards providing the user with nothing more useful than a complete

list of files in the project. From a usability perspective avoiding excessive

false-positives is important, and sacrificing recall for precision might in fact

be the correct decision, as suggested in (Zimmermann et al., 2005).

Figures 6.4 and 6.5 show the effects of support and confidence on precision,

recall and coverage in the FOSS projects. The precision and recall in both

cases follow the same pattern as for the academic projects, although they are

typically higher in this case. Precision rises slightly with support, but then

Chapter 6. Case Study: History-Based Change Prediction 131

Figure 6.4: The effects on precision, recall and coverage of changing the support

parameter on open source projects

Figure 6.5: The effects on precision, recall and coverage of changing the confidence

parameter on open source projects

Chapter 6. Case Study: History-Based Change Prediction 132

plummets once support reaches 9 – this is due to one of the projects, shorter

than the others, having zero coverage at that point, as there are simply too

few revisions to infer links with a support parameter that high. Increasing the

confidence, however, has no such effect and the precision increases smoothly

as confidence is raised. As before, increasing the confidence parameter reduces

coverage significantly, but recall remains fairly constant in comparison to the

academic projects.

Looking at a deeper breakdown, there are some noticeable differences

between the two categories of project. Whereas with the academic projects

there seemed no reason to select a higher level of support, the open source

projects have a much higher precision at a support of 8, so if precision is

deemed more important than recall, P8,1 is the best option. If recall is

important, then a lower support is required, such as P2,1. If coverage has a

higher priority, then a selection such as P1,0.3 gives better results.

Figure 6.6: The effects on precision, recall and coverage of changing the support

parameter on the largest open source projects

While evaluating Perceive it has been stated that, typically, the open

Chapter 6. Case Study: History-Based Change Prediction 133

Figure 6.7: The effects on precision, recall and coverage of changing the confidence

parameter on the largest open source projects

source projects are larger and longer than the academic projects, which makes

it difficult to differentiate between project category and project size/length

when investigating factors. However, one of the open source projects is

much smaller than the others, comparable in size with the academic projects.

Figures 6.6 and 6.7 show the results for the larger open source projects with

the smaller one removed. This clearly removes the anomaly in the precision,

and demonstrates that precision will clearly continue to rise (although not

linearly) until a point is reached where the model can no longer provide

sufficient coverage to function.

There appears to be a link between the size of the project and the resulting

precision/recall. However, Table 6.7 shows that there is only a weak correlation

between project length and the results, or between the number of files in the

project and the results. There is a 0.45 correlation between revisions and

coverage, suggesting that Perceive does indeed perform more reliably as the

length of the project increases. However, these results cannot be significant

Chapter 6. Case Study: History-Based Change Prediction 134

without more projects to analyse and more information about the projects

themselves – a correlation does not imply a causal relationship, and other

factors such as development practices may be more important.

In conclusion, we can see that increasing the confidence will always increase

the precision while diminishing the recall and coverage. Increasing support

will also increase the precision initially before tailing off at a point determined

by the length of the project. Increasing support also reduces recall and

coverage, but not as sharply as increasing the confidence. The size of the

project appears to have an impact on the support selected, while the user or

task will determine the priority given to precision, recall and coverage when

determining the parameters.

6.4.7.2 Phase 2

This section evaluates the effectiveness of Perceive in a more real-world

scenario, that of predicting a single missing change from a revision. Table 6.8

shows overall figures for each model in this phase. In terms of both precision

and recall, overall Perceive performs better than the two control models (α

= 0.005), correctly predicting a mean 17% of the missing files, with a mean

false-positive rate of 59%. It is worth noting that in Phase 2, any execution

of one of the control models produces a recall equal to its precision – this is

due to the fact that one file is expected and one file is suggested – therefore

precision and recall will be either 1 or 0. Perceive2 shows a slightly (but

significantly) higher overall precision than Perceive, but a lower recall – in

fact, the recall of Perceive2 is statistically indistinguishable from that of

Frequency.

As can be seen in Table 6.9 the control models both perform slightly, and

significantly, worse on the expanded file set. Neither Perceive nor Perceive2

perform significantly differently with the expanded file set. This supports the

findings from Phase 1 indicating that Perceive is viable to use on more files

than source code.

Looking at Table 6.10 it can be seen that overall both Perceive and

Chapter 6. Case Study: History-Based Change Prediction 135

Perceive2 seem to perform marginally better on the open-source projects

than on the academic projects, with no difference in recall, while the two

control models both performed significantly better on the academic projects

than on the open-source projects. However, there are not enough open-

source projects to assess the significance of these differences, and it cannot

be determined whether or not the category of the project has an effect on

the performance. Table 6.12 shows that there is no significant correlation

between the number of files or revisions in a project and the performance of

Perceive or Perceive2 in this phase, which matches the results from Phase

1 (see Table 6.7).

Table 6.11 shows that by counting situations where no suggestions were

made as a failure (i.e. precision is 0 rather than 1), the performance drops

significantly from 75% to 7%, lower than Random. However, this is aggregated

across the full range of support and confidence, and is not representative of

the best performance of Perceive.

Overall, these results have confirmed the findings of Phase 1, in that

Perceive is capable of meaningfully out-performing the control models in an

example of a real-world scenario.

6.4.7.2.1 Effects of Parameters on Perceive

This section evaluates the results of Perceive in more depth, examining the

support and confidence parameters and the effects they have on performance.

Figures 6.8, 6.9, 6.10 and 6.11 show the effects that support and confidence

have on precision and recall. In these charts, Precision 1 is the precision with

FW 1, while Precision 0 is the precision with FW 0. As stated above, results

in this section will be taken using FW 1, but the FW 0 results are included

for comparison.

Figure 6.8 shows a similar recall pattern to Phase 1 (see Figure 6.2),

slowly falling as support increases. Unlike Phase 1, precision rises, tending

towards 1 as support increases. This is due to the different handling of empty

suggestions. Figure 6.10 demonstrates that open-source projects have similar

Chapter 6. Case Study: History-Based Change Prediction 136

Figure 6.8: The effects on precision and recall of modifying the support parameter

on academic projects

Figure 6.9: The effects on precision and recall of modifying the confidence

parameter on academic projects

Chapter 6. Case Study: History-Based Change Prediction 137

Figure 6.10: The effects on precision and recall of modifying the support parameter

on open-source projects

Figure 6.11: The effects on precision and recall of modifying the confidence

parameter on open-source projects

Chapter 6. Case Study: History-Based Change Prediction 138

trends in this case.

Looking at Figures 6.9 and 6.11, there are clear trends caused by changing

the confidence parameter. As with support, higher confidence leads to higher

precision and lower recall, but the effect is greater. These results would

suggest that confidence is the more important parameter to consider when

using a model such as Perceive, and the choice will be influenced by the

user and the scenario.

Figure 6.12: A comparison of the effects of support when applied to the code file

set and the expanded file set

Figures 6.12 and 6.13 show the similarities of the patterns when the

model is applied to different file sets. This confirms the results of Phase 1,

demonstrating that Perceive is capable of performing as well on a wider

range of files as when restricted to source code only.

Figures 6.14 and 6.15 show the effects of every combination of support and

confidence, clearly demonstrating the conflict between precision and recall. As

with Phase 1, there is no unambiguously optimal set of parameters to produce

the best performance. There is a trade-off between accuracy and completeness

that must be made, and this compromise must necessarily depend on the user

Chapter 6. Case Study: History-Based Change Prediction 139

Figure 6.13: A comparison of the effects of confidence when applied to the code

file set and the expanded file set

Figure 6.14: A complete overview of the effects of support and confidence on

precision when using Perceive

Chapter 6. Case Study: History-Based Change Prediction 140

Figure 6.15: A complete overview of the effects of support and confidence on

recall when using Perceive

and the task at hand.

6.4.7.3 Perceive and Perceive2

Perceive2 was included in this evaluation to provide a more direct comparison

of a history-based model in the context of suggesting a single file. Figures 6.16

and 6.17 compare the performance of the two models. As can be seen, the

overall trends are the same, but Perceive2 has better precision and worse

recall, although the results converge as the parameters increase. These results

are to be expected as Perceive makes more suggestions than Perceive2.

However, the difference in precision is far smaller than the difference in recall,

suggesting that the additional files suggested by Perceive are relevant – if

the top result is not correct, then the correct result is likely to appear in the

set suggested by Perceive.

6.4.8 Discussion

This section maps the evaluation of the results for Study 2.1 to the research

questions and hypotheses proposed in Section 6.4.1, and then to address the

exploratory issues raised.

Chapter 6. Case Study: History-Based Change Prediction 141

Figure 6.16: The effects of support on the performance of Perceive and

Perceive2

Figure 6.17: The effects of confidence on the performance of Perceive and

Perceive2

Chapter 6. Case Study: History-Based Change Prediction 142

6.4.8.1 RQCP 1-1: How well does Perceive predict software

changes?

HCP 1-1 : Perceive is a better change-predictor then a random

control model.

Perceive has been demonstrated to perform significantly better than a

number of control models, including two naive, random models and a model

based on file activity. This performance was demonstrated in both phases of

the study – in Phase 1, the basic predictive ability of the model was assessed,

while in Phase 2 a more likely, real-world scenario was assessed. Based on the

results shown in Tables 6.2 and 6.8 Perceive clearly provides better precision

than all control models and provides recall only surpassed by Random. The

interactions of these results were discussed in Section 6.4.7, and there is

sufficient evidence to accept H1.

6.4.8.2 RQCP 1-2: What factors affect the performance of Per-

ceive?

• HCP 1-2 : Perceive performs better on projects with more revisions.

• HCP 1-3 : Perceive performs better on projects with more files.

As shown in Tables 6.7 and 6.12 there is no significant correlation between

the number of files or the number of revisions in a project and the preci-

sion/recall of Perceive, although this could be affected by the bias towards

smaller, academic projects. More research using a broader range of projects

is required to fully investigate this research question, but there is insufficient

evidence in this study to accept H2 or H3.

However, as shown in Table 6.7 there is a 0.45 correlation between revisions

and coverage, indicating that the longer a project is the more complete

the result are. Therefore, while larger projects may not generate better

results, there is an indication that the results will be more complete. Again,

more research with a larger pool of projects is required to confirm this new

hypothesis.

Chapter 6. Case Study: History-Based Change Prediction 143

• HCP 1-4 : Perceive performs better on open-source projects than aca-

demic projects.

In Phase 1, Perceive was demonstrated to provide better precision, recall

and coverage on open source projects than academic projects. Likewise, in

Phase 2, Perceive was shown to perform better on open source projects

than academic projects, although the difference was less pronounced. As

discussed in Section 6.4.8.2 there is no correlation between performance and

the number of files or revisions in a project, and therefore it is likely that the

open source projects provide better results through some other factor, such

as development practices. While H4 cannot be accepted, the results indicate

that further research with a larger selection of projects may provide sufficient

evidence to support H4.

6.4.8.3 Exploratory Issues

An important aspect of this study was to investigate the effects of the support

and confidence parameters on the results. As discussed in Section 6.4.7.1.1

there is no clear combination of parameters that will always – or even usually

– produce the best precision and recall. The results show that in most cases,

precision can be increased at the expense of recall and coverage, and vice versa.

Increasing the support parameter has a slight effect on precision and recall,

while the confidence has a much more pronounced effect. However, users

of history-based models should be aware that support cannot be increased

too far, as precision falls sharply once the support becomes too large for the

project to sustain – files or code entities are only co-modified a finite amount

of times, and once the requisite support exceeds the number of times files are

edited together, relationships can no longer be inferred.

6.4.9 Conclusions

Study 2.1 has reinforced existing research which shows that history-based

change prediction is a viable technique for performing change prediction.

Chapter 6. Case Study: History-Based Change Prediction 144

Moreover, it has shown that Perceive, as implemented here, is a viable

change-prediction tool.

This study has also advanced on previous research by investigating the

effects of various parameters and factors on the performance of history-based

change prediction models. Most importantly, users must choose whether they

prioritize precision over recall and coverage. On larger projects, a higher

support (>5) can be chosen with little impact on recall and coverage, while

confidence must be chosen carefully based on the user’s needs, as this will

determine whether the analysis favours completeness over accuracy. In general,

a higher confidence parameter will be used in situations where false-positives

are considered harmful; for example, pre-submission or compilation warnings

will tend to occur frequently. On the other hand, a lower confidence will

return a larger set of results, which will be more valuable in gaining a broad

understanding of a project, typical to a maintainer or a new developer.

A number of unforeseen implementation issues arose during this study

(see Section 6.4.4). Most important was the issue of failure and coverage –

using precision, recall and coverage it can be difficult to differentiate between

a good model and a bad one. Any study investigating history-based models

must be sure to take account of these issues and state the approach taken as

they can have a severe and misleading effect on the results.

6.5 Study 2.2: Project Applications

6.5.1 Introduction

Study 2.1 investigated the overall performance of Perceive across a range of

projects. To better understand how Perceive applies to individual projects,

and to highlight use-cases and obstacles, this study will discuss the application

of history-based analysis to a pair of software development projects.

Chapter 6. Case Study: History-Based Change Prediction 145

6.5.2 The Projects

Two projects are explored in this study. The first is PuTTY, an open-

source SSH client for which the source code and SubVersion repository is

publicly available. The second is an academic group-project performed by

undergraduate Computer Science students, and which be referred to in this

report as the SEG project. For reasons of privacy, no identifying details such

as the names of the project, the students involved or any source code are

included in this report; where necessary aliases are used for file names.

The choice of project was designed to explore two different areas of

software development. PuTTY is worked on by experienced developers;

security, reliability and stability are critical to the success of the project. The

SEG project is created by a team of students with little to no experience of

real-world development, and the project is intended to expose the students to

the practices and reality of software development. While PuTTY has been

in active development for several years, SEG projects are completed within

a small number of months, with the implementation phase of the project

occupying only a subset of the total activity.

To compare the projects, a number of metrics1 are provided in Table 6.132.

Revisions Files Changes Age Developers

PuTTY 5,123 4,243 14,971 10.5 years 5

SEG 490 2,554 4,786 114 days 8

Table 6.13: Overview of the projects

1The tool used to extract these figures ignores some revisions, such as those in which

the only changes are to directories. Therefore these figures reflect the data used in this

research, not the absolute figures for the projects.
2PuTTY is still in development at the time of writing; these figures reflect the state of

the project as of July 2009 (Note that this is a more recent snapshot than that used in

Study 2.1).

Chapter 6. Case Study: History-Based Change Prediction 146

6.5.3 Overview of Perceive

As described in Section 6.4 Perceive uses two parameters in its analysis,

which define threshold limits: support, which is the number of times in which

two files must be modified together to assume a link, and confidence, which

is the ratio of co-modifications to modifications. For example, assume file

A (modified 5 times) and B (modified 8 times) are modified in the same

revision 4 times. If the support parameter is 4 and the confidence parameter

is 0.8, then Perceive will infer a link from file A to file B, but not the other

way around – the support in both cases is 4, which is sufficient, while the

confidence of A to B is 0.8 (4
5
) but the confidence of B to A is only 0.5 (4

8
).

By changing the threshold parameters users can shape the results they

receive – a higher required confidence and support will result in a smaller set

of code entities with fewer false-positives but potentially more false-negatives,

while a lower confidence and support will result in more false-positives but

fewer false-negatives. One aspect of this research is to investigate the effects

of these parameters on real projects rather than a high-level aggregate.

6.5.4 Case Study 2.2A: SEG

This first case study explores the use of Perceive in a small academic

group project, initially demonstrating the workings of Perceive and then

highlighting the uses of the technique in an academic setting, including various

use-cases such as development, maintenance, management and assessment.

In Study 2.1 (Section 6.4) Perceive was first used to predict complete

revisions given a single changed file, and secondly to predict a single missing

file from an otherwise complete revision. In Phase 1 of that study each project

was processed twice, based on the choice of files – source code files, or source

code, documents and data files. In Phase 2 each project used the two different

file selections, and also altered what was named the “fail weight” – whether

an empty result set had a precision of 1 or 0. In this research the larger file

set is used, and the fail weight is 1.

Chapter 6. Case Study: History-Based Change Prediction 147

Table 6.14 shows the results of the academic projects in general, and the

SEG project in particular, using these parameters.

Phase 1 Phase 2

Project Precision Recall Precision Recall

All Projects 0.669 0.218 0.742 0.173

Academic Projects 0.657 0.214 0.740 0.174

SEG Project 0.873 0.474 0.526 0.312

Table 6.14: Performance of Perceive for various project groups

As an example of Perceive in use, suggestions are generated for the most

active file (FileA) in the project, with a configuration of P1,0.2. 10 other

files are suggested, all of which are source code files in the same directory,

all part of the GUI code. Secondly, suggestions are generated for the same

file but with a configuration of P10,0.5. This time, only two files (FileB and

FileC) are suggested. Changing the configuration to P10,0.6 results in no

suggestions – no files are co-modified in more than 60% of the file’s revisions.

Conversely, suggestions for FileB and FileC at this higher threshold both

suggest FileA – while FileA is often modified without the other two, they

are less frequently modified without FileA also being modified. Importantly,

all three files are most frequently modified by the same user, adding further

support to the relationship inferred by Perceive. From this, we can identify

with some confidence that if FileA is modified, FileB and FileC are also

likely to be modified; likewise, if FileB or FileC are modified, then FileA is

highly likely to be modified. Therefore, if modifications are made to some of

these files, but not others, then these files should also be examined in case

they require modification as well.

This behaviour highlights a problem with history-based analysis. In the

event a revision is committed in which FileA and FileB were modified, but

not FileC, if the developers then realize that FileC requires modification as

well, then it is likely to be committed as a new revision, which will further

dilute the relationships as inferred by Perceive. A mechanism for addressing

Chapter 6. Case Study: History-Based Change Prediction 148

this problem could be to, during analysis, “fold” revisions together which are

by the same user and are committed within a specific time frame, an extension

of the sliding window approach used in CVS preprocessing (Zimmermann

and Weissgerber, 2004). This way, in the example given, if the mistake was

corrected by the original user, and within a set time, Perceive would still

reinforce the link between the files, despite the changes being in different

revisions.

This example, of three interrelated files, also highlights a potential area

for development in Perceive. The current model uses first-order analysis

when creating links between code entities, in that links are only generated

between pairs of files. If two files have links to the same third file, then a

simple combination is used (total support, mean confidence). More complex,

higher-order analysis could be used to more strongly infer links between

clusters of files, which could improve the performance of Perceive when

using a complete revision to suggest missing files.

Examining a documentation file (FileD), Perceive generates strong links

between that file and related documentation, as well as a number of source

code files. The documentation and source code is all functionally related

and are part of a reporting GUI. Again, these related files are also most

frequently modified by the same user. Following the links to other files, the

documentation files are all strongly interrelated, as expected since they will

be generated simultaneously and committed together. However, while the

documentation files link strongly to their related code files, the source code

files do not link as strongly back to the documentation. This suggests that

the documentation typically accompanies a change to the code, but changes

to the code are not always accompanied by updates to the documentation.

Revision folding might be a solution here, but examination of the revision

data shows that it is not a case of the documentation and the code being

committed separately, but rather the documentation simply being updated

less frequently than the source code.

As demonstrated in Study 2.1, history-based analysis can be successfully

Chapter 6. Case Study: History-Based Change Prediction 149

used to predict missing changes from a revision. The research was conducted

by omitting a single change from a revision and seeking to discover it from

the remaining changes. In a real-world scenario, users would use the system

to determine if any changes should be made before a revision is committed.

This case study attempted to conduct a more focussed, real-world based

examination by mining the revision logs for “forgotten” files, by searching for

revisions from the same user made in a short time frame, with a comment

indicating that a file was missed. However, in this project very few such

occasions existed. One explanation for this was that the SEG project had a

relatively high change-per-revision ratio (nine changes per revision, as opposed

to two for PuTTY, four for both Parrot and GNUstep, two other large open

source projects). This indicates that the students would typically do a larger

amount of work on a range of files and submit at wider intervals than is

typical on real-world projects.

A maintainer joining an existing project with little or no experience of

it, and no knowledge of its structure will often use tools to help create a

mental model of the project, including how files are connected. By using

history-based techniques, a maintainer can use the behaviour patterns of

the project developers to form an understanding of the code. Perceive can

generate a series of visualizations which present the project structure and

show the links inferred between files. Such an overview can be of great help

to a newcomer to the project. In the academic context, the tasks performed,

and the understanding required by an assessor might be comparable to those

of a manager or maintainer of a real-world project. Experimental data has

shown that when asked to assess a group project, assessors tend to short-list

two or three “interesting” files and use them as a starting point to explore the

project (see Section 7.3). This branching-out process tends to follow syntactic

links – e.g. one class creates objects of another class, so the assessor will look

at that class too, and so a model of the project will be formed. However, the

files suggested by Perceive provide a secondary means of selecting further

files for examination, by presenting files that are similar in development terms

Chapter 6. Case Study: History-Based Change Prediction 150

rather than purely functional terms.

Another useful application of Perceive in the academic context is, as in

the case of the SEG project, when the groups consist of students from more

than one institution whose work is to be assessed by campus. Looking at a

file worked on by students from one campus, it is not immediately obvious

which related files were worked on by the same campus, and which ones

simply use files created by students from the other campus. Perceive can

go beyond the syntactic links to show which files are worked on by which

campus. For example, one area of the project, a data layer, was worked

on by both campuses; one campus generated very strong links between files

within the data layer, while the other campus – while working on it more –

created fewer links between different folders, and more links to the associated

documentation. From this it can be determined that one campus tended to

do broader changes, while the other did more contained changes, and also

maintained the documentation better. Such information would not have been

available from a simple code reading.

In Study 2.1 the research was conducted with the assumption that in

general the quality of results generated by history-based analysis techniques

are comparable to those generated by static, syntax-based techniques; this

assumption was based on previous research in the field (Zimmermann et al.,

2005; Hassan and Holt, 2004). These case studies afford the chance to

investigate this assumption in more detail by comparing clusters of files with

their syntactic and functional connections.

Taking an overview of the project, the main clusters are the JavaDoc

files, which are generated and committed together, and so build strong links

between them. A second observation is that the strongest clusters of code files

consist of files in the same directory. For example, a reporting component,

consisting of three directories (corresponding to three layers – data, logic and

presentation), exists in the main trunk and in a branch; the branch version

has links between files across all three directories, while the trunk version has

links only within the logic directory. This suggests that the branch version

Chapter 6. Case Study: History-Based Change Prediction 151

was created and worked on as a whole, while work on the trunk version has

been contained to individual directories. Both versions were documented, but

only the trunk code has formed links with its documentation.

Examining the source code of the reporting component in depth, starting

at the main GUI code – the file with the most activity – the benefits of

a history-based approach become apparent. The central GUI depends on

two components (other than built-in APIs), the core files of the project and

another GUI element of the reporting component. Examining a call-graph

or a dependency graph would suggest that the extensive list of core files

the GUI depends on would link the file very strongly with the core files.

However, the file is never co-modified with the core files, despite both being

actively developed. This suggests that, despite the strong syntactic links,

an alteration to the GUI or a core file does not require a modification to

the other. Conversely, the other files in the reporting component are very

strongly linked to the GUI – a file in the data layer is linked to the GUI with

a support of 11 and a confidence of 91%, despite only being connected by a

chain of intermediate files.

6.5.4.1 Discussion

Study 2.2A has demonstrated how Perceive works, and explored its po-

tential applications for students and assessors in an academic context. As

demonstrated in Study 2.1 the change prediction feature is not too effective in

these academic projects, as there are too few revisions and the development

style is too unstructured to support strong history-based change prediction.

However, other educational applications, such as assessment, are well sup-

ported by Perceive. Finally, instances of Perceive finding relevant links

that might be missed by static, syntax-based techniques, are identified, as well

as highlighting situations where a static technique might incorrectly suggest

a connection.

These results suggest that although Perceive will not perform perfectly

in all cases, nor will traditional techniques, and there is a strong case for using

Chapter 6. Case Study: History-Based Change Prediction 152

history-based analysis to support and augment syntax-based techniques.

6.5.5 Case Study 2.2B: PuTTY

This second case study examines the application of Perceive to a mature,

stable open source project which sees significant real-world use. PuTTY “is a

free implementation of Telnet and SSH for Win32 and Unix platforms, along

with an xterm terminal emulator”, and has a publicly accessible SubVersion

repository with revisions spanning more than 10 years.

As with case study 2.2A, Perceive was used with the expanded file set and

a fail-weight of 1. Table 6.15 shows the performance of Perceive compared

to other groups of projects using these settings.

Phase 1 Phase 2

Project Precision Recall Precision Recall

All Projects 0.669 0.218 0.742 0.173

Open Source Projects 0.804 0.265 0.770 0.170

PuTTY 0.837 0.281 0.752 0.161

Table 6.15: Performance of Perceive for various project groups

As previously stated, PuTTY has a much smaller change-per-revision

ratio than the SEG project (2 as opposed to 9), and so it is expected that

Perceive will infer a larger number of stronger links between smaller clusters

of files compared with the SEG project. Examining the development patterns

of PuTTY, it can be seen that with each release a new copy of the code

is created and tagged with the release, while the original copy of the code

continues development. In many projects this practice is accompanied by

continuing development on the older releases – often for addressing security

issues – but this is not the case with PuTTY. Such use would highlight a

problem with Perceive in that when copies are created, the files’ histories

are not copied with them, and the history-based analysis must begin creating

links from scratch. Future development of Perceive could remedy this by

Chapter 6. Case Study: History-Based Change Prediction 153

copying the history of a group of files as they are copied. However, as this

practice is not used in PuTTY’s development, this drawback does not cause

any issues in this case study.

Investigating the most active code within PuTTY reveals a cluster of

weakly linked files – ssh.c, putty.h, window.c, terminal.c, windlg.c and

settings.c, which are frequently co-modified. However, while there is high

support for this cluster the confidence is typically between 20% and 50%.

Reviewing revision history, this is because while the files are frequently co-

modified, they are also frequently modified alone, with no relation to other

files. Taking an overall look at the inter-file links across PuTTY, it can be

seen that very few strong links develop between files because of this, making

history-based change-prediction or impact analysis difficult, especially for the

most active files. However, many of the less active files, such as sshblowf.c

or sshdes.c, have much stronger links to other files, including the most active

cluster – for example, sshdes.c links to ssh.c with a support of 22 and a

confidence of 52%, while sshblowf.c links to ssh.c with a support of 13 and

a confidence of 59%. These two files also link to each other quite strongly.

6.5.5.1 Discussion

The fact that PuTTY tends to have very small revisions, with files frequently

modified alone – often multiple times in succession – means that history-

based analysis does not appear to function as well as on some other projects.

However, the inability to build links between files is caused by the fact that

the developers do not always modify files in groups; given that PuTTY is a

highly successful, stable and secure project, it can be safely assumed that

the development habits and practices are equally successful, and that the

developers have a deep understanding of their code and how to modify it. In

that context, not making any suggestions for further modifications is in fact

the correct outcome in many cases. A code-based technique would always find

syntactic and structural links between files, regardless of developer behaviour

and knowledge. In this way, the expertise and habits of the developers guide

Chapter 6. Case Study: History-Based Change Prediction 154

history-based techniques to the conclusion that, given a modification, no other

files necessarily require updating. In fact, reviewing the revisions, a common

follow-up to a changed file is to make a further change to that file (the words

“oops”, “forgot” and “missed” occur frequently throughout the revision logs).

It is important to bear in mind, however, that this result cannot be

generalized to other projects without first understanding the nature of the

project. To simply assume that an empty suggestion means nothing should

be changed would be a mistake. Therefore, when using any form of impact

analysis or change prediction – history-based or syntax based – requires an

understanding of the nature of the project to determine what parameters to

use and what answers would be accurate. Fortunately, tools exist which can

facilitate this comprehension (Perceive itself was used to review the revision

logs and change histories) and can guide users towards a model of the project

sufficient to determine how best to use change prediction techniques, and how

to interpret the outcomes.

6.6 Study 2.3: Improving Perceive

Study 2.1 (see Section 6.4) evaluated Perceive and concluded that it is a

viable tool for conducting change prediction. Previous research has found that

adding additional data sets to a change prediction model can show significant

improvements in performance. For example, one study has shown that factor-

ing in the author and time period of a change can improve performance (Kagdi

et al., 2007b), while a study by Zhou et al. achieves increased performance by

incorporating source code dependency levels, co-change frequencies, change

significance, age of change and author (Zhou et al., 2008).

Study 2.3 seeks to improve the performance of Perceive by incorporating

data from thematic analysis into the algorithm. By classifying revisions into

one of a set of maintenance activities, it is possible for the change prediction

algorithm to alter the weightings given to files when calculating how related

pairs of files are.

Chapter 6. Case Study: History-Based Change Prediction 155

6.6.1 Research Questions

This study seeks to answer the following research question:

• RQCP 3-1 : Can thematic analysis data be used to improve the perfor-

mance of Perceive?

– HCP 3-1 : Inclusion of maintenance activity data improves the

performance of Perceive.

6.6.2 Perceive

Two new change prediction models were implemented: Activity and Activity2.

Activity works by restricting the search to revisions which involve the same

activity type as the revision under study. For example, a project with 200

revisions might have 40 corrective revisions; when trying to find a missing file

from a corrective revision, only previous changes from the other corrective

revisions will be counted. This model is predicted to provide higher precision

at the expense of recall, by suggesting fewer files with more accuracy. The

second model, Activity2, functions identically to Perceive but gives addi-

tional weight to files changed in revisions of the same type. This model is

predicted to increase recall at the expense of precision by suggesting a larger

number of files.

6.6.3 Study Design

Two sets of projects were used in this study: 22 student projects and PuTTY.

These are the same projects which underwent thematic analysis in Chapter

5, and as such their revisions have already been completely classified by

maintenance activity type.

While Study 2.1 used many combinations of variables, this study uses

the expanded file set (code, documents and data), a fail-weight of 1 (i.e. an

empty result set gives a precision of 1) and uses the process from Phase 2 of

Chapter 6. Case Study: History-Based Change Prediction 156

the study (attempting to identify a single missing change from a revision, a

typical use-case for this system).

6.6.4 Results

Table 6.16 shows the results of three models (Perceive, Activity and

Activity2) on two sets of projects - SEG and PuTTY.

PuTTY SEG

Model Precision Recall F-Score Precision Recall F-Score

Perceive 75.7% 15.9% 26.3% 74.3% 16.9% 27.6%

Activity 70.4% 17.0% 27.4% 81.8% 11.3% 19.9%

Activity2 74.4% 17.0% 27.6% 73.2% 17.4% 28.1%

Table 6.16: Overview of the performance of the new change-prediction models

The results for Perceive are taken directly from the relevant projects in

Study 2.1. It should be noted that, as with studies 2.1 and 2.2, these results

are the mean values for the full range of support and confidence parameters;

the peak values are somewhat higher, and Table 6.17 shows the peak F-Scores

for each project set and model.

Model PuTTY SEG

Perceive 36.8% 59.1%

Activity 39.0% 51.2%

Activity2 36.9% 59.1%

Table 6.17: Peak F-Scores of each model for the two project sets

6.6.5 Evaluation

As predicted, Activity displays increased precision and reduced recall for

the SEG projects; conversely, it has increased recall and reduced precision

Chapter 6. Case Study: History-Based Change Prediction 157

for PuTTY. Investigation reveals this to be a result of the way multiple

suggestions for the same file are aggregated to produce a final metric for

that file. Activity was expected to show higher precision by making fewer

guesses; however when a file is suggested more than once for a revision (e.g.

two files within that revision have links to it) it is possible for subsequent

suggestions with lower confidence to reduce the overall confidence in that

suggestion until it no longer reaches the threshold, which is what happened

when Activity was applied to PuTTY.

Activity2, however, performs as predicted, showing both increased recall

and reduced precision in both cases. The increase in recall is sufficient to

offset the reduction in precision, achieving higher F-Scores in both cases; a

Friedman Test (Friedman, 1940) shows that this improvement is significant

(p=0.05).

6.6.6 Discussion

As described in Section 6.6.1, the research question addressed by this study

is as follows:

• RQCP 3-1 : Can thematic analysis data be used to improve the perfor-

mance of Perceive?

– HCP 3-1 : Inclusion of maintenance activity data improves the

performance of Perceive.

The results of the study have shown that the incorporation of thematic

analysis data into a change prediction algorithm can in fact improve the

performance to a statistically significant degree. Giving more weight to files

which were changed in revisions of the same classification as the revision

being analysed offers a small reduction in accuracy and an increase in recall,

which overall results in a significantly increased F-Score. This allows us to

accept hypothesis HCP 3-1.

Chapter 6. Case Study: History-Based Change Prediction 158

6.6.7 Conclusions

The improvement to history-based change prediction can be added to those

developed in other research, and contributes to the goal of making change

prediction as accurate and complete as possible. Every technique which can

produce an improvement in the quality of results, whether as part of a static

or history-based analysis, will serve to support developers and maintainers as

their code and projects evolve.

Source code dependency levels, co-change frequencies, change significance,

age of change, author and time periods have all been demonstrated in other

research to improve history-based change prediction; now maintenance activity

classification can be added to this set.

6.7 Case Study Discussion

The goals of this case study were to measure the performance of history-based

change prediction, to explore the factors which affect its success, and to

seek to improve the model using data generated by the thematic analyses in

Chapter 5. These goals are addressed using the following research questions

and hypotheses:

• RQ 4 : Is history-based change prediction a viable technique?

• RQ 5 : When does the technique outperform syntax-based methods?

• RQ 6 : Can project profiling be used to improve history-based change

prediction?

6.7.1 Research Question 4

• RQ 4 : Is history-based change prediction a viable technique? Proven: Yes

The viability of history-based change prediction as a change prediction

technique has been explored in other research; this case study contributes

Chapter 6. Case Study: History-Based Change Prediction 159

to this existing body of knowledge by adding data from more projects and

techniques.

Study 2.1 (see Section 6.4) benchmarked the performance of Perceive

along with a series of control models. It concluded that the technique

implemented here was significantly better than the control models, showing

that history-based change prediction is possible even in small, poorly-organized

student projects.

In Section 6.4 Study 2.2 explored in detail the application of Perceive to

a pair of projects, showing that the technique has further applications in the

assessment and management of student group projects.

6.7.2 Research Question 5

• RQ 5 : When does the technique outperform syntax-based methods?

As described in Section 6.5, Study 2.2 highlights certain cases where a

history-based change prediction model can successfully infer a relationship

between a pair of files which cannot be found by a static analysis technique,

especially between files of different types such as documentation or graphics.

Conversely, there are also cases where a history-based technique cannot

perform as well as a static technique; for example, there will always be a

“training period” for a new file, where insufficient data exist to make predictions

based on, or for, that file. This leads to the conclusion that an ideal change

prediction model will incorporate elements of both static and history-based

techniques.

6.7.3 Research Question 6

• RQ 6 : Can project profiling be used to improve history-based change

prediction? Proven: Yes

Study 2.3 (see Section 6.6) showed that it is possible to improve the perfor-

mance of a history-based change prediction model to a statistically significant

Chapter 6. Case Study: History-Based Change Prediction 160

degree using data generated by a thematic analysis: adding maintenance

activity classifications to the model increased the mean F-Score for both

PuTTY and the SEG projects.

Unlike other research, which has used source code analysis to augment

history-based change prediction, this study has improved the change prediction

model while still only using language-agnostic transactional data from RCS

repositories.

6.8 Case Study Conclusions

This research has the overall goal of identifying and evaluating techniques

which use analysis of transactional repository data to support project com-

prehension, using the following research question:

• RQ 1: How can data mining of revision control systems be applied to

support project comprehension?

The case study reported in this chapter has proved that history-based

change prediction is a viable technique, and one that can be improved using

thematic analysis of project data. Change prediction is a process which

requires project comprehension; an algorithmic technique to improve change

prediction will therefore have the effect of supporting project comprehension.

Therefore, this case study provides the following answer to the above research

question:

• Change prediction using repository analysis is a technique which sup-

ports project comprehension.

6.9 Future Work

There are several avenues which should be pursued following this research.

Firstly, user-based studies are necessary to be able to investigate the trade-

offs which should be made in terms of support and confidence – is it more

Chapter 6. Case Study: History-Based Change Prediction 161

important to have high recall and give complete results, or is high precision,

with fewer false-positives, preferable? Are there situations or use-cases where

this will change?

Secondly, more project studies are required to be able to better address

RQCP2. A wider range of open-source projects, academic projects and even

commercial projects would enable deeper analysis with higher confidence.

Perceive uses a simple weighting system to infer relationships between

files, increasing the weight between two files by 1 whenever they are co-

modified. There are, however, a number of other factors which could po-

tentially lead to better prediction. Such factors include the creator of the

files, the current author, files which are co-created, the file hierarchy, and

chronological-based weighting where earlier activities are given less impor-

tance than more recent ones. Research will be conducted to determine which,

if any, of these factors lead to better change prediction.

Comparisons with syntax-based change prediction tools currently used in

development environments would allow for results which would be of greater

value to industry practitioners. As the goal of history-based change prediction

is not to replace current methods but to support them, these comparisons

will allow the benefits of augmenting existing methods to be determined.

Finally, although the thematic analyses described in Chapter 5 required a

manual classification process, a number of the revisions could be automatically

classified based on keywords from the revision comments (e.g. ’Fixed a bug’).

Further research is planned to determine if an automated classifier could

be employed; this would have to be assessed against the thematic analyses

already conducted, and then against the change prediction baseline established

in this case study. An automated classification system would not be able

to classify every revision, but as demonstrated by the fact that the SEG

projects were incompletely commented – and therefore incompletely classified

– an automated classifier would not necessarily have to classify every single

revision to be effective.

Chapter 6. Case Study: History-Based Change Prediction 162

6.10 Summary

This chapter detailed the benchmarking and application of a history-based

change prediction model; the results add evidence to existing research that

the method can viably support tradition techniques and demonstrate that

care must be taken when defining the parameters and threshold values of the

algorithms, as the best results depend on the nature of the project and the

task being performed. Lastly, an improved model was developed using the

thematic analysis research conducted in Chapter 5; evaluation showed the

improvement to be statistically significant.

Chapter 7 describes the final two case studies, in which Perceive is used

to support project management and assessment. A series of features such

as visualizations and project reports are implemented, guided by feedback

from student managers. An experiment is also performed to determine the

use of Perceive in automating a time-consuming and difficult aspect of the

assessment process: the selection of specific components of a project to be

examined in more detail, being representative of the whole.

Chapter 7

Case Studies: Project

Management and Assessment

7.1 Introduction

The previous two case studies have investigated two areas of project com-

prehension supported by data mining of revision control repositories in both

educational and industrial domains. This chapter explores the use of Perceive

in a purely educational context, in the management and assessment of group

projects.

Project comprehension is an important element of both management

and assessment activities, and Chapter 2 describes a number of tools and

techniques for supporting these tasks. This chapter describes a pair of case

studies which aim to explore how transactional data from RCS repositories

can be used to support project comprehension in management and assessment

scenarios. Section 7.2 reports a case study in which Perceive is developed

as a project management tool and provided to student managers to support

their roles, while Section 7.3 describes a second case study investigating the

use of Perceive to support project assessment.

163

Chapter 7. Case Study: Project Management and Assessment 164

7.2 Case Study: Software Visualization and

Project Management

The data stored in RCS repositories is varied, complex and extensive, and in

order to use that data to support project comprehension it must be extracted,

analysed and presented in some way. The case studies in Chapters 5 and 6

have demonstrated some methods by which the data can be made to support

project comprehension; this case study explores how software visualization

can be used to present the data to users in order to further support project

comprehension.

7.2.1 Case Study Design

This section details the goals, techniques and evaluation of the case study

using the DECIDE framework. The subject of the case study is a sub-study

in which Perceive is developed into a software visualization suite for use by

student project managers to support them in their roles, and draws conclusions

from the outcomes of this sub-study.

The structure of this case study and its research questions are outlined in

Figure 7.1.

Figure 7.1: Structure of the research questions and studies of the software

visualization case study

Chapter 7. Case Study: Project Management and Assessment 165

7.2.1.1 Research Goals

This study seeks to investigate what forms of software visualization are useful,

accessible and appropriate for use by student project managers; although there

exist tools and techniques for visualizing RCS repository data (see Chapter

3) there remains scope for further research and development. The findings

of this case study will contribute to the field of repository visualization by

establishing the success or failure of the techniques developed and deployed

in this chapter.

Furthermore, as described in Chapter 2, there is little empirical work

conducted on the success and adoption of software visualization tools and

techniques outside of an academic setting. Research has shown that in some

fields, students are viable substitutes for industrial practitioners when con-

ducting empirical studies (Host et al., 2000); this case study also aims to

explore whether or not the results can be mapped to industrial practitioners.

If it is demonstrated that students are good substitutes for industrial practi-

tioners, it will allow more studies to be conducted to assess the usefulness

and adoption of software visualization tools and techniques.

7.2.1.2 Research Questions

This case study is conducted to provide evidence to the overarching research

question of “How can data mining of revision control systems be applied to

support project comprehension?”; software visualization and project compre-

hension are closely connected, and therefore this case study will evaluate the

effectiveness of visualization techniques based on transactional RCS data in

supporting project comprehension. Therefore this case study seeks to answer

the following research questions to help address the primary goal of this

research:

• RQ 7 : Which RCS-based visualization techniques best support student

project managers?

Chapter 7. Case Study: Project Management and Assessment 166

• RQ 8 : Are student project managers suitable subjects for evaluating

software visualization techniques?

If RQ 7 identifies any visualization techniques which successfully use

repository data to support project management, it will provide additional

evidence that data mining of RCS repositories can support project compre-

hension. The outcome of RQ 8 will have a direct impact on the validity of

the outcome of RQ 7 ; if students are not suitable subjects for evaluating

visualization techniques, then the evidence supporting RQ 7 will not be as

strong, whereas if students are indeed suitable subjects, then it will lend

weight to the outcome of RQ 7.

7.2.1.3 Evaluation Paradigm and Techniques

The study described here is evaluated using feedback from project managers

in unstructured interviews; initially this feedback is used to guide an iterative

development process to better tailor Perceive to their needs, and then finally

to gauge the success, in terms of usefulness and adoption, of the visualization

tools they were provided with.

This final feedback will form the basis for a discussion to evaluate what

forms of visualization techniques are most useful for student projects managers;

their experiences, behaviours and use-cases will also be compared to those

of industrial practitioners to assess the degree to which student project

managers can be used as substitutes for industrial project managers in software

visualization research.

By determining which, if any, software visualization tools and techniques

using transactional RCS data can be used to support project comprehension,

this case study will provide further evidence towards the evaluation of the

overall research goal of this research.

7.2.1.4 Practical Issues

This study involves the participation of students who took on project man-

agement roles as part of a Software Engineering module. Therefore, while it

Chapter 7. Case Study: Project Management and Assessment 167

would have been preferable to use one cohort of students to prototype and

trial both the study and the tools, only one year was available for conduct of

the study, and so the development and evaluation was performed within the

same cohort of students. Fortunately, the managers were sufficiently engaged

in the study to enable it to be conducted within a single cohort.

7.2.1.5 Ethical Issues

Ethical clearance was sought and granted to access the repository data; all

student managers signed ethical clearance forms to take part in the study

and to allow use of the findings. During their training process, a project

from a previous year was used as an example; this project was anonymised to

protect the identities of the students involved. Finally, the managers were

provided with login credentials to ensure that they had access only to the

data for their respective projects, and no others.

7.2.1.6 Evaluation and Discussion of Results

After the sub-study is reported, the findings will be discussed in the context

of the research questions described above, relating the study’s outcomes to

the overarching research goals.

7.2.2 Study 3.1: Software Visualization and Project

Management Using Perceive

7.2.2.1 Research Aims and Method

Project management is an activity which cannot effectively be carried out

without a suitable degree of project comprehension – the more deeply and com-

pletely a manager understands a project, the more effective the management

and decision-making process will be. This study reports the development of

Perceive as a project management and software visualization tool, and the

experiences of a group of student project managers as they employ Perceive

to support their roles.

Chapter 7. Case Study: Project Management and Assessment 168

The project managers were a group of 20 third year software engineering

students who took on their roles as part of a Project Management module,

and were assigned groups of second year students taking part in the group

projects, with two managers per group. The managers were given training in

the use of Perceive and were given access to the live data for their groups for

the duration of the projects. After the projects were completed, the managers

were interviewed for feedback on the features.

The purpose of this study was to assess how well managers would adopt

and use tools designed to support them in their roles. The features and

visualizations provided by the tool were designed to support common tasks

in software development, and are based on research described in Section 2.6.

7.2.2.2 Features and Visualizations

Because of a careful design and class structure the system developed in

Chapter 4 was easily modified to become an end-user facing application to

support project comprehension. Initial features included:

• Project Overview : A page showing overall metrics about the project,

including duration, number of revisions, students, files and changes, and

a breakdown of the types of changes (Figure 7.2).

• Revision Information: A list of revisions could be browsed, searched

and sorted (Figure 7.3).

• File Activity : A list of the most active files. For example, Figure 7.4

shows the most modified files from PuTTY, with the files colour coded

by type.

• Student Information: Details about the information of each student

who has contributed to the project, such as the types of changes and

commonly modified files. Figure 7.5 shows an overview of one of the

PuTTY developers, giving a breakdown of the types of files he worked

Chapter 7. Case Study: Project Management and Assessment 169

on, the types of actions he performed (updating, adding, deleting, etc...),

the files he edited the most and a short overview of his recent changes.

• File Information: Details about the selected file, including which revi-

sions it has been changed in and which students modified it. Figure 7.6

shows the information for a single file, including the types of actions

performed on it, the developers who use it the most and a list of related

files (using the algorithm described in Chapter 6).

These features were implemented to provide “at a glance” information

about a project with the aim of letting a manager quickly understand the

structure of the software and the dynamics of the group.

Figure 7.2: An overview of a student project; this is the first information shown

to a user when Perceive is loaded. Note that the “messages” field fades to red

as the ratio of messages to revisions drops – this was introduced when it became

clear that students were not keeping good logs and a visual warning could help to

mitigate this.

It was important that the interface be as interactive as possible, and so it

is possible for the user to select a range of users, or revisions and view the

Chapter 7. Case Study: Project Management and Assessment 170

Figure 7.3: The list of revisions – activity types are coded by icons, and file types

are coded by colour. In this example, the selected revision contains six changes –

one new file and five modifications to existing files.

information specific to that selection. For example, as shown in Figure 7.7 it

is possible to see the contributions of a single student to a project.

7.2.2.3 Visualizations

A series of visualizations were integrated with Perceive to aid project com-

prehension. These were based on existing techniques and were selected based

on two criteria. Firstly, the input data of the visualization must be suitable to

match the data generated by the RCS analysis, and secondly, the visualization

must provide useful functionality to the tool and be appropriate to the type

of tasks performed by project managers.

7.2.2.3.1 Modified Icicle Plot (MIPVis)

The first visualization implemented was a modified icicle plot (Barlow and

Neville, 2001), as shown in Figure 7.8. This visualization was designed with

the dual purpose of showing a simple layout of the directory and file structure

Chapter 7. Case Study: Project Management and Assessment 171

Figure 7.4: This feature shows the number of times each file has been modified,

allowing users to quickly see which areas of the project are the most active. This

figure shows that the most active files in the PuTTY project are the core source

code files and the web pages. This list can also be sorted and filtered to more easily

locate files of interest.

Chapter 7. Case Study: Project Management and Assessment 172

Figure 7.5: A developer’s page – this shows the information available about each

developer in the project. This example shows one of the PuTTY developers; he

works primarily with existing files, and is spread over a large area of the project.

Figure 7.6: Information available for a single file in a project. This example is

one of the files in PuTTY, and shows that it is edited almost exclusively by one

developer.

Chapter 7. Case Study: Project Management and Assessment 173

Figure 7.7: The project overview feature with a single student selected, highlight-

ing their contribution to the project. The graphical elements provide a quick visual

cue to how much of the project is contained in the selection – in this example the

selected student has been contributing to the project for a third of its duration, and

by all three metrics (revisions, changes and change sizes) has contributed about

one fifth of the total effort.

Chapter 7. Case Study: Project Management and Assessment 174

of the project in a way already familiar to the user (a standard hierarchy)

and to show much deeper information about the files in the project. Each

entity in the visualization is colour-coded based on the file type – individual

files are directly related to the file type, while directories are graded based on

the files they contain. Arcs drawn between files show file relationships using

the same impact analysis system as described in Chapter 6. If a student or

revision subset is selected, then transparency is used to reflect that selection’s

contribution to the overall project, as shown in Figure 7.9.

Figure 7.8: The Modified Icicle Plot (MIPVis)

The MIPVis provides a great deal of information to the user – the structure

of the project, relationships between files, distribution of file types and

distribution of effort. This information is limited to the state of the project

in the latest selected revision, and does not show any changes to the project

over time.

Figure 7.8 shows a small project rendered with MIPVis. It is read from

left to right, with the large rectangles being directories and the smaller boxes

being files. Colour coding is based on file types – for example, the Gui

directory and its subdirectories consist almost exclusively of source code files,

and as such the directories are blue too, whereas the SEG folder contains a

mix of file types (source code, data, archives and uncategorized files) and

Chapter 7. Case Study: Project Management and Assessment 175

Figure 7.9: The MIPVis with a single user selected

the directory’s colour is blended to reflect this. The desktop application

directory at the top has a number of lines drawn between its files – these lines

represent inferred links, using the algorithm described in Chapter 6. The

threshold values for this algorithm can be changed by the user, or the lines

can be disabled altogether.

Figure 7.9 shows the same project but with only one student selected.

When a selection is made the visualization uses opacity to show how that

selection affects the project. In this example, the student has done no

work on the desktop application and Gui directories, while substantially

contributing to the remainder of the project, with the exception of some files

in the SEG directory.

7.2.2.3.2 Radial Visualization (RadVis)

The second visualization implemented displays the same information as the

MIPVis, but in a different format, that of a radial tree, which has been

shown to be highly comprehensible in comparison to other visualizations with

similar aims (Padda et al., 2009). The RadVis, as shown in Figure 7.10, is

more space-efficient, able to display larger projects than the MIPVis, but is

also more cluttered and requires more experience to easily understand the

Chapter 7. Case Study: Project Management and Assessment 176

information shown.

Figure 7.10: The radial visualization can show much larger projects than the

MIPVis

Figure 7.10 shows a Radial Visualization of one of the larger SEG projects.

As can be seen in the image, orange files – documentation – dominates the

project. In this project the documentation is the automatically generated

JavaDoc files. In the top right is a series of red lines linking files together. As

in MIPVis, these lines represent inferred links between files, and it can be

seen that one cluster of documentation is strongly linked within itself, and

has some links to its related source code.

Chapter 7. Case Study: Project Management and Assessment 177

7.2.2.3.3 Hilbert Visualization (HilbertVis)

The Hilbert Visualization again shows much of the same information as the

MIPVis and RadVis, but sacrifices the directory structure for simplicity and

space efficiency (Breinholt and Schierz, 1998). As shown in Figure 7.11 it

can visualize very large projects in a relatively compact space. Rather than

show the directory cluster, files are placed on a Hilbert Curve, a space-filling

curve with good locality-preservation. Elements near to each other in the

visualization tend to be near each other in the project structure.

Figure 7.11: Files plotted along a Hilbert Curve

Chapter 7. Case Study: Project Management and Assessment 178

The HilbertVis is more customizable than the previous visualizations.

The elements can be sorted and coloured by a series of metrics, as shown in

Figures 7.12 and 7.13. The files can be sorted by name, time since creation

and time since the last edit; files can be coloured based on creator, last editor,

file type, activity and change types.

Figure 7.12: A HilbertVis with the files coloured by the number of modifications

Figure 7.11 shows a complete project. Each square represents a file, and

in this example is coloured by file type. This is the same project as shown in

the RadVis in Figure 7.10 and clearly shows the documentation files being a

large part of the project. The white trail leading from the top left corner is

the actual Hilbert Curve itself, along which the files are plotted. The darker,

irregular shapes around clusters of files represent directories. In this example

the files are ordered by name, and so no directory will be split up – something

not guaranteed in other orderings. Finally, in the bottom right is a cluster

of green lines showing linked files, which can be disabled or tweaked if it

Chapter 7. Case Study: Project Management and Assessment 179

Figure 7.13: A HilbertVis with the files coloured by change type

obscures desired details.

A smaller project is shown in Figure 7.12, this time colour coded by

activity rather than file type. It can easily be seen that the most modified

files are in a contiguous set of directories, while the remainder of the project

is largely inactive.

The same project is shown in Figure 7.13, but with the files coloured by

change type. The files identified in Figure 7.12 to be inactive are here shown

to be purely green, which indicates they were created and then never altered.

The active files in the top left are a blend of colours, reflecting a variety of

activity types.

7.2.2.3.4 Flow Visualization (FlowVis)

The MIPVis, RadVis and HilbertVis all show the state of a project at a given

point – typically the latest revision. FlowVis shows the progress of a project

over time, using a grid with files on the X-axis and revisions on the Y-axis,

Chapter 7. Case Study: Project Management and Assessment 180

as shown in Figure 7.14.

Figure 7.14: A section of a Flow Visualization, showing activity on a variety of

file types over time

In terms of space efficiency, FlowVis is highly dependent on the number

of files in the project – each file requires one pixel of width, and each revision

requires one pixel of height. On larger projects with more files, it is only

feasible to generate a FlowVis for subsets of the project. However, when it

is rendered, it can show a great deal about how activity changes across a

project as time goes by, which files or modules are worked on, and by whom.

The example shown in Figure 7.14 shows a subsection of a large project,

revealing a mix of documentation and source code. Reading downwards, as a

file becomes inactive it fades to near-transparency, and then when it is modified

again it reverts to opaque. The example shows that the documentation is

updated at regular intervals – reflecting good practice – and in the bottom

left corner can be seen a small set of new and highly active files created in

the final few revisions before the deadline.

7.2.2.3.5 Owner Visualization (OwnerVis)

Like the FlowVis, the Owner Visualization shows how a project changes over

time. While the previous visualizations focussed on project structure and

activity, OwnerVis focuses on how file ownership changes over time. Users

Chapter 7. Case Study: Project Management and Assessment 181

are displayed evenly in a circle, and whenever a file is created it is placed

on a point between the centre and its creator. Whenever a file is changed,

it is moved slightly towards the student who changed it, and a trial is left,

showing how the file’s ownership has changed. Green circles are shown where

files are created, and blue circles show where they end – the size of the circle

is proportional to the number of file at that exact point.

Figure 7.15: OwnerVis, showing how files move between users over the length of

a project

A stationary file is one which was created and never modified. Files which

move towards their creator are only ever modified by their creators, and

files which move in straight line towards a different user are created by one

user and then only ever modified by another. Files which meander across

the visualization are ones with no clear owner and which are worked on by

Chapter 7. Case Study: Project Management and Assessment 182

many users. Unlike the previous visualizations, it is not possible to identify

individual files – only project-wide trends can be seen.

The example in Figure 7.15 shows that two users are responsible for the

creation of the majority of the files in the project, three of the users made few

contributions and the remainder were primarily working with files created by

the others.

7.2.2.4 Results

Despite being offered training in the software, few managers took it up.

Debriefing interviews with the managers revealed that few of them made use

of the software to support their roles, for a variety of reasons. Managers felt

that they had too little time available and did not see any perceived benefit in

using a new tool. One manager said that their group used pair programming

and so Perceive would not accurately reflect the group’s work. Another

manager felt that their group progressed well and required no additional

support, while a third said that they used the tool very briefly to reinforce

his assessment of his group, but then used it no further.

The remaining managers offered useful advice for the next iteration of the

software. One manager said that while they did not use the visualizations, they

were what attracted them to the software in the first place. They suggested

simply using charts to plot the metrics – they had no need of complex

visualizations, but a visual way of quickly being able to track individual

students’ efforts and progress would be invaluable. Another manager suggested

a “progress report”, a single page showing the activity since the previous

group meeting, so that the group would have a way to assess their progress

in an open, visual manner.

Both of these features were implemented. Figures 7.16, 7.17 and 7.18

show example of the graphs generated by the application, and Figure 7.19

shows an example of a one-week progress report.

Chapter 7. Case Study: Project Management and Assessment 183

Figure 7.16: A bar chart showing the cumulative number of revisions in the

project over time

Chapter 7. Case Study: Project Management and Assessment 184

Figure 7.17: A line chart showing the aggregate number of changes submitted,

grouped by time of day

Chapter 7. Case Study: Project Management and Assessment 185

Figure 7.18: A pie chart showing the distribution of change types across the

project

Figure 7.19: A seven day progress report generated for a group by Perceive

Chapter 7. Case Study: Project Management and Assessment 186

7.2.2.5 Outcomes

As described in Chapter 2, only a small proportion of the software visualiza-

tion tools ever developed see widespread use in the software industry (Price

et al., 1993). This has been ascribed to an innovation-centric approach to

design rather than a user- or task-centric approach (Hundhausen et al., 2002),

whereby researchers develop visualizations to provide novelty or innovation

rather than identifying tasks or applications which would benefit from visual-

ization support. Combined with the lack of empirical research and evaluation

of software visualization (Burn et al., 2009) this significantly reduces end-user

adoption.

This effect was demonstrated clearly in this study; the visualizations

developed were designed to satisfy common requirements for visualization

design – for example, representation, abstraction, navigation, correlation,

automation, interaction and scaling (Young, 1999); the choices of information

to be visualized were drawn from experience with software development and

groupwork. Despite these factors, the managers did not make use of Perceive

to support their work and did not take the time to explore the features to see

how they could be used to assist them.

This reflects the findings of previous research, reinforcing the need to work

with the target users to develop features which they believe necessary, and

to present them in a way which required no further training or investment

of time. Following feedback from the project managers, the implemented

features are much more task-oriented and reflect what the managers really

want from a support tool.

These findings highlight the conclusions of many in the software visualiza-

tion field: visualizations and tools must be developed for the end-users and

designed to perform real tasks, solving actual problems, not just implementing

features the designer thinks would be good, or are new and innovative.

Chapter 7. Case Study: Project Management and Assessment 187

7.2.3 Case Study Discussion

This section discusses the findings of the project management study in the

wider context of software visualization and project comprehension, and ad-

dresses the case study’s research questions, which are restated here:

• RQ 7 : Which RCS-based visualization techniques best support student

project managers?

• RQ 8 : Are student project managers suitable subjects for evaluating

software visualization techniques?

7.2.3.1 Research Question 7

• RQ 7 : Which RCS-based visualization techniques best support student

project managers? Not proven

Just as with industrial project managers, the primary motivations the

student project managers cited were whether they felt the tools addressed

their needs, and whether the tools would require sufficiently little training

and effort to adopt. Therefore, their feedback indicated that they found

most use for the simpler and more familiar features; notably the charts and

the progress report, neither of which required training and provided clear

information they deemed useful.

This research has led to the conclusion that when using visualizations of

RCS data to support project comprehension the key factors are familiarity,

simplicity and clarity of function – the end-users must be able to use the

system rapidly with little to no training and also immediately understand

why they should do so, and what benefit the system will bring them.

7.2.3.2 Research Question 8

• RQ 8 : Are student project managers suitable subjects for evaluating

software visualization techniques? Not proven

Chapter 7. Case Study: Project Management and Assessment 188

While it is clear that the needs of student and industrial project managers

are much different in terms of personnel, platform, technology, scale, budget

and resource constraints, many of the motivations and behaviours exhibited

by the students are the same as those of industrial practitioners.

The necessity for tools to accurately and clearly address the requirements of

the managers in order to justify adoption and training is the same regardless of

whether the manager is a student or an industrial practitioner. An important

lesson learnt from empirical software visualization research is that the needs

and constraints of the end-user are more often than not secondary to the

academic desire to “fill a niche”, to address a problem which might not exist

in practice, let alone require solving.

It can be difficult to find practitioners to use as subjects in empirical studies,

and too frequently this means that visualization tools never progress beyond

implementation and a proof-of-concept technical demonstration incorrectly

described as a case study. This raises the possibility of using students as “first

round” subjects for empirical software visualization research – students may

lack the experience or requirements of industrial practitioners, but they do

share the resistance to adopt new tools and techniques that are not perceived

as being immediately necessary. If a preliminary experiment using students

shows a willingness to adopt the tool, or an acceptance that the tool addresses

a real problem in a useful manner, then further studies can be conducted in

an industrial setting.

Despite this case study showing that students have some similarities to

industrial practitioners, there is no formal evidence to support this outcome,

and therefore RQ 8 cannot be categorically answered.

7.2.4 Case Study Conclusions

This case study was conducted with the goal of evaluating software visualiza-

tion techniques based on repository analysis in the context of determining

if such techniques support project comprehension. There was insufficient

evidence to answer research questions RQ 7 and RQ 8, and so software

Chapter 7. Case Study: Project Management and Assessment 189

visualization of repository data cannot be definitively identified as a technique

which supports project comprehension. However, the case study has identified

avenues for research which could re-address the two research questions using

empirical, user-centric studies.

7.3 Case Study: Project Sampling

The tendency of a project to grow over time can render it impossible for a

developer to maintain a comprehensive mental model of the entire project.

Furthermore, the performance some algorithmic processes, such as visual-

ization, are dependent on the size of a project. For example, several of the

visualizations described in Section 7.2.2.3 use data structures with complex-

ity of O(n2), which can reduce performance or require increased computing

capacity to execute. As described in Chapter 2 many visualization techniques

do not scale well in terms of comprehensibility – even if they successfully

execute, the amount of data being presented can render it useless to the user.

Therefore, there are a number of scenarios in which it is desirable to select

a subset of a project, which should be representative of the project as a whole.

This case study explores how a process of project sampling – the selection of

a representative subset of files – can be used to support activities related to

project comprehension by reducing the amount of data presented without in

some way distorting the data.

7.3.1 Case Study Design

This section details the goals, techniques and evaluation of the case study

using the DECIDE framework. The subject of the case study is a quasi-

experiment1 which evaluates the effectiveness of Perceive at generating a

representative subset of a series of student projects in the context of student

assessment.

1A quasi-experiment is a controlled experiment in which the allocation of subjects to

treatments is not or – as is the case in this research – cannot be randomized.

Chapter 7. Case Study: Project Management and Assessment 190

Figure 7.20 shows the structure of this case study, and how the sub-study

feeds into the parent case study, which in turn evaluates the results in the

context of the wider research goal of identifying ways in which repository

analysis can support project comprehension.

Figure 7.20: Structure of the research questions and studies of the file sampling

case study

7.3.1.1 Research Goals

This study investigates whether it is possible to algorithmically generate a

subset of a project that is representative of the whole. If it is shown that an

automated tool can successfully generate a representative subset, it will have

a range of implications, including assessment, visualization, metric processing

and thematic analysis.

7.3.1.2 Research Questions

This case study has the following research question:

• RQ 9 : Can the data contained within RCS repositories be used to

automate file sampling?

7.3.1.3 Evaluation Paradigm and Techniques

The experiment reported here will evaluate the success of Perceive to au-

tomatically generate a representative subset of files from a project in the

context of academic assessment. The results of the experiment will then be

Chapter 7. Case Study: Project Management and Assessment 191

discussed in the wider context of using a project sampling process to support

project comprehension activities.

7.3.1.4 Practical Issues

The subjects of the experiment are a series of student group projects, taken

from a single cohort. These projects are allocated to human experts, who

perform a selection process. The human subjects are a combination of

lecturers and postgraduate students, all of whom have experience in assessing

summative software development projects.

7.3.1.5 Ethical Issues

Ethical clearance was provided to make use of the student projects, and

the experts completed consent forms allowing their results to be used and

published.

7.3.1.6 Evaluation and Discussion of Results

After the experiment is reported, the findings will be discussed in the context

of the case study’s research questions described above, relating the study’s

outcomes to the overarching research goals.

7.3.2 Study 4.1: Supporting Group Project Assess-

ment

7.3.2.1 Research Aims

Assessment of software projects is difficult, having to capture a series of

objectives for which there are often no clear assessment criteria, relying

instead on the subjective evaluation of the assessor. Group projects are even

more difficult to assess as the factors are compounded by the need to capture

the effort and achievement of individuals within the group as well as that

Chapter 7. Case Study: Project Management and Assessment 192

of the group as a whole, to somehow assess the collaboration itself without

anomalous individual performances overly impacting the marks of others.

Assessment of the implementation phase of the Durham University SEG

projects forms only a part of the overall score, and assessment of the code

itself is only one of a number of aspects of the implementation that is assessed.

However, students typically place great emphasis on the source code, and a

transparent, repeatable assessment process, less dependent on the subjective

opinions of the assessor would increase student confidence in the assessment.

In large projects, it is clearly not feasible to read, comprehend and assess

every file in its entirety. For context, one SEG project was delivered for

assessment containing over 1,200 Java source files, and of the projects available

from 2006 to 2008 the mean number of Java files is over 250. Because of this,

the first thing an assessor must do is choose a subset of files which will be

assessed. This is a non-trivial process, as the selection must capture a fair

sample of students’ contributions – if five students write code, but only work

from two of them are assessed, this leads to an unfair outcome. The selection

process will also ideally capture ‘interesting’ files, which demonstrate talent,

inventiveness and collaboration.

7.3.2.2 Research Questions

This section reports a quasi-experiment investigating a single aspect of the

code assessment process – the process of selecting a subset of code entities for

assessment. Using a set of SEG projects, the experiment empirically addresses

the following research questions:

• RQFS 1 : Are experienced assessors consistent in their selections?

• RQFS 2 : Can a tool effectively automate the selection process?

Therefore, the following null hypotheses are proposed:

• HFS 1 : Assessors select similar subsets of code entities.

• HFS 2 : An automated tool can effectively automate the process.

Chapter 7. Case Study: Project Management and Assessment 193

7.3.2.3 Experimental Design

The design consists of six assessors, all with experience of assessing Java-

based group projects, and eight SEG projects. The projects were drawn

from the same cohort, and were stratified by the final implementation mark

achieved. The projects and assessors were each assigned random aliases and

each assessor was assigned four projects from the stratified blocks, so that

each assessor received one top tier project, two middle tier projects and one

bottom tier project, and each project was allocated to three assessors, as

shown in Table 7.1.

Assessor P2 P7 P1 P3 P4 P6 P5 P8

A1 x x x x

A2 x x x x

A3 x x x x

A4 x x x x

A5 x x x x

A6 x x x x

Table 7.1: Allocations of projects to assessors

It was decided that code entities would be selected at the file level, as

almost every file consisted of a single class, and further granularity would

place an undue burden on the assessors. In addition, informally, assessors

indicated that the selection of code entities would be made at the file level in

a normal assessment.

Each assessor was provided with a copy of the projects they were assigned.

Each project had been processed such that only Java code files were included,

and obvious library code (such as code provided to each group) had been

removed. The remaining files provided the corpus of code entities from which

the selection was to be made. This cleaning process was simply to make the

experiment more straightforward for the assessors, and would not affect the

final selections. Assessors were given instructions to select a set of files which

Chapter 7. Case Study: Project Management and Assessment 194

they would use to assess the project, although no actual assessment would

take place. No limits or requirements were placed on the number of files

to be selected, nor were any criteria or guidelines included, as there are no

equivalents in the real assessments.

Each assessor returned a list of files for each project. These lists were

transformed into a set of binary decisions – include/exclude – for every file in

the project; a comparison could then be made for each project between their

three assessors to evaluate how consistent the selections were. Each project

was also processed by an automated tool, which returned three sets of results

for each project, using a different set of criteria for each model.

A coverage metric (described in Section 7.3.2.5) is used to compare the

coverage of a project achieved by the experts and by Perceive. These results

are statistically compared to determine what degree of coverage experts and

Perceive achieve for each project.

7.3.2.4 The Models

Perceive was programmed with three models for selecting a subset of files for

a project. The three methods are:

• Activity-based (PActivity): The most modified files are suggested on the

basis that the more active files are likely to provide a better indication

of effort. The primary sort is on the number of modifications made to a

file (num changes), and the secondary sort is on the number of users

who modified the file (num students).

• Student-based (PStudents): Suggestions based on the number of stu-

dents who have modified the file; a wider spread of students provides

evidence of collaboration. The primary sort is on the number of students

who modified a file (num students), and the secondary sort is on the

total modifications to the file (num changes).

• Hybrid (PHybrid): A combination of PActivity and PStudents, calcu-

lated as (num changes × num students ÷ total students).

Chapter 7. Case Study: Project Management and Assessment 195

Each model returns at most 10 results, and this list is then truncated at

the point at which it falls below a threshold: PActivity and PHybrid cut off

when the metric drops to a third of the highest value, and PStudents cuts

off when the metric drops to a half of the highest value. This is to stop the

models from returning too many files, achieving a high recall at the cost of

precision. If the numbers of files returned are considerably out of line with

those of the assessors, then future iterations of the models will be modified

to return more appropriately sized lists.

In Section 7.3.2.7 the three models are compared against the results from

the expert assessors to determine which, if any, are effective at automating

the process of file selection.

7.3.2.5 Coverage Metric

To more effectively compare the performance of Perceive and the experts,

a coverage metric is devised to measure what proportion of a project is

represented by a selection of files. The metric works by measuring how many

of the users are represented by a file set, and in how many revisions those

files are modified, normalized to [0..1].

To control for the fact that Perceive selects up to ten files per project

while the median number of files for the experts was three, with a mean

of four, a number of variations of Perceive were used, which limited the

selections to varying amount of files; these variants were named accordingly,

e.g. PHybrid4 or PStudents2.

7.3.2.6 Limitations and Threats to Validity

The main limitation of this study is the relatively small number of projects

examined, and the number of assessors involved. A further study would

attempt to expand the range of projects used, and to increase the number of

assessors. This would have the dual advantage of increasing the significance

of the results within the context of the SEG projects, while widening the

scope of projects to which the results can be generalized.

Chapter 7. Case Study: Project Management and Assessment 196

There are also potential problems with the algorithms used in Perceive –

the activity and student metrics are dependent on the data extracted from the

source code repository being representative of each group’s work. However,

as described in Section 7.2.2.4 feedback from project managers has revealed

that some groups make use of pair programming, and all work for a pair is

submitted under one username; other groups do significant work “offline” and

commit a single revision consisting of a large amount of effort. The former

can be accounted for by understanding how each team has worked using

feedback from their managers. The latter is a harder situation to address,

but the behaviour is easily detected using a tool to view repository activities

– infrequent spikes of activity are easily identified.

The measures used to implement the coverage metric are the same as

those used by Perceive to generate its file sets, and so might be expected

to favour the tool. However, it should be noted that at least one of the

experts explicitly stated that their strategy involved looking files with more

authors, considering them more interesting. Overall, when assessing a group

project it is not unreasonable that the work of as many contributors as

possible is examined, and that the files should be indicative of as much of the

development process as possible.

7.3.2.7 Results

When the assessors had completed the task, one project (P3) had to be

discarded as two assessors could not determine which of a number of copies of

the software were to be assessed. The remaining seven projects had complete

data and were used in the analysis. Table 7.2 shows a summary of the results

for each project. Singles refers to files suggested by one assessor, doubles to

files suggested by two, and triples to files suggested by all three.

Table 7.3 shows the number of files suggested for each project by each

assessor. Assessors with results for only three projects were those assigned

P3.

Table 7.4 shows the coverage achieved by each assessor and model for each

Chapter 7. Case Study: Project Management and Assessment 197

Project Total Files Unique Files Singles Doubles Triples

P1 6 4 2 2 0

P2 11 9 7 2 0

P4 14 12 11 0 1

P5 15 13 12 0 1

P6 17 13 10 2 1

P7 16 11 7 3 1

P8 8 7 6 1 0

Table 7.2: Summary of the number of files suggested for each project

Assessor P1 P2 P4 P5 P6 P7 P8

A1 2 4 2

A2 9 11 12 10

A3 5 3 4

A4 2 2 3 2

A5 2 2 2 2

A6 3 3 2

Table 7.3: Number of files suggested for each project by each assessor

Chapter 7. Case Study: Project Management and Assessment 198

project. Only the results for the models which generated sets of four files

(e.g. PHybrid4) are shown, as four was the mean number of files selected by

the experts, and the coverage only improves as the number of files selected

increases.

Project Expert 1 Expert 2 Expert 3 PActivity4 PStudents4 PHybrid4

P1 23% 23% 18% 31% 32% 39%

P2 32% 26% 38% 41% 43% 41%

P4 48% 34% 26% 49% 35% 47%

P5 20% 44% 21% 42% 23% 42%

P6 35% 14% 27% 41% 27% 41%

P7 63% 18% 25% 48% 49% 48%

P8 25% 33% 29% 55% 43% 55%

Table 7.4: Coverage achieved by each expert and model

7.3.2.8 Evaluation

7.3.2.8.1 RQFS 1: Are Experienced Assessors Consistent in their

Selections?

The first research question, “are experienced assessors consistent in their

selections?” can be addressed by first examining the number of files selected,

then the overlap in file selection and finally by looking at the selection

strategies used.

The mean number of selected files was 4, with a standard deviation of

3.3 – there was little consistency between assessors as to how many files to

select, although 2 to 3 is the most common range. Comments from some of

the assessors indicate that they would use the suggested files as a starting

point from which to continue the assessment, following the class structure to

other files.

As can be seen in Figure 7.21 a file is only suggested by all three examiners

in projects where a larger amount of files are suggested. Files are suggested

Chapter 7. Case Study: Project Management and Assessment 199

Figure 7.21: Overlap between file suggestions – one assessor, two assessors and

three assessors

by two of the three assessors more routinely – in no project are there no

files suggested by more than one assessor. On a data set of this size it is

infeasible to perform a statistical test, such as a Kappa test (Fleiss, 1971), to

measure agreement between assessors. However, it can be seen that there is

some agreement, but that this is not consistent. Comments from the assessors

reveal a series of different strategies used to select files. These strategies

include:

• Check the largest files first, as it is plausible that they would have the

most effort put into them

• Ignore GUI files, as they are commonly automatically generated

• Check the file comments for indications of collaborations – the more

users that were involved in creating the file, the more likely it is to be

representative of the group’s work

• Infer functionality from the filename

Chapter 7. Case Study: Project Management and Assessment 200

These strategies can be contradictory and have led in some cases to very

different sets of files. This suggests that without specific marking criteria

the assessment of a large project can be entirely dependent on the person

marking it. None of these assessment strategies can guarantee that a project

will be completely assessed, covering work from all students and focussing on

code which reflects the effort which was put into a project.

7.3.2.8.2 RQFS 2: Can a Tool Effectively Automate the Selection

Process?

The second research question, “can a tool effectively automate the selection

process?” requires comparing the selections made by Perceive with the files

selected by the assessors. The first step is to compare the number of files

selected by Perceive with the experts’ lists, and then to examine how much

the lists overlap.

Model P1 P2 P4 P5 P6 P7 P8

Activity 10 4 6 8 8 10 10

Students 5 10 10 10 10 8 10

Hybrid 8 4 9 8 8 10 7

Table 7.5: The number of suggested files found by each model for each project

Table 7.5 shows the number of files suggested by each model of Perceive for

each project. The lists are generally much larger than those of the assessors;

if an assessor accepted the use of Perceive to suggest files, examining the list

of files might well take longer than their own list, but would be generated

instantly rather than going through a potentially lengthy process of examining

an entire project.

Table 7.6 reveals that none of the models were able to detect all of the

files suggested by assessors, even when returning larger lists. If we assume

that the most important files are those suggested by two or three assessors

then all three models achieve around 50% recall. However, this assumes that

Chapter 7. Case Study: Project Management and Assessment 201

Model Singles (of 55) Doubles (of 10) Triples (of 4)

Activity 12 (22%) 5 (50%) 2 (50%)

Students 17 (31%) 5 (50%) 2 (50%)

Hybrid 15 (27%) 6 (60%) 2 (50%)

Table 7.6: The number of suggested files found by each model, in singles, doubles

and triples

the strategies used by the assessors are correct. Looking more closely at

the two triples that were missed by the models, we see that they are both

route-planning algorithms, and their names suggest functionality attractive

to assessment. However, in P7 the file was in fact an alternative algorithm,

worked on by only two students and modified only four times – a trivial level

of activity in the context of P7; the primary algorithm was only suggested by

two assessors, and had equally little activity relative to the rest of the project.

The revision logs for these files show that even the follow-up modifications

after the initial creation were only minor changes including refactoring and

documentation. The route-planning algorithm in P6 however was considerably

more active, and is certainly a good candidate for assessment. If the strategies

of ignoring GUI files were to be incorporated into the Perceive models – a

tractable problem – then the missed P6 algorithm would in fact have been

suggested, as many of the suggestions that kept it from the top of the list

were highly active GUI classes.

Figure 7.22 shows a comparison of the performance of the three models.

As can be seen, PActivity is the least accurate of the models, while PStudents
and PHybrid are typically equal, each outperforming the other on one project.

More data and evidence would be required to reinforce this outcome, but it

can be hypothesized that the number of students involved in a file’s history

should definitely be a factor in any automated selection system.

T-Tests were used to compare the performance of the variants with the

experts. Using the coverage metric as a performance metric, all three models

(PActivity, PStudents, PHybrid) outperformed the experts at a significance

Chapter 7. Case Study: Project Management and Assessment 202

Figure 7.22: Overall performance of the three Perceive models

level of p=0.05 when selecting four files, and PHybrid significantly outper-

formed the experts with three files. PActivity2, PStudents2, PHybrid2 also

outperformed the experts, but not to a statistically significant degree.

As previously stated, while the measures used to develop the coverage

metric are the same that Perceive uses to make its suggestions, there is also

some overlap with the strategies employed by the experts. For example, I5

stated that they intentionally looked for files with more authors, considering

them more interesting. However, I5 did not outperform any of the Perceive

models in terms of coverage, showing that even when a strategy is in place, it

will not necessarily be successful.

7.3.2.9 Conclusions

Group projects typically use flexible marking methods to enable the students

to work in a way that suits them, but with something as concrete as code

assessors have to use their own strategies for assessment, which leads to

Chapter 7. Case Study: Project Management and Assessment 203

highly divergent sets of files being assessed, potentially under-representing the

work of group members. While the Perceive models did not always suggest

the same files as the assessors, even when the assessors were in agreement,

in general the automated systems were no more or less consistent than the

assessors were amongst themselves. As discussed in Section 7.3.2.8.2 if GUI

files were removed from the set Perceive processes then the results would be

more in line with those of the assessors. However, attempting to modify the

algorithm to match the assessors results must be approached with caution, as

was demonstrated in P7 where a file selected by all three assessors turned out

to be relatively unimportant in the context of the project, and not greatly

representative of the group’s effort.

When performance is measured using the coverage metric, Perceive

performs significantly better than the experts, even when limited to generating

set of only four files.

In conclusion, the experts are inconsistent between themselves with regards

to their selections; Perceive therefore performs no worse than the experts. In

fact, measuring performance with the coverage metric, Perceive outperforms

the experts to a statistically significant degree.

Considering the rapidity with which the lists are computed it is suggested

that such models are of value to assessors. Some of the assessors considered

the lists they created as being “starting points”, and that they would expend

yet more time and effort following the class structure for more files. In

combination, these two facts would suggest that they instead use a tool

to generate their initial list, which would allow them to move directly to

assessment and examining further files.

Two hypotheses were identified in Section 7.3.2.2 for this experiment, as

follows:

• HFS 1 : Assessors select similar subsets of code entities.

• HFS 2 : An automated tool can effectively automate the process.

There is no evidence to suggest that we can accept HFS 1 – assessors

Chapter 7. Case Study: Project Management and Assessment 204

do not appear to select similar sets of files for assessment. We can however

accept HFS 2 : Perceive does effectively automate the file selection process,

outperforming the experts using the coverage metric described above.

7.3.3 Case Study Discussion

This section discusses the findings of the project assessment study in the

wider context of project sampling and comprehension, and addresses the case

study’s research question, which is restated here:

• RQ 9 : Can the data contained within RCS repositories be used to

automate file sampling?

7.3.3.1 Research Question 9

• RQ 9 : Can the data contained within RCS repositories be used to

automate file sampling? Proven: Yes

The experiment described here has confirmed that an automated tool can

effectively select files from a project that are representative of the project

as a whole, using measures which reflect the development of the project and

developer contributions.

This study was conducted in the context of selecting files from student

group projects for assessment to reduce assessor workload and to improve

the stability of the assessment process. The principle extends to other

applications however, such as selection of files for visualization in situations

where visualizing the entire project is not feasible.

In terms of project comprehension, taking a subset of a project will

obviously be limited in the depth and completeness of comprehension that

can be attained. However, it allows for a broader overview or a high-level

mental model to be constructed more easily, which will in turn allow a manager,

maintainer or developer to focus more closely on the details pertinent to their

task while maintaining a working mental model of the project as a whole.

Chapter 7. Case Study: Project Management and Assessment 205

The findings of this study have an impact on the techniques used in the

case studies reported in Chapters 5 and 6, and Section 7.2. For example,

in Thematic Analysis Study 1.2 (see Section 5.5) the open source projects

analysed were too large for complete analyses to be conducted, and so partial

sections of the projects were used instead, by using only the earliest revisions

before the first milestone release. As demonstrated in Thematic Analysis

Stage 1.3 (see Section 5.6) the nature of PuTTY changed significantly after

the early period of the project. By using a project sampling technique, a

more representative subset of revisions could have been selected for study.

The heuristics used in the selection would necessarily have to be modified

to suit the task but the principle of automated file selection, having been

established as a viable technique, would allow for a more representative set

of comments to be used in a thematic analysis.

7.3.4 Case Study Conclusions

The overall goal of this research is to identify techniques whereby transactional

data from RCS repositories can be used to support project comprehension.

File sampling has been identified as a technique which is used to support

comprehension by allowing users either to gain a broad overview of a project

or to create a “starting point” from which to begin an exploration of a

project in more depth. This case study was conducted to evaluate a file

sampling technique based on repository analysis rather than static analysis,

and research question RQ 9 was proven to be positive: repository analysis

can be used to create an automated file sampling technique. Therefore, file

sampling based on repository analysis is a process which can be used to

support project comprehension.

7.4 Conclusions

This research is conducted with the overall goal of evaluating techniques by

which project comprehension can be supported through repository analysis;

Chapter 7. Case Study: Project Management and Assessment 206

the following research question was identified:

• RQ 1: How can data mining of revision control systems be applied to

support project comprehension?

The software visualization case study has shown that the subjects of

the study received little benefit from the visualizations, and that there is

insufficient evidence to answer either RQ 7 or RQ 8, and thus cannot support

the hypothesis that software visualization is a technique by which project

comprehension can be supported.

The file sampling case study, however, proved that an automated tool

can successfully generate a representative subset of files from a project. This

process can be used either to form a “starting point” for exploring a project,

or to gain a broad understanding of a project; in either case, file sampling is

a useful technique for supporting project comprehension.

Therefore, this chapter provides the following answers to the overall

research question, RQ 1 :

• Software visualization of repository data has not been proven to be a

technique which can be used to support project comprehension

• File sampling using repository analysis has been proven to a useful

technique for supporting project comprehension

7.5 Summary

This chapter reported a pair of case studies which aimed to explore the ability

to support project comprehension through the visualization RCS repository

data and by using transactional data to extract a subsection of a project

which is representative of the whole.

As is common with visualization tools, the visualization suite provided to

student project managers did not all suitably address their needs and they

were not widely adopted. The simpler tools, charts and progress reports, were

Chapter 7. Case Study: Project Management and Assessment 207

welcomed by the managers however, reinforcing existing research which shows

that visualization tools need to be developed solely around the needs of the

target users, and be intuitive and familiar enough to require little or no training

to adopt. More positively, due to sharing many traits (if not experience)

with industrial practitioners, student managers can be useful substitutes for

industrial practitioners in empirical studies of software visualization tools,

which can go some way to mitigating the lack of user-centric studies in the

field.

Perceive was successful in automatically generating representative subsets

of projects, more so than experienced assessors, which has applications in a

wide range of activities related to project comprehension, such as visualization,

assessment or thematic analysis.

Chapter 8 draws together the findings and conclusions of all four case

studies and discusses them in the wider context of supporting project compre-

hension using transactional data from RCS repositories. It then goes on to

discuss avenues for future work, enhancements to the software developed, and

follow-up studies to provide further evidence to the findings of this research.

Chapter 8

Conclusions and Future

Research

8.1 Introduction

Project comprehension encompasses a number of fields and activities, relevant

to a range of users, including managers, developers and maintainers. These

activities are present in any software development environment, from education

to industry. Chapter 1 stated the primary question of this research as follows:

• RQ 1 : How can data mining of revision control systems be applied to

support project comprehension?

To address this question four aspects of project comprehension – project

profiling, change prediction, software visualization and project sampling –

were identified as areas which might be facilitated, supported or improved

through the use of RCS repository analysis. A case study was designed for

each of these four areas with the goal of evaluating whether that area could

be supported or facilitated using a technique or process based on repository

analysis. These case studies were reported in Chapters 5, 6 and 7.

In each case study, a technique was trialled in a sub-study: thematic

analysis, history-based change prediction, project management support and

208

Chapter 8. Conclusions 209

file. The sub-studies each reported the success or failure of the trial; these

conclusions were then evaluated in turn by the “parent” case study in the wider

context of determining whether or not the process successfully demonstrates

that an aspect of project comprehension is supported or improved by the

technique under study.

This chapter assesses the outcome of the four case studies by taking

their conclusions and evaluating them in the context of the overall goal of

this research, that of identifying project comprehension activities which can

successfully be supported using techniques based on data mining of revision

control system repositories.

The chapter then concludes with a discussion of potential future research,

to build on the reported studies and to further explore issues and opportunities

raised by the research.

8.2 Case Study 1: Profiling Projects

The ability to examine a project to profile or categorize certain aspects of

it has many applications. For example, Hindle et al. examined a set of

large revisions (Hindle et al., 2008) to determine their impact on a project,

and whether or not the conventional belief that they were harmful was

accurate, and discovered that large commits frequently consisted of perfective

maintenance activities and frequently concerned the architecture of a project.

Thomson and Holcombe (Thomson and Holcombe, 2008) used repository data

to profile students’ use of RCS tools, classifying common errors.

Such research is important to software engineering, and can be considered

the software equivalent of empirical secondary studies. Just as such studies

aggregate the findings of a number of primary studies, so profiling projects

based on repository data can be used to make broad statements about software

development, and have the advantage of being easily repeatable, allowing

replication studies to be carried out and enabling additional projects or

domains to be added to the body of data.

Chapter 8. Conclusions 210

The following research questions were identified in relation to project

profiling:

• RQ 2 : Can the process of thematic analysis be applied to RCS repository

data?

• RQ 3 : Can profiling support project comprehension in student and

open source projects?

Chapter 5 reported on a case study in which the process of thematic

analysis was applied to a number of open source and student projects in order

to address these research questions.

8.2.1 Research Question 2

• RQ 2 : Can the process of thematic analysis be applied to RCS repository

data? Proven: Yes

As the literature reviews reported in Chapters 2 and 3 revealed no studies

reporting thematic analyses being performed on revision logs, it was not

certain whether or not the process, designed primarily for conversational text,

could be applied to this data. Studies 1.1, 1.2 and 1.3 reported in Chapter 5

demonstrate that there are no practical barriers to performing such analyses,

regardless of the style or content of the text; for example, in addressing

research questions RQTA 2-5 and RQTA 2-6 (see Study 1.2, sections 5.5.5.5

and 5.5.5.6) it was demonstrated that not only could thematic analysis be

performed on both student and open source projects, the process was robust

enough to allow comparison between the two domains. Furthermore, despite

concerns that training and time requirements might prove prohibitive, only

the process of creating the codes was time consuming. As reported in Study

1.3 (see Section 5.6 the categorization of messages to those codes was a rapid

process, requiring no more domain knowledge that would be required for any

use of the repositories.

Chapter 8. Conclusions 211

8.2.2 Research Question 3

• RQ 3 : Can profiling support project comprehension in student and

open source projects? Proven: Yes

The application of thematic analysis to student projects, especially when

contrasted with open source projects, provided valuable insight into the

nature of student projects, developer behaviour and the collaboration process.

For example, in addressing the research questions RQTA 1-1 and RQTA

1-5 (see Study 1.1, sections 5.4.4.1 and 5.4.4.5), it was demonstrated that

useful information regarding both the development process of students, and

students’ use of project support tools could be extracted from project comment

logs. These results were successfully fed forward to a second cohort, who

demonstrated improved use of tools and adherence to best practices.

8.2.3 Summary

There is a great deal of data contained in RCS repository comment logs, even

incomplete logs. While a simple reading of these logs can improve the reader’s

understanding of a project, a formal analysis can provide a much deeper

degree of project comprehension, able to quantity essentially qualitative data.

The case study reported in Chapter 5 demonstrated that thematic analysis

can be a valuable tool in profiling projects; these findings have potential

applications in a range of activities, including project management, quality

assessment or academic assessment.

In the wider context of this research, each case study seeks to contribute

an answer to the overall research question:

• RQ 1 : How can data mining of revision control systems be applied to

support project comprehension?

This case study has demonstrated that not only is thematic analysis a

viable technique for profiling a project, the information acquired as a result

leads to an improved, deeper understanding of the project being analysed.

Chapter 8. Conclusions 212

Therefore, this case study leads to the conclusion that project profiling in

general, and thematic analysis in particular, can be performed using repository

analysis to support project comprehension.

8.3 Case Study 2: Change Prediction

As a project evolves, it becomes more and more difficult to accurately pre-

dict the impact of a change; a change to the requirements specification or

design will require modifications to the implementation, and a change to the

implementation will almost certainly require further changes. Predicting the

effects of a change is the subject of a great deal of research, as discussed in

Section 2.5. Change prediction is primarily used during code modification to

reduce the occurrences of missed changes – such as a bug-fixing patch which

introduces new bugs – but also has applications in other fields, such as unit

testing (Ren et al., 2004).

Research has shown that a code-based, syntactic change prediction tech-

nique is not always reliable (Hassan and Holt, 2004; Bieman et al., 2003),

leading to the necessity to augment the techniques with other models. The use

of historical project data to perform change prediction provides encouraging

results (Hassan and Holt, 2004; Zimmermann et al., 2005), and appears to be

a viable candidate for supporting existing methods.

The case study described in Chapter 6 builds on existing research to

answer the following research questions:

• RQ 4 : Is history-based change prediction a viable technique?

• RQ 5 : When does the technique outperform syntax-based methods?

• RQ 6 : Can project profiling be used to improve history-based change

prediction?

8.3.1 Research Question 4

• RQ 4 : Is history-based change prediction a viable technique? Proven: Yes

Chapter 8. Conclusions 213

While use of history-based change prediction has been explored in previous

research this study has empirically measured the performance of a history-

based change prediction model, Perceive, against a range of control models,

as described in the Study 2.1 reported in Section 6.4. This benchmarking

study found that Perceive statistically outperformed the control models

in predicting files which would require changing based on a set of existing

changes. For example, in Section 6.4.7.2 statistical testing showed that in

a use-case designed to mimic a real-world scenario, Perceive outperformed

both of the control models in terms of precision (0.411 against 0.016 and

0.099) and recall (0.170 against 0.016 and 0.099).

8.3.2 Research Question 5

• RQ 5 : When does the technique outperform syntax-based methods?

Study 2.2, reported in Section 6.5, highlighted a set of cases where a history-

based change prediction model can successfully infer a relationship between a

pair of files which cannot be found by a static analysis technique, especially

between files of different types such as documentation or graphics. Conversely,

there are also cases where a history-based technique cannot perform as well

as a static technique; for example, there will always be a “training period”

for a new file, where insufficient data exist to make predictions based on, or

for, that file. This has led to the conclusion that an ideal change prediction

model will incorporate elements of both static and history-based techniques.

8.3.3 Research Question 6

• RQ 6 : Can project profiling be used to improve history-based change

prediction? Proven: Yes

Study 2.3 (see Section 6.6) showed that it is possible to improve the

performance of a history-based change prediction model using data generated

by a thematic analysis: adding maintenance activity classifications to the

Chapter 8. Conclusions 214

model increased the performance of Perceive by a statistically significant

degree on both academic and open source projects. Table 6.16 shows how the

improved model, Activity2, has a higher F-Score than the original Perceive

model on both PuTTY and SEG projects – 27.6% against 26.3% for PuTTY

and 28.1% against 27.6% for SEG.

8.3.4 Summary

Change prediction is an important process with a heavy reliance on project

comprehension. The less a developer’s mental model of a project matches

the reality, the more likely they are to fail to fully predict the effects of

a change. This research has reinforced existing studies demonstrating the

ability of history-based change prediction models to support a developer’s

project comprehension, and then successfully used thematic analysis data

to further improve the performance of the prediction model. Any factor,

metric or technique which can provide better change prediction can have a

measurable impact on the success of maintenance and development activities.

This case study was designed and conducted to ultimately address the

overall research question:

• RQ 1 : How can data mining of revision control systems be applied to

support project comprehension?

By successfully implementing – and then improving – a model of history-

based change prediction using RCS repository data, this case study has

demonstrated that repository analysis can be used to successfully conduct

change prediction, and thus support project comprehension.

8.4 Case Study 3: Software Visualization

As discussed in Section 2.6 the field of software visualization faces a series

of problems. Aside from the well-documented technical problems such as

scale, usability and performance, there is a documented problem of low

Chapter 8. Conclusions 215

adoption of visualization tools and models, compounded by a lack of empirical

studies regarding software visualization tools and techniques. This is in part

attributable to a research environment driven primarily by innovation and

concept demonstration rather than user-focussed design (Burn et al., 2009).

It is true that more mature fields of research have sets of established protocols,

designs and data sets which enable experimental research and replication

studies, but software visualization is supported by both software engineering

and cognitive psychology, two disciplines with strong foundations of empirical

research.

Chapter 7 reported a case study which sought to explore whether or

not visualization of historical data from RCS repositories could be a useful

comprehension tool for student project managers. The following research

questions were identified:

• RQ 7 : Which RCS-based visualization techniques best support student

project managers?

• RQ 8 : Are student project managers suitable subjects for evaluating

software visualization techniques?

The following sections discuss how these questions have been answered,

and what evidence supports the conclusions.

8.4.1 Research Question 7

• RQ 7 : Which RCS-based visualization techniques best support student

project managers? Not proven

In Study 3.1 feedback from the student project managers revealed that the

visualization tools saw very low adoption; only the simpler, more familiar tools

were used by the managers: the charts and the progress report. Despite being

provided with training and documentation the managers did not perceive a

benefit to expending time and effort on learning to use new tools; however,

the charts and the reports were more familiar; their utility was more apparent

and so they were much more readily accepted by the managers.

Chapter 8. Conclusions 216

This research has led to the conclusion that when using visualizations of

RCS data to support project comprehension the key factors are familiarity,

simplicity and clarity of function – the end-users must be able to use the

system rapidly with little to no training and also immediately understand

why they should do so, and what benefit the system will bring them.

8.4.2 Research Question 8

• RQ 8 : Are student project managers suitable subjects for evaluating

software visualization techniques? Not proven

The software visualization case study has demonstrated that while the

needs of project managers in industrial and educational domains differ in a

number of ways many of the motivations and behaviours exhibited by student

managers are the same as those of industrial practitioners: a resistance to

adopting new tools or processes, and the need for tools to directly, immediately

and clearly address a real problem.

Recognizing these similarities, there arises the fact that students have

the potential to form a valuable body of subjects for empirical studies of

software visualization tools and techniques. It can be difficult to find industrial

practitioners to use as subjects when designing or evaluating visualization

tools, whereas students are much more readily employed as test subjects.

When designing a visualization tool, students can be used as a “first round”

evaluation of usability, utility and uptake, with successful studies leading to

industrial case studies which would have a greater impact with industrial

practitioners.

8.4.3 Summary

Software visualization is a powerful concept, able to provide and support

project comprehension in a wide range of manners. However, the lack of

empirical research of visualization has led to a very low uptake. This research

has led to the conclusion that the visualization of RCS repository data has

Chapter 8. Conclusions 217

some use to project managers, more involvement of the end-users is required

at each stage if the visualizations are to be adopted. Moreover, regardless

of who the end-users are, whether industrial practitioners or students, the

same mentality is in evidence; students can therefore act as useful subjects

when designing and evaluating visualization tools. By doing so, the body of

empirical knowledge will grow, and software visualization research may be

able to move more towards a user- and evidence-centric design process.

The primary goal of this case study was to address the overall research

question of this research:

• RQ 1 : How can data mining of revision control systems be applied to

support project comprehension?

The case study was unable to establish sufficient weight of evidence to

determine whether or not software visualization tools are a useful technique for

supporting project comprehension. The case study has identified a potential

avenue of future research, whereby students are used as substitutes for industry

practitioners, and empirical studies to design and evaluate techniques for

visualizing project change and repository data have been planned as a follow-

up to this case study.

8.5 Case Study 4: Sampling

Considering the scale of modern software projects which can be comprised

of millions of lines of code, thousands of source code files and even more

numerous assets – such as documentation, data or graphics – it is becoming

more and more important to be able to identify a subset of files which is

representative of the whole project. For example, a manager wishing to view

metrics of a project might have little difficulty with simpler metrics such

as lines of code, but calculating more complex, computationally intensive

metrics for a large project may be infeasible. Similarly, as described in

Section 2.6, software visualization techniques do not always scale well (further

Chapter 8. Conclusions 218

demonstrated by FlowVis in Section 7.2.2.3.4); a common solution is to simply

visualize a section of the project, but some visualizations are designed to give

an abstracted overview of a project. By being able to select a representative

sample of a project, rather than – for example – a single module, it would be

possible for the visualization to provide an accurate overview of the whole

project.

Section 7.3 reported a case study in which a technique for generating

representative subsets of a project was evaluated against a group of human

experts, in order to address the following research question:

• RQ 9 : Can the data contained within RCS repositories be used to

automate file sampling?

8.5.0.1 Research Question 9

• RQ 9 : Can the data contained within RCS repositories be used to

automate file sampling? Proven: Yes

As reported in Study 4.1, in the context of selecting files from a group

project for assessment, the experts were inconsistent between themselves,

showing little overlap in their selections. They also varied in the strategies

they used to make their selections, as well as in the degree to which they

successfully applied those strategies.

A coverage metric based on the number of revisions and users involved

with a set of files was used to empirically assess the coverage samples produced

by the experts and by Perceive. Perceive statistically outperformed the

experts, selecting sets of files with greater coverage than those of the experts.

8.5.1 Summary

While the level of project comprehension gained from a subset of a project will

obviously be constrained in depth and completeness, it allows for a broader

overview or high-level mental model to be constructed more easily. The

Chapter 8. Conclusions 219

sample of files can then act as a starting point from which to explore the

project more completely.

The demonstrated success of project sampling has applications in a range

of project comprehension activities, including those explored in this research.

For example, in Thematic Analysis Study 1.2 (see Section 5.5) the open

source projects analysed were too large for complete analyses to be conducted,

and so partial sections of the projects were used instead, by using only the

earliest revisions before the first milestone release. Rather than naively using

a contiguous set of revisions for analysis, a representative sample of the project

could be used as the subject, which would allow the results of the thematic

analysis to be generalized to the entire project with greater confidence.

Additionally, some of the visualization techniques used in Section 7.2 did

not scale well as the number of files increased. Sampling could be used to

provide a high-level visualization, which could then be focussed on individual

areas of the project to facilitate deeper comprehension.

Finally, history-based change prediction could be made more robust with

the use of sampling. By inverting the process, unrepresentative files and

revisions could be identified and allocated less weight, potentially improving

the performance of the prediction technique further still.

In the wider context of this research, this case study is designed to answer

the overall research question:

• RQ 1 : How can data mining of revision control systems be applied to

support project comprehension?

By successfully implementing and evaluating a system to select a subset

of files from a project for assessment, this case study has demonstrated

that RCS repository analysis can be used to perform representative file

selection, a process with applications in a number of activities related to

project comprehension.

Chapter 8. Conclusions 220

8.6 Future Research

As discussed in each case study, there is significant scope for further developing

the research presented here. As with all empirical work there is a need for

replication studies to provide a greater weight of evidence to the conclusions

drawn, to reveal experimental flaws, anomalous results or to expand the

degree to which the conclusions can be generalized.

The thematic analysis case study has several possibilities for extension.

Primarily, a greater range of projects need to be analysed to add to the body

of data generated in Chapter 5. In cases where an entire project cannot be

analysed for reasons of scale, the sampling process discussed in Section 7.3

can be employed to generate more manageable sets of revisions to analyse.

A second avenue would be to analyse projects from different domains, such

as commercial projects, which would further expand the range of projects

to which the results can be applied, and allow a deeper insight into how

various project types are conducted and structured. In an academic context,

a thematic analysis could form part of the assessment or management process,

and feedback from students and assessors could be used to evaluate the

effectiveness of the technique in a situation where its impact can be easily

identified.

The main conclusion of the visualization case study, that student project

managers can be useful substitutes for industrial practitioners, needs to be

tested empirically. A study must be performed in which a visualization

tool is evaluated by both a body of students and by industrial practitioners.

Such a study would enable researchers to identify what aspects of software

visualization design and evaluation can be tested with students, and which

must be tested with industrial practitioners.

The project sampling quasi-experiment should be replicated to support or

counter the findings of the study. While the experimental design was strong,

it requires a greater number of projects and experts from a wider range of

domains to more accurately evaluate the performance of the models and the

consistency of the experts. This will also allow the coverage metric to be

Chapter 8. Conclusions 221

evaluated more thoroughly to ensure that it performs as required.

Finally, the history-based change prediction case study in Chapter 6

has perhaps the greatest potential for further research. As discussed in

Section 6.9 a more direct comparison between the performance of syntax-

based techniques and history-based techniques is required, which will allow a

deeper understanding of how the two models can complement each other.

8.7 RQ 1 : How Can Data Mining of Revision

Control Systems be Applied to Support

Project Comprehension?

The overarching goal of this research has been to identify ways in which

analysis of transactional, language-agnostic data from revision control systems

can be used to support project comprehension. The four case studies reported

here have each sought to address this goal by exploring different aspects or

applications of project comprehension and evaluating the degree to which the

repository analysis has been successful in improving comprehension.

The thematic analysis, which has not been previously applied to revision

comment logs, has been shown to be a powerful and viable tool for extracting

information from repositories, even incomplete ones. History-based change

prediction has been shown to be a viable technique, supporting existing studies;

this research has also demonstrated that maintenance activity type data can

be used to improve the performance of history-based change prediction to a

statistically significant degree, contributing to a growing body of methods of

improving prediction discovered by the research community. Visualization

of repository data has proven less successful, as student project managers

are unlikely to adopt new tools without a clear benefit of doing so. Finally,

an automated process of sampling a project to create representative sets of

files has been successfully demonstrated in an empirical experiment, with

implications on a broad range of project comprehension activities.

In conclusion, there are a number of ways by which repository analysis can

be used to support project comprehension. This research has evaluated four

techniques, three of which have been proven to support project comprehension

and related activities; each of the case studies has implications in the field

of project comprehension, especially change prediction where any technique

to improve the performance of a prediction model can have an appreciable

impact on the cost of software development. The overall goal of identifying

techniques based on repository analysis which can be used to support project

comprehension has been met; three of the four selected techniques have been

proven to successfully support program comprehension.

222

Appendix A

Structured Literature Review

References

223

T
it

le
R

ef
er

en
ce

S
y
st

em
D

o
m

a
in

A
R

ev
er

se
E

n
gi

n
ee

ri
n
g

A
p
p
ro

ac
h

to
S
u
p
p

or
t

S
of

tw
ar

e
M

ai
n
-

te
n

an
ce

:
V

er
si

on
C

on
tr

ol
K

n
ow

le
d

ge
E

x
tr

ac
ti

on

W
u

et
al

.
20

04
C

V
S

U
n

sp
ec

ifi
ed

A
to

o
l

fo
r

m
in

in
g

d
ef

ec
t-

tr
a
ck

in
g

sy
st

em
s

to
p

re
d

ic
t

fa
u
lt

-

p
ro

n
e

fi
le

s

O
st

ra
n

d
a
n

d
W

ey
u

k
er

20
04

U
n

sp
ec

ifi
ed

In
d

u
st

ri
a
l

A
n

In
te

g
ra

te
d

A
p

p
ro

a
ch

fo
r

S
tu

d
y
in

g
A

rc
h

it
ec

tu
ra

l
E

v
o
lu

-

ti
on

T
u

an
d

G
o
d

fr
ey

20
02

V
ar

io
u

s
F

O
S

S

A
n

al
y
si

s
of

si
gn

at
u

re
ch

an
ge

p
at

te
rn

s
K

im
et

al
.

20
05

V
ar

io
u

s
F

O
S

S

A
p
p
ly

in
g

S
o
ci

al
N

et
w

or
k

A
n
al

y
si

s
to

th
e

In
fo

rm
at

io
n

in
C

V
S

R
ep

os
it

or
ie

s

L
o
p

ez
-F

er
n

a
n

d
ez

et
a
l.

20
04

C
V

S
F

O
S

S

B
en

ch
m

ar
k
in

g
C

la
ss

ifi
ca

ti
on

M
o
d
el

s
fo

r
S
of

tw
ar

e
D

ef
ec

t
P

re
-

d
ic

ti
on

:
A

P
ro

p
os

ed
F

ra
m

ew
or

k
an

d
N

ov
el

F
in

d
in

gs

L
es

sm
an

n
et

al
.

20
08

N
A

S
A

M
D

P
U

n
sp

ec
ifi

ed

C
h

ia
n
ti

:
a

to
ol

fo
r

ch
an

ge
im

p
ac

t
an

al
y
si

s
of

J
av

a
p

ro
gr

am
s

R
en

et
al

.
20

04
C

V
S

F
O

S
S

C
om

p
ar

in
g

A
p
p
ro

ac
h
es

to
M

in
in

g
S
ou

rc
e

C
o
d
e

fo
r

C
al

l-
U

sa
ge

P
at

te
rn

s

K
ag

d
i

et
al

.
20

07
a

S
ta

ti
c

F
O

S
S

C
or

re
ct

n
es

s
of

d
at

a
m

in
ed

fr
om

C
V

S
T

h
om

so
n

an
d

H
ol

co
m

b
e

20
08

C
V

S
S
tu

d
en

ts

C
V

S
sc

an
:

V
is

u
al

iz
at

io
n

of
C

o
d

e
E

vo
lu

ti
on

V
oi

n
ea

et
al

.
20

05
C

V
S

F
O

S
S

D
et

ec
ti

n
g

a
n

d
V

is
u

a
li

zi
n

g
R

ef
a
ct

o
ri

n
g
s

fr
o
m

S
o
ft

w
a
re

A
rc

h
iv

es

G
o
rg

a
n

d
W

ei
sg

er
b

er

20
05

C
V

S
F

O
S

S

C
on

ti
n
u

ed
on

N
ex

t
P

a
g
e.

..

224

T
it

le
R

ef
er

en
ce

S
y
st

em
D

o
m

a
in

D
et

ec
ti

n
g

M
ov

e
O

p
er

at
io

n
s

in
V

er
si

on
in

g
In

fo
rm

at
io

n
V

a
n

R
y
ss

el
b

er
g
h

e
et

a
l.

20
06

C
V

S
In

d
u

st
ri

a
l

D
et

ec
ti

o
n

o
f

L
o
g
ic

a
l

C
o
u

p
li

n
g

B
a
se

d
o
n

P
ro

d
u

ct
R

el
ea

se

H
is

to
ry

G
al

l
et

al
.

19
98

P
R

D
B

In
d
u

st
ri

a
l

D
et

er
m

in
in

g
Im

p
le

m
en

ta
ti

on
E

x
p

er
ti

se
fr

om
B

u
g

R
ep

or
ts

A
n
v
ik

an
d

M
u
rp

h
y

20
07

C
V

S
,

B
u

gz
il

la
F

O
S

S

E
m

p
ir

ic
al

p
ro

je
ct

m
on

it
or

:
a

to
ol

fo
r

m
in

in
g

m
u
lt

ip
le

p
ro

je
ct

d
at

a

O
h

ir
a

et
al

.
20

04
M

u
lt

ip
le

A
ll

E
x
p

er
ti

se
id

en
ti

fi
ca

ti
on

an
d

v
is

u
al

iz
at

io
n

fr
om

C
V

S
A

lo
n

so
et

al
.

20
08

C
V

S
F

O
S

S

E
x
p

lo
ri

n
g

ev
ol

u
ti

on
ar

y
co

u
p
li

n
g

in
E

cl
ip

se
W

ei
ss

ge
rb

er
et

al
.

20
05

C
V

S
N

/
A

F
ou

r
In

te
re

st
in

g
W

ay
s

in
W

h
ic

h
H

is
to

ry
C

an
T

ea
ch

U
s

A
b

ou
t

S
of

tw
ar

e

G
o
d

fr
ey

et
al

.
20

04
C

V
S

F
O

S
S

H
ip

ik
a
t:

R
ec

o
m

m
en

d
in

g
P

er
ti

n
en

t
S

o
ft

w
a
re

D
ev

el
o
p

m
en

t

A
rt

if
ac

ts

C
u

b
ra

n
ic

a
n

d
M

u
rp

h
y

20
03

M
u

lt
ip

le
V

a
ri

o
u

s

H
ow

L
on

g
W

il
l

It
T

ak
e

to
F

ix
T

h
is

B
u

g?
W

ei
ss

et
al

.
20

07
J
ir

a
F

O
S

S

If
y
ou

r
ve

rs
io

n
co

n
tr

ol
sy

st
em

co
u

ld
ta

lk
B

al
l

et
al

.
19

97
E

C
M

S
In

d
u

st
ri

a
l

Im
p

ro
v
in

g
ch

an
ge

d
es

cr
ip

ti
on

s
w

it
h

ch
an

ge
co

n
te

x
ts

P
ar

n
in

an
d

G
ör

g
20

08
U

n
sp

ec
ifi

ed
U

n
sp

ec
ifi

ed

L
ea

rn
in

g
b
y

d
o
in

g
:I

n
tr

o
d

u
ci

n
g

v
er

si
o
n

co
n
tr

o
l

a
s

a
w

ay
to

m
an

ag
e

st
u

d
en

t
as

si
gn

m
en

ts

R
ei

d
an

d
W

il
so

n
20

05
C

V
S

S
tu

d
en

ts

M
ea

su
ri

n
g

D
ev

el
op

er
C

on
tr

ib
u
ti

on
fr

om
S
of

tw
ar

e
R

ep
os

it
or

y

D
at

a

G
ou

si
os

et
al

.
20

08
M

u
lt

ip
le

N
/
A

C
on

ti
n
u

ed
on

N
ex

t
P

a
g
e.

..

225

T
it

le
R

ef
er

en
ce

S
y
st

em
D

o
m

a
in

M
in

in
g

C
V

S
R

ep
o
si

to
ri

es
to

U
n

d
er

st
a
n

d
O

p
en

-S
o
u

rc
e

P
ro

je
ct

D
ev

el
op

er
R

ol
es

Y
u

a
n

d
R

a
m

a
sw

a
m

y

20
07

C
V

S
F

O
S

S

M
in

in
g

C
V

S
re

p
os

it
or

ie
s,

th
e

so
ft

ch
an

ge
ex

p
er

ie
n

ce
G

er
m

an
20

04
C

V
S

F
O

S
S

M
in

in
g

re
p

os
it

or
ie

s
to

as
si

st
in

p
ro

je
ct

p
la

n
n
in

g
an

d
re

so
u
rc

e

al
lo

ca
ti

on

M
en

zi
es

et
al

.
20

04
N

A
S

A
M

D
P

U
n

sp
ec

ifi
ed

M
in

in
g

st
u

d
en

t
C

V
S

re
p

os
it

or
ie

s
fo

r
p

er
fo

rm
an

ce
in

d
ic

at
or

s
M

ie
rl

e
et

al
.

20
05

C
V

S
S

tu
d

en
ts

M
in

in
g

th
e

so
ft

w
ar

e
ch

an
ge

re
p

os
it

or
y

of
a

le
ga

cy
te

le
p

h
on

y

sy
st

em

S
h

ir
ab

ad
et

al
.

20
04

S
M

S
In

d
u

st
ri

a
l

M
in

in
g

V
er

si
o
n

C
o
n
tr

o
l

S
y
st

em
s

fo
r

F
A

C
s

(F
re

q
u

en
tl

y
A

p
-

p
li

ed
C

h
an

ge
s)

R
y
ss

el
b

er
g
h

e
a
n

d
D

e-

m
ey

er
20

04

N
/A

N
/
A

M
in

in
g

V
er

si
on

H
is

to
ri

es
to

G
u

id
e

S
of

tw
ar

e
C

h
an

ge
s

Z
im

m
er

m
an

n
et

al
.

20
05

C
V

S
F

O
S

S

M
o
n

it
o
ri

n
g

th
e

E
v
o
lu

ti
o
n

o
f

a
n

O
O

S
y
st

em
w

it
h

M
et

ri
cs

:

A
n

E
x
p

er
ie

n
ce

fr
om

th
e

S
to

ck
M

ar
ke

t
S

of
tw

ar
e

D
om

ai
n

G
ir

ar
d

et
al

.
20

04
S

n
ap

sh
ot

s
In

d
u

st
ri

a
l

P
re

d
ic

ti
n

g
C

h
an

ge
P

ro
p

ag
at

io
n

in
S

of
tw

ar
e

S
y
st

em
s

H
as

sa
n

an
d

H
ol

t
20

04
U

n
sp

ec
ifi

ed
F

O
S

S

P
re

d
ic

ti
n

g
F

au
lt

In
ci

d
en

ce
U

si
n
g

S
of

tw
ar

e
C

h
an

ge
H

is
to

ry
G

ra
ve

s
et

al
.

20
00

S
C

C
S

In
d

u
st

ri
a
l

P
re

p
ro

ce
ss

in
g

C
V

S
d

at
a

fo
r

fi
n

e-
gr

ai
n

ed
an

al
y
si

s
Z

im
m

er
m

an
n

an
d

W
ei

ss
-

ge
rb

er
20

04

C
V

S
F

O
S

S

R
es

ea
rc

h
In

fr
as

tr
u

ct
u

re
fo

r
E

m
p

ir
ic

al
S

ci
en

ce
of

F
/O

S
S

G
as

se
r

et
al

.
20

04
N

/A
N

/
A

S
of

tw
ar

e
E

vo
lu

ti
on

O
b
se

rv
at

io
n
s

B
as

ed
on

P
ro

d
u
ct

R
el

ea
se

H
is

to
ry

G
al

l
et

al
.

19
97

P
R

D
B

In
d
u

st
ri

a
l

C
on

ti
n
u

ed
on

N
ex

t
P

a
g
e.

..

226

T
it

le
R

ef
er

en
ce

S
y
st

em
D

o
m

a
in

S
tu

d
y
in

g
S

of
tw

ar
e

E
vo

lu
ti

on
U

si
n

g
C

lo
n

e
D

et
ec

ti
on

R
y
ss

el
b

er
g
h

e
a
n

d
D

e-

m
ey

er
20

03

S
n

ap
sh

ot
s

N
/
A

T
ex

t
is

S
of

tw
ar

e
T

o
o

D
ek

h
ty

ar
et

al
.

20
04

N
/A

N
/
A

T
h

e
p

er
il

s
an

d
p

it
fa

ll
s

of
m

in
in

g
S

ou
rc

eF
or

ge
H

ow
is

o
n

a
n

d
C

ro
w

st
o
n

20
04

N
/A

F
O

S
S

T
ow

ar
d

s
a

T
h

eo
re

ti
ca

l
M

o
d

el
fo

r
S

of
tw

ar
e

G
ro

w
th

H
er

ra
iz

et
al

.
20

07
S

ta
ti

c
F

O
S

S

U
n
d
er

st
a
n
d
in

g
C

h
a
n
g
e-

P
ro

n
en

es
s

in
O

O
S
o
ft

w
a
re

th
ro

u
g
h

V
is

u
al

iz
at

io
n

B
ie

m
an

et
al

.
20

03
N

/A
In

d
u

st
ri

a
l

U
si

n
g

C
V

S
H

is
to

ri
ca

l
In

fo
rm

a
ti

o
n

to
U

n
d
er

st
a
n
d

H
ow

S
tu

-

d
en

ts
D

ev
el

op
S

of
tw

ar
e

L
iu

et
al

.
20

04
C

V
S

S
tu

d
en

ts

U
si

n
g

v
er

si
o
n

co
n
tr

o
l

to
o
b

se
rv

e
st

u
d

en
t

so
ft

w
a
re

d
ev

el
o
p

-

m
en

t
p

ro
ce

ss
es

G
la

ss
y

20
05

S
u

b
V

er
si

on
S

tu
d

en
ts

V
is

u
a
l

D
a
ta

M
in

in
g

in
S

o
ft

w
a
re

A
rc

h
iv

es
to

D
et

ec
t

H
ow

D
ev

el
op

er
s

W
or

k
T

og
et

h
er

W
ei

ss
ge

rb
er

et
al

.
20

07
C

V
S

F
O

S
S

V
R

C
S
:

in
te

gr
at

in
g

V
er

si
on

C
on

tr
ol

an
d

M
o
d
u
le

M
an

ag
em

en
t

u
si

n
g

In
te

ra
ct

iv
e

3D
gr

ap
h

ic
s

K
oi

ke
an

d
C

h
u

19
97

R
C

S
/S

C
S

S
N

/
A

W
h
at

d
o

la
rg

e
co

m
m

it
s

te
ll

u
s?

:
a

ta
x
on

om
ic

al
st

u
d
y

of
la

rg
e

co
m

m
it

s

H
in

d
le

et
al

.
20

08
U

n
sp

ec
ifi

ed
F

O
S

S

T
a
b
le

A
.1
:

O
ve

rv
ie

w
of

th
e

re
su

lt
s

of
th

e
st

ru
ct

u
re

d
li

te
ra

tu
re

re
v
ie

w

227

Bibliography

Bram Adams, Zhen Ming Jiang, and Ahmed E. Hassan. Identifying cross-

cutting concerns using historical code changes. In ICSE ’10: Proceed-

ings of the 32nd ACM/IEEE International Conference on Software En-

gineering, pages 305–314. ACM, 2010. ISBN 978-1-60558-719-6. doi:

http://doi.acm.org/10.1145/1806799.1806846.

Samuel Ajila. Software maintenance: An approach to impact analysis of

objects change. Softw. Pract. Exper., 25(10):1155–1181, 1995. ISSN 0038-

0644.

Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. What’s a

typical commit? a characterization of open source software reposito-

ries. In ICPC ’08: Proceedings of the 2008 The 16th IEEE Interna-

tional Conference on Program Comprehension, pages 182–191, Washington,

DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3176-2. doi:

http://dx.doi.org/10.1109/ICPC.2008.24.

Omar Alonso, Premkumar T. Devanbu, and Michael Gertz. Expertise identi-

fication and visualization from cvs. In MSR ’08: Proceedings of the 2008

international working conference on Mining software repositories, pages

125–128, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-024-1. doi:

http://doi.acm.org/10.1145/1370750.1370780.

Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. Software

visualization tools for component reuse. In Second Workshop on Method

228

Engineering for Object-Oriented and Component-Based Development at

OOPSLA 2004, 2004.

John Anvik and Gail C. Murphy. Determining implementation expertise

from bug reports. In MSR ’07: Proceedings of the Fourth Interna-

tional Workshop on Mining Software Repositories, page 2, Washington,

DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2950-X. doi:

http://dx.doi.org/10.1109/MSR.2007.7.

A Bachmann and A Bernstein. When process data quality affects the

number of bugs: Correlations in software engineering datasets. In

Proceedings of the 7th IEEE Working Conference on Mining Software

Repositories, pages 62–71. IEEE, 2010. ISBN 978-1-4244-6802-7. doi:

http://dx.doi.org/10.1109/MSR.2010.5463286.

T Ball, JM Kim, AA Porter, and HP Siy. If your version control system could

talk. In Workshop on Process Modeling and Empirical Studies of Software

Engineering, ICSE, 1997.

Françoise Balmas. Displaying dependence graphs: A hierarchical approach.

Journal of Software Maintenance and Evolution, 16:151–185, 2003. ISSN

1532-060X.

Todd Barlow and Padraic Neville. A comparison of 2-d visualizations of

hierarchies. In INFOVIS ’01: Proceedings of the IEEE Symposium on

Information Visualization 2001 (INFOVIS’01), pages 131–138, Washington,

DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1342-5.

Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal

question metric approach. In Encyclopedia of Software Engineering. Wiley,

1994.

Jon Beck. Using the cvs version management system in a software engineering

course. Journal of Computing Sciences in Colleges, 20(6):57–65, 2003.

229

Keith H. Bennett and Vaclav T. Rajlich. Software maintenance and evolution:

a roadmap. In ICSE ’00: Proceedings of the Conference on The Future of

Software Engineering, pages 73–87, New York, NY, USA, 2000. ACM Press.

ISBN 1-58113-253-0.

James M. Bieman, Anneliese A. Andrews, and Helen J. Yang. Understand-

ing change-proneness in oo software through visualization. International

Conference on Program Comprehension, 0:44, 2003. ISSN 1092-8138. doi:

http://doi.ieeecomputersociety.org/10.1109/WPC.2003.1199188.

Sue Black. Computing ripple effect for software maintenance. Journal of

Software Maintenance and Evolution: Research and Practice, 13(4):263–279,

2001. ISSN 1532-060X. doi: 10.1002/smr.233.

Alan Blackwell, Kirsten Whitley, Judith Good, and Marian Petre. Cognitive

factors in programming with diagrams. Artificial Intelligence Review, 15:

95–113, 2001. ISSN 0269-2821.

Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.

Qual Res Psychol, pages 77–101, 2006.

Greg Breinholt and Christoph Schierz. Algorithm 781: generating hilbert’s

space-filling curve by recursion. ACM Trans. Math. Softw., 24(2):184–189,

1998. ISSN 0098-3500. doi: http://doi.acm.org/10.1145/290200.290219.

BS ISO/IEC 14764:2006. Bs iso/iec 14764:2006, 2006. Software engineering.

Software life cycle processes. Maintenance.

David Budgen, Andrew Burn, Rialette Pretorius, Pearl Brereton, and Barbara

Kitchenham. Empirical evidence about the uml: A systematic literature

review. Accepted for publication in Software: Practice and Experience, 2010.

doi: 10.1002/spe.1009.

E.L. Burd and S.A. Drummond. Forging planned inter year co-operation

through a peer mentor system for group work projects. In Proceedings

230

of the 3rd Annual Conference LTSN Information and Computer Sciences,

2006.

L. Burd and M. Munro. Research institute for software evolution, 2003.

http://www.dur.ac.uk/RISE/.

Andrew Burn. Thematic analysis of group software project change-logs. In

Proceedings of the 9th HEA ICS Annual Conference, 2008.

Andrew Burn. Thematic analysis of group software project change logs: An

expanded study. ITALICS, 8, 2009. ISSN 1473-7507.

Andy Burn, David Budgen, Malcolm Munro, and Thomas Ward. Software

visualization: The empirical landscape. In Submitted to ICSE 2009, 2009.

K. Chen, S.R. Schach, L. Yu, J. Offutt, and G.Z. Heller. Open-source change

logs. Empirical Software Engineering, 9(3):197–210, 2004.

Ben Collins-Sussman. The subversion project: buiding a better cvs. Linux J.,

2002:3, 2002. ISSN 1075-3583.

Davor Cubranic and Gail C. Murphy. Hipikat: Recommending per-

tinent software development artifacts. Software Engineering, In-

ternational Conference on, 0:408, 2003. ISSN 0270-5257. doi:

http://doi.ieeecomputersociety.org/10.1109/ICSE.2003.1201219.

S. Cummins, Burd L., and A. Hatch. Improving student engagement with

feedback: Using feedback tagging for programming assignments. In Pro-

ceedings of the Higher Education Academy Subject Centre for Information

and Computer Science’s 2010 Annual Conference, 2010.

Susan Dart, Alan M. Christie, and Alan W Brown. A case study in software

maintenance. Technical report, Software Engineering Institute, Carnegie

Mellon University, 1993.

231

A. Dekhtyar, J. Huffman Hayes, and T. Menzies. Text is software too.

In Proceedings of the 1st International Workshop on Mining of Software

Repositories, pages 22–27, Edinburgh, Scotland, 2004.

S.A. Drummond and M Devlin. Software engineering students’ cross-site

collaboration: An experience report. In Proceedings of the 7th HEA ICS

Annual Conference, 2006.

Tore Dyb̊a, Barbara Kitchenham, and Magne Jørgensen. Evidence-based

software engineering for practitioners. IEEE Software, 22(1):58–65, 2005.

Software Engineering Economics. Barry Boehm. Prentice Hall, 1981. ISBN

0138221227.

Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. Seesoft - a tool for

visualizing line oriented software statistics. IEEE Transactions on Software

Engineering, 18(11):957–968, 1992. ISSN 0098-5589.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The pro-

gram dependence graph and its use in optimization. ACM Trans.

Program. Lang. Syst., 9(3):319–349, 1987. ISSN 0164-0925. doi:

http://doi.acm.org/10.1145/24039.24041.

Joseph L Fleiss. Measuring nominal scale agreement among many raters.

Psychological Bulletin, 76(5):378–382, 1971.

Milton Friedman. A comparison of alternative tests of significance for the

problem of m rankings. The Annals of Mathematical Statistics, 11(1):86–92,

1940. ISSN 00034851. doi: 10.1214/aoms/1177731944.

Harald Gall, Mehdi Jazayeri, Rene Klosch, and Georg Trausmuth. Software

evolution observations based on product release history. In ICSM ’97:

Proceedings of the International Conference on Software Maintenance,

pages 160–170. IEEE Computer Society, 1997. ISBN 0-8186-8013-X.

232

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling

based on product release history. In ICSM ’98: Proceedings of the Interna-

tional Conference on Software Maintenance, pages 190–198, Washington,

DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8779-7.

Keith Gallagher. Visual impact analysis. In ICSM ’96: Proceedings of the 1996

International Conference on Software Maintenance, pages 52–58. IEEE

Computer Society, 1996. ISBN 0-8186-7677-9.

Emden Gansner, Elftherios Koutsofios, and Stephen North. Drawing graphs

with dot. Technical report, AT&T Bell Laboratories, 2002.

Les Gasser, Gabriel Ripoche, and Robert Sandusky. Research infrastructure

for empirical science of f/oss. In Proceedings of the 1st International Work-

shop on Mining Software Repositories, pages 12–16, Edinburgh, Scotland,

UK, 2004.

Daniel M. German. Mining cvs repositories, the softchange experience. In Pro-

ceedings of the 1st International Workshop on Mining Software Repositories,

pages 17–21, Edinburgh, Scotland, UK, 2004.

Jean-Francois Girard, Martin Verlage, and Dharmalingam Ganesan. Monitor-

ing the evolution of an oo system with metrics: An experience from the

stock market software domain. In ICSM ’04: Proceedings of the 20th IEEE

International Conference on Software Maintenance, pages 360–367. IEEE

Computer Society, 2004. ISBN 0-7695-2213-0.

Louise Glassy. Using version control to observe student software development

processes. In Journal of Computing Sciences in Colleges, volume 21, pages

99–106, 2005.

Michael Godfrey, Xinyi Dong, Cory Kapser, and Lijie Zou. Four interesting

ways in which history can teach us about software. In In Proceedings of

the International Workshop on Mining Software Repositories, 2004.

233

Carsten Gorg and Peter Weisgerber. Detecting and visualizing refactorings

from software archives. In IWPC ’05: Proceedings of the 13th Interna-

tional Workshop on Program Comprehension, pages 205–214, Washing-

ton, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2254-8. doi:

http://dx.doi.org/10.1109/WPC.2005.18.

Georgios Gousios and Diomidis Spinellis. A platform for software engineering

research. In Proceedings of the 6th Working Conference on Mining Software

Repositories, pages 31–40, 2009.

Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring

developer contribution from software repository data. In Proceedings of the

Fifth International Workshop on Mining Software Repositories, pages 129–

132. Association for Computing Machinery, 2008. ISBN 987-1-60558-079-1.

doi: 10.1145/1370750.1370781.

Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault

incidence using software change history. IEEE Trans. Softw. Eng., 26(7):

653–661, 2000. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.859533.

Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in

software systems. In ICSM ’04: Proceedings of the 20th IEEE International

Conference on Software Maintenance, pages 284–293, Washington, DC,

USA, 2004. IEEE Computer Society. ISBN 0-7695-2213-0.

Val Henson and Jeff Garzik. Bitkeeper for kernel developers. In Proceedings

of the 2002 Linux Symposium, 2002.

Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio Robles. Towards

a theoretical model for software growth. In MSR ’07: Proceedings of the

Fourth International Workshop on Mining Software Repositories, page 21,

Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2950-X.

doi: http://dx.doi.org/10.1109/MSR.2007.31.

234

Abram Hindle, Daniel M. German, and Ric Holt. What do large commits tell

us?: a taxonomical study of large commits. In MSR ’08: Proceedings of

the 2008 international working conference on Mining software repositories,

pages 99–108, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-024-1.

doi: http://doi.acm.org/10.1145/1370750.1370773.

Susan Horwitz and Thomas Reps. The use of program dependence

graphs in software engineering. In ICSE ’92: Proceedings of the

14th international conference on Software engineering, pages 392–411,

New York, NY, USA, 1992. ACM. ISBN 0-89791-504-6. doi:

http://doi.acm.org/10.1145/143062.143156.

martin Host, Björn Regnell, and Wohlin Claes. Using students as subjects

- a comparative study of students and professionals in lead-time impact

assessment. ESE - Empirical Software Engineering, 5(3):201–214, 2000.

James Howison and Kevin Crowston. The perils and pitfalls of mining

sourceforge. In Proceedings of the 1st International Workshop on Mining

Software Repositories, pages 7–11, Edinburgh, Scotland, UK, 2004.

Christopher Hundhausen. Exploring the potential for conversation analysis

in the evaluation of interactive algorithm visualization systems. Master’s

thesis, Department of Computer and Information Science, University of

Oregon, Eugene, OR, 1993.

Christopher Hundhausen, Sarah Douglas, and John Stasko. A meta-study

of algorithm visualization effectiveness. Journal of Visual Languages and

Computing, 13:259–290, 2002. ISSN 1045-926X.

Matthew Hutchins and Keith Gallagher. Improving visual impact analysis.

In ICSM ’98: Proceedings of the International Conference on Software

Maintenance, pages 294–303, Washington, DC, USA, 1998. IEEE Computer

Society. ISBN 0-8186-8779-7.

235

IEEE Standard 610.12-1999. Ieee standard 610.12-1999, 1999. Standard for

Software Maintenance.

M. Jørgensen. An empirical study of software maintenance tasks. Journal of

Software Maintenance: Research and Practice, 7(1):27–48, 2006.

Magne Jørgensen and Dag I. K. Sjøberg. Impact of experience on maintenance

skills. Journal of Software Maintenance, 14(2):123–146, 2002. ISSN 1040-

550X.

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. Comparing

approaches to mining source code for call-usage patterns. In MSR ’07:

Proceedings of the Fourth International Workshop on Mining Software

Repositories, page 20, Washington, DC, USA, 2007a. IEEE Computer

Society. ISBN 0-7695-2950-X. doi: http://dx.doi.org/10.1109/MSR.2007.3.

Huzefa Kagdi, Jonathan I. Maletic, and Bonita Sharif. Mining software

repositories for traceability links. In ICPC ’07: Proceedings of the 15th

IEEE International Conference on Program Comprehension, pages 145–154,

Washington, DC, USA, 2007b. IEEE Computer Society. ISBN 0-7695-2860-

0. doi: http://dx.doi.org/10.1109/ICPC.2007.28.

S. Kim, E.J. Whitehead, and J. Bevan. Analysis of signature change patterns.

In MSR ’05: Proceedings of the 2005 international workshop on Mining

software repositories, pages 1–5, 2005.

Claire Knight and Malcolm Munro. Comprehension with[in] virtual environ-

ment visualisations. In IWPC ’99: Proceedings of the 7th International

Workshop on Program Comprehension, pages 4–11. IEEE Computer Society,

1999. ISBN 0-7695-0179-6.

Hideki Koike and Hui-Chu Chu. Vrcs: Integrating version control and module

management using interactive 3d graphics. In VL ’97: Proceedings of the

1997 IEEE Symposium on Visual Languages (VL ’97), page 168. IEEE

Computer Society, 1997. ISBN 0-8186-8144-6.

236

Jens Krinke. Visualization of program dependence and slices. In Proceedings

of International Conference on Software Maintenance, pages 168–177, 2004.

Michele Lanza. Program visualization support for highly iterative development

environments. In Proceedings of the 2nd IEEE International Workshop on

Visualizing Software for Understanding and Analysis, pages 62–67. IEEE

Computer Society, 2003.

Meir Lehman. Laws of software evolution revisited. In EWSPT ’96: Proceed-

ings of the 5th European Workshop on Software Process Technology, pages

108–124. Springer-Verlag, 1996. ISBN 3-540-61771-X.

Meir M. Lehman and Juan F. Ramil. Effort estimation from change records

of evolving software. In Proceedings of the ICSE, pages 777–777. ACM

Press, 2000.

Meir M. Lehman and Juan F. Ramil. Rules and tools for software evolution

planning and management. Annals of Software Engineering, 11(1):15–44,

2001. ISSN 1022-7091.

Josh Lerner and Jean Tirole. Some simple economics of open source. The

Journal of Industrial Economics, 50(2):197–234, 2002. ISSN 00221821.

Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch.

Benchmarking classification models for software defect prediction: A pro-

posed framework and novel findings. IEEE Trans. Software Eng., 34(4):

485–496, 2008.

B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of applica-

tion software maintenance. Commun. ACM, 21(6):466–471, 1978. ISSN

0001-0782.

Ying Liu, Eleni Stroulia, Kenny Wong, and Daniel German. Using cvs histori-

cal information to understand how students develop software. In Proceedings

of the 1st International Workshop on Mining Software Repositories, pages

32–36. IEEE Computer Society, 2004.

237

S. Lohr and J. Markoff. Windows is so slow, but why. The New York Times,

2006.

Luis Lopez-Fernandez, Gregorio Robles, and Jesus M. Gonzalez-Barahona.

Applying social network analysis to the information in cvs repositories.

In Proceedings of the 1st International Workshop on Mining Software

Repositories, pages 101–105, Edinburgh, Scotland, UK, 2004.

Robert Love. Introducing the 2.6 kernel. Linux J., 2003(109):2, 2003. ISSN

1075-3583.

Matt Mackall. Towards a better scm: Revlog and mercurial. In Proceedings

of the 2006 Linux Symposium, 2006.

Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3d representations

for software visualization. In SoftVis ’03: Proceedings of the 2003 ACM

symposium on Software Visualization, pages 27–36. ACM Press, 2003. ISBN

1-58113-642-0.

Tom Mens and Serge Demeyer. Future trends in software evolution metrics. In

IWPSE ’01: Proceedings of the 4th International Workshop on Principles

of Software Evolution, pages 83–86. ACM Press, 2001. ISBN 1-58113-508-4.

T. Menzies, J.S. Di Stefano, C. Cunanan, and R. Chapman. Mining reposi-

tories to assist in project planning and resource allocation. IEE Seminar

Digests, 2004(917):75–79, 2004. doi: 10.1049/ic:20040480.

Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson. Mining stu-

dent cvs repositories for performance indicators. In MSR ’05: Proceed-

ings of the 2005 international workshop on Mining software repositories,

pages 1–5, New York, NY, USA, 2005. ACM. ISBN 1-59593-123-6. doi:

http://doi.acm.org/10.1145/1083142.1083150.

Sougata Mukherjea and John Stasko. Toward visual debugging: Integrating

algorithm animation capabilities within a source-level debugger. ACM

Transactions on Computer-Human Interaction, 1:215–244, 1994.

238

Paul Mulholland. Evaluating program visualisation systems: An information-

based methodology. Technical report, Human Cognition Research Labora-

tory, Open University, 1993.

M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto, K. Inoue, and K. Torii.

Empirical project monitor: a tool for mining multiple project data. IEE

Seminar Digests, 2004(917):42–46, 2004. doi: 10.1049/ic:20040474.

T.J. Ostrand and E.J. Weyuker. A tool for mining defect-tracking systems to

predict fault-prone files. IEE Seminar Digests, 2004(917):85–89, 2004. doi:

10.1049/ic:20040482.

Michael J. Pacione, Marc Roper, and Murray Wood. A comparative evaluation

of dynamic visualisation tools. In WCRE ’03: Proceedings of the 10th

Working Conference on Reverse Engineering, page 80. IEEE Computer

Society, 2003. ISBN 0-7695-2027-8.

Harkirat Padda, Ahmed Seffah, and Sudhir Mudur. Investigating the com-

prehension support for effective visualisation tools: a case study. In 2d

International Conference on Advances in Computer-Human Interfaces,

pages 283–288. IEEE Computer Society Press, 2009.

Chris Parnin and Carsten Görg. Improving change descriptions with

change contexts. In MSR ’08: Proceedings of the 2008 interna-

tional working conference on Mining software repositories, pages 51–

60, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-024-1. doi:

http://doi.acm.org/10.1145/1370750.1370765.

Santanu Paul, Atul Prakash, Erich Buss, and John Henshaw. Theories and

techniques of program understanding. In CASCON ’91: Proceedings of

the 1991 conference of the Centre for Advanced Studies on Collaborative

research, pages 37–53. IBM Press, 1991.

Marian Petre, Alan Blackwell, and Thomas Green. Cognitive questions in

software visualization. In Marc H. Brown John Stasko, John Domingue

239

and Blaine A. Price, editors, Software Visualization: Programming as a

Multimedia Experience, pages 453–480. M.I.T. Press, 1998. ISBN 0-262-

19395-7 (hardcover).

Blaine Price, Ian Small, and Ronald Baecker. A taxonomy of software

visualization. Journal of Visual Languages and Computing, 4:211–266,

1993.

Blaine Price, Ronald Baecker, and Ian Small. An introduction to software

visualization. In Marc H. Brown John Stasko, John Domingue and Blaine A.

Price, editors, Software Visualization: Programming as a Multimedia Expe-

rience, pages 3–27. M.I.T. Press, 1998. ISBN 0-262-19395-7 (hardcover).

Vaclav Rajlich. A model and a tool for change propagation in software.

SIGSOFT Softw. Eng. Notes, 25(1):72, 2000. ISSN 0163-5948.

Karen L. Reid and Gregory V. Wilson. Learning by doing: introducing

version control as a way to manage student assignments. In SIGCSE

’05: Proceedings of the 36th SIGCSE technical symposium on Computer

science education, pages 272–276, New York, NY, USA, 2005. ACM. ISBN

1-58113-997-7. doi: http://doi.acm.org/10.1145/1047344.1047441.

Steven Reiss. Consistent software evolution, 2001. White Paper.

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.

Chianti: a tool for change impact analysis of java programs. In OOP-

SLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages

432–448, New York, NY, USA, 2004. ACM. ISBN 1-58113-831-9. doi:

http://doi.acm.org/10.1145/1028976.1029012.

G Robles. Replicating msr: A study of the potential replicability of

papers published in the mining software repositories proceedings. In

Proceedings of the 7th IEEE Working Conference on Mining Software

240

Repositories, pages 171–180. IEEE, 2010. ISBN 978-1-4244-6802-7. doi:

http://dx.doi.org/10.1109/MSR.2010.5463348.

Sebastian Rönnau, Jan Scheffczyk, and Uwe M. Borghoff. Towards

xml version control of office documents. In DocEng ’05: Proceed-

ings of the 2005 ACM symposium on Document engineering, pages

10–19, New York, NY, USA, 2005. ACM. ISBN 1-59593-240-2. doi:

http://doi.acm.org/10.1145/1096601.1096606.

Filip Van Rysselberghe and Serge Demeyer. Studying software evolution using

clone detection. In Workshop on Object-Oriented Reengineering, pages

71–75, 2003.

Filip Van Rysselberghe and Serge Demeyer. Mining version control systems

for facs (frequently applied changes). In Proceedings of the International

Workshop on Mining Software Repositories, pages 48–52. IEEE Computer

Society, 2004.

H. Sharp, Y. Rogers, and J. Preece. Interaction Design: Beyond Human-

computer Interaction, chapter 13. John Wiley & Sons, 2002.

J.S. Shirabad, T.C. Lethbridge, and S. Matwin. Mining the software change

repository of a legacy telephony system. IEE Seminar Digests, 2004(917):

53–57, 2004. doi: 10.1049/ic:20040476.

Ben Shneiderman. Control flow and data structure documentation: Two

experiments. Commun. ACM, 25(1):55–63, 1982. ISSN 0001-0782.

Ben Shneiderman, Richard Mayer, Don McKay, and Peter Heller. Experi-

mental investigations of the utility of detailed flowcharts in programming.

Commun. ACM, 20(6):373–381, 1977. ISSN 0001-0782.

Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge.

Software reusability: vol. 2, applications and experience, 2:235–267, 1989.

241

M.A.D. Storey, FD Fracchia, and HA M

”uller. Cognitive design elements to support the construction of a mental

model during software exploration. The Journal of Systems & Software, 44

(3):171–185, 1999.

Margaret-Anne Storey, Kenny Wong, and Hausi Muller. How do program

understanding tools affect how programmers understand programs? Science

of Computer Programming, 36(2):183–207, 2000.

Travis Swicegood. Pragmatic Version Control Using Git. Pragmatic Bookshelf,

2008. ISBN 1934356158, 9781934356159.

Christopher Thomson and Mike Holcombe. Correctness of data mined

from cvs. In MSR ’08: Proceedings of the 2008 international

working conference on Mining software repositories, pages 117–120,

New York, NY, USA, 2008. ACM. ISBN 978-1-60558-024-1. doi:

http://doi.acm.org/10.1145/1370750.1370777.

Qiang Tu and Michael W. Godfrey. An integrated approach for studying

architectural evolution. In IWPC ’02: Proceedings of the 10th International

Workshop on Program Comprehension, pages 127–136. IEEE Computer

Society, 2002. ISBN 0-7695-1495-2.

Filip Van Rysselberghe, Matthias Rieger, and Serge Demeyer. Detecting move

operations in versioning information. In CSMR ’06: Proceedings of the

Conference on Software Maintenance and Reengineering, pages 271–278,

Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2536-9.

Lucian Voinea, Alex Telea, and Jarke J. van Wijk. Cvsscan: Visualization of

code evolution. In SoftVis ’05: Proceedings of the 2005 ACM Symposium on

Software visualization, pages 47–56. ACM Press, 2005. ISBN 1-59593-073-6.

Mark Weiser. Program slices: formal, psychological, and practical investiga-

tions of an automatic program abstraction method. PhD thesis, University

of Michigan, 1979.

242

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller.

How long will it take to fix this bug? In MSR ’07: Proceedings of the

Fourth International Workshop on Mining Software Repositories, page 1,

Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2950-X.

doi: http://dx.doi.org/10.1109/MSR.2007.13.

Peter Weissgerber, Leo von Klenze, Michael Burch, and Stephan Diehl.

Exploring evolutionary coupling in eclipse. In eclipse ’05: Proceedings

of the 2005 OOPSLA workshop on Eclipse technology eXchange, pages

31–34, New York, NY, USA, 2005. ACM. ISBN 1-59593-342-5. doi:

http://doi.acm.org/10.1145/1117696.1117703.

Peter Weissgerber, Mathias Pohl, and Michael Burch. Visual data mining

in software archives to detect how developers work together. In MSR

’07: Proceedings of the Fourth International Workshop on Mining Software

Repositories, page 9, Washington, DC, USA, 2007. IEEE Computer Society.

ISBN 0-7695-2950-X. doi: http://dx.doi.org/10.1109/MSR.2007.34.

Xiaomin Wu, Adam Murray, Margaret-Anne Storey, and Rob Lintern. A

reverse engineering approach to support software maintenance: Version

control knowledge extraction. In WCRE ’04: Proceedings of the 11th

Working Conference on Reverse Engineering (WCRE’04), pages 90–99.

IEEE Computer Society, 2004. ISBN 0-7695-2243-2.

Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A

brief survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36,

2005. ISSN 0163-5948.

Peter Young. Visualising Software in Cyberspace. PhD thesis, University of

Durham, 1999.

Liguo Yu and Srini Ramaswamy. Mining cvs repositories to understand

open-source project developer roles. In MSR ’07: Proceedings of the

Fourth International Workshop on Mining Software Repositories, page 8,

243

Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2950-X.

doi: http://dx.doi.org/10.1109/MSR.2007.19.

Yu Zhou, Michael Würsch, Emanuel Giger, Harald C. Gall, and Jian Lü. A

bayesian network based approach for change coupling prediction. In WCRE

’08: Proceedings of the 2008 15th Working Conference on Reverse Engineer-

ing, pages 27–36, Washington, DC, USA, 2008. IEEE Computer Society.

ISBN 978-0-7695-3429-9. doi: http://dx.doi.org/10.1109/WCRE.2008.39.

Thomas Zimmermann and Peter Weissgerber. Preprocessing cvs data for

fine-grained analysis. In Proceedings of the 1st International Workshop on

Mining Software Repositories, pages 2–6. IEEE Computer Society, 2004.

Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas Zeller.

Mining version histories to guide software changes. IEEE Trans. Softw.

Eng., 31(6):429–445, 2005. ISSN 0098-5589.

244

