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Abstract 

 

This research aims to use fluorescent BODIPY probes to measure biological function 

within a plant cell. In particular developing BODIPY fluors with emission at 

near-infrared and long wavelength that provides considerable benefit for specific 

organelle monitoring will be explored. 

 

The work described in this thesis was mainly focused on the synthesis of the BODIPY 

and the photoaffinity labelling group. We present an effective synthesis of several 

BODIPY analogues with different meso-substituents. 3-Methoxy trifluoromethyl 

diazirine was successfully synthesised with the aim at coupling to the BODIPY dyes. 

However, although many borylation and bromination reactions on meta and para 

methoxy substituted trifluoromethyl diazirines, were attempted these were not 

successful. In an alternative approach, 4-benzoylphenylboronic acid was used as the 

pro-photoaffinity labelling residue. This could successfully be coupled with 

iodo-BODIPY for future use as cell-labelling fluorophore. 
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Å  Angstrom(s) 

aq aqueous 
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Bn Benzyl 

Boc tert-Butyloxycarbonyl 
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bp boiling point 
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cm
-1

 wavenumber(s) 

COSY Correlation spectroscopy 

δ Chemical shift in parts per million  

d day(s) 
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DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone 

DIPEA Diisopropylethylamine (Hunig‟s base) 
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DMAP Dimethylaminopyridine 

DMF Dimethylformamide 

DMSO Dimethylsulphoxide 

ES
+
MS Positive charge electrospray mass spectrometry 

ES
-
MS Negative charge electrospray mass spectrometry 

Et ethyl 

EtOAc Ethyl acetate 

EtOH Ethanol 
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g gram(s) 

GC Gas Chromatography 

h hour(s) 

HPLC High performance liquid chromatography 

Hz Hertz 

IBX iodoxybenzoic acid 

i
Pr Iso-propyl 

IR Infra-red spectroscopy 

J Coupling constant (in NMR spectroscopy) 

L Litre(s) 

μ micro 

M Molar 

m/z Mass to charge ratio 

m meta 

max maximum 

MeCN Acetonitrile 

MeOH Methanol 

mg milligram 

min minute 

mL millilitre 

mmol millimole 

m.p. melting point 

MS mass spectrometry 

mw molecular weight 

m/z Mass-to-charge ratio 

n-Bu n-butyl 

NMR Nuclear magnetic resonance 

NOESY Nuclear Overhauser enhancement spectroscopy 

Nu Nucleophile 



vii 

 

p para 

ppm Parts per million 

rt room temperature 

Rf Retention factor in chromatography) 

s second 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

TMS Trimethylsilyl 

TLC Thin layer chromatography 

UV Ultra violet 

Фf Fluorescent quantum yield 
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1 Introduction 

 

1.1 General Introduction 

This project aims to use fluorescent BODIPY probes to measure biological function 

within cells. In particular the project aims to understand why certain BODIPY dyes 

specifically localize within the peroxisome of plant cells. This will be achieved by 

preparing BODIPY fluors coupled with known photoaffinity agents e.g. Figure 1.1. 

This thesis describes the synthetic work undertaken towards this objective. The thesis 

is composed of three chapters. The remainder of this chapter provides a short 

introduction to BODIPY fluors, photoaffinity agents and the background to the project. 

Chapter two contains a description of the results and associated discussion whilst 

Chapter three provides the detailed experimental procedures.  
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1.2 BODIPY Dyes 

1.2.1 Introduction to Organic dyes 

Bright colours and wide range of wavelengths make fluorescent dyes of interest in 

many fields of study such as biological chemistry, photochemistry, physical chemistry, 

and optical engineering. In particular, fluorescence labelling is commonly used for 

bio-analytical purposes. In most cases this is achieved through the use of an organic 

fluorescent dye. Many such dyes are known. There are diversity of structures, 

spectroscopic properties, and chemical reactivities differentiating the dyes providing a 

huge variation of photochemical properties which can be used to select a dye for a 

particular purpose.
1
 Reflecting this, there are many organic dyes in common use 

including fluorescein,
2
 rhodamine,

3
 cyanine,

4
 alexa

5
 and ethidium,

6
 and BODIPYs, 

Figure 1.2. These all tend to be relatively small molecules with absorption and 

emission bands in the range 300-800 nm. Given the nature of this project the 

remainder of this review focuses on BODIPY dyes. 
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Figure 1.2 Organic fluorescent dye structures 
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1.2.2 Introduction to BODIPY dyes 

Now the trademark of Molecular Probes, Inc. BODIPYs,
7,8

  

4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacenes were first discovered in 1968 by 

Treibs and Kreuzer
9
 (Figure 1.3). Since then, the BODIPY dye has become one of the 

most versatile organic fluorophore labels in use. They have been widely used for 

monitoring biomolecules in living cells.
10

 For instance, BODIPYs have been attached 

to both proteins,
11,12

 and viruses.
13

 Other uses include roles in laser dyes,
14,15

 

nanocrystals,
16

 fluorescent switches,
17

 and chemosensors.
18

  

 

1.2.2.1 BODIPY properties 
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Figure 1.3 Basic BODIPY core structure 

 

BODIPY dyes have found roles in biological labelling due to their strong 

UV-absorption, high photochemical stability,
19

 and high emission quantum yields.
20,21

 

A number of different substitution patterns can be envisaged, Figure 1.4 which affect 

their photophysical properties. Whilst the parent BODIPY 4
22

 as well as the simple 

analogues BODIPYs 5 and 6, which lack a substituent at C 3 and 5 have not been 

reported in the literature other more highly substituted (di-, tetra-, and hexa-alkylated) 

systems, e.g. 7, 8, and 9 have been synthesized including those with cycloalkyl 

substituents, e.g. 10 and 11.
23,24

 Comparing compound 7, 8 with compound 9, 

alkylation at the 2,6-position generally leads to lower quantum yield but with higher 

absorption and emission wavelengths.  
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Figure 1.4 Different alkyl substitution patterns on BODIPY dye  

 

In contrast to the simple alkyl substituted BODIPYs the meso-phenyl compound 12 

can be synthesized without α-substituents, Figure 1.5. It has a broader wavelength 

range than the di- and tetra methyl- substituted analogues albeit with a much reduced 

quantum yield. The quantum yield of compounds 12 and 13 are much lower than the 

1,7- dimethyl substituted analogue, Figure 1.6, suggesting that the BODIPY core and 

phenyl ring can adapt a co-planar arrangement forming a conjugated system enabling 

internal quenching mechanisms to occur. In 14, the 1,7-substituents inhibit free 

rotation of the phenyl group, and thus prevents this loss of energy from the excited 

states through non-irradiative processes.  
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Figure 1.5 Different alkyl substitution patterns on BODIPY dye 
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Figure 1.6  

 

Apart from the effect on quantum yield of the BODIPY core, the 8-position, often 

referred to as the meso site, has no significant effect on the absorption and emission 

wavelengths, Figure 1.7. As a result BODIPYs can be designed for specific function 

by simple modification of the meso substituent. For example, selective sensors of 

redox active molecules,
25,26

 pH probes,
27

 metal-chelators,
28,29

 and biomolecule 

conjugating group can be incorporated,
30,31 

Figure 1.8. 
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Figure 1.7 Structure of BODIPY with an aryl moiety. 

 

N
B

N

R

F F

R=

nitrite probe

nitric oxide probes

pH probes

metal-chelators

monosaccharide probe

amine probes

NH2

NH

H2N

N

N

HO OHPb2+

N

Fe2+

O

S S

B

O

O

R=

R=

R=

R=

R=

O

O

O N

O

O

a

b

c

d

15

16

17

18 19

20

21
 

Figure 1.8 Selected BODIPYs with meso-modifications: (a) selective sensors of particular redox active 

molecules, (b) pH probes, (c) metal-chelators, and (d) biomolecule conjugating group. 
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Introduction of electron donating substituents on the α-position of the BODIPY core 

can extend the conjugation of the BODIPY systems, Figure 1.9. For example, 22 and 

25 show a green-fluorescent BODIPY fluorophore excitation/emission maximum at 

500-537 nm. Compared to 23, 24, 26, and 27, the extended 3,5-diaryl substituted 

BODIPYs are shifted to longer wavelengths (545-626 nm).
32

 The directing effects of 

para-electron donating group in 24 gives a longer bathochromic shift when compared 

with that to the ortho-substituted analogue 27. Similarly, the naphthalene extended 

aromatic substituted example 26 also has red-shifted emission. As discussed above, 

those examples lacking 1,7 substitution are 23, 24, 26, and 27 have lower 

fluorescence quantum yields because of nonradiative loss of energy through the 

potential for conjugation at the β-aryl substituent with the BODIPY core.  
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Figure 1.9 Aryl-Substituted BODIPYs 
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Reflecting these sample structural variations many research groups have reported 

BODIPYs derivatives with fluorescence emission ranging from 500 to 700 nm.
33

 

Table 1.1 shows some of the commercial BODIPY fluorophores which have been 

developed in this respect. 

 

structure BODIPY absorption emission e [cm
-1

M
-1

] 
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MeO  33 

TMR 544 nm 570 nm 56000 

N
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O

CO2H    34 

TR 588 nm 616 nm 68000 

All BODIPY fluorophores from Molecular Probes (Invitrogen Crop.), Inc. 

Table 1.1 The different BODIPY absorption and emission wave length 
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1.2.2.2 BODIPY Synthesis 

Given the role found by BODIPY dyes many methods for their synthesis have been 

described. The construction of the basic procedure of the BODIPY core usually starts 

from a simple pyrrole condensation with a highly electrophilic carbonyl compound, 

e.g. aldehyde, acid anhydride, and acyl chloride. Due to the instability of an 

unsubstituted dipyrromethene intermediate, which can undergo rapid polymerization 

or porphyrin formation; most routes involve 2-substituted pyrroles. With this in mind, 

Burgess and collaborators
22

 have described the three major routes of BODIPY 

synthesis: from pyrroles and acid chlorides, from pyrroles and aldehydes, and from 

ketopyrroles. These are described below. 

 

1.2.2.2.1 From pyrroles and acid chlorides 

This method of formation involves the condensation of acyl chlorides with pyrroles to 

give the dipyrrin core of dipyrromethenes, and then subsequent reaction of this with 

BF3
. 
OEt2 in the presence of Et3N to afford the BODIPY core. The first method used 

to synthesis a BODIPY derivative followed such a strategy.
22

 This process was 

undertaken in a one-pot, two-step procedure to give the products in 18- 86 % overall 

yield (Scheme 1.1).
34 
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(ii) BF3
.OEt2

N N

R1

R2

R3 R4
R3

R2

R1
B
F2

A  

Scheme 1.1 Synthesis of symmetric F-BODIPY dyes from acyl chloride derivatives 

 

The advantage of this method is in the formation of the dipyrromethene in a single 

process. However, conversions are not always complete and this can complicate 
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purification. One example of this method is a report by Burgess et al. describing the 

synthesis of BODIPYs from acyl chloride derivatives. Intermediate dipyrromethenes 

36 were obtained from pyrroles 35 on reaction with 4-iodobenzoyl chloride in 

1,2-dichloroethane. After purification via flash chromatography, the compound 36 

was treated with NEt3 and PhMe before adding boron trifluoride etherate. The 

reaction mixture was then heated at 80 °C for 20 min. The final BODIPYs 37 were 

isolated following chromatography on alumina (Scheme 1.2).
9
  

 

N Ar

H

4-IC6H4COCl

ClCH2CH2Cl
85 °C

N HN

Ar Ar
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N
B

N
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35a  1-Naph
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35d  2-MeOC6H4

36a  28%
36b  87%
36c  82%
36d  65%

  
37a  90%
37b  99%
37c  99%
37d  94%

 

Scheme 1.2 Synthesis of symmetric F-BODIPY dyes 

 

 

1.2.2.2.2 From pyrroles and aldehydes 

The second method of formation of BODIPYs involves the condensation of aromatic 

aldehydes with pyrroles to give, after oxidation, the dipyrromethene intermediate. 

Reaction of the dipyrromethene precursor with boron trifluoride etherate in the 

presence of a tertiary amine then forms the BODIPYs. Several groups have performed 

this pathway in a one-pot process. Due to instability of the required unsubstituted 

dipyrromethene precursor, the condensation usually needs an electron rich substituent, 

either on the pyrrole R
1
 or aldehyde R

4
 position. As stated above, the distinction of 

this method is the requirement for the oxidation of the first formed dipyrromethane B. 
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In most examples 2,3-dichloro5,6-dicyano-p-benzoquinone (DDQ) was used as the 

oxidizing agent.
35,36,37  

The overall yield of this reaction varied from 18-43 % 

depending on the substrate
 
(Scheme 1.3).

38,39,40
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Scheme 1.3 Synthesis of symmetric F-Bodipy dyes from aldehyde derivatives 

 

This strategy of condensation of pyrroles with benzaldehyde derivatives is direct and 

convenient. However, the need for the oxidation means that one more step is required 

before complexation with boron component. Despite this, many reports have used 

pyrroles and aldehydes as the starting material, than follow the alternative approach 

from acid chlorides. For example, Gossauer et al.
35

 synthesised BODIPY fluorophores 

from aldehydes with chiral substituents at the α-positions (Scheme 1.4). 
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Scheme 1.4 Synthesis of BODIPY from aldehydes 

 

1.2.2.2.3 From ketopyrroles 

In the previous two methods using acid chlorides or aldehydes, condensation with 

pyrrole occurs to form symmetrically substituted BODIPY dyes. However, 

asymmetrically substitute BODIPY dyes cannot be prepared by these routes. 

Generation of asymmetric BODIPYs can be achieved through condensation of 

ketopyrrole with a second pyrrole molecule to give the intermediate dipyrromethene 

followed by reaction with BF3
. 
OEt and base (Scheme 1.5).

22
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Scheme 1.5 Synthesis from ketopyrroles 
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The main advantage of this method is in its application to incorporate diverse 

substituents on the pyrrole rings. However, isolation of the unstable dipyrromethene 

hydrochloride salt intermediates can be difficult. Overall, although this method needs 

one more step to isolate the ketopyrrole intermediate, the final yields are still good.  

 

In Scheme 1.6 and 1.7 give examples of BODIPY synthesis from ketopyrroles 

relevant to this project. Work by Tahtaoui et al. had shown that the synthesis of 

BODIPY 22 could be achieved in a three-step process.
41

 Firstly, 2-ketopyrrole 45 was 

prepared through the reaction of 4-iodobenzoyl chloride 44 with the magnesium salt 

of pyrrole 43 made by deprotonation with a Grignard reagent. In the second step, the 

hydrochloride salt of the dipyrromethene 46 is produced from the condensation of 

pyrrole 43 and ketopyrrole 45 using phosphoryl chloride as the dehydrating agent. 

Dipyrromethene 46 can be converted directly to the target materials 22 after 

complexation with boron trifluoride etherate in the presence of triethylamine (Scheme 

1.6). 

 

N
H

N
H O

I

I

Cl

O

+

NH N

I

N N

I

B
F F

i

ii iii

43 44 45

46 22  

(i) CH3MgBr, ether, 81%; (ii) 43, POCl3, CH2Cl2/pentane, 0°C, 46 %; (iii) BF3.OEt2, NEt3, toluene, 80 

%. 

Scheme 1.6 Synthesis of symmetrical BODIPY from ketopyrroles 
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Similarly, unsymmetrical substituted BODIPY 48 was also prepared by this method 

approach (Scheme 1.7).
22

  

 

NH
O

H

+ HN

(i) POCl3
CH2Cl2/pentane, 0°C

(ii) BF3
.OEt2, Et3N

toluene

N
B
F2

N

4347 48  

Scheme 1.7 Synthesis of unsymmetrical BODIPY from ketopyrroles 

 

 

1.3 Photoaffinity Labels 

Photoaffinity labels (PAL) are molecules which on activation by light covalently bind 

to biomolecules identifying specific targets associated with a particular function, e.g. 

proteins.
42

 The covalent binding with such fragment of a biomolecule is achieved 

through a highly reactive intermediate, e.g. carbene or nitrene, generated by 

irradiation with ultraviolet light.  

 

Many novel photoaffinity labelling groups have been discovered,
43

 Figure 1.10. 

Among various photophores for photoaffinity labelling, the first reported example 

was in 1962. In this, Westheimer described the use of p-nitrophenyldiazoacetate to 

covalent label chymotrypsin on photolysis in aqueous solution at low temperatures.
44

 

Evidence for cross linking was deduced from the fact that the enzymatic activity was 

not regenerated by the action of hydroxylamine on the modified chymotrypsin. A few 

years later, aryl azides were used as PAL acting as a nitrene precursor through loss of 

N2. During the 1960s, the benefits of the aryl azide as PAL were reported. 

Subsequently in the 1970s, other groups were developed individually, e.g. 
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benzophenone, aryldiazonium salts and the diazirines. The basic photochemical 

reactions of these reagents are shown in Figure 1.10. 
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Figure 1.10 Chronology of reports on different functional groups for photoaffinity labelling 

 

Most studies have concentrated on a few types of photoaffinity reagents. These are the 

aryl azides, benzophenones, aryldiazirines, and alkyl diazirine (Figure 1.11). Such 

photoreactive probes allow crosslinking among cellular components in biological use 

with minimal side reactions. Comparing all these, reflecting its stability under the 

irradiation condition, the 3-aryl-3-trifluoromethyl-diazirines appear to have the 

greatest potential for PAL. In contrast, aryl azides require shorter photoactivation 

wavelengths than benzophenone, aryl, and alkyl diazirines. This higher energy can 

damage biomolecular structure and generate high energy, highly reactive nitrenes that 

react non-selectively. Whilst benzophenone is potentially a more selective photophore, 

its bulk means that reactivity is often influenced by geometric/steric constraints. This 

affects the efficiency and specificity of interaction and binding with the target 

molecule. 
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Figure 1.11 Photochemical reactions of major photophores: The top structures are photochemical 

precursors. The wavelength ranges for photoactivation are shown on the arrows and the structures of 

the highly reactive intermediate molecules, carbene or nitrene, are shown in the brackets. 

 

In order to label the target structure with a photoaffinity probing, some requirements 

are needed. The photoreactive groups should have the following characteristics: 

(1) The probes are stable in the absence of light.  

(2) The probes easy to prepare and handle.  

(3) Once activated the lifetime of the reactive photoprobe is shorter than dissociation 

of the probe from the target molecule.  

(4) The product of the photo labelling experiments is stable.  

(5) The activation probe is selective for the probe and does not affect the target 

molecule indirectly.  
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At present, no photoaffinity label probe fits all the above requirements. Consequently 

as described in Figure 1.10, a large number of structures have been reported. A 

detailed structure of all these is beyond the scope of this report which will focus on 

those used in this project.  

 

1.3.1 Diazirine 

Diazirines are molecules characterised by the presence of a 3-membered CNN ring 

that contains a N=N double bond. Diazirines are common reagents for carbene 

generated photoaffinity labelling as the radicals formed react with nanosecond or 

picoseconds time scales under laser flash photolysis.
45

 The following section 

provides the background into the development and application of diazirines as PAL. 

 

1.3.1.1 Early syntheses 

The development of diazirines has involved improving the stability through 

modification of the substituents. In early 1960s, the first reported diazirine was 

alkyl-3H-diazirine 49. Shortly after dialkyl diazirines 50 were discussed; however, all 

these molecules were sensitive to heat, UV light and commonly decomposed in the 

gas phase (Figure 1.12).
46,47

 

 

N

N
C

R1

R2

49  R1=alkyl   R2 =H

50  R1, R2 =alkyl  

Figure 1.12 

 

For example, 3,3-diethyldiazirine 51 is not a stable compound. On heating to a 

temperature in the range of 118-149 °C, this undergoes thermal decomposition to give 

diazo and carbene compounds. Ultimately, the carbenes undergo intramolecular 
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rearrangements formed a mixture of cis- and trans-2-pentenes 52 and 

ethylcyclopropane 53 (Figure 1.13).
48
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N N
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Et Et
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Δ
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Figure 1.13 

 

The carbene may also be generated by irradiation by UV light. For example, 

photolysis of diazirine was believed to occur with formation of diazomethane as 

detected by the chromatographic analyses by using light of 3200 Å  (Bausch and 

Lomb grating monochromator light) (Figure 1.14).
49

 

 

N

N
H2C + hv CH2 + N2

 

Figure 1.14 Photoisomerisation of diazirine 

 

1.3.1.2 The Graham Reaction 

In 1965, Graham reported the one-pot hypohalite oxidation of amidines to 

3-halodiazirines,
50

 Figure 1.15. The products include either bromine or chlorine atom 

at the 3-position of the diazirinyl ring. However, such molecules are latently explosive 

and have not been significantly used as PAL.  
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Figure 1.15 

 

However the halogen can be easily replaced by a variety of nucleophiles, Figure 1.16. 

This gives diazirines of better stability e.g. compound 54, which have been used for 

hydrophobic labelling of membrane proteins. However, this approach is limited to 

simple diazirines (Figure 1.16).
51,52,53,54
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Figure 1.16 

 

1.3.1.3 The Trifluoromethyldiazirine 

Simple carbenes, such as those derived from diazoacetates
55

 and diazomalonates,
56

 

have been used in biological photo-labelling experiments. For example, compound 57 

was used to label the active site of trypsin, Scheme 1.8. However, the process was not 

efficient giving only low yields of labelled product (1-3 %).  
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Scheme 1.8 

 

In comparison, trifluoromethylated carbenes are more stable than the equivalent 

hydrocarbon structures lacking the halogen substituents. This can be exploited in the 

development of efficient photoaffinity labelling procedures. For example, the carbene 

formed from 2-diazo-3,3,3-trifluoropropionate 55 does not undergo intramolecular 

rearrangement by fluorine migration and such trifluoromethyl compounds have much 

promise for the development of new photoaffinity labels (Scheme 1.9).
57
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Scheme 1.9 



21 

 

Building on these observations trifluoromethylated diazirines were first reported by 

Brunner et al.
61

 In this report the aryl trifluoromethyldiazirine 68 was shown to be 

more stable for handling under UV irradiation. The development of this concept is 

discussed in the following section (1.3.1.4). 

 

68

CF3

N N

 

 

1.3.1.4 Aromatic Substituted Diazirine 

The introduction of aryl substituents, e.g. aryl-3H-diazirines 64,
58 

seems to provide 

greater stability than the alkyl substituted analogues. Moreover, in contrast to aryl 

azide derived nitrenes, the carbene precursor from 64 does not undergo intramolecular 

rearrangements involving expansion through carbene insertion. 

 

N

N
C

H

64  

 

Building upon these observations, Liu et al. attempted to develop arylalkyl diazirines 

65.
59

 Unhappily, this molecule affords cyclopropanes 66, and diazo species 67 

through intramolecular rearrangement and reaction with second carbene precursor 

(Scheme 1.10).
60
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Combining these ideas, in 1980, Brunner‟s group introduced trifluoromethyl phenyl 

diazirines 68. Importantly the carbene generated from this precursor does not undergo 

intramolecular rearrangements. Furthermore, trifluoromethyl phenyl diazirines can be 

activated by irradiation at 350 nm well-removed from the wavelength known to cause 

protein damage and cell death (<250 nm). As a result, 

3-aryl-3-(trifluoromethyl)diazirines have found widespread application in biological 

and synthetic macromolecular studies.
61

  

 

68

CF3

N N

           

 

For example, D-phenylalanine analogue 69 has been used to probe the ligand-binding 

site of hT1R2 for the sweet taste receptor.
62

  

 

F3C N

N

69

H2N

HOOC H

 

 

The introduction of a methoxy group in the aromatic ring is a common strategy to 

activate the benzene ring to aromatic substitution e.g. 70. In this case since the 

position para to the methoxy group is sterically hindered by the 

3-(trifluoromethyl)diazirinyl moiety substitution occurs preferentially at the position 

ortho to the methoxy group.
63
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For example, Wenwei et al. have successfully designed and synthesized a 

tri-functional photoaffinity probe 71 which labeled matrix metalloproteinases 

(MMP2-CD) in a B16F10 cell culture. The retrosynthetic analysis of this probe is 

outlined in Schemes 1.11 and 1.12.
64

 As discussed above the m-methoxy directing 

group of the diazirine 70 activates the benzene ring for Friedel-Crafts substitution to 

give the desired aldehyde 75. 
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Scheme 1.11 The retrosynthetic analysis of probe 71. 
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Scheme 1.12 

 

1.3.2 Benzophenone 

In 1973, Galardy et al. introduced benzophenone (Bp) as a photochemical probe 78, 

Scheme 1.13. On photochemical activation the benzophenone derived radical inserted 

into the methyl ester of acetyl glycine 79 (AcGlyOMe) in water solution to give an 

amino acid 80.
65
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Scheme 1.13 

 

Since then, benzophenone photoprobes have been used in many different biological 

processes, such as nucleic acid,
66

 drugs, proteins,
67,68

 and enzymes.
69

 One advantage 

of the benzophenone photolabel is that it can be activated reversibly through 

excitation-relaxation cycles
70

 and so has high labelling effectiveness.
71

 Secondly, the 

required irradiation wavelength of 350 nm does not lead to cell damage.
72

 Lastly, Bp 

has good chemical stability and is able to react with C-H bonds even in presence of 

water. Reflecting these benefits, Bp has been frequently used for biochemistry 

research. 
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Figure 1.17 shows the examples of benzophenones used in biological studies. 

Compound 81 is used to explore bacterial plasma membrane
73

 whilst compound 82 

was used as a fluorescent nucleotide photoaffinity label for studies with ATP.
74
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Figure 1.17 Application of benzophenone photoprobes in biochemistry structures 

 

1.4 Project strategy 

Previous work in the group: 

Previous work in the group by M. Landrum had involved the preparation of a 

BODIPY dye with a nitro-aryl group at C-8. As predicted by Density Functional 

Theory (DFT) calculations this molecule was non-fluorescent. However on incubation 

into plant cells a fluorescent response was observed. More surprisingly this 

fluorescence was highly localised to a specific organelle within the plant cell. 

Subsequent co-incubation experiments with a fluorescent protein containing a known 

protein targeting sequence (PTS 1) showed that the dye was specifically localising to 

the peroxisome
75

 (Figure 1.18). However the cause of this localisation could not be 

determined nor could the mode at “switch-on” of fluorescence. One possibility is that 

the BODIPY is specifically binding to a target biomolecule. Attempts to identify this 

„target‟ by mass spectroscopy were not successful. An alternate approach is to 

combine the BODIPY core with a secondary label to facilitate target identification. 

The synthesis of such a functional molecule was the focus of this project. 
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Figure 1.18 nitroBODIPY probe co-localizes with peroxisomes in plant cells. (a) Staining of A. 

thaliana protoplast (b,c) Localization of the probe in control (b) and clofibrate-treated (c) BY-2-cells. 

(d-i) Co-localization of peroxisome probe PTS1-mCherry (red) and nitroBODIPY probe (green) in 

Nicotiana benthamiana stomata (d-f) and leaf pavement (g-i) cells. In the merged images (f,i), 

co-localization of the probes appears as yellow staining. Scale bars = 10 μm (Landrum et al., 2010).
75
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Synthesis strategy: 

As described above, the goal of the project was to couple a BODIPY core with a 

second label to identify the target of the BODIPY within the peroxisome. In order to 

do this a reactive group that could be photoactivated will incorporated into the 

BODIPY core. Reflecting the precedents for preparing functional used BODIPYs, this 

would be best achieved at the C-8 position of the BODIPY. Similarly based on the 

analysis of photoaffinity labelling (PAL) the choice to the synthesis were BODIPY 

diazirine (1) and BODIPY benzophenone (2, 3). The synthetic strategy for probe 1 is 

based on the aryldiazirine photophore which coupling with the BODIPY substrates, 

whilst 2 and 3 are based on the benzophenone photophore. The synthesis and analysis 

of these compounds is described in the next chapter. 
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2 RESULTS AND DISCUSSION 

2.1 Introduction 

This chapter details the work undertaken in the area of BODIPY dyes and diazirine 

synthesis. The aim of this work was to synthesise BODIPY dyes conjugated to 

photoaffinity labelling groups for applications in plant cell biology. Work undertaken 

on BODIPY dye synthesis will be discussed first, followed by the developments on 

diazirine synthesis. Lastly, attempts to link these two moieties with 

palladium-catalysed cross coupling reactions to reach the target compound are 

described in section 2.6. 

 

2.2 Retrosynthetic Analysis 

Scheme 2.1 shows the synthetic route proposed for the target molecule 1. This 

retrosynthetic analysis disconnects (1) at the biaryl bond to give A and B.  

Molecule A is a BODIPY derivative which contains a fluorescent core with four 

methyl groups and an electrophilic residue. Molecule B is a known photoaffinity label 

with its main features being the diazirine on the aryl group for photoisomerization 

purposes and an organometallic group or a halogen as the other substituent. 
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The retrosynthetic analysis of the BODIPY core A, basically follows the literature 

procedure which has already been discussed in the previous chapters. Details of the 

synthesis are presented in section 2.3.  
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Scheme 2.3 shows the retrosynthetic analysis of diazirine functional group B. This 

again follows an established literature method for the function of 70. Introduction of 

the organometallic group (B(OR)2) would build upon the research in the group using 

iridium catalysed borylation methods. 
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2.3 Synthesis of BODIPY 

Based on the analysis described in section 2.2, the first goal of the synthesis was the 

BODIPY core A. This dye was synthesized in two ways building on procedures based 

on published literature and the previous work within the group.  

 

2.3.1 One-pot reaction 

The first attempts to synthesise the BODIPY 90 and 91 involved the one-pot 

condensation of an acid chloride with two equivalents of the pyrrole 43 as shown in 

Scheme 2.4.   
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Scheme 2.4 

 

This reaction was repeated from Landrum‟s thesis.
76

 Initial attempts to synthesise 90 

began by using benzoyl chloride. This was successfully achieved using two equivalent 

of 2,4-dimethylpyrrole, Et3N, and three equivalent BF3
.
OEt2 base reagent. However, 

this reaction was very inefficient giving only 1 % isolated yield of the desired 

BODIPY 90. The presence of the BODIPY molecule was confirmed by the 
1
H NMR 

spectrum from the appearance of two peaks corresponding to the aryl group and the 

CH groups (1.56 ppm, 6H; 1.37 ppm, 6H) and the seven protons (7.56-7.43 ppm, 3H; 
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7.28 ppm, 2H; 5.98 ppm, 2H). This data agrees with that reported by Landrum 

(Scheme 2.4). 

 

Repeating the same method, BODIPY 91 was successfully isolated, albeit in only 7 % 

isolated yield initially. Analysis of 91 by 
1
H NMR spectroscopy recorded four methyl 

groups (2.57 ppm, 6H; 1.36 ppm, 6H) and six protons (8.42 ppm, 2H; 7.58 ppm, 2H; 

6.02 ppm, 2H). 

 

Although low yielding, the successful isolation of the product was encouraging. The 

attempts to use of other substituent which might afford the desired compound 2 

contains a photo benzophenone label. Following the same one-pot procedure, we 

expected 4-benzoyphenyl acid chloride 92 to react with 2,4-dimethylpyrrole 43. 

Unfortunately, no product could be detected by GC-MS or 
1
H NMR. The reasons for 

this are not obvious (Scheme 2.5). 
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2.3.2 Two step process 

Due to the low isolated yield of the final BODIPY product 90 and 91, the procedure 

was modified to a two-step process that has been previously described in the 
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literature.
77

 This involved the reaction of the acyl chlorides C with the magnesium 

salt of pyrrole 43, to afford 2-ketopyrroles F in 67-84 % yield, Scheme 2.6. Evidence 

for the formation of 95 was seen by the presence of a singlet in the 
1
H NMR spectrum 

at 9.24 ppm (1H, s) and two further singlets at 2.31 ppm (3H, s) and 1.93 ppm (3H, s) 

corresponding to an NH group and two methyl groups, respectively. In addition a 

signal due to a carbonyl carbon could be seen in the 
13

C NMR spectrum at 185.4 ppm. 

From the IR spectrum, a peak at 3266 cm
-1 

indicated that an N-H group peak is 

present. Structurally similar compounds 96 and 45 have similar 
1
H NMR data to 95 

described above. 
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Scheme 2.6 

 

The intermediate symmetrical dipyrromethenes D were then obtained through 

condensation with pyrrole 43 in the presence of POCl3, Scheme 2.8. The reaction 

mechanism is shown in Scheme 2.7. 
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The isolated yields of dipyrromethenes are a compromise between their acidity and 

stability. Burghart et al. has described the isolation of the intermediate 

dipyrromethenes process as best done using a deactivated alumina column rather than 

silica gel.
78

 Following this idea, alumina oxide based column purification increased 

the yield from the 10 % obtained using silica gel to 80 % yield. The intermediate 88 

was confirmed by the appearance of a peak from the pyrrole NH at 11.96 ppm (1H, s) 

in the 
1
H NMR spectrum (Scheme 2.8).  
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In a final step, the dipyrromethenes were complexed with boron trifluoride by 

treatment with BF3
.
 OEt2 and triethylamine in dichloromethane. Following the 

reaction, the desired BODIPY dyes E can then be purified by flash column 

chromatography and crystallization. Repeating this two step process procedure gave 

91 in 56 % yield (2.57 ppm, 6H; 1.36 ppm, 6H), and 22 in 60 % yield (2.55 ppm, 6H; 

1.42 ppm, 6H) by 
1
H NMR spectrum (Scheme 2.9). 
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Scheme 2.9 

 

Whilst with this modification of the influence of reaction time, the reaction yield also 

improves with increasing concentration of the reagent and the temperature. The best 

method was found to involve the direct conversion to the target BODIPY without 

purification of the intermediate dipyrromethene E. Simply evaporation of the solvent 

with flowing argon before adding boron trifluoride diethyletherate and triethylamine 

proved to be sufficient. The conversion was complete within 30 min on heating at 80 

°C. As before, the best isolated yields (60 %) were obtained using alumina oxide 

chromatography instead of silica gel. 
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2.4 Synthesis of diazirine 

Having completed the synthesis of the BODIPY it was necessary to prepare the 

photocrosslinker partners. As discussed above in section 2.3 the trifluoromethyl 

phenyl diazirine B was selected as the optimal labelling regent. The following section 

will describe the synthetic approaches explored.  

 

Diazirine 70 previously has been reported,
79

 using a five step sequence starting with 

bromide 76, Scheme 2.10. Initial metalation of 76 with n-butyllithium and subsequent 

reaction with methyl trifluoroacetate gave ketone 84. Oxime 83 was obtained through 

reaction with hydroxylamine hydrochloride in the present of base and then protected 

with tosyl chloride to give the p-tolylsulfonyloxime 82. Reaction of 81 with ammonia 

then oxidation with silver oxide gives the desired probe 70 (Scheme 2.10).  
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Scheme 2.10 Synthesis of 3-(3-Methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine as reported by 

Baldwin.
76 

 

 

Following this literature procedure, starting from the commercially available, 

bromoanisole 76, metalation with n-butyllithium serves to form the carbanion. 
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Acylation of the resultant aryllithium with methyl trifluoroacetate then proceeded to 

give ketone 84 (Scheme 2.11). The synthetic crude product was purified by Kugelröhr 

distillation at 80 °C and 2 mbar. Analysis by GC-MS successfully detected the 

molecular ion at m/z 204 and 
19

F NMR spectroscopy revealed a characteristic peak at 

δ -71.18 and the IR spectrum showed an C=O stretch at 1710 cm
-1

 confirming 

formation of the trifluoromethyl ketone.  
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Scheme 2.11 

 

Importantly, if the reaction with n-butyllithium was left for a period of time exceeding 

two hours, a by-product 97 was observed. Analysis of the crude reaction mixture by 

GC EI
+
MS revealed a peak for butyl methoxybenzene 97 with m/z 164 (Scheme 2.12). 

Consequently, metalation with n-butyllithium needed to be tracked by TLC and the 

acylating agent added as soon as the halide starting material was consumed.  
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Ketone 84 was then converted to the corresponding oxime 83 by reaction with 

hydroxylamine in the presence of pyridine. The analysis of the product by 
1
H NMR 

spectroscopy revealed two signals for the OH group probably reflecting low 

interconversion between cis and trans oxime isomers at δ 8.86 and 9.08 ppm. Further 

evidence for the oxime was found in the both the IR spectrum, which showed a broad 

band consistent with the presence of an OH group at 3328 cm
-1

 together with that for 

an imine at 1576 cm
-1

, and the ES
-
MS which showed a molecular ion peak at m/z 219 

(Scheme 2.13).  
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Scheme 2.13 

 

Tosylation of the oxime with toluenesulfonyl chloride in the presence of pyridine 

proceeded smoothly to give tosyloxime 82 in high yield. Compound 82 was identified 

by 
1
H NMR spectroscopy which shows a peak for the tolyl methyl group at 2.48 ppm 

(3H, s). Further evidence included peaks in the 
19

F NMR spectra at δ -66.9, and 

ES
-
MS which showed a molecular ion peak at m/z 373 (Scheme 2.14).  
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The tosyloxime 82 was then converted to diaziridine 81 by reaction with liquid 

ammonia at -78 °C for 2 h. A reaction mechanism for this conversion is shown in 

Scheme 2.15. 
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Scheme 2.15 

 

Following a standard work up, the diaziridine 81 was isolated as a pale yellow oil. 

This was characterised by 
1
H NMR spectroscopy with peaks at 2.75 ppm (1H, s) and 

2.21 ppm (1H, s) being consistent with the two N-H protons. 
19

F NMR spectroscopy 

revealed a characteristic peak for the CF3 group at δ -75.45, and ES
-
MS showed a 

molecular ion with m/z 218 (Scheme 2.16). 
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Lastly, oxidation of 81 with silver oxide furnished diazirine 70. Successful conversion 

could be seen in the 
1
H NMR spectrum by the loss of the signal for the NH protons 

present in the starting material 81. This was supported by a different molecular ion in 

the ES
-
MS spectrum at m/z 216 (Scheme 2.17).  
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Scheme 2.17 

 

With the photoaffinity group now in hand, the borylation with bis(pinacolato)-diboron 

(B2Pin2) and then coupling with the BODIPY core could be investigated. This is 

described in the next section. 

 

2.5 Synthetic strategies for cross-coupling reactions  

With the successful synthesis of iodo-BODIPY 22, and meta trifluoromethyl diazirine 

70. Cross-coupling of these molecules could now be undertaken. BODIPY probe 1 

need to be converted to the corresponding boronic acid. To do this, several strategies 

were explored. The following sections describe each one in detail. 

 

2.5.1 Strategy 1 

Iridium-catalyzed arene borylation reactions allows the synthesis of boronates by 

cross-coupling of bis pinacolato diboron (B2Pin2) with C-H bonds. This has become 

an area of much activity with many recent developments. In particular, work in the 

group by Harrison who had successfully used a microwave heating to generate 
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arylboronates from the corresponding unfunctionalised aromatic C-H bond with high 

efficiency.
80

  

 

This method for generating aryl boron compounds can be highly regioselective. This 

selectivity is due to the steric bulk of substituents around the aromatic ring. For 

example, 1,3-disubstituted arenes undergo borylation at the meta position only, 

Scheme 2.18. 

 

R

R'

R

R'B
O

O

[Ir(OMe)COD]2
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yields 72-98%  

Scheme 2.18 

 

As a result it was our intention to utilise this approach to insert a boronate, meta to the 

diazirine group of 70. The active reagent was prepared in a stock solution containing 

1.0 mmol of bis pinacolato-diboron (B2Pin2, pin= O2C2Me4), 1.5 mol % of precatalyst 

[Ir(OMe)COD]2, and 3 mol % of 4,4‟-di-t-butyl-2,2‟-bipyridine (dtbpy). 

The first attempts to synthesise diazirine 98 began by the borylation of 70. However, 

under standard conditions, the reaction produced no product that could be detected by 

either GC-MS or 
1
H NMR with the bulk of the starting material being recovered. A 

possible reason might be that the diazirine moiety is inhibiting the iridium catalytic 

cycle (Scheme 2.19).  
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Scheme 2.19 

 

Due to the failure of diazirine 70 as the borylation substrate, we took one step 

backwards to explore diaziridine 81 as the boronate precursor (Scheme 2.20). 

Following the standard conditions, diaziridine 81 was borylated with microwave 

heating at 80 °C for 2 min. Analysis of the crude reaction by GCMS shows m/z 217 

and m/z 239, 1: 1.3 peak ratios, which are characteristic of the starting material 81, 

and B2pin2, respectively. It was thought that preferential coordination of the NH 

groups was inhibiting the reactivity of the Iridium catalyst.  
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Scheme 2.20 

 

Since the formation of boronate 90 from diaziridine 81 turned out to be incompatible 

with the borylation conditions, it was decided to examine the reaction with protecting 

groups on the nitrogen atoms which might prove more effective. On this basis 

trimethylsilyl chloride (TMSCl), trimethylsilyl trifluoromethanesulfonate (TMSOTf) 

and di-tert-butyl dicarbonate (Boc2O) group were considered as NH protecting 

groups.
81,82

 Both TMSCl and TMSOTf were tested in the same conditions with 

triethylamine in DCM at -78 °C to rt. The reaction process was monitored by 
1
H and 
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19
F NMR analysis. In this 0.1 mL samples were taken from the reaction mixtures and 

concentrated in vacuum and analysed. After one day, starting material still remained 

in the reaction mixture with unknown by-products, and no evidence of the desired 

product (Scheme 2.21).  
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Scheme 2.21 

 

Furthermore, reaction of diaziridine 81 with Boc2O was examined with 1equiv DIPEA 

(diisopropylethylamine) at room temperature. After three days stirring, analysis by 
1
H 

NMR spectroscopy, 
19

F NMR spectroscopy and GCMS only revealed a mixture of 

starting materials and unknown side products. Increasing the number of DIPEA 

equivalents and using longer reaction times were also unsuccessful. As a result of 

these disappointing results protection studies were discontinued (Scheme 2.22). 

 

Boc2O

OMe

F3C N

N

O

O

O

ODMAP

OMe

F3C NH

NH

81 101  

Scheme 2.22 
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As none of the attempted borylation reactions were successful on 70 and 81 (see page 

40), 4-toluenesulfonyl oxime 82 was explored as the borylation precursor. Using the 

standard conditions as described above the synthesis of iridium-catalysed borylation 

was attempted, Scheme 2.23. An initial attempt to borylate at 80 °C for 10 min, saw 

only starting material by TLC. The reaction was continued for one more hour and 

heated up to 100 °C. Disappointingly, only starting material was detected by 
19

F NMR. 

The second experiment of this reaction was using microwave heating at 100 °C for 30 

min, the crude products were monitored by GCMS showing two peaks at m/z 373 and 

m/z 239 which are the starting materials 82 and B2Pin2 respectively. As a result of 

these difficulties, this borylation strategy was then discontinued.  
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Scheme 2.23 
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2.5.2 Strategy 2 

Since all attempts to borylate 70, 81 and 82 and to prepare protected variants of 

diaziridine 81 were unsuccessful, attention turned to introduction of the Bpin group at 

the start of the diazirine synthesis. Using the standard condition which have been 

described in the previous section, the synthesis of 103 was attempted (Scheme 2.24). 

 

[Ir(OMe)COD]2
. dtbpy

B2pin2

80 ℃, μW, MTBE 

(94%)

OMe

Br

Bpin

103

OMe

Br

76 30min.

 

Scheme 2.24 

 

The reaction was carried out with microwave heating at 80 ºC for 30 min and gave 

good isolated yield. Analysis of 103 by 
1
H NMR spectroscopy recorded the desired 

pinacolborane methyl group signals at δ 1.34 (12H, s), and m/z 313 shown by GC-MS. 

Although compound 103 has been synthesized previously in the Ishiyama group, 

heating at 80 ºC for 16 h in 73 % yield,
83

 Iridium catalyzed borylation with 

microwave heating took a shorter time and gave a better isolated yield.  

 

Having successfully synthesised 103 using microwave heated iridium-catalyzed 

borylation of 3-bromoanisole 76. Attention turned to modifying the metalation 

acylation steps to give ketone 104. Following the standard procedure as section 2.4 

(see page 35), the attempted metalation with n-butylithium with compound 103 was 

attempted (Scheme 2.25).  
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Scheme 2.25 Attempted synthesis of 104 from 103 

 

After 20 min. stirring with n-BuLi in THF at -78 ºC, the reaction mixture became very 

gummy, and was hard to stir. Due to this physical change, the reaction was difficult to 

track by TLC. After the standard work up, analysis of the crude reaction mixtures by 

GC-FID trace recorded a signal for the ketone 104 as shown by a molecular ion M/Z = 

330 in the ESMS spectrum at 17.5 min. However, this peak only integrated for 7 % in 

area percentage. The majority compound in the mixture was the starting material 

showing 60 % in area percentage, with the rest being unknown by-products. Overall 

this suggested that the nBuLi preferentially underwent nucleophilic attack on the Bpin 

ring, generating complex mixtures upon work up. 

 

Since reaction of n-butylithium with compound 103 appeared to lead to side reactions 

with the Bpin group, attention was drawn to the results from Jiang et al. They 

reported protection of arylboronates with lithium isopropoxide in a one-pot reaction.
84

 

These studies showed that the protected intermediate meta- and para-bromoboronates 

could undergo metal-halogen exchange with t-BuLi, Scheme 2.26. 
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Scheme 2.26 Protection of Boronates with Lithium Isopropoxide 

 

With the information from this research in hand a synthetic route was proposed. 

Firstly protection of boronate 103 will generate the desired complex 104 following 

literature procedure followed by further addition of n-BuLi and ethyl trifluoroacetate 

(Scheme 2.27). 
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Scheme 2.27 Attempted synthesis of 15 from 14 intermediate 

 

Compound 103 was treated with lithium isopropoxide to give anionic intermediate 

105. Following metal-halogen exchange with n-butyllithium ethyl trifluoroacetate was 

added.    Unfortunately, after andard aqueous workup, TLC and analysis by 
1
H 

NMR spectroscopy only revealed a mixture of starting materials. Presumably n-BuLi 

causes decomposition of the pinacolatoboronate intermediate.  
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2.5.3 Strategy 3 

From the previous section, although we successfully introduced a boronic acid moiety 

to 103 (see page 43), it was not possible to achieve the halogen lithium exchange even 

with lithium isopropoxide protection of the boronate. Consequently, the order of 

events was reversed and borylation of ketone 84 was investigated.  

This synthesis summarized in Table 2.1 shows the reaction carried out under 

microwave heating at 80 °C for various times and equivalents of B2Pin2. On following 

different reaction condition, after microwave borylation, crude products were 

monitored by GC-MS and got various results (Scheme 2.28 and Table 2.1). As a result 

the most useful analytical technique was determined to be GC-MS. Although this 

technique did not provide accurate information regarding the product percentage it did 

confirm some characteristic peak of 84, 104, 106, and 107. Overall all compounds 

purification proved difficult because of the similarity of the physical properties of the 

isomers. 

OMe

F3C O

Bpin OMe

F3C

Bpin

+

OH

104 106

OMe

F3C O

84

OMe

F3C

Bpin

107 108

OMe

F3C

+ +

OHO
Bpin

Scheme 2.28 

Entry 
B2Pin2 

eq 
Time 

Temp. 

(°C) 
104 106 107 108 84 

1 1 1h 80 12% 
b
 87% 

b
 (66%) 

a
 nd

 b
 <1%

 b
 nd

 b
 

2 1 15min 80 45%
 b

 (8%) 
a
 34% 

b
 (60%) 

a
 7%

 b
 <1%

 b
 nd

 b
 

3 1 5min 80 34% 
b
 47%

 b
 8%

 b
 <1%

 b
 nd

 b
 

4 0.5 5min 80 88%
 b

 (35%)
 a
 7%

 b
 (41%) 

a
 <1%

 b
 <1%

 b
 <1%

 b
 

5 0.5 1min 80 72%
 b

 (45%) 
a
 10%

 b
 (34%) 

a
 5%

 b
 2%

 b
 11%

 b
 

6 0.5 1min 80 47%
 b

 (29%) 
a
 22%

 b
 (38%)

 a
 6%

 b
 1%

 b
 19%

 b
 

a
 Purified isolated yield. 

b
 determined by GC-MS analysis of crude product. nd: not detected. 

 

Table 2.1 Comparison of Microwave Borylation with different time and eq.  
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Initial attempts used 1 eq of B2Pin2 for 1 hour microwave heating at 80 °C. Although 

conversion of Bpin was good, reduction of ketone occurred to give a mixture of 106 

and 108 (Entry 1). The formation of 106 was suggested by GC-MS which showed a 

peak with a molecule ion at m/z 332. 
1
H NMR provided quintet at δ 5.04 – 4.97 (1H) 

and doublet at δ 2.55 (1H) attributed to the secondary alcohol moiety. In addition 

analysis of the 
11

B NMR and 
19

F NMR spectra showed peaks at 6.87 and -78.07 ppm 

respectively consistent with the proposed structure. 

 

Next attempts were made to reduce the reaction time also with 1 eq of B2Pin2. This 

produced the desire product 104 albeit in low yield (Entry2 and 3). Evidence for 

arylboronate 104 was obtained from the 
1
H NMR spectrum which revealed the 

presence of the pinacol methyl group signals at δ 1.37 (12H, s), and 180.8 (CF3CO, q) 

for the carbonyl carbon group. GC-MS showing a molecule ion m/z 330. The 

proposed 107 and 108 showed m/z 458 and m/z 206, respectively.  

 

Reducing the B2Pin2 loading to only half equivalent lead to increased yields of the 

desired ketone 104 (Entry 4). However isolated yields 104 did not equate to those 

identified from GC-MS analysis. 

In addition to this work it has also been shown that reducing the reaction time to 1 

min. microwave heating prevent less reduction of ketone (Entry 5). However, 

attempts to reproduce these conditions were not successful and further work is still 

needed (Entry 6).  

 

Analysis of 84, and 104 by 
19

F NMR spectroscopy proved difficult as these have very 

similar chemical shifts (Figure 2.1). 
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 Figure 2.1 
19

F NMR spectrum of compound 84, 104 and 106 

 

In summary these borylation, reactions lead to a complex mixture of products being 

observed by GC-MS and 
19

 F NMR. Although reduction of the microwave heating 

time gave better selectivities, incomplete conversion of the starting material and 

reduction of ketone still occurred. Several factors are proposed to lead to the 

formation of alcohol. Most notably the HBpin generated during C-H borylation of 

arenes could potentially react to reducing the carbonyl group.  

 

In attempts to avoid completing reduction of the ketone during the borylation reaction 

with ketone, a secondary sacrificial carbonyl compound was added to the reaction 

mixture. Acetone was selected as a suitable trial additive. In order to evaluate the 

effect of acetone, three reactions containing different equivalents of acetone were 

explored using the conditions described below in Table 2.2.  
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Entry Dry acetone 

(eq) 

B2Pin2 

(eq) 

Time 

(min) 

Temperature 

(°C) μw 

19
 F NMR ratio 

84 104 106 

1 0 1 1 80 1 1.5 23 

2 5 1 1 80 1 1.25 0.5 

3 20 1 1 80 1 0.4 0.3 

Table 2.2 

Figure 2.2 The ratio between Starting material 84 and ketone 104. 

 

Analysis of these three different crude reaction mixtures by 
19

F NMR spectroscopy 

using signals for the starting material 84 at -71.16 ppm, product 104 at -71.18 ppm, 

and peaks for the formation of many side products (-78.07, -78.09, -78.10, -78.12, 

-78.15, -78.17, -78.20, -78.22) revealed that although increasing the acetone 

equivalents led to lower ratios of reduced product to the desired ketone 104 this 

accompanied by lower conversions and increased amounts of unknown side-products. 

Therefore this approach was abandoned (Figure 2.2).  

 

Due to difficulties in obtaining a good quality yield of ketone 104, we tried to oxidize 

alcohol 16 back to ketone 15 with various oxidation reagents. Previous reports in 

literature have highlighted the use of iodoxybenzoic acid (IBX) for oxidation of 

alcohols.
85,86

 However, on carrying out the reaction with 1.5 equivalents of IBX in 
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DMSO, alcohol 106 was not oxidized fully. It was thought that due to the mild 

oxidant, and the deactivating functional group was not compatible with its use. 

However, subsequent attempts using manganese dioxide (MnO2) as an oxidizing 

agent in DCM, stirred for 3 days in room temperature, successfully formed 104 in 40 

% isolated yield. Upon investigation of the data it could be seen from the 
1
H NMR 

spectrum that there were no alcohol protons present. Furthermore, MS analysis 

confirmed the product had the expected molecular mass of 330 (Scheme 2.29).  

 

OMe
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Scheme 2.29 

 

Disappointingly whilst oxidation of alcohol was successfully synthesized twice, 

further attempts to repeat the synthesis were unsuccessful. The reasons for this are not 

currently known. Potentially this was because an impurity in the crude alcohol 16 

with unknown decomposition pathways complicates the process. 

 

 

 

 

 

 

 

 

 



52 

 

2.5.4 Strategy 4 

Previous results have shown that borylation of ketone 84 cause reductions to alcohol 

and many other side products. Moreover yields were not consistent due to product 

decomposition or other unknown issues. As a result these methods were not 

sufficiently robust for the preparation of compounds that we needed as starting points 

for a 5 step synthesis. With this as a stumbling block in our synthetic path we 

undertook an re-investigation of the requirement for palladium-catalysed 

cross-coupling reaction. Since an aryl bromide halogen is required, we proposed 

bromination of diazirine 70. The following experiments exploring bromination with 

bromine and N-bromosuccinimide (NBS) were attempted to synthesise suitably 

modified diaziridines. 

In a recent report by Moloney et al, the bromination of 70 to give a separable 3.2: 1 

mixture of isomeric bromides in an overall yield of 55 % was described.
87

 

 

OMe

TiCl4, Br2

CH2Cl2

F3C

N

N

OMe

F3C

N
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Scheme 2.30 

 

It was our intention to utilise this procedure to provide isomeric 109 with the 

bromides. Hopefully, bromine would only insert on para position to the diazirine 

group. Using similar conditions to that described above, diazirine 70 was dissolved in 

DCM, and bromine (1.2 eq) added. This mixture was stirred for three days at room 

temperature, to afford a separable 1:1.8 mixture of mono and di substitute bromides 

110 and 111 in 22 % and 28 % isolated yield after purification by chromatography, 
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scheme 2.31. The brominated position of 3-methoxy diazirine 110 (GC-MS m/z 

294/296) was defined using NOESY correlations derived from the methoxy group. 

Ultimately, 
1
H NMR spectroscopy enabled the aromatic proton signals to be defined 

as δ7.49 (1H, d), δ7.13 (1H, d), δ6.86 (1H, dd) consistent with the proposed 

substitution pattern. The other di-substituted compound 111 showed peaks at δ7.55 

(1H, d), δ6.86 (1H, d) in the 
1
H NMR spectroscopy, and m/z 372/374/376 shown by 

GC-MS (Scheme 2.31). 
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Scheme 2.31 

 

Due to the undesired ortho-selective monobromination and di-substrate bromination, 

a less reactive brominating reagent (NBS) was then explored. Under similar reaction 

conditions, 70 was treated with NBS in refluxing MeCN at 95 °C for 3 days and gave 

a mixture of isomeric bromides 110 and 109 in 6.3 % and 11 % isolated yield, 

respectively. The regiochemical assignment for each of these was determined by 
1
H 

NMR and 
19

F NMR spectroscopy. Diazirine 110 was characterised by 
1
H NMR 

spectroscopy at 7.49 ppm (1H, d) 7.13 ppm (1H, d) and 6.86 ppm (1H, dd) revealing 

aromatic protons. 
19

F NMR spectroscopy revealed a characteristic peak at δ -68.25, 

and ES
-
MS showed with m/z 294/296. Diazirine 109 was characterised by 

1
H NMR 

spectroscopy at 7.62 ppm (1H, d) 7.17 ppm (1H, d) and 7.00 ppm (1H, dd) revealing 

aromatic protons. 
19

F NMR spectroscopy revealed a characteristic peak at δ -73.18, 

and ES
-
MS showed a molecule ion m/z 294/296 (Scheme 2.32). 
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Scheme 2.32 

 

 

2.5.5 Strategy 5 

The primary goal of the project was to borylate or brominate m-position of the 

trifluoromethyl diazirine. However, as covered in the previous sections, this led to 

many unsuccessful experiments. Therefore, we change the routes to p-trifluoromethyl 

diazirine. With one exception, following the same procedure as described above, we 

successfully synthesised diazirine 117 (Scheme 2.33). 
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Scheme 2.33 
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The differences came in the synthesis of para-methoxyphenyl tosyloxime 115 which 

contrasts with the method used in the preparation of tosyloxime 82. A report by 

Hatanaka et al. describing the preparation of oxime 114 at 0 °C while adding 

p-toluenesulfonyl chloride.
88 

Following the procedure, it was successfully isolated 

115 in 89 % yield. Analysis by 
1
H NMR spectroscopy confirmed the methyl groups 

from tosylate groups at 2.48 ppm (3H, s) and δ -65.98 by 
19

F NMR spectroscopy. 

ES
-
MS showed a molecular ion with m/z 373 (Scheme 2.34).  
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Scheme 2.34 

 

In the last section whilst bromination had been possible it was not selective. 

Consequently we turned to p-methoxy substituted trifluoromethyl diazirine as this is 

symmetrical thus removing selectivity problems. Bittman and Li have examined the 

facile bromination of 4-methoxytrifluoroacetophenone 113 using bromine and 

mercury oxide (Scheme 2.35). 
89
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Scheme 2.35 
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Hence, it was interesting attempt to brominate 117 using the above conditions without 

the mercury oxide. This diazirine could be made in an analogous way as was used for 

70, Scheme 2.31 and 2.32. Attempts were then made to borylate and brominate 

diazirine 117 using, in turn, B2Pin2, bromine and NBS. However, a complex mixture 

of products was formed which were very difficult to separate and identify. 

 

F3C N

N

NBS, MeCN
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B2Pin2
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Scheme 2.36 

 

Similar outcomes were had for the attempted borylation reaction and we took one step 

backwards to use diaziridine 116 as the borylation and bromination precursor. Using 

the same condition as described previously, Scheme 2.37. However, this also failed to 

give the desired product, with only a mixture of decomposition products of starting 

material being seen. 

 
F3C NH
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Scheme 2.37 

 

Due to the failed use of diazirine 116, a final attempt was made brominate the para 

trifluoromethyl ketone 113. Unfortunately, no product was detected by GC-MS, and 



57 

 

19
F NMR spectrum shows several unidentifiable peaks. Ultimately, this approach was 

discontinued and abandoned.  
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Scheme 2.38 

 

 

2.6 Palladium-catalysed cross coupling reactions 

The initial goals of the project were to synthesise a photoaffinity labelling for 

biological use. Due to many unsuccessful reactions of the borylation and bromination 

synthesise on diazirine photoaffinity probes, we decided to explore the cross-coupling 

with a commercial available compound, 4-benzoylphenyl boronic acid. A similar 

reaction had been described by Wan et al. who had reported the cross coupling of 6 

position iodo-BODIPY 121 with anthracenyl boronic acid 122 (Scheme 2.39).
90
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Scheme 2.39 

 

As a result it was our intention to utilise this approach to the palladium-catalysed 

cross coupling between organoboronic acid and halides moieties. Following this 

report model studies were undertaken to assess the application of this reaction. 
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BODIPY 22 and 4-benzoylphenylboronic acid 123 with catalyst [Pd (PPh3)4] were 

heated reflux in 2M Na2CO3 and toluene/ethanol in 2:1 ratio for five hours. Following 

a standard work up, the crude reaction was purified by aluminium oxide 

chromatography because the BODPY frameworks are not stable to silica gel. 

Although this gave a reasonable yield in 70 %, a mixture of impurity still remained 

requiring further purified with chromatography and single-solvent recrystallization 

from methanol. The product 3 was confirmed by the appearance of a peak from 

GC-MS m/z 504 and from IR data, a band at 1650 cm
-1 

consistent with the presence of 

a C=O group (Scheme 2.40). 

 

I

N
B

N

F F N
B

N

F F

O

O

(OH)2B

+

cat. [Pd(PPh3)4]
2M Na2CO3,
2:1 MePh/EtOH
reflux, 2h

22 3123
 

Scheme 2.40 

 

Given the difficulties in the purification step, an alternative approach needs 

investigated in any future study. Whilst this represent a BODIPY treated to a PAL 

group the difficulties in synthesis and purification has meant that it has not yet been 

tested in biology. 
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3 CONCLUSION AND FUTURE WORK 

 

3.1 Conclusion 

This aim of this project was to design a BODIPY fluorescent probe coupled to 

photoaffinity labelling group for use in exploring the localization of BODIPY dyes in 

the peroxisome of a plant cell. Towards this end, this thesis described several 

strategies that lead to the synthesis of BODIPY fluors and photoaffinity agents. 

 

In respect to BODIPY synthesis, the dipyrromethene precursor D could be readily 

prepared through condensation of pyrrole with ketopyrrole C. The optimal method for 

the formation of the BODIPY proved to be treatement with BF3
.
OEt2 and 

triethylamine in a neat reaction. Finally, purification use alumina oxide 

chromatography instead of silica-gel, enhances the isolated yield. Using this approach 

BODIPY E could be prepared in good yield. 

 

Although para- and meta-methoxybenzene substituted trifluoromethyl diazirine 70 

and 117 were successfully synthesised using a 5-step synthetic route from the 

literature, further attempts to elaborate the functionality in the benzene ring proved 

difficult. Whereas functionalisation of the benzene ring of these diazirine compounds 

as well as the intermediates at the various stages of the 5-step synthetic route using 

C-H borylation was unsuccessful functionalisation using Br2 or NBS did work but 

suffered from poor selectivity.  

 

As a result of difficulty in synthesising in boronates aromatic diazirine series, we 

decided to explore coupling of BODIPY 3 with a commercially available reagent, 

4-benzoylphenylboronic acid. This coupling to a BODIPY dye to give conjugate 
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probe 3 was successfully achieved. Final purification was challenging and remains to 

be completed. 
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3.2 Future work 

Following these studies, several possible alternative strategies that we have not used 

for the synthesis of photoaffinity probe remain to be explored. For example: 

protection of the ketone 84 before borylation reaction, or the use of t-BuLi for the 

metalation of 103 after protection with lithium isopropoxide. However, this research 

has led to the synthesis of a potential BODIPY photoaffinity probe 3. The 

development of photoaffinity labelling is suitable for the analysis of specific organelle 

within cells. We plan to incubate the fluorescent label into plant cells and identify 

peroxisomes. There is a variety of future challenges that require further investigations 

in use of bio-imaging. 
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4 PROCEDURE 

General Experimental 

All sensitive reactions were performed in oven-dried glassware under an inert 

atmosphere of argon unless otherwise stated. 

 

Solvents 

All solvents were obtained dried as per standard procedures within the department and 

stored under argon before use. In cases where mixtures of solvents were used, the 

ratios refer to the component volumes.  

 

Reagents 

Reagents were used as supplied unless otherwise stated. 

 

Melting points 

Melting points were determined using Thermo scientific Electrothermal Digital 

Melting Point Apparatus (IA9100).  

 

IR Spectroscopy 

Infrared spectra were recorded using a Diamond ATR (attenuated total reflection) 

accessory (Golden Gate) on a Perkin-Elmer FT-IR 1000 spectrometer.  

 

Chromatography 

Reactions were monitored using thin layer chromatography (TLC) on aluminium or 

glass backed sheets of silica gel 60 F250 and aluminium backed sheets of aluminium 

oxide plates (0.2mm layer, N/UV250). Materials were visualized by UV radiation at 

254nm, by development in potassium permanganate, in aqueous sodium carbonate, or 
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in phosphomolybdic acid in ethanol. Purification of products was performed by flash 

column chromatography using normal phase silica gel 40-63u 60Å  or aluminium 

oxide. 

 

NMR Spectroscopy 

1
H and 

13
C NMR spectra were acquired in CDCl3, unless otherwise stated, on Varian 

Mercury-200, Bruker Avance-400, Varian Inova-500 or a Varian VNMRS 700, and 

reported as follows: chemical shift δ (ppm) (number of protons, multiplicity, coupling 

constant J (Hz), assignment). The residual protic solvent was used as the internal 

reference (CHCl3 δH = 7.26 ppm; δc = 77.0 ppm). 
19

F NMR spectra were recorded at 

376 MHz on Varian VCR-400. All chemical shifts are quoted in parts per million 

relative to the internal reference and coupling constants given in Hertz (Hz). 

Assignment and determination of stereochemistry were performed using NOESY, 

COSY, HSQC and HMBC experiments.  

 

Mass Spectrometry 

Electrospray mass spectra (ES) were obtained on a Micromass LCT mass 

spectrometer. Gas Chromatography Mass spectra (GC-MS:EI, Cl) were taken using a 

Thermo-Finnigan Trace within a 25 cm column connected to a VG Mass Lab Trio 

1000. High resolution accurate mass measurement was performed on a LTQFT mass 

spectrometer (Thermo Finnigan Corporation) using flow-injection electrospray 

ionization at the Universtiy of Durham. 
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General Procedure  

 

2-benzoyl-3,5-dimethyl pyrrol, 95  

 

O
H
N1'

2

3 4

5

5'
4'

3'
2'

6'
 

 

A solution of 2,4-dimethylpyrrole (0.36 mL, 3.55 mmol) and CH3MgBr 3M in ether 

(0.41 mL, 1.19 mmol) was refluxed 50 ºC for 30 min. Benzoyl chloride (0.41 mL, 

3.55 mmol) in ether was added to the solution and stirring was continued for 24 h at rt. 

The mixture was then poured into saturated aqueous NH4Cl, and the resultant mixture 

extracted with CH2Cl2. The organic layer was washed with water, dried over MgSO4 

and concentrated under vacuum to give an yellow oil. The compound was purified by 

chromatography, eluting with EtOAc/DCM (5-10 %), to furnish the title ketone as a 

yellowish solid (0.59 g, 84 %); mp 107-110 ºC; Rf 0.58 (10 % EtOAc/DCM); υmax 

3266 (NH), 2363, 1682 (C=O), 1564, 1430, 1278, 1095, 1004, 930, 800, 740, 700, 

650, 600, 525 cm
-1

; δH (700 MHz, CDCl3) 9.24 (1H, br s, NH), 7.61 (2H, d, J = 1.4, 

2‟-H and 6‟-H), 7.50 (1H, t, J = 7.5, 4‟-H), 7.44 (2H, t, J = 7.5, 3‟-H and 5‟-H), 5.88 

(1H, s, 4-H), 2.31 (3H, s, 3-CH3), 1.93 (3H, s, 5- CH3); δC (176 MHz, CDCl3) 185.4 

(C=O), 139.8 (C-3), 130.9 (C-5), 130.1 (C-Ar), 128.4 (C-2), 128.2 (C-Ar), 128.1 

(C-Ar), 127.6 (C-Ar), 113.2 (C-4), 14.0 (3-CH3), 13.2 (5-CH3); m/z (ES
+
) 199.2 

[M+H]
+
. 
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2-(4’-iodobenzoyl)-3,5-dimethylpyrrole, 45 
 

 

O
H
N1'

2

3 4

5

I

2'
3'

5'
6'

 

 

Following the same procedure as described for 95, 2,4-dimethylpyrrole (1.9 mL, 

18.76 mmol), CH3MgBr 3M (2.2 mL, 6.25 mmol) in ether (5 mL), and 4-iodobenzoyl 

chloride (5 g, 18.76 mmol) in ether (35 mL), where used to provide, following 

purification by trituation in 20 % Hexane/ DCM the title ketone 45 (4.96 g, 81 %) as a 

white yellowish solid. Then the remaining mix compound was isolated again by 

chromatography on a silica gel flash column (30 % Hexane/EtOAc) to furnish a white 

solid (0.47 g, 8 %); mp 158-159 ºC; Rf 0.6 (30 % Hexane/EtOAc); υmax 3550, 3448, 

3260 (NH), 2912, 2380, 2338, 1734 (C=O), 1687, 1654, 1630, 1494, 1438, 1374, 

1290, 1056, 1010, 928, 836, 812, 759, 646, 500 cm
-1

; δH (400 MHz, CDCl3) 9.03 (1H, 

br s, NH), 7.80 (2H, d, J = 8.4, 2‟-H and 6‟-H ), 7.36 (2H, d, J = 8.4, 3‟-H and 5‟-H), 

5.87 (1H, s, 4-H), 2.29 (3H, s, 5-CH3), 1.94 (3H, s, 3-CH3); δC (176 MHz, CDCl3) 

184.5 (C=O), 139.4 (C-5), 137.4 (C-3), 135.9 (C-Ar), 130.7 (C-2), 129.8 (C-Ar), 

127.5 (C-Ar), 113.2 (C-Ar), 97.7 (C-4), 14.1 (5-CH3), 13.2 (3-CH3); m/z (ES
+
) 325 

[M+H]
+
. 
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2-(4’-nitrobenzoyl)-3,5-dimethylpyrrole, 96 

 

O
H
N1'

2

3 4

5

O2N

2'
3'

5'
6'

 

 

Following the same procedure as describe for 95, 4-nitrobenzoyl chloride (1 g, 5.39 

mmol) in ether, 2,4-dimethypyrrole (0.5 mL, 5.39 mmol) and CH3MgBr 3M ( 0.6 g, 

1.80 mmol) in ether where used to provide, following purification, by recrystallizing 

three times with Hexane/DCM to give an yellow solid (0.88 g, 67 %); mp 157-160 ºC; 

Rf 0.25 (20 % Hexane/EtOAc); υmax 3271 (N-H), 3114, 2922, 2848, 1708 (C=O), 

1576, 1530, 1500, 1438, 1344, 1283, 1108, 1016, 931, 851, 803, 741, 506, 460 cm
-1

; 

δH (400 MHz, CDCl3) 9.17 (1H, s, NH), 8.33 – 8.30 (2H, m, AA‟ part of AA‟XX‟ 

system, 2‟-H and 6‟-H ), 7.78 – 7.73 (2H, m, XX‟ part of AA‟XX‟ system, 3‟-H and 

5‟-H), 5.91 (1H, s, 4-H), 2.33 (3H, s, 5-CH3), 1.85 (3H, s, 3-CH3); δC (101 MHz, 

CDCl3) 188.5, 145.9, 137.3, 131.2, 128.9, 123.7, 113.9, 110.2, 108.2, 76.0, 14.1, 13.2; 

m/z (ES
+
) 244 [M+H]

+
. 
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2-[(Z)-(3’,5’-dimethyl-2H-pyrrol-2’-ylidene)phenylmethyl]-3,5-dimethyl-1H-pyrr

ole, 88
 
 

 

NH N

3'

4'

5' 5
4

32

11'

2'

2''

3''

4''

5''

6''

 

 

To a solution of pyrrole 95 (0.3 g, 1.51 mmol) in hexane (5 mL) and DCM (2.5 mL) at 

0 ºC was added 2,4 dimethylpyrrole (0.15 mL, 1.51 mmol) and then phosphorus 

oxychloride (0.14 mL, 1.51 mmol). Stirring was continued for 24 h at rt. The mixture 

was then treated successively with NEt3 (0.2 mL, 1.51 mmol), and water (30 mL) and 

then extracted with CH2Cl2. The combined organic extracts were then dried over 

MgSO4 and concentrated. The crude product was purified by flash chromatography 

eluting first with 50 % EtOAc/Acetone to remove by-products and then with 20 % 

DCM/MeOH to give the title pyrrole (88) as an orange-brown solid (0.35 g, 83.5 %); 

mp 86-90 ºC; υmax 1521 (NH), 1418, 1355, 1137, 962, 899, 824, 715, 622 cm
-1

; δH 

(400 MHz, CDCl3) 11.96 (1H, s, N-H), 7.59 (1H, t, J = 7.5, Ar-H), 7.49 (2H, t, J = 7.5, 

7.0, Ar-H), 7.30 (2H, d, J = 7.0, Ar-H), 6.19 (2H, s, 4‟-H and 4-H), 2.69 (6H, s, 

5‟-CH3 and 5-CH3), 1.40 (6H, s, 3‟-CH3 and 3-CH3); δC (126 MHz, CDCl3) 154.4 

(C-5‟ and C-5), 145.4 (C-3‟ and C-3), 136.8 (C-1‟‟), 131.3 (C-2‟ and C-2), 129.7 

(C-Ar), 129.6 (C-Ar), 129.4 (C-Ar), 129.3 (C-Ar), 129.9 (C-Ar), 121.2 (C-4‟ and C-4), 

51.1 (5‟-CH3 and 5-CH3), 15.0 (3‟-CH3 and 3-CH3); m/z (ES
+
) 276 [M+H]

+
. 
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2-[(Z)-(3’,5’-dimethyl-2H-pyrrol-2’-ylidene)(4’’-iodophenyl)methyl]-3,5-dimethyl

-1H-pyrrole, 46  

 

NH N

3'

4'

5' 5
4

32

11'

2'

2''

3''
4''

5''

6''

I

 

 

Following the same procedure as describe for 88, pyrrole 45 (0.36 g, 1.11 mmol) in 

hexane (20 mL) and DCM (2.6 mL), 2,4 dimethylpyrrole (0.10 mL, 1.11 mmol), 

phosphorus oxychloride (0.17 mL, 1.11 mmol) and NEt3 (0.15 mL, 1.11 mmol) where 

used to provide the title compound 46 following purification by flash chromatography 

eluting first with 50 % EtOAc/Acetone to remove by-products and then with 20 % 

DCM/MeOH to give an orange-brown solid (0.22 g, 50 %); mp 109-111 ºC; υmax 

1540 (N-H), 1410, 1328, 1138, 962, 893, 820, 673, 618 cm
-1

; δH (400 MHz, CDCl3) 

11.19 (1H, s, N-H), 7.78 (2H, d, J = 8.4, 4‟-H and 4-H), 7.06 (2H, d, J = 8.4, 2‟‟-H 

and 6‟‟-H), 5.90 (2H, s, 3‟‟-H and 5‟‟-H), 2.34 (6H, s, 5‟-CH3 and 5-CH3), 1.34 (6H, s, 

3‟-CH3 and 3-CH3); δC (126 MHz, CDCl3) 149.8, 144.2, 143.7, 138.6, 114.3, 113.0, 

105.3, 100.0, 57.2, 32.8, 10.0; m/z (ES
-
) 402 [M-H]

-
. 
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4,4-Difluoro-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene, 14 

 

N
B

N

F F

1

2

3 5

6

7
8

 

 

A solution of dipyrromethane 88 (100 mg, 0.36 mmol) in DCM (10 mL) was treated 

with triethylamine (0.15 mL, 1.09 mmol) and boron trifluoride diethyl etherate 

(BF3.OEt2)  (0.13 mL, 1.09 mmol). The mixture was stirred at 60 °C under argon for 

1h. The crude product was filtered through a plug of celite and then concentrated. 

Purification by silica gel chromatography (20 % Hexane/EtOAc) then gave the title 

BODIPY as an orange solid (85.9 mg, 73.4 %); mp 129-133 ºC; υmax 1542, 1502 

(B-F), 1304, 1192, 1185, 1063, 980, 812, 721, 541 cm
-1

; δH (400 MHz, CDCl3) 7.56 – 

7.43 (3H, m, Ar-H), 7.28 (2H, m, Ar-H), 5.98 (2H, s, 2-H and 6-H), 2.56 (6H, s, 

3-CH3 and 5-CH3), 1.37 (6H, s, 1-CH3 and 7-CH3); δC (101 MHz, CDCl3) 155.0, 

146.4, 142.3, 138.0, 129.8, 129.5, 129.1, 129.1, 128.9, 127.9, 127.8, 14.3, 14.3; m/z 

(ES
+
) 324 [M+H]

+
. 

 

 

 

 

 

 

 

 



69 

 

4,4-difluoro-1,3,5,7-tetramethyl-8-(4'-iodophenyl)-4-bora-3a,4a-diaza-s-indacene, 

22  

N
B

N

F F

1

2

3 5

6

7
8

I

3'

2'

5'

6'

4''

 

 

To a solution of pyrrole 45 (0.5 g, 1.54 mmol) in DCM (1 mL) was added 

2,4-dimethylpyrrole (0.14 g, 1.54 mmol) and phosphorus oxychloride (0.24 g, 1.54 

mmol). The mixture compound was heated up to 60 ºC for 30 min. After the 

compound turned dark red-purple colour. The reaction mixture was then concentrated 

and toluene (4 mL) added. The mixture was then treated with triethylamine (0.52 mL, 

3.73 mmol) and boron trifluoride diethyl etherate (0.46 mL, 3.73 mmol). The 

remaining mixture was heated 100 ºC for 30min. The crude product was then filtered 

through a plug of celite, and purified by chromatography on an deactivated basic 

alumina with 10-20 % Hexane/DCM to give the title BODIPY (22) as an orange solid 

(0.34 g, 60 %); mp 225-230 ºC; υmax 2968, 2928, 2854, 2374, 1650, 1536, 1512, 1466, 

1310, 1194, 1152, 1056, 1975, 830, 755, 692, 475 cm
-1

; δH (400 MHz, CDCl3) 7.87 – 

7.83 (2H, m, Ar-H), 7.07 – 7.03 (2H, m, Ar-H), 5.99 (2H, s, 2-H and 6-H), 2.55 (6H, s, 

3-CH3 and 5-CH3), 1.42 (6H, s, 1-CH3 and 7-CH3); δC (126 MHz, CDCl3) 156.1, 

143.2, 140.3, 138.6, 134.8, 131.4, 130.2, 121.7, 95.0, 14.9, 14.9; m/z (ES
+
) 450.0 

[M+H]
+
. 
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4,4-difluoro-1,3,5,7-tetramethyl-8-(4'-nitrophenyl)-4-bora-3a,4a-diaza-s-indacene, 

91 

 

N
B

N

F F

1

2

3 5

6

7
8

NO2

3'

2'

5'

6'

 

 

Following the same procedure as described for 22. Pyrrole 96 (0.79 g, 3.23 mmol) in 

DCM (2 mL), 2,4-dimethypyrrole (0.23 g, 3.23 mmol), phosphorus oxychloride (0.37 

g, 3.23 mmol), toluene (2 mL), triethylamine (0.85 mL, 6.07 mmol) and boron 

trifluoride diethyl etherate (0.75 mL, 6.07 mmol) was converted to the title BODIPY 

91. Following chromatography on silica gel using 5-30 % Hexane/ DCM the title 

BODIPY 91 was obtained as an orange solid (0.5 g, 56 %); mp 274-275 ºC; υmax 

3100, 2970, 2910, 2860, 2395, 1684, 1528, 1500, 1462, 1407, 1345, 1314, 1198, 1159, 

1102, 998, 992, 990, 986, 729, 478 cm
-1

; δH (400 MHz, CDCl3)  8.42 – 8.34 (2H, m, 

Ar-H), 7.58 – 7.50 (2H, m, Ar-H), 6.02 (2H, s, 2-H and 6-H), 2.57 (6H, s, 3-CH3 and 

5-CH3), 1.36 (6H, s, 1-CH3 and 7-CH3); δC (176 MHz, CDCl3) 156.7 (C-5 and C-3), 

148.3 (C-4‟) 142.5 (C-1 and C-7), 141.9 (C-8), 138.3 (C-1‟), 130.6 (C-1a and C-7a), 

129.6 (C-2‟ and C-6‟), 124.3 (C-3‟ and C-5‟), 121.8 (C-2 and C-6), 14.7 (3-CH3 and 

5-CH3), 14.63 (1-CH3 and 7-CH3); m/z (ES
+
) 370 [M+H]

+
. 

 

 

 

 



71 

 

2,2,2-Trifluoro-1-(3’-methoxyphenyl)ethanone, 84  

 

O

F3C O

4'
5'

6' 2'

1

2

3'

 

 

n BuLi (25 mL, 40.1 mmol) was added to a solution of 3 bromoanisole (5 g, 26.73 

mmol) in dry THF (10 mL) and the mixture was stirred at -78 ºC for 35 min. Ethyl 

trifluoroacetate (4.94 g, 34.75 mmol) in THF (10 mL) was then added dropwise over 

a period of 15 min to the solution. After the mixture had been stirred for an additional 

2 h at -78 ºC, a solution of conc. HCl (60 mL) in methanol (14 mL) was added. The 

resulting solution was extracted with ether, and the extracts were dried over MgSO4 

and concentrated. The residual oil was purified by Kugelrohr distillation (84 ºC, 3 

Torr) to give the title product (84) as light yellow oil (4.63 g, 85 %); υmax 2839, 1710 

(C=O), 1598, 1582, 1490, 1465, 1432, 1342, 1249, 1198, 1137, 1051, 978, 825, 752, 

734, 663, 613, 554 cm
-1

; δH (400 MHz, CDCl3)  7.66 (1H, ddd, J = 8.0, 2.4, 1.4, 6‟-H), 

7.57 (1H, t, J = 1.4, 2‟-H), 7.46 (1H, t, J = 8.0, 5‟-H), 7.27-7.24 (1H, ddd, J = 8.0, 2.4, 

1.4, 4‟-H ), 3.88 (3H, s, O-CH3); δC (126 MHz, CDCl3) 180.6 (q, 
2
JCF = 35.1 Hz, 

CCF3), 160.2 (C-3‟), 131.3 (C-1‟), 130.4 (C-5‟), 123.0 (q, J = 2.6 Hz, C-6‟), 122.6 

(C-4‟), 114.2 (d, J = 1.7 Hz, C-2‟), 116.8 (q, 
1
JCF = 291.2 Hz, CF3), 55.8 (OCH3); δF 

(376 MHz, CDCl3) -71.18 ppm; m/z (ES
+
) 204 [M+H]

+
. 
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2,2,2-trifluoro-1-(4’-methoxyphenyl) ethanone, 113  

 

F3C O

O

1

2

2'
1'

3'5'

6'

4'

 

 

Following the same procedure as described for 84. n BuLi (11 mL, 17.65 mmol), 

4-bromoanisole (2.2 g, 11.76 mmol) in THF (5 mL), ethyl trifluoroacetate (2.17 g, 

15.29 mmol) in THF (5 mL), conc. HCl (2 mL) in methanol (3 mL) where used to 

provide into the title compound 113 which was purified by chromatography (0-15 % 

Hexane/EtOAc) than give the title (113) product (1.3g, 53 %) as an yellow oil; Rf 0.47 

(10 % Hexane/EtOAc); υmax 2938, 1702 (C=O), 1598, 1514, 1462, 1428, 1317, 1270, 

1161, 1137, 1025, 938, 844, 768, 737, 648, 614 cm
-1

; δH (400 MHz, CDCl3)  8.06 

(2H, d, J = 8.5, 2‟-H and 6‟-H), 7.01 (2H, d, J = 8.5, 3‟-H and 5‟-H), 3.92 (3H, s, 

OCH3); δC (101 MHz, CDCl3) 178.9, 165.4, 132.8, 122.8, 118.4, 115.3, 114.4, 60.2, 

55.7; δF (376 MHz, CDCl3) -71.18 ppm; m/z (ES
+
) 204 [M+H]

+
. 
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2,2,2-Trifluoro-1-(3’-methoxyphenyl)ethanone oxime, 83 

 

O

F3C N

4'

5'

6' 2'

1

2

OH

3'

 

 

A solution of 84 (2.52 g, 12.34 mmol) and hydroxylamine hydrochloride (1.12 g, 

16.04 mmol) in pyridine (10 mL) and dry ethanol (5 mL) was refluxed at 85 ºC for 17 

h. The mixture was concentrated and the residue partitioned between water and Et2O. 

The organic layer was washed with 5N HCl (20 mL), dried over MgSO4, filtered, and 

concentrated in vacuo to afford the title oxime as a pale yellow oil which was not 

purified further (2.65 g, 98 %); Rf 0.75 (90 % DCM/EtOAc); υmax 3328, 3004, 2942, 

2846, 1576, 1492, 1244, 1132, 1008, 958, 846, 733, 704, 625, 544 cm
-1

; δH (400 MHz, 

CDCl3) 9.08 (0.4H, s, NO-H), 8.86 (0.6H, s, NO-H), 7.40 (0.6H, t, J = 8.3, 5‟-H), 

7.33 (0.4H, t, J = 8.3, 5‟-H), 7.09-6.99 (3H, m, 2‟-H, 4‟-H, 6‟-H), 3.83 (3H, s, CH3); 

δC (101 MHz, CDCl3) 159.47, 159.46, 159.45, 129.7, 129.5, 129.4, 127.2, 120.77, 

120.76, 120.74, 119.2, 116.2, 116.1, 114.3, 113.9, 55.38, 55.35; δF (376 MHz, CDCl3) 

-66.71 ppm; m/z (ES
-
) 219 [M-H]

-
. 
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2,2,2-Trifluoro-1-(4’-methoxyphenyl)ethanone oxime, 114 

 

F3C N
OH

2'

5'

6'

O

3'
4'

1
2

 

 

Following the same procedure as described for 83. A solution of 113 (1.12 g, 5.49 

mmol) and hydroxylamine hydrochloride (0.5 g, 7.14 mmol) in pyridine (5 mL) and 

ethanol (2 mL) was refluxed at 85 ºC for 5 h. The mixture was concentrated and the 

residue partitioned between water and Et2O. The organic layer was washed with 5N 

HCl (10 mL), dried over MgSO4, filtered, and concentrated in vacuo to afford oxime 

as a pale yellow oil which was not purified further (1.17 g, 97 %); Rf 0.74 (DCM); 

υmax 3260 (OH), 2840, 1608, 1515, 1463, 1443, 1340, 1293, 1254, 1208, 1174, 1128, 

1021, 1002, 954, 832, 746, 701, 670, 615 cm
-1

; δH (400 MHz, CDCl3) 8.62 (1H, broad 

m, OH), 7.55 (2H, d, J = 8.8 , 2‟-H, 6‟-H), 6.98 (2H, d, J = 8.8, 3‟-H, 5‟-H), 3.84 (3H, 

s, CH3); δC (101 MHz, CDCl3) 160.84, 148.52, 146.58, 146.26, 137.48, 130.45, 

129.88, 127.65, 124.28, 118.75, 113.88, 65.95, 55.29; δF (376 MHz, CDCl3) -66.02 

ppm; m/z (ES
-
) 220 [M-H]

-
. 
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2,2,2-Trifluoro-1-(3’-methoxyphenyl)-N-{[(4’’-methylphenyl)sulfonyl]-oxy}ethanimine, 

82  

 

O

F3C N
O

S

O

O

2'' 3''

6'' 5''
6'

5'

2'

4'

4''1''

3'

1'

 

 

Toluenesulfonyl chloride (3.5 g, 18.34 mmol) was added to a solution of 

2,2,2-trifluoro-1-ethanone oxime 83 (0.68 g, 12.23 mmol) in pyridine (23 mL) and the 

resulting solution was heated 125 ºC for 2 h. After cooling, the solvent was 

evaporated and the residue partitioned between Et2O, water and 5N HCl (50 mL). The 

organic layer was dried over MgSO4, and concentrated under vacuum is afford title 

compound 82 (4.39 g, 96 %) as a white solid that was sufficiently pure to use directly 

in the next step of the synthesis; mp 101-102 ºC; Rf 0.45 (toluene); υmax 1738, 1350, 

1234, 1043, 604 cm
-1

; δH (400 MHz, CDCl3) 7.88 (2H, d, J = 8.2, 2‟‟-H and 6‟‟-H), 

7.38 (3H, m, J = 8.2, 5‟-H, 3‟‟-H, 5‟‟-H), 7.05 (1H, ddd, J = 8.0, 2.5,0.8, 6‟-H), 6.94 

(1H, ddd, J = 8.0, 2.5, 0.8, 4‟-H), 6.88 (1H, t, J = 0.8, 2‟-H), 3.82 (3H, s, OCH3), 2.48 

(3H, s, 4‟‟-CH3); δC (101 MHz, CDCl3) 159.6 (C-3‟), 146.2 (C-4‟), 131.2 (C-Ar), 

130.0 (C-Ar), 129.9 (C-2‟, C-6‟), 129.3 (C-3‟, C-5‟), 125.7 (C-5‟), 120.5 (C-6‟), 117.2 

(C-4‟), 113.9 (C-2‟), 55.4 (OCH3), 21.8 (CH3); δF (376 MHz, CDCl3) -66.9 ppm; m/z 

(ES
-
) 373 [M-H]

-
. 
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2,2,2-Trifluoro-1-(4’-methoxyphenyl)-N-{[(4’’-methylphenyl)sulfonyl]-oxy}ethanimine, 

115  

 

F3C N
O

S

O

O

2'' 3''

6'' 5''
6'

5'

2'

4'

4''1''

3'

1'

O
 

  

p-Toluenesulfonyl chloride (1.05 g, 5.52 mmol) was added to a solution of oxime 114 

(1.1 g, 5.02 mmol), triethylamine (0.8 mL, 5.52 mmol) and DMAP (0.04 g, 0.3 mmol) 

in DCM (4 mL) at 0 ºC. The mixture reaction was then stirred at rt for 2 h. After this 

time the layer separated, mixture was washed with water, 5N HCl (3 mL) and DCM. 

Dried with MgSO4, filtered, and concentrated to give the title compound 115 (1.6 g, 

89 %) as a yellow solid. No purification was required. mp 113-114 ºC; Rf 0.43 (15 % 

Hexane/EtOAc); υmax 1605, 1511, 1450, 1390, 1343, 1300, 1257, 1192, 1176, 1138, 

1089, 1033, 1000, 892, 812, 777, 738, 714, 671, 746, 612 cm
-1

; δH (400 MHz, CDCl3) 

7.89 (2H, d, J = 8.5, 2‟‟-H and 6‟‟-H), 7.45 (2H, d, J = 8.9, 2‟-H, 6‟-H), 7.38 (2H, d, J 

= 8.5, 3‟‟-H, 5‟‟-H), 6.96 (2H, d, J = 8.9, 3‟-H, 5‟-H), 3.86 (3H, s, OCH3), 2.48 (3H, s, 

4‟‟-CH3); δC (101 MHz, CDCl3)
 
162.1, 146.0, 131.3, 130.7, 129.8, 129.3, 116.5, 

114.2, 55.4, 21.8; δF (376 MHz, CDCl3) -65.98 ppm; m/z (ES
-
) 373 [M-H]

-
. 
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3-(3’-Methoxyphenyl)-3-(trifluoromethyl)diaziridine, 81  

 

O

F3C NH

NH

2'

3'
4'

5'

6'

1
3

2

 

 

A solution of  

2,2,2-Trifluoro-1-(3-methoxyphenyl)-N-{[(4-methylphenyl)sulfonyl]-oxy}ethanimine 

(82) (4.0 g, 10.72 mmol) dissolved in dry CH2Cl2 (60 mL) was added to liquid 

ammonia (40 mL) at -78 ºC over a period of 20 min. The solution was stirred at -78 

ºC for 12 h and then warmed up to room temperature overnight during which period 

the ammonia was allowed to evaporate. The solution was filtered and filtrate between 

water and CH2Cl2. The organic layer was dried with MgSO4, filtered, and 

concentrated in vacuo. The resulting crude product was purified by flash 

chromatography (0-5 % CH2Cl2/EtOAc) to give the diaziridine 81 (2.23 g, 96 %) as a 

slightly yellow liquid; Rf 0.32 (DCM); υmax 3250 (N-H), 1582 (N-H), 1500, 1460, 

1390, 1328, 1286, 1246, 1217, 1136, 1044, 958, 922, 784, 715, 692, 645, 443 cm
-1

; δH 

(400 MHz, CDCl3) 7.34 (1H, t, J = 8.2, 5‟-H), 7.20 (1H, ddd, J = 8.2, 2.6, 0.97, 6‟-H), 

7.15 (1H, t, J = 0.97, 2‟-H), 6.98 (1H, ddd, J = 8.2, 2.6, 0.97, 4‟-H), 3.83 (3H, s, CH3), 

2.75 (1H, s, NH), 2.21 (1H, s, NH); δC (101 MHz, CDCl3) 159.7, 133.0, 129.9, 124.9, 

120.3, 115.8, 113.6, 57.8, 55.4; δF (376 MHz, CDCl3) -75.45 ppm; m/z (ES
-
) 218 

[M-H]
-
. 
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3-(4-Methoxyphenyl)-3-(trifluoromethyl)diaziridine, 116 

 

F3C NH

NH

O

2

3

6

5

1

4

 

 

Following the same procedure as describe for 81, a solution of 

2,2,2-Trifluoro-1-(4-methoxyphenyl)-N-{[(4-methylphenyl)sulfonyl]-oxy}ethanimine 

(115) (0.3 g, 0.80 mmol) in dry CH2Cl2 (10 mL), liquid ammonia (4 mL) where used 

to provide the title compound. Following the standard work up procedure, the 

diaziridine 116 (0.16 g, 93 %) as a white solid; mp 67 ºC; Rf 0.27 (15 % 

Hexane/EtOAc); υmax 3214, 3194, 1612, 1518, 1391, 1249, 1027, 952, 886, 836, 821, 

801, 733, 700, 592, 569, 528, 427 cm
-1

; δH (400 MHz, CDCl3) 7.54 (2H, d, J = 8.7, 

2-H, 6-H), 6.93 (2H, d, J = 8.7, 3-H, 5-H), 3.83 (3H, s, OCH3) 2.48 (1H, s, NH), 1.25 

(1H, s, NH); δC (101 MHz, CDCl3) 160.8, 130.2, 129.5, 123.7, 118.7, 114.9, 114.1, 

98.8, 55.4;
 
δF (376 MHz, CDCl3) -75.77; m/z (ES

+
) 218 [M+H]

+
. 
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3-(3-Methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine, 70  

 

O

F3C N

N
2

3

4

5

6

 

 

Ag2O (1.86 g, 8.02 mmol) was added to a solution of diaziridine 81 (0.5 g, 2.29 mmol) 

in dry Et2O (20 mL) and stirred at rt for 3.5 h. The dispersion was filtered and washed 

with Et2O, and dried over MgSO4. Evaporation of the solvent gave the pure diazirine 

70 (0.47 g, 95 %) of a colourless liquid; Rf 0.84 (95 % DCM/EtOAc); υmax 2938, 

1605, 1583, 1493, 1466, 1433, 1343, 1260, 1150, 1042, 996, 979, 964, 872, 821, 778, 

727, 690, 648 cm
-1

; δH (400 MHz, CDCl3) 7.31 (1H, t, J = 8.1, 5-H), 6.95 (1H, ddd, J 

= 8.1, 1.9, 0.7, 6-H), 6.78 (1H, ddd, J = 8.1, 1.9. 0.7, 4-H), 6.69 (1H, t, J = 0.7, 2-H), 

3.80 (3H, d, J = 7.3, CH3); δC (101 MHz, CDCl3) 159.8 (C-3), 130.5 (C-1), 130.0 

(C-5), 122.3 (q, 
1
JCF = 248.3 Hz, CF3), 118.7 (C-6), 115.2 (C-4), 112.2 (d, J = 1.4 Hz, 

C-2), 55.3 (CH3), 28.27 (m, 
2
JCF = 43.7 Hz, CCF3); δF (376 MHz, CDCl3) -65.26 ppm; 

m/z (ES
-
) 216 [M-H]

-
. 
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3-(4-Methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine, 117 

 

F3C N

N

2

3

4
5

6

O
 

 

Following the same procedure as describe for 117, Ag2O (1.4 g, 5.94 mmol), a 

solution of diaziridine 116 (0.32 g, 1.70 mmol) in dry Et2O (10 mL) where used to 

provide the title compound 117 as a yellow oil (0.31 g, 98 %); Rf 0.6 (15 % 

Hexane/EtOAc); υmax 2946, 2848, 1613, 1518, 1463, 1343, 1257, 1232, 1177, 1145, 

1054, 1032, 936, 823, 730, 593, 540, 402 cm
-1

; δH (400 MHz, CDCl3) 7.15 (2H, d, J = 

8.7, 2-H, 6-H), 6.90 (2H, d, J = 8.7, 3-H, 5-H), 3.81 (3H, s, OCH3); δC (101 MHz, 

CDCl3) 160.6, 128.8, 128.1, 123.6, 120.9, 120.9, 114.4, 113.5, 103.8, 55.4; δF (376 

MHz, CDCl3) -65.64 ppm; m/z (ES
-
) 216 [M-H]

-
. 
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3-(2’-bromo-5’-methoxy-phenyl)-3-trifluoromethyl-3H-diazirine, 110 

3-(2’,4’-dibromo-5’-methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine, 111 

O

F3C N

N
Br

O

F3C N

N

Br

Br6'

4'
3'

6'

3'5'

2'

5'

4'

2'

+

  

                110          111 

To a solution of 3-(3-Methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine, 70 (67 mg, 

0.31 mmol) in DCM (3 mL) at 0 ºC was added bromine (59 mg, 0.37 mmol). The 

mixture was stirred at rt for 24 h and then diluted with CH2Cl2, washed with water. 

The organic layer was separated, dried with MgSO4 and concentrated in vacuo to 

yield a yellow oil. Purification by flash column chromatography 5 % Hexane/EtOAc 

yielded: 

 

ortho-substitute 110 (20 mg, 22 %); Rf 0.64 (20 % Hexane/EtOAc); υmax 2923, 1643, 

1462, 1259, 1146, 637 cm
-1

; δH (700 MHz, CDCl3) 7.49 (1H, d, J = 8.9 , 3‟-H), 7.13 

(1H, d, J = 3.0, 6‟-H), 6.86 (1H, dd, J = 8.9, 3.0, 4‟-H), 3.82 (3H, s, OCH3); δC (101 

MHz, CDCl3) 134.71, 129.02, 123.07, 120.33, 118.42, 117.79, 114.93, 55.67, 29.24 ; 

δF (376 MHz, CDCl3) -68.25 ppm; m/z 296 ([
81

Br] M-H
-
), 294 ([

79
Br] M-H

-
). 

 

di-substitute 111 (26 mg, 28 %); Rf 0.41 (20 % Hexane/EtOAc); υmax 2925, 2853, 

1625, 1559, 1455, 1434, 1407, 1313, 1280, 1259, 1218, 1193, 1158, 1061, 975, 911, 

808, 746, 693, 638, 607 cm
-1

; δH (400 MHz, CDCl3) 7.55 (1H, d, J = 8.9 , 3‟-H), 6.86 

(1H, d, J = 8.9, 6‟-H), 3.90 (3H, s, CH3); δC (101 MHz, CDCl3) 63.11, 61.68, 34.08, 

32.81, 29.57, 29.52, 29.41, 28.76, 25.73; δF (376 MHz, CDCl3) -68.158 ppm; m/z 

(ES
-
) 322/374/376 [M-H]

-
. 
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3-(2’-bromo-5’-methoxy-phenyl)-3-trifluoromethyl-3H-diazirine, 110 

3-(4’-bromo-3’-methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine, 109 

O

F3C N

N
Br 6'

4'
3'

5'

2'

 + 

O

F3C N

N

Br

5'

6' 2'

3'

4'
 

              110          109 

To a solution of 3-(3-Methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine, 70 (120 mg, 

0.56 mmol) in MeCN (2 mL) was added NBS (130 mg, 0.56 mmol) in MeCN (2 mL) 

at rt then heated 90 ºC for 72 h. The organic phase was diluted with CH2Cl2, washed 

with water. The organic layer was separated, dried with MgSO4 and concentrated in 

vacuo to yield a yellow oil. Purification by flash column chromatography 5 % 

Hexane/EtOAc to yielded: 

 

ortho-substitute 110 (10.3 mg, 6.3 %); Rf 0.37 (5 % Hexane/EtOAc); υmax 2922, 1540, 

1410, 1330, 1141, 1081, 960, 873, 807, 704, 619 cm
-1

; δH (400 MHz, CDCl3) 7.49 

(1H, d, J = 8.9, 3-H ), 7.13 (1H, d, J = 3.0, 6-H), 6.86 (1H, dd, J = 8.9, 3.0, 4-H), 3.81 

(3H, s, OCH3); δC (101 MHz, CDCl3) 134.71, 129.02, 123.07, 120.33, 118.42, 117.79, 

114.93, 55.67, 29.24; δF (376 MHz, CDCl3) -68.25 ppm; m/z 296 ([
81

Br] M-H
-
), 294 

([
79

Br] M-H
-
).. 

para-substitute 109 (18.2 mg, 11 %); Rf 0.26 (5 % Hexane/EtOAc); υmax 2979, 2930, 

2517, 2448, 2370, 2166, 1981, 1737, 1562, 1240, 1133, 1026, 962, 811, 738, 670 cm
-1

; 

δH (400 MHz, CDCl3) 7.62 (1H, d, J = 8.9, 5-H), 7.17 (1H, d, J = 3.0, 2-H), 7.00 (1H, 

dd, J = 8.9, 3.0, 6-H), 3.84 (3H, s, OCH3); δC (101 MHz, CDCl3) 156.7, 133.7, 131.7, 

117.8, 115.7, 113.7, 98.1, 53.9; δF (376 MHz, CDCl3) -68.25 ppm; m/z 296 ([
81

Br] 

M-H
-
), 294 ([

79
Br] M-H

-
). 
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1,3,2-Dioxaborolane, 2-(3’-bromo-5’-methoxyphenyl)-4,4,5,5-tetramethyl, 103  

 

Br

B O
O

O

2'
3'

4'

5'6'

23

4
5

 

 

[Ir(OMe)COD]2 (50 mg, 0.075 mmol) and ditertbutyl bipyridine (40 mg, 0.149 mmol) 

and B2Pin2 (1.3 g, 5.12 mmol) dissolve in MTBE (10 mL) in a microwave tube. This 

procedure was prepared inside the nitrogen hood. The mixture solution was from 

dark-black turned to dark radish colour. 3-Bromoanisole (0.93 g, 4.97 mmol) was 

added to the mixture solution and then microwave 80 ºC for 30 min. The compound 

was purified by chromatography, eluting with Hexane/EtOAc (5-10 %), to furnish 

compound 103 as a light-yellow oil (1.46 g, 94 %); Rf 0.71 (20 % Hexane/EtOAc); 

υmax 2977, 1559, 1447, 1408, 1344, 1322, 1253, 1229, 1141, 1112, 1045, 964, 903, 

851, 812, 701, 664 cm
-1

; δH (700 MHz, CDCl3) 7.52 (1H, dd, J = 1.7, 0.7, 2‟-H), 7.24 

(1H, dd, J = 2.3, 0.7, 4‟-H), 7.15 (1H, dd, J = 2.3, 1.7, 6‟-H ), 3.81 (3H, s, OCH3), 

1.34 (12H, s, (CH3)4); δC (176 MHz, CDCl3) 159.9, 129.7, 122.6, 120.6, 117.9, 84.2, 

55.5, 24.8; m/z (ES
-
) 313 [M-H]

-
. 
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2,2,2-trifluoro-1-(3’-methoxy-5-(4’’,4’’,5’’,5’’-tetramethyl-1’’,3’’,2’’-dioxaborolan

-2’’-yl)phenyl)ethanone, 104 

 

F3C O

B O
O

O

1
2

1'
2'

3'
4'

5'

6'

2''

1''

3''

4''
5''  

 

This reaction was under N2 used 1.0 mmol of the substrate and 2.4 mL of a stock 

solution containing [Ir(OMe)cod]2 (104 mg, 0.312 mmol) and ditertbutyl bipyridine 

(84 mg, 0.312 mmol) and B2Pin2 (2644 mg, 010.40 mmol) dissolve in MTBE (25 mL) 

and shaken in rt developing a deep red colour. The solution was transferred to a vial 

was sealed with a rubber septum. 103 (0.2 g, 1.0 mmol) was added to 1.2 mL solution 

of the B2Pin2 mixture solution and then microwave heating at 80 ºC for 1 min. The 

compound was purified by chromatography, eluting with 30 % Hexane/EtOAc, to 

furnish compound 104 as a light-yellow oil (147.6 mg, 45 %); Rf 0.56 (30 % 

Hexane/Acetone); υmax 2978, 1716, 1587, 1451, 1373, 1317, 1245, 1205, 1187, 1132, 

1064, 988, 968, 825, 815, 767, 738, 695, 662, 620 cm
-1

; δH (500 MHz, CDCl3) 8.08 

(1H, s, 2‟-H), 7.66 (1H, d, J = 2.6, 6‟-H), 7.65 (1H, s, 4‟-H), 3.90 (3H, s, OCH3), 1.37 

(12H, s, (C(CH3)2); δC (176 MHz, CDCl3) 180.8 (q, 
2
JCF = 25.1 Hz, CCF3), 159.67 

(C-3‟), 130.97 (C-Ar), 128.97 (dd, J = 4.7, 2.3, C-Ar), 127.46 (C-Ar), 117.56 (d, J = 

1.8, C-Ar), 116.88 (q, 
1
JCF = 291.3 Hz, CF3), 84.67 (C-4‟‟ and C-5‟‟), 55.86 (OCH3), 

25.08 (CCH3); δF (376 MHz, CDCl3) -71.197 ppm; m/z (ES
-
) 330 [M-H]

-
. 

 

 

 



85 

 

4,4-difluoro-1,3,5,7-tetramethyl-8-(4'-benzoylphenyl)-4-bora-3a,4a-diaza-s-indac

en, 3 

N
B

N

F F

O

1

2

3 5

6

7
8

2'

3'
4'

5'

6'

 

Iodo-BODIPY 22 (0.2 g, 0.44 mmol), 4-benzoylphenylboronic acid (0.1 g, 0.44 mmol) 

and [Pd(PPh3)4] (0.5 g, 0.44 mmol) in toluene (10 mL), ethanol (5 mL) and 2M 

Na2CO3 (2 mL) were reflux for 5 h. After cooling to rt, partitioned between EtOAc 

and water. The organic layer was dried over Mg2SO4, and concentrated under vacuum. 

It was purified via silica gel chromatography (7-10 % Hexane/EtOAc) to give (0.16 g, 

70 %) as a dark-orange solid. This compound was purified again via crystallization 

with methanol; mp 243-245 ºC; Rf 0.56 (20 % Hexane/EtOAc); υmax 2920, 1736, 

1650 (C=O), 1603, 1538, 1510, 1465, 1405, 1366, 1304, 1276, 1188, 1153, 1121, 

1073, 1063, 1051, 969, 927, 813, 768, 752, 699, 641 cm
-1

; δH (700 MHz, CDCl3) 7.93 

(3H, d, J = 8.2, Ar-H), 7.85 (3H, d, J = 6.8, Ar-H), 7.81 (4H, t, J = 9.0, Ar-H), 7.76 

(1H, dd, J = 14.3, 8.1, Ar-H), 7.71 (1H, d, J = 8.5, Ar-H), 7.62 (2H, t, J = 7.3, Ar-H), 

7.52 (3H, t, J = 7.6, Ar-H), 7.41 (2H, d, J = 8.1, Ar-H), 6.01 (2H, s, 2-H and 6-H), 

2.57 (6H, s, 3-CH3 and 5-CH3), 1.46 (6H, s, 1-CH3 and 7-CH3); δC (176 MHz, CDCl3) 

196.2, 155.7, 143.9, 143.0, 141.0, 140.5, 137.6, 136.8, 135.0, 132.7, 132.5, 131.4, 

130.8, 130.0, 128.8, 128.4, 128.3, 127.9, 127.8, 127.2, 127.1, 126.9, 121.3, 37.1, 31.9, 

29.7, 29.6, 29.3, 22.7; HRMS (ES
-
) C32H26BF2N2O requires M

-
 502.2143, found 

[M-H]
-
 502.2186.  



86 

 

5 REFERENCES 

                                                      
1
 Demchenko A.P. (2009) Introduction to fluorescence sensing. Springer, 

Netherlands 
2
 Ueno, T.; Urano, Y.; Setsukinai, K.; Takakusa, H.; Kojima, H.;Kikuchi,

 
K.; Ohkubo, 

K.; Fukuzumi, S.; Nagano, T. J. Am. Chem. Soc., 2004, 126, 14079-14085. 
3
 French, P. M. W.; Taylor, J. R. Opt. Commun., 1986, 58, 53-55. 

4
 Mahmood, T.; Paul, A.; Ladame, S. J. Org. Chem., 2010, 75, 204-207. 

5
 Li, L.; Ruzgas, T.; Gaigalas, A. K. Langmuir, 1999, 15, 6358-6363. 

6
 Bonasera, V.; Alberti, S.; Sacchetti, A. BioTechniques, 2007, 43, 173-174. 

7
 Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals, 6

th
 ed.; 

Molecular Probes: Eugene, OR, 1996. 
8
 Burghart, A.; Kim, H.; Welch, M. B.; Thoresen, L. H.; Reibenspies, J.; Burgess, K. 

J.; Bergstroem, F.; Johansson, L. B. A. J. Org. Chem., 1999, 64, 7813-7819. 
9
 Treibs, A.; Kreuzer, F. H. Liebigs Ann. Chem., 1968, 718, 203. 

10
 Wang, W.; Fan, J.; Gao, X.; Wang, B.; Sun, S.; Peng, X. J. Org. Chem., 2009, 74, 

7675-7683. 
11

 Ohsaki, Y.; Shinohara, Y.; Suzuki, M.; Fujimoto, T. Histochem. Cell Biol., 2010, 

130, 477-480. 
12

 Marmé, N.; Knemeyer, J. P.; Sauer, M.; Wolfrum, J. Bioconjugate Chem., 2003, 14, 

1133-1139. 
13

 Faulds, K.; McKenzie, F.; Smith, W.; Graham, D. Angew. Chem., 2007, 

19, 1861–1863. 
14

 García-Moreno, I.; Costela, A.; Campo, L.; Sastre, R.; Amat-Guerri, F.; Liras, M.; 

López Arbeloa, F.; Bañuelos Prieto, J.; López Arbeloa, I. J. Phys. Chem., 2004, 108, 

3315-3323. 
15

 Liras, M.; Prieto, J. B.; Pintado-Sierra, M.; Arbeloa, F.L.; García-Moreno, I.; 

Costela, A.; Infantes, L.; Sastre, R.; Amat-Guerri, F. Org. Let,. 2007, 9, 4183-4186. 
16

 Chen, X.; Lenhert, S.; Hirtz, M.; Lu, N.; Fuchs, H.; Chi, L. Acc. Chem. Res., 2007, 

40, 393-401.  
17

 Golvkova, T. A.; Kozlov, D. V.; Neckers, D. C. J. Org. Chem., 2005, 70, 5545. 
18

 Turfan, B.; Akkaya, E. U. Org. Let., 2002, 4, 2857-2859. 
19

 Costela, A.; Garcia-Moreno, I.; Gomez, C.; Sastre, R.; Amat-Guerri, F.; Liras, M.; 

Arbeloa, F. L.; Prieto, J. B.; Arbeloa, I. L. J. Phys. Chem., 2002, 106, 7736-7742. 
20

 Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed., 2008, 47, 1184-1201. 
21

 Sameiro, M.; Gonçalves, T. Chem. Rev., 2009, 109, 190-212.  
22

 Loudet, A.; Burgess, K. Chem. Rev., 2007, 107, 4891-4932. 
23

 Huang, Z.; Haugland, R. P.; You, W.; Haugland, R. P. Anal. Biochem., 1992, 200, 



87 

 

                                                                                                                                                        

199-204. 
24

 Li, F.; Yang, S. I.; Ciringh, Y.; Seth, J.; Martin, C. H.; Singh, D. L.; Kim,
 
D.; Birge,

 

R. R.; Bocian,
 
D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc., 1998, 120, 

10001-10017.  
25

 Li, M.; Wang, H.; Zhang, X.; Zhang, H. S. Spectrochim. Acta, Part A, 2004, 60A, 

987-993. 
26

 Zhang, X.; Zhang, H. S. Spectrochim. Acta, Part A, 2005, 61, 1045. 
27

 Werner, T.; Huber, C.; Heinl, S.; Kollmannsberger, M.; Daub, J.; Wolfbeis, O. S. 

Fresenius J. Anal. Chem., 1997, 359, 150. 
28

 Qi, X.; Jun, E. J.; Xu, L.; Kim, S. J.; Hong, J. S. J.; Yoon, Y. J.; Yoon, J. J. Org. 

Chem., 2006, 71, 2881. 
29

 Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Bueschel, M.; Tolmachev, A. 

I.; Daub, J.; Rurack, K. J. Am. Chem. Soc., 2005, 127, 13522. 
30

 DiCesare, N.; Lakowicz, J. R. Tetrahedron Lett., 2001, 42, 9105-9108. 
31

 Li, J. S.; Wang, H.; Huang, K. J.; Zhang, H. S. Anal. Chim. Acta, 2006, 575, 

255-261. 
32

 Thoresen, L. H.; Kim, H.; Welch, M. B.; Burghart, A.; Burgess, K. Synlett, 1998, 

1276. 
33

 Chen, X.; Rogach, A. L.; Talapin, D. V.; Fuchs, H.; Chi L. J. Am. Chem. Soc., 

2006, 128, 9592-9593.  
34

 Ziessel,
 
R.; Bonardi, L.; Retailleau, P.; Ulrich, G. J. Org. Chem., 2006, 71, 

3093-3102.  
35

 Gossauer, A.; Nydegger, F.; Kiss, T.; Sleziak, R.; Stoeckli-Evans, H. J. Am. Chem. 

Soc., 2004, 126, 1772-1780. 
36

 Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J. Am. Chem. Soc., 2004, 

126, 3357-3367. 
37

 Zhang, X.; Xiao, Y.; Qian, X. Org. Lett., 2008, 10, 29-32. 
38

 Li, L.; Nguyen, B.; Burgess, K. Bioorg. Med. Chem. Lett., 2008, 18, 3112-3116. 
39

 Cakmak, Y.; Akkaya E. U. Org. Lett., 2009, 11, 85-88. 
40

 Liu, J. Y.; Yeung, H. S.; Xu, W.; Li, X.; Ng, D. K. P. Org. Lett., 2008, 10, 

5521-5524. 
41

 Tahtaoui, C.; Thomas, C.; Rohmer, F.; Klotz, P.; Duportail, G.; Mely, Y.; Bonnet, D.; 

Hibert, M. J. Org. Chem., 2007, 72, 269-272. 
42

 Tang, K. M.; Sherwood, J. L.; Haslam, R. J. Biochem. J., 1993, 294, 329-333. 
43

 Vodovozova E. L. Biochem. (Moscow), 2007, 72, 1-20. 
44

 Singh, A.; Thornton, E. R., Westheimer, F. H. J. Biol. Chem., 1962, 237, 

3006-3008. 
45

 Bayley, H. Photogenerated Reagents in Biochemistry and Molecular Biology, 



88 

 

                                                                                                                                                        

Elsevier, 1983. 
46

 Paulsen, S. R. Angew. Chem., 1960, 72, 781. 
47

 Schmitz, E.; Ohme, R. Angew. Chem., 1961, 73, 115. 
48

 Frey, H. M.; Scaplehorn, A. W. J. Chem. Soc. (A), 1966, 968. 
49

 Amrich, M. J.; Bell, J. Am. Chem. Soc., 1964, 86, 292. 
50

 Graham, W. H. J. Am. Chem. Soc., 1965, 87, 4396. 
51

 Kotzyba-Hibert, F.; Kapfer, I.; Goeldner, M. Angew. Chem. Int. Ed., 1995, 34, 

1296-1312. 
52

 Wlostowska, J.; Moss, R. A.; Guo, W.; Chang, M. J. Chem. Commun., 1982, 

432-443. 
53

 Bainbridge, K. E.; Dailey, W. P. Tetrahedron Lett., 1989, 30, 4901. 
54

 Moss, R. A.; Wlostowski, M.; Terpinski, J.; Kmiecik-Lawrynowicz, G.; 

Krogh-Jespersen, K. J. Am. Chem. Soc., 1987, 109, 3811. 
55

 Vaughan, R. J.; Westheimer, F. H. Anal. Biochem., 1969, 29, 305-310. 
56

 Vaughan, R. J.; Westheimer, F. H. J. Am. Chem. Soc., 1969, 91, 217-218. 
57

 Chowdhry, V.; Vaughan, R.; Westheimer, F. H.; Proc. Natl. Acad. Sci. U. S. A., 

1976, 73, 1406–1408. 
58

 Smith, R. A. G.; Knowles, J. R. J. Am. Chem. Soc., 1973, 95, 5072. 
59

 Liu, M. T. H.; Palmer, G. E.; Chisti, N. H. J. Chem. Soc., Perkin Trans.2, 1981, 53. 
60

 Doyle, M. P.; Devia, A. H.; Bassett, K. E.; Terpstra, J. W.; Mahapatro, S. N. J. Org. 

Chem., 1987, 52, 1619. 
61

 Brunner, J.; Senn, H.; Richards, F. M. J. Biol. Chem., 1980, 255, 3313-3318. 
62

 Masuda, K.; Koizumi, A.; Misaka, T.; Hatanaka, Y.; Abe, K.; Tanaka, T.; Ishiguro, 

M.; Hashimoto, M. Bioorg. Med. Chem. Lett., 2010, 20, 1081-1083. 
63

 Hashimoto, M.; Hatanaka, Y.; Eur. J. Org. Chem., 2008, 2513-2523. 
64

 Wenwei, Q.; Jie, X.; Xin, L.; Li, Z.; Jingya, L.; Jia, L.; Fajun, N. Chin. J. Chem., 

2009, 27, 825-833. 
65

 Galardy, R. E.; Craig, L. C.; Printz, M. P. Nature New Biol., 1973, 242, 127-128. 
66

 Rogers, J. E.; Kelly, L. A. J. Am. Chem. Soc., 1999, 121, 3854-3861. 
67

 Scherpenzeel, M.; Moret, E. E.; Ballell, L.; Liskamp, R. M. J.; Nilsson, U. J.; 

Leffler, H.; Pieters, R. J. ChemBioChem, 2009, 10, 1724–1733. 
68

 Li, L.; Yang, W.; Zhao, Z. K. Bioorg. Med. Chem. Lett., 2009, 19, 4824-4826. 
69

 Shi, J. P.; Musier-Forsyth, K.; Schimmel, P. Biochemistry, 1994, 33, 5312-5318. 
70

 Dorman, G.; Prestwich, G. D. Trends Biotechnol., 2000, 18, 64-77. 
71

 Andrus, M. B.; Turner, T. M.; Sauna, Z. E.; Ambudkar, S. V. Bioorg. Med. Chem. 

Lett., 2000, 10, 2275-2278. 
72

 Zade, S. S.; Panda, S.; Singh,
 
H. B.; Sunoj, R. B.; Butcher, R. J. J. Org. Chem., 

2005, 70, 3693-3704. 



89 

 

                                                                                                                                                        
73

 Aloise, P.; Kagawa, Y.; Coleman, P. S. J. Biol. Chem., 1991, 266, 10368-10376. 
74

 Pal, P. K.; Coleman, P. S. J. Biol. Chem., 1990, 265, 14996-15002. 
75

 Landrum, M.; Smertenko, A.; Edwards, R.; Hussey, P. J.; Steel, P. G. Plant Journal, 

2010, 62, 529-538. 
76

 Landrum, M. 2009 University of Durham, Ph.D Thesis. 
77

 Tahtaoui, C.; Thomas, C.; Rohmer, F.; Klotz, P.; Duportail, G.; Mely, Y.; Bonnet, D.; 

Hibert, M. J. Org. Chem., 2007, 72, 269-272. 
78

 Burghart, A.; Kim, H.; Welch, M. B.; Thoresen, L. H.; Reibenspies, J.; Burgess, K. 

J. Org. Chem., 1999, 64, 7813-7819. 
79

 Baldwin, J. E.; Pratt, A. J.; Moloney, M. G. Tetrahedron Lett., 1987, 43, 2565-2575. 
80

 Harrisson, P.; Morris, J.; Marder, T.B.; Steel, P.G. Org. Lett., 2009, 11, 3586-3589. 
81

 Bender, T.; Huss, M.; Wieczorek, H.; Ground, S.; Zezschwitz, P. Eur. J. Org. 

Chem., 2007, 3870-3878. 
82

 Basel, Y.; Hassner, A. J. Org. Chem., 2000, 65, 6368-6380. 
83

 Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N. J. Am. Chem. Soc., 2002, 124, 

390-392. 
84

 Jiang, Q.; Ryan, M.; Zhichkin, P. J. Org. Chem., 2007, 72, 6618-6620. 
85

 Mothana, S.; Grassot, JM.; Hall D. G. Angew. Chem. Int. Ed., 2010, 49, 2883-2887. 
86

 Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem., 1995, 60, 

7272-7276. 
87

 Bentz, E. L.; Gibson, H.; Hudson, C.; Moloney, M. G.; Seldon, D. A.; Wearmouth, 

E. S. Synlett, 2006, 2, 247-250. 
88

 Sridar, C.; Kobayashi, Y.; Brevig, H.; Kent, U. M.; Puppali, S. G., Rimoldi, J. M.; 

Hollenberg, P. F. Drug. Metab. Dispos., 2006, 34, 1894-1855. 
89

 Li, G.; Bittman, R. Tetrahedron Lett., 2000, 41, 6737-6741. 
90

 Wan, C. W.; Burghart, A.; Chen, J.; Bergstrom, F.; Johansson, L. B. A.; Wolford, M. 

F.; Kim, T. G.; Topp, M.R.; Hochstrasser, R.M.; Burgess, K. Chem. Eur. J., 2003, 9, 

4430-4441. 


