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Abstract 
 

 
The Glacial Isostatic Adjustment (GIA) of the British Isles is of interest due to the constraints that 
can be provided on key model parameters such as regional ice sheet history, viscoelastic earth 
structure and the global meltwater (eustatic) signal. Many past studies have used as their primary 
observable the high quality relative sea level (RSL) data from this region. However, as indicated 
in these studies, the data are notoriously difficult to fit due to the highly complex non-monotonic 
nature of the observed sea level change. In addition, the model predictions show a strong 
sensitivity to both regional ice and earth model parameters as well as the global meltwater 
history, resulting in a high degree of non-uniqueness when seeking an optimum model solution.  
 
The principle aim of this thesis is to address this inherent non-uniqueness in the British Isles GIA 
problem and reduce the viable solution parameter space by considering additional datasets that 
display distinct sensitivities to local and global components of the GIA signal. This was achieved 
in a number of stages, using a combination of relative sea level data from both near and far-field 
sites, Continuous GPS data and the most recent geomorphological field constraints. 
 
GPS observations of present day vertical crustal motion at sites across Great Britain are employed 
to provide an independent constraint on the choice of regional earth model parameters 
(viscoelastic earth structure). It was shown that the data are relatively insensitive to plausible 
variations in both the regional and global ice model history and as such, the data are used to 
identify an optimum range of earth model parameters for the region. 
 
Using a set of previously un-modelled far-field sea level data from China and Malay-Thailand, a 
revised model of eustatic sea level change over the Holocene was developed. Constraining the 
eustatic component of sea level change is useful since it provides a direct measure of continental 
ice volume that can be compared to results from oxygen isotope methods. Additionally, inference 
of the eustatic signal over the mid-late Holocene, which was the primary focus of one aspect of 
this thesis can provide information on both: (i) the rate and timing of major ice melting at the end 
of the last deglaciation and (ii) the magnitude of melting during the late Holocene, which is an 
important baseline that can be compared to estimates of global sea-level rise in the 20th century. 
This new global ice model is characterised by an initial slowdown in the rate of eustatic sea level 
rise at 7 kyr BP, followed by a continuing rise, until 2 kyr BP, driven by continued melting from 
the Antarctic Ice sheet.  
 
A new British-Irish Ice sheet model over the most recent glacial cycle was produced. This model 
was constrained to fit to most recent geomorphological field constraints and includes an extensive 
two-stage glaciation across the North Sea basin, with a greatly thickened and extended ice sheet 
within the Irish Sea, out along the NE Atlantic margin and across Ireland. During deglaciation, 
the Irish ice sheet now undergoes a very rapid thinning and retreat.  
 
These results have been combined to produce a final new GIA model for the region, which has 
been constrained, for the first time, using an extended RSL database which includes observations 
from both Great Britain and Ireland. This new model captures reasonably well the regional trends 
in the observed sea level, with previous unresolved misfits relating to the timing and height of the 
Holocene highstand now largely removed. 
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1020 Pa s (grey) to 1021 Pa s (black). Changes in lower mantle viscosity are shown by the 
dot-dashed line: 1021 Pa s (grey) and 5×1022 Pa s (black)…………………………………... 
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Fig. 4.4: Graphical representation of selected eustatic sea-level functions. Solid black line 
represents the input eustatic function ( ) taken from the reference model (Basset et 
al., (2005)). Three alternative melt scenarios are also illustrated: melt1 (light grey; solid 
line), melt2 (black; dotted line), and melt3a (dark grey; solid line) and melt3b (dark grey; 
dashed line) and are discussed in detail in 4.4.1. The height variation between the solid and 
dashed dark grey lines illustrates the range in highstand magnitude investigated for each of 
the three melt scenarios considered…………………………………………………………. 
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Fig. 4.5: Flow chart to summarise the stages used in estimation of optimum earth model. 
See text for more details…………………………………………………………………….. 
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Fig. 4.6: Contour plots of the χ2 misfit between predicted and observed sea levels for the 
China data set as a function of upper and lower mantle viscosity (υum and υ lm, 
respectively). Each frame gives the results for the four melt scenarios illustrated in Fig. 
4.4: (a) melt1, (b) melt2, (c) melt3a, (d) melt3b. The black line represents the χ2 value 
below which the quality fit is equivalent at 95% confidence……………………………….. 
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Fig. 4.7: Contour plots of the χ2 misfit between predicted and observed sea levels for the 
China data set as a function of upper and lower mantle viscosities(υum and υ lm, 
respectively) and lithosphere thickness (Lt) for the reference (a) and EUST1 (b) eustatic 
models.. Results in (a) and (b) are for a lithosphere thickness of 96 km. The solid black 
line represents the 95% confidence level and the cross indicates the min. χ2 misfit.  Frame 
(c) shows χ2 values generated using the EUST1 ice model as a function of lithospheric 
thickness and upper mantle viscosity for a lower mantle viscosity of 2×1021Pa s………….. 
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Fig. 4.8: As in Fig. 4.7 except that results are based on a subset of data points from the 
China data set believed to be the most reliable (see Section 4.3.2 for more detail)………… 
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Fig. 4.9: Comparison of the predicted and observed sea-level change at each locality in 
China. Solid black circles mark each SLIP. The solid black line shows predictions for the 
reference ice-earth model. Predictions using the revised ice model (EUST1) were 
generated for an optimum earth structure inferred from the χ2 results in Fig. 4.7 and 4.8: 
for the complete data set (dashed) with a lithosphere thickness of 96 km, upper mantle 
viscosity 1*1020 Pa s and lower mantle viscosity 5*1021 Pa s; reduced data set (dotted) with 
a lithosphere thickness 96 km, upper mantle viscosity 5*1020 Pa s, lower mantle viscosity 
2*1021 Pa s. At locality HP, predictions based on the revised ice model are also for a 
location to the north of the island (dashed-dotted; see text for more information)………… 
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Fig. 4.10: Contour plots of the χ2 misfit between predicted and observed sea levels for the 
Malay-Thailand data set as a function of upper and lower mantle viscosity (υum and υlm, 
respectively).  Each frame gives the results for the four melt scenarios illustrated in Fig. 4: 
(a) melt1, (b) melt2, (c) melt3a, (d) melt3b. The black line represents the χ2 value below 
which the quality fit is equivalent at 95% confidence. The blue region represents χ2 values 
greater than the maximum on the scale bar (80) up to 243…………………………………. 
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Fig. 4.11:  Contour plots of the χ2 misfit between predicted and observed sea levels for the 
Malay-Thailand data set as a function of upper and lower mantle viscosities (υum and υ lm, 
respectively) and lithosphere thickness (Lt)  for the reference (a), EUST2 (b) and EUST1 
(c) eustatic models. Results in (a), (b) and (c) are for a lithosphere thickness of 96km. The 
solid black line represents the 95% confidence level and the cross indicates the min. χ2 
misfit.  Frame (d) shows χ2 values generated using the EUST1 ice model as a function of 
lithospheric thickness and upper mantle viscosity for a lower mantle viscosity of 2×1021 Pa 
s.  The blue colour represents χ2 values greater than the maximum on the scale bar (80) up 
to 193………………………………………………………………………………………... 
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Fig. 4.12: Comparison of predicted and observed sea levels at each of the seven localities 
in Malay-Thailand for three eustatic melt models. Solid black circles mark each SLIP. The 
solid black line represents prediction for the reference model, described in the text. 
Predictions for EUST1 (dashed) and EUST2 (solid grey) were generated for an earth model 
with a lithosphere thickness of 96km, upper mantle viscosity of 8 *1020 Pa s and lower 
mantle 5*1021 Pa s. This model produced a good fit for both of the revised eustatic models 
(see Fig. 4.11)………………………………………………………………………………. 
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Fig. 4.13: Graphical representation of the eustatic sea level curve for three models: 
reference (solid black), EUST1 (dashed) and EUST2 (solid grey)………………………….. 

 
140 

  
Fig. 4.14:  Flow diagram to outline the key steps in determining a eustatic model that 
provides a good fit to both the China and Malay-Thailand data sets……………………….. 
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Fig. 4.15: Four of the melt models adopted to investigate the sensitivity of the data-model 
fit to the amount of melt partitioned before and after 7 kyr BP.  The amount of melt prior 
to 7 kyr BP was systematically reduced to produce eustatic sea level at this time ranging 
from a depth of 4.7 m (dotted-dashed) to a depth of 8 m (dashed). The dotted and solid 
lines illustrate two intermediate models, with the red line highlighting the median model. 
All models are based on the timing of the ‘melt3’ model (Fig. 4.4) used to obtain EUST1 
and EUST2 ……………………………………………………………………………………………. 

 
 
 
 
 
 

142 
  
Fig. 4.16: Contour plots of the χ2 misfit between predicted and observed sea level for the 
China data set as a function of upper and lower mantle viscosity (νum and νlm respectively) 
for a lithosphere thickness of 96 km. The results are shown for four different melt models 
defined in terms of depth of eustatic sea level at 7 kyr BP (and described in greater detail 
within section 4.4.5): (a) 7.5 m, (b) 6.5 m, (c) 5.75 m and (d) 4.7 m. The black line 
represents the χ2 value below which the quality fit is equivalent at 95%. The black triangle 
marks the minimum χ2 misfit……………………………………………………………….. 
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Fig. 4.17: As in Fig 4.16 except that results are shown for the ‘reduced’ China data set…... 145 
  
Fig. 4.18: As in Fig. 4.16 expect results are shown for the Malay-Thailand data set. The 
cross marks the location of the minimum χ2 misfit…………………………………………. 
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Fig. 4.19: The χ2 misfit for the range of melt models considered for the China data (black) 
and Malay-Thailand data (grey). Results are shown for both the complete China data set 
(A) and the reduced data set (B). The solid horizontal line marks the location of the 95% 
confidence limit – models which result in values below this limit are statistically 
equivalent to 95% confidence. The melt models which satisfy this criterion for both data 
sets are indicated by the shaded region. Note that different earth models were used to 
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Fig. 4.20: Contour plots of the χ2 misfit between predicted and observed sea level data for 
a range of upper and lower mantle viscosities (υum and υ lm, respectively) and a lithosphere 
thickness of 96 km. The top two frames show results for the complete China data set for 
eustatic models melt7m (a) and EUST3 (b). The lower frames show results for the Malay-
Thailand data set for eustatic models melt5.5m (c) and EUST3 (d). The black line 
represents the χ2 value below which the quality fit is equivalent to a 95% confidence level. 
The triangle marks the location of the minimum χ2 value…………………………………... 
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Fig. 4.21: Comparison of the predicted and observed sea levels at each of the nine 
localities in China. Solid black circles mark the individual SLIPs. The solid black line 
shows predictions for the reference ice-earth model. Predictions for melt7m  (dashed 
black) and EUST3 (solid grey) were generated for an optimum earth structure inferred 
from the χ2 results presented in Fig. 4.20: lithosphere thickness 96 km, upper mantle 
viscosity 5×1019 Pa s, lower mantle viscosity 1*021 Pa s……………………………………. 
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Chapter 1: UIntroduction 

 

1.1.U Introduction 

 

1.1.1. Background 

 

During the Late Pleistocene there have been repeated glacial-interglacial cycles where 

large land based ice sheets waxed and waned. At the end of the last interglacial (generally 

referred to as the Eemian across Europe and Ipswichian across the British Isles – see Fig. 

1.1) around 116 kyr BP, the climate began to cool causing existing ice sheets (Greenland 

and Antarctica) to grow and previously melted ice sheets to grow again – for example, 

the Laurentide Ice Sheet (LIS) in North America and the Fennoscandian Ice Sheet (SIS) 

in Northern Europe. At this time, global mean sea level was at least 3 m above present 

(Stirling et al., (1998)). This marked the start of a new glacial cycle, which culminated in 

the Last Glacial Maximum (LGM), defined as a global-scale maximum in ice volume 

between 26-21 kyr BP (Peltier and Fairbanks (2006), Yokoyama et al., (2000)), when ice 

sheets had expanded to produce a global sea-level lowering of 125 ± 5 m relative to 

present (Fleming et al., (1998)). 

 

Fig. 1.1: Summary of Late Quaternary climatostragraphic stages across Europe and the 

British Isles and approximate correlation with Marine Isotopes Stages (MIS). Timings of 

MIS are adapted from Bowen (1999) and correlation of glacial stages from Lowe and 

Walker (1997). Note that the diagram is not drawn to scale and the correlations are not 

completely resolved 
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Across Europe, during this most recent glacial cycle, there was a discontinuous and 

unsteady growth of the ice sheets, with significant fluctuations in volume. The 

classification and terminology adopted to define these glacial cycles varies notably within 

the literature and so will be clarified at this point. Marine geologists generally follow a 

timescale developed using the marine oxygen isotope record that is divided into a series 

of numbered stages, referred to as Marine Isotope Stages (MIS - see Fig. 1.1) which are 

derived from fluctuations in the oxygen isotope content of ocean water. In comparison, 

most field scientists follow a geological approach where litho- or bio-stratigraphic 

characteristics in the observed strata are used to develop a chronostratigraphic sequence, 

which is used to define a series of glacial/interglacial episodes. For example, the glacial 

stages of the British-Irish ice sheet (BIIS) are referred to using the term Devensian, 

whereas the corresponding stages of the SIS are referred to as Weichselian. For clarity 

within this thesis, the approximate correlation between the main climatrostratigraphic 

stages and MIS units are summarised on Fig. 1.1 for Europe. It should be noted, however, 

that the exact age correlation is still not fully resolved and not all regional interstadials 

are marked. The Weichselian (NW Europe) or Devensian (British Isles) glacial period 

covers the interval from the end of MIS-5e to the start of the Holocene (MIS-1) around 

11.5 kyr BP, and can be subdivided into three main glacial episodes as well as numerous 

shorter stadials not included in Fig. 1.1. For example, the Early Weichselian which spans 

the interval from ~ 116 - 70 kyr BP (MIS-5) can be further divided into a series of 

substages marking alternating warm interstadials (MIS-5c and MIS-5a) and colder 

stadials (MIS-5d and MIS-5a).  The time interval considered in this thesis extends from 

the Ålesund interstadial (~ 33 kyr BP) to present day, and includes MIS-2 to MIS-1. This 

marked the end of the Mid Weichselian/Devensian and the onset of the most recent 

glaciation across NW Europe and the British Isles, referred to as Late 

Weichselian/Devensian episode.  

 

The mass redistribution between land based ice sheets and oceans during the Late 

Pleistocene is sufficient to produce a significant deformation of the solid Earth and 

perturbation to the geopotential. Glacial Isostatic adjustment (GIA) is the study of this 

ice-earth interaction by comparing surface observations, such as sea level change with 

predictions generated using quantitative models. Through these comparisons, it is 
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possible to infer information on the rheological properties of the solid Earth, past and 

present ice sheet history and climate change. Some of these applications are outlined 

below.  

 

1.1.2. Glacial Isostatic Adjustment Modelling - General 

 

Relative sea level (RSL) is one of the main data types used to constrain GIA model 

parameters. RSL is defined as height of the geoid (or time-averaged ocean surface) 

relative to the solid earth (or ocean floor). A vertical shift in either of these two surfaces 

will produce a change in RSL. Examination of the geological record has revealed that, 

during the late Quaternary, RSL changes have been spatially and temporally complex. 

The majority of the observed signal is due to the GIA processes. 

 

GIA-induced sea-level changes have been studied from a variety of geographic regions to 

aid the understanding of the processes driving this variability and provide information 

relating to Pleistocene ice sheet history and earth viscosity structure. Clark et al., (1978) 

summarised this global variation in post glacial sea level change into six separate 

geographical zones (see Fig 1.2D). For the purpose of this thesis, predicted sea level over 

the last 20 kyr BP is highlighted at 3 selected zones, two taken from within the near-field 

region (sites which were close to the major ice sheets) and one from far-field region (sites 

which are distant from the major glacial activity). These end member cases are shown not 

only to highlight the spatial variation but also to help illustrate the different GIA 

processes which drive this variability.  
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Fig. 1.2: Predicted sea level at three sites using a GIA model:  Site (A) Richmond Gulf, Canada, (B) Virginia, SE USA, and 

(C) Bonaparte Gulf, Australia. These sites were selected to illustrate the spatial and temporal variation in sea level during the 

most recent glacial-interglacial period.  Frame (D) is modified from Clark et al., (1978) and illustrates the six generalized 

zones of postglacial sea level change which will be discussed within the thesis. Site (A) is taken from Zone1, site (B) from 

Zone 2 and site (C) from Zone 6. 
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Site A (Fig. 1.2A; Zone 1in Fig. 1.2D) and Site B (Fig. 1.2B; Zone 2 in Fig. 1.2D) 

illustrate the pattern of RSL change at sites within the near-field and intermediate-field 

respectively, where the signal is dominated by the isostatic response of the earth to the 

regional ice unloading. Site A, located at Richmond Gulf Canada, close to the centre of 

the LIS, is characterised by a monotonic sea level fall from ~ 600 m above present. This 

is driven by the unloading of the crust and rebound of the solid surface following the 

deglaciation of the LIS. This contrasts with the pattern at Site B (located along the NE 

Coast of USA), in Zone 2, which is characterised by a monotonic rise in sea level from ~ 

100 m below present over the last 20 kyr, generally remaining below present over this 

period. Therefore in contrast to the far-field sites, no Holocene highstand is produced. 

This site was located close to the ice margins, where the collapse of the peripheral bulge 

and accompanying subsidence due to the movement of material back below the glaciated 

regions drives the associated rise. Past studies have used RSL data from these regions to 

constrain both the spatial and temporal history of Late Pleistocene ice cover and the 

rheological properties of the solid earth (Tushingham and Peltier (1992), Lambeck et al., 

(1998), Kaufmann et al., (2000), Simpson et al., (2009), Mitrovica (1996), Quinlan and 

Beaumont (1981)). RSL changes in the British Isles and Ireland – the primary study area 

of this thesis – are significantly influenced by both crustal uplift and peripheral bulge 

subsidence.   

 

In contrast, the sea level signal at sites within far-field regions (e.g. Zones 4-6 on Fig. 

1.2D) are most sensitive to the rate and magnitude of meltwater input into oceans 

following deglaciation. The characteristic pattern of RSL at these sites varies between 

Zone 4, where sea level remains below present and no highstand develops, to sites within 

Zones 5 and 6 where sea level rises towards present to form a late Holocene highstand of 

varying amplitude, such as shown for Site C, Bonaparte Gulf, NE Australia (Fig. 1.2C). 

The main GIA processes which govern this spatial and temporal pattern are hydro-

isostatic loading (continental levering) and ocean syphoning, as discussed in Mitrovica 

and Milne (2002). Clark et al., (1978) also noted that the transition between these two 

contrasting regions will vary spatially and temporally with any adjustment to the Late 

Holocene pattern of melting.  RSL data from these regions have been primarily used to 

constraint the pattern of melting from the global ice sheets (i.e. eustatic sea level) during 
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the last deglaciation, between LGM and present day, and also the rheological properties 

of the solid earth (Bassett et al., (2005), Fleming et al., (1998), Lambeck (2002), Nakada 

and Lambeck (1989), Nunn and Peltier (2001)). Eustatic sea level is defined as the 

spatially uniform change in sea level due to the mass exchange between the ice sheets and 

oceans and is important to constrain for a number of reasons. Firstly, it is used as a 

primary constraint for the total volume of continental ice – an important target for global 

ice model reconstructions. Also, this constraint is independent from marine δ
18

0 records 

and so can be used to help calibrate these proxy data. Secondly, the rate and magnitude of   

meltwater influx at the end of the last deglaciation is used as a baseline for interpreting 

the rate of 20
th

 century global mean sea level change.  

 

At present there is still no general consensus on the rate and magnitude of eustatic sea 

level change during the last deglaciation, with only a limited number of studies (Fleming 

et al., (1998)) using a global distribution of observations. This is partly due to the 

observed sea level at such far-field locations providing only an approximation of the 

eustatic sea level change, due to the interplay between GIA processes and also local-to-

regional scale factors, such as tectonism (Milne and Mitrovica (2008)). This is 

exemplified by noted differences between the two most widely cited global models: ICE-

5G (Peltier (2004)) and a model from the Australian National University Group 

(Lambeck and Purcell (2005)). For example, the former suggests that global melting 

ended at 4 kyr BP, compared to between 2-1 kyr BP in the latter. Examination of the 

eustatic sea level change over the Holocene is another factor which will be considered 

within this thesis.  

 

Another more recent data type which is used to constrain models of GIA is the present-

day 3D motion of the solid surface. Continuous global positioning system (CGPS) 

receivers monitor secular variations in the solid earth and provide a measure of the 

vertical and horizontal crustal motion. Unlike RSL data which is primarily taken from 

coastal sites, CGPS data has the advantage of spatial sampling from both coastal and 

inland areas.  Over the last 10 years, there has been a marked improvement in the 

accuracy and precision of the estimated motion due to advances in the GPS satellites and 

receiver designs, processing techniques and reference frames; these advances have 
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enabled the data to be utilised in a greater range of GIA studies and locations. One of the 

most extensive and well studied CGPS network, in terms of both spatial coverage and 

quality of receiver monumentation, is the BIFROST network located across Sweden and 

Finland (Lidberg et al., (2010)). Over the past decade the number and size of regional 

networks has been increasing (e.g. Sella et al., (2007); Teferle et al., (2009)). These data 

have been primarily used to infer information on the spatial and temporal history of past 

ice sheets and the rheological properties of the Earth (Argus and Peltier (2010), Milne et 

al., (2001), Mitrovica et al., (1994b), Sella et al., (2007), Bevis et al., (2009)). One aspect 

of this thesis is the consideration of CGPS data from Great Britain to constrain a model of 

GIA for this region. 

 

Perturbations in Earth rotation are also sensitive to GIA processes resulting from changes 

in the ice extent over the Late Pleistocene and up to the present day (i.e. mass balance of 

the contemporary polar ice sheets). Other non-GIA processes which can affect the 

observed rotational signal include mantle convection and mountain building, but are not 

considered here.  The perturbation in Earth rotation can be seen in two observable 

signals; a non-tidal acceleration in the rotation rate and a secular wander of the rotation 

pole relative to the surface geography (generally referred to a true polar wander (TPW)).  

The former has been found to be proportional to the change of degree-two zonal 

harmonic of the earths geopotential (J2) and can be observed using measurements from 

satellites (Nerem and Klosko (1996)) and in historical records (Mitrovica et al., (2006)). 

As this measures a long-wavelength response of the earth, it has been shown to be 

primarily sensitive to the deeper earth structure, most specifically the viscosity of the 

lower mantle (Johnston and Lambeck (1999), Nakada and Okuno (2003), Mitrovica and 

Milne (1998)).  

 

A number of earlier studies identified that the GIA-induced TPW signal is also strongly 

sensitive to the adopted rheological structure of the solid earth (Mitrovica and Milne 

(1998)). Comparisons of predictions to observations derived from historical and current 

space-geodetic measurements (Gross and Vondrak (1999), Mccarthy and Luzum (1996)) 

have been utilized to infer the rheological structure of the earth and limit the range of 

lower mantle viscosity (Johnston and Lambeck (1999), Mitrovica and Milne (1998)). 
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More recently changes in the observed rotational signal have been investigated to infer 

present day rates of melting from either the Antarctic ice sheets (AIS) or the Greenland 

ice sheet (GIS). For example, Mitrovica et al., (2006) identified that to fit a range of 

observational datasets of both rotational signals (TPW and the rotation rate), required a 

0.3 mm yr
-1

 eustatic sea level rise during the late Holocene and a 0.8 mm yr
-1

 rise during 

the 20th Century. Nakada and Okuno (2003) also compared GIA model predictions to 

both rotational datasets to infer a present day rise in eustatic sea level of 1-1.5 mm yr
-1

 

due to the melting from the GIS and the Weddell Sea region of the West Antarctic ice 

sheet (WAIS). 

 

This review has outlined some of the general applications of GIA modelling to a range of 

data sets. In the following sub-section, GIA modelling specific to the British Isles, the 

study region of this thesis, will be discussed. For clarity, the term 'British Isles' refers to 

Great Britain, Ireland and all adjacent smaller offshore islands around the coast of 

Scotland, including Shetland and the Isle of Man. Great Britain refers to all of England, 

Scotland, Wales and all smaller offshore islands around the coast of Scotland and the Isle 

of Man, whereas 'Ireland' refers to the geographic region, including both the political 

regions of Northern Ireland and the Republic of Ireland.  

 

1.1.3. Glacial Isostatic Adjustment Modelling - British Isles. 

 

Over the past two decades there have been numerous GIA modelling studies for the 

British Isles: from the early work of Lambeck (Lambeck (1993a), Lambeck (1993b)), 

through the studies of Johnston and Lambeck (2000), Peltier et al., (2002), to the most 

recent work by Shennan, Brooks and collaborators (Bradley et al., (2009), Bradley et al., 

(2010), Brooks et al., (2008), Shennan et al., (2006b)). These studies have led to 

constraints on various model components including the regional ice sheet history 

(Lambeck (1993a), Lambeck (1993b), Lambeck and Purcell (2001), Brooks et al., 

(2008)), viscoelastic earth structure (Lambeck et al., (1998)), and the global meltwater 

signal (Shennan (1999), Shennan et al., (2002)).  Not only do such models play an 

important role in understanding past sea level and climate change processes, but more 

recently have been adopted in predictions of future change through the influence of 
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vertical land motion on predictions of mean sea-level change (Lowe et al., (2009)).  

Recent studies have demonstrated that GIA is the dominant contributor to long-term 

(century to millennial) vertical land motion in the UK region (e.g.Teferle et al., (2009), 

Bradley et al., (2009)).   

 

The main surface observables which was used to constrain these GIA models was RSL 

data. Considering the six geographic zones of postglacial sea level change defined by 

Clark et al., (1978) (see Fig. 1.2d), the study region falls approximately within Zone 1 for 

sites located close to the centre of ice loading (across the North and Central British Isles) 

and Zone 2, across the South of the British Isles. As with most modelling studies which 

used near-field RSL data there is an inherent non-uniqueness when constraining the 

choice of model parameters due to a distinct sensitivity to both the choice of regional ice 

and earth model. But unlike the other near-field RSL data sites, as shown in Fig. 1.2a and 

1.2b, the sea level signal across the British Isles is more complex due to the regional 

glacio-isostatic sea level signal being of similar magnitude but opposite sign to that 

associated with the melting of non local ice sheets. As was discussed by Lambeck 

(1993b), this produces an RSL signal which is highly non-monotonic and equally 

sensitive to the choice of both local (such as the regional BIIS model) and non-local 

parameters (such as the global ice model).  

 

The interplay between the local and non-local signals is illustrated for three sites on Fig. 

1.3, where the total predicted sea-level is separated into the contribution due to the BIIS 

only and the contribution from all other ice sheets (abbreviated to non-local). (Note that 

adopted ice model and earth model is taken from Brooks et al., (2008) with greater detail 

to be found in Chapter 2 and 5. The main aim of the figure is to illustrate the interplay 

between two key model inputs, the local and global ice model, rather than which GIA 

model is optimum to use for the region). The three sites shown were selected to highlight 

the north-south variation in the character of the RSL signal and that the relative 

contribution of local versus non-local processes is a function of location.   
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Fig. 1.3: Predictions of relative sea level at three selected sites across the British Isles 

using the Brooks et al., (2008) ice model combined with an average earth model. More 

information regarding this model can be found within the following chapters of the thesis 

and the published reference. The total signal (solid black line) is separated into the signal 

due to non-local ice sheets (grey solid line) and the local British-Irish ice sheet (black 

dashed line).  
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The predictions shown at a site within Central Scotland are located close to the centre of 

the ice sheet and as such will experience the maximum rebound and RSL fall as the BIIS 

deglaciated.  The BIIS-only signal produces a steady fall from 134 m towards present 

from the onset of deglaciation (~ 20 kyr BP) as the weight of the overlying ice sheet is 

removed and the solid earth rebounds. This signal is approximately equal in magnitude 

but opposite in sign to the RSL produced from the non-local ice sheets, where sea level at 

this site rises from 90 m at 20 kyr BP towards present day levels, with a gradual 

slowdown throughout the mid-to-late Holocene. The gradual rise of the predicted signal 

due to non-local ice is punctuated by a period of rapid sea-level rise at ~ 14 kyr BP, 

known as meltwater pulse 1A (mwp-1A). It is this event which produces the inflection 

evident in the total predicted sea-level signal at this time. The change from fall to rise at ~ 

11 kyr BP is also due to an increase in the rate of global ice melt following the Younger 

Dryas cold period. This increased rate of melting, although not as high as that during 

mwp-1A, was sustained for several kyr until the early Holocene. In a past study (Shennan 

(1999)) it was highlighted that RSL data and surrounding field evidence from within 

isolation basins across NW Scotland could be used to constrain the possible magnitude 

and timings of these periods of increased global melting.  

 

Across North East Ireland, the magnitude of the predicted BIIS signal is reduced due to 

the greater distance away from the centre of ice loading. The signal remains below 

present from the onset of deglaciation, only rising above present in the early Holocene 

when local hydro-isostasy and (global) ocean syphoning (Mitrovica and Milne (2002)) 

become dominant contributing processes to the signal. At the site situated in Southern 

Great Britain,  the non-local signal dominates the total predicted signal, with the pattern 

similar to that displayed for Site B in Fig. 1.2. The magnitude of the BIIS signal has 

greatly reduced, with the minor rise from 14 kyr BP driven by the subsidence of the solid 

surface and collapse of the BIIS and SIS glacial forebulge.  

 

The complexity of the British Isles RSL signal and the distinct sensitivity of predictions 

to both the local and non local processes results in the RSL data being notoriously 

difficult to fit and interpret in a rigorous manner. To accurately capture the pattern of the 

RSL signal requires a good constraint on both the regional ice sheet history, earth 
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rheology and the background melting history. As a consequence, past modelling studies 

differ not only in the fit to the RSL data but also in the optimum range of model 

parameters (see Milne et al., (2006) and Shennan et al., (2006a)).  For example, early 

modelling studies of Lambeck et al., (1996) and Shennan et al., (2000) inferred that the 

optimum lithosphere thickness for the region was ~ 65 km, compared to later work by 

Peltier et al., (2002) who preferred a thicker lithosphere, ~ 90km. There have also been 

differences in the adopted spatial and temporal history for BIIS model, most specifically 

in the rate of ice build up prior to LGM and the maximum spatial extent. Peltier et al., 

(2002) assumed that the BIIS was in equilibrium at the LGM, having maintained the 

same spatial extent throughout the Devensian up to the start of deglaciation. In contrast, 

Johnston and Lambeck (2000) stated the importance of the pre-LGM glacial period and 

proposed a BIIS model in which the British Isles was ice free prior to 27 kyr BP. 

Additionally, within this later model, a more extensive ice sheet was proposed with ice 

margins extending into the offshore regions and with ice across the entire of Irish 

mainland. It is noted that one key problem yet unresolved with capturing the RSL trend 

across the British Isles has been the overprediction in the height of the Holocene 

highstand (Shennan et al., (2002)). This will be addressed within this study.   

 

The above discussion indicates that to produce better constrained models of the GIA 

across the British Isles, additional datasets which offer a distinct parameter sensitivity to 

that of the RSL data must be considered. Milne et al., (2006) first highlighted the use of 

CGPS data from across Great Britain as a useful complementary dataset with which to 

constrain the GIA processes across this region and reduce some of the inherent non-

uniqueness described above. As the data monitor the motion associated with the local 

solid earth deformation, by calculating rates relative to a defined reference sites, it was 

shown that the sensitivity to the non-local GIA processes (such as global ice model) can 

be reduced. A primary aim of this thesis is to adopt as much data as possible to arrive at a 

better constrained GIA model for the British Isles (see Section 1.4). 
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1.2U. GIA Modelling and Theory 

 

1.2.1. Introduction 

 

A GIA model is an isostatic computer model and has three key inputs: a model of the 

Late Pleistocene ice history (see Section 1.2.3 and Chapter 2), an earth model to 

reproduce the solid earth deformation resulting from the surface mass redistribution (see 

Section 1.2.4) and a model of sea level change to calculate the redistribution of ocean 

mass. The theory behind the latter was initially developed by Farrell and Clark (1976) in 

the form of an equation, known as the sea level equation, and will be referred to hereafter 

as „FC theory‟. The first two inputs are user-defined and will be varied within this thesis. 

This type of model will be used throughout this thesis to generate predictions of RSL and 

present day land motion for a suite of earth models. 

 

Early applications of the sea level equation by Clark et al., (1978) enabled accurate 

predictions of sea level (as shown in Fig. 1.2D) for a defined input ice loading history and 

a non-rotating, spherically symmetric viscoelastic earth model.  Over the past two 

decades there have been a number of advancements and extensions to the FC theory to 

address the two key assumptions: that the earth was non-rotating and that coastlines were 

fixed in time. The most recent version of the sea-level equation is adopted within this 

study, with further details found in Kendall et al., (2005) and Mitrovica and Milne 

(2003). Revisions to the FC theory include:  GIA-induced perturbations to the rotation 

vector (Milne and Mitrovica (1998b)); time-dependant shoreline migration (Milne and 

Mitrovica (1998a)) and an accurate treatment of sea level in regions of ablating marine-

based ice (Milne et al., (1999)).   

 

In order to model observations of present-day vertical and horizontal deformation rates, 

the theory and approach described by Mitrovica et al., (1994a), Mitrovica et al., (1994b) 

is adopted. However, an extended version of this theory to include the influence of GIA-

induced perturbations in Earth rotation (e.g. Mitrovica and Milne 2000) is used. 
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The complete theoretical background behind the most recent advances to the sea level 

equation and prediction of present day deformation rates are not evaluated within this 

thesis, but can be found in the above cited references. An overview of the key theoretical 

aspects of GIA modelling will be provided in the following sub-section (1.2.2), but it is 

noted that the equations do not represent the theory used within the thesis. This will be 

followed by a brief discussion on the ice and Earth model used as inputs in this thesis. 

More detail in this regard is provided in the appropriate chapters. 

 

1.2.2. Theory 

 

The redistribution of mass associated with the numerous past glacial cycles and 

associated change in sea level perturbs the system through a movement of mass both 

internally and externally (such as between the ice sheets and oceans). Assuming that 

climate-driven changes in surface mass flux stops, the system will tend towards a new 

configuration in which the total mass is in isostatic equilibrium. In moving towards this 

equilibrium, changes occur in the geopotential and height and horizontal position of the 

solid surface.  

 

The theory applied to model the earth response to a change in surface load, or mass 

redistribution, is based upon the impulse response formalism (Peltier (1974)), where the 

response of a spherically symmetric, self gravitating, non-rotating viscoelastic earth to an 

arbitrary surface mass load can be calculated by the space-time convolution of a general 

load function  tL ,, , with an appropriate Green‟s function,  tG ,,  at co-latitude 

( ) and  longitude ( ).  This can be expressed as follows:  

  

 t,,    =      ttGtL

t

 



,,*,,     (1) 

  

where  is the spatial integration over unit sphere and * defines a spatial convolution. 

 t,,  is a general expression for the potential perturbation of the Earth system. As 

mentioned above, this can be considered in terms of three different components: a 

perturbation in both the radial and tangential displacement in the solid surface and a 

perturbation in the geopotential.  
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The impulse response formalism of Peltier (1974) is adopted to calculate the response of 

a viscoelastic (Maxwell) earth to an idealistic surface load that is point-like in both space 

and time. This response is represented through a series of viscoelastic surface load Love 

numbers which are coefficients of degree l in a Legendre polynomial expansion of the 

Green‟s functions for the radial,  thL

  and tangential  tl L

  displacement fields and 

potential  tk L

  perturbation and have the following form: 

  thL
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where t is time, the L superscript denotes that the Love numbers are associated with a 

surface mass loading,  t  denotes the Dirac delta function. The first term on the right 

hand side represents the instantaneous elastic response to the applied load, the second 

term a non elastic response which is represented by a set of K modes of exponential 

decay. Each mode is defined by an inverse decay time ( 

ks ) and an amplitude ( L

kr
, ) 

which depends on the choice of adopted earth model. These Love numbers are used in the 

prediction of the surface observables outlined in section 1.1.2;   thL

  and   tl L

  are used 

to predict radial (vertical) and horizontal displacement while both the  tk L

  and  thL

  

Love numbers are required to model sea-level change as outlined below.  

 

These Love numbers are used to construct the impulse response Green Functions for the 

radial  tL ,  and tangential  tL ,  displacement of the solid surface and geopotential 

perturbation on the undeformed surface  tL ,Υ  ;  

 

 tL ,   =   cos
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    (5) 
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            (7) 

 

where a and  eM  are the mean radius and mass of the Earth respectively, g is the surface 

gravitational acceleration,   represents the angular distance between the impulse load 

point and the observation point, 


is a unit vector tangent to the surface in the direction of 

a great circle extending between the impulse load point and the observation point.  

 

This thesis is mainly concerned with predictions of sea level change and present day 

radial displacement. To calculate these requires expressions for the radial displacement of 

the solid surface and perturbation to the geopotential (and later the geoid anomaly). As 

such, expressions which examine perturbations in the tangential displacement will not be 

evaluated further.  

 

Substituting the relevant Green‟s function from (5) and (6) into the general equation (1) 

yields expressions for the perturbation to the radial displacement of the solid surface, 

 tRL ,,  and the geopotential at the undeformed surface,  tL ,, ,  

 

 tRL ,, =     ttttLa L
t

  
,,,2    (8) 

 

 tL ,,  =     ttttLa L

t

 



,,,2    (9) 

 

 

As was defined in section 1.1.2, sea level is the vertical height difference between the 

geoid (ocean surface) and the solid surface. A change in sea level  tS ,,  can therefore 

be defined simply as the difference between the perturbation in the geoid and the 

perturbation in the solid surface, as follows:  

 

 tS ,,  =      tRtGC LL ,,,,,                                   (10)  
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where  tGL ,,  and  tRL ,,  are the load induced perturbation in the geoid and solid 

surface respectively,  ,C  is the ocean function, defined to be unity over ocean and 

zero over land regions (Munk and Macdonald (1960)) 

An expression for the perturbation in the solid surface  tRL ,,  can be taken directly 

from equation (8). An expression for the perturbation in the geoid  tGL ,,  can be 

evaluated using the expression in (9) as follows, 

 

 tGL ,,  = 
 

g

tL ,, 
 +  t     (11) 

 

The first term right hand side of equation (11) represents a spatially variable shift in the 

geoid, where the perturbation in the geopotential (9) is normalized by g, the surface 

gravitational acceleration. As the geoid is defined as an equipotential surface of the 

earth's gravity field, any perturbation in the geoid (or ocean surface) height must also 

reflect a perturbation in the earth gravity field. The second term on the right hand side 

 t  is the spatially uniform shift in the geoid, which is to account for the conservation 

of mass between the ice sheet and oceans, where the change in the volume of the region 

bounded by the geoid and the ocean floor must be consistent with the volume of ice lost 

or gained. It is defined as follows  

  

 t  = 
 
 tA

tM
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where  tM I  is the rate of change of mass in grounded ice since the onset of loading, pw 

is the density of the water, Ao is the surface area of oceans basins.  

The first term on the right hand side can be used to calculate the eustatic sea level 

 tSesl  or a globally uniform height shift in the ocean surface that would occur in the 

absence of gravitational effects and earth deformation due to mass input from continental 

ice reservoirs (Farrell and Clark (1976)). 

 

 tSesl  = 
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where icep  is the density of ice, iceV  is the rate of change in grounded ice volume between 

time t and t=0. This relationship will be used later within this thesis, within Chapter 4 

which focuses on constraining a model of global ice volume changes.   

 

The general expression for the sea level given in (10) can now be re written using the 

above expressions as follows, 

 

 tS ,,  =     
 

   























  




t

L
L

tttt
g

tt
tLaC ,

,
,,, 2 


    (14) 

 

This equation is referred to as the sea level equation, from Farrell and Clark, 1976. 

 

The general load function,  tL ,,  represents a model of the spatial-temporal variation 

in ice-ocean mass. It can be defined as follows: 

 

 tL ,,  =  tIpice ,,  +  tSpw ,,   (14) 

 

 

 tI ,,  defines the space-time variation of ice thickness of the input ice model, and as 

was mentioned above is one of the main user defined inputs into a GIA model, as will be 

described below. 

 

1.2.3. Input Ice model 

 

There are a range of different types of models which can be used to reproduce the 

evolution of an ice sheet over a glacial cycle. The main types can be defined as: 

geomorphologically-driven models (such as Greenwood and Clark (2009b)), 3D 

numerical thermomechanical models (such as Hubbard (1999), Hubbard et al., (2009), 

Boulton and Hagdorn (2006)) and isostatic load models (such as Peltier (2004), Lambeck 

et al., (2010), Brooks et al., (2008)). Geomorphologically-models are qualitative (i.e 

data-derived) reconstructions, which incorporate information from the mapped 

geomorphological landform record (i.e Greenwood and Clark (2009a)) and the inferred 
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paleo-ice flow record. These models provide information on past the changes in the 

centres of ice mass, ice divides or ice flow geometries throughout a glacial cycle. 

3D numerical thermomechanical ice sheet models are developed using physics of ice-

flow and mass balance (Boulton and Hagdorn (2006)),  forced by prescribed climate 

conditions to simulate the 3D geometry of an ice sheet and additional physical 

characteristics (i.e basal temperature or ice velocity) as a function of time. These paleo-

climate forcings include records taken from ice cores (such as the North Greenland Ice 

Core project) and models of global eustatic sea level (Fairbanks (1989)) 

 

The type of ice model used within this thesis is a 3D isostatic load model, where the 

surface of the earth is divided into an equally spaced longitude/latitude grid with a 

spacing of ~ 0.7° x 0.7° (77km) (and so greater spatial resolution is achieved at high 

latitudes). The model is separated into a series of 40 loading increments, at a resolution of 

7000 yrs between 116 kyr and 25 kyr and at ~ 1000 yr intervals between the LGM and 

the present day (with an increased time resolution of 500 yr during periods of rapid 

change). The ice model is not a glaciologically realistic model, hence there is no 

treatment of surface mass balance or ice flow geometries, as within the two types of 

model described above, but is assumed to follow a simplistic parabolic shape. At each 

time interval for each grid point across the earth surface, the thickness and spatial extent 

of ice is defined. To constrain these values, geomorpological data (see Section 1.3.3 and 

2.2.2) on the spatial and vertical extent of an ice sheet are used. For example (see Fig. 

1.4A) at 21 kyr BP, the defined ice thickness can range from 0 m within the Pacific 

Ocean to ~ 4000 m across Antarctica.  

 

The starting ice model used within this thesis is a composite of two published models: a  

global ice model taken from Bassett et al., (2005) and a higher resolution regional BIIS 

model taken from Shennan et al., (2002). The global ice model developed by Bassett et 

al., (2005) (which will be referred to throughout the study as the Bassett et al. model) 

includes the Northern Hemisphere ice sheets of North America (Laurentian, Innuitian and 

Cordilleran), Greenland, Eurasia (Barents Kara and Fennoscandia), and the Southern 

Hemisphere ice sheets of West and East Antarctica and the smaller Patagonian ice fields. 

The spatial extent of the ice in these regions, as incorporated in the model, is illustrated 
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on Fig. 1.4 for the LGM (~ 21 kyr BP) and the present day. In the Bassett et al. study, 

their starting model - the ICE3G ice history model (Tushingham and Peltier (1991)) – 

was altered to produce an optimum fit to a suite of far-field RSL data from Barbados, 

Huon Peninsula, Sunda Shelf, Bonaparte Gulf and Tahiti between LGM and 10 kyr BP. 

Two main modifications were made to the ICE3G model: a pre –LGM glaciation phase 

was introduced to create a new glaciation period which extended over 100 kyr BP; 

secondly, the glacial histories of the LIS and AIS were altered to achieve an optimum fit 

to the far-field sea level data, with the introduction of a rapid rise in eustatic sea level of ~ 

22 m, associated with mwp-1A. One key finding of this study was that a far better fit was 

achieved to the RSL data when a dominant contribution to mwp-1A is sourced from the 

AIS, rather than the North American ice sheets. 

 

Comparing Fig. 1.4B & D highlights the significant reduction in the size and volume of 

global ice cover within the Northern Hemisphere between the LGM and the present day. 

At the LGM, large ice sheets covered most of North America, Greenland and across NW 

Eurasia and the high Arctic. During this final glacial period, these major ice sheets 

retreated, with the deglaciation of North America largely complete by ~ 7 kyr BP and 

Eurasia by ~ 8 kyr BP. The only remaining significant ice sheet in the Northern 

Hemisphere at present is the Greenland ice sheet. Across the Southern Hemisphere at the 

LGM (Fig. 1.4A), glaciation was limited to the southern tip of South America with the 

growth of the Patagonian Ice sheet and the larger, more extensive AIS, across the whole 

of Antarctica. Within the Bassett et al. model the Patagonian ice sheet has completely 

deglaciated by 14 kyr BP, with the final deglaciation phase of the AIS ending at 8 kyr BP, 

by which time the ice sheet had thinned by over 1700 m and retreated inland.  
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Fig. 1.4: Spatial plots of the ice extent of the starting ice model at the LGM (21 kyr BP) 

(A and B) and at present day (C and D) for the Northern and Southern Hemispheres. The 

global ice model is taken from Bassett et al., (2005). The regional ice model, which 

includes the British and Irish Ice sheet, is taken from Shennan et al., (2002).  

 

 

Also shown on Fig. 1.4B is the extent at the LGM of the BIIS. This regional ice model 

was developed to fit a suite of RSL data from sites across the Great Britain and to be 
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consistent with the current geomorphological constraints on the BIIS spatial and temporal 

history.  A more detailed description of this ice model can be found later within this 

thesis (Section 2.3).  

 

1.2.4. Input Earth model 

 

The Earth model adopted within this thesis is a spherically symmetric, self gravitating 

viscoelastic (Maxwell) body. The input model has five parameters which are defined with 

depth: density, P and S wave velocity, gravity and viscosity. The first four of these are 

taken from seismic constraints (Dziewonski and Anderson (1981)) and depth 

parameterised at resolution of 10km within the crust, 25km within the mantle, 70 km in 

the outer core and 38 km in the inner core. The viscosity structure is parameterised at a 

cruder resolution than the above parameters into 5 main layers, as summarised on Fig. 

1.5: an upper layer of high viscosity (10
43

 Pa s) to simulate the elastic lithosphere (which 

includes the crust), an upper mantle which extends from the base of the lithosphere to the 

670 km seismic discontinuity and a lower mantle which extends from this depth to the 

core-mantle boundary, and two lower regions which represent the outer and inner core.  

The lithosphere thickness and upper and lower mantle viscosity values are free 

parameters within the modelling. All other earth model parameters remain unchanged 

throughout the thesis. A range of values for these three input parameters will be examined 

based on the spread of possible values inferred in recent GIA studies (e.g. Forte and 

Mitrovica (1996), Milne et al., (2001), Nakada and Lambeck (1989),Davis et al., (1999), 

Kaufmann and Lambeck (2002)). The maximum and minimum values for upper and 

lower mantle viscosity will be 0.08-5 × 10
21

 Pa s and 1-50 × 10
21

 Pa s, respectively, for 

lithosphere thicknesses of 71, 96 or 120 km.    
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Fig. 1.5: Schematic representation of the variation with depth (km) of the viscosity 

structure of the input earth model. The viscosity value within the lithosphere is set to 10
43

 

Pas. This value remains fixed throughout the thesis. The following three parameters: LT, 

the lithosphere thickness, ηum  and ηlm the upper and lower mantle viscosity are user 

defined inputs and are varied throughout this thesis.  

 

U1.3. Observational Data  

 

1.3.1. Relative sea level data  

 

Over 30 yrs of research, coordinated through the International Geological Correlation 

Programmes (IGCP), has produced a well defined methodology for developing records of 

relative sea level change from geomorphological features (such as raised shorelines, 

beach deposits) or sedimentary environments and their associated fauna and flora (Van 

De Plassche (1986), Shennan (1982) and Tooley (1982)). This methodology is based 

around the development of sea level index points (SLIPs) which rests on the principle 

that “variations between terrestrial and marine sedimentation reflects changes in the 

balance between land and ocean levels moderated by local scale processes such as rate of 
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sedimentation” (Van De Plassche (1986)). For a fossil sea level indicator to be defined as 

a SLIP it must be possible to establish the following four attributes: location (longitude 

and latitude), age (defined in calendar years), altitude (relative to a levelling datum) and 

its vertical relationship to a contemporaneous tide level (termed the indicative meaning). 

 

Based on the ability of a sea level indicator to fulfil these four requirements, samples can 

be separated into four classes.  The highest quality sea level indicators are Primary SLIPs, 

which possess information on all four attributes. They are the most useful for 

constraining predictions of RSL generated by GIA models as they provide a direct 

measure of past RSL with clear defined height uncertainty. In the Ireland RSL database 

(Brooks and Edwards (2006)) a second subset was introduced, which will be referred to 

as secondary SLIP. These are derived from dated sea level indicators but where one or 

more of the key attributes is unquantified or associated with a significant uncertainty. 

This may be due to limited accompanying microfossil analysis, poor chronological 

control or where material was sourced from archaeological evidence. 

 

When it is not possible to define a quantitative relationship between the field evidence 

and the contemporaneous tidal regime for the dated sea-level indicator it is classified as a 

limiting date. These samples can only be used to indicate whether sea level occupied a 

position above or below a certain altitude and are derived from material such as 

freshwater peats or in situ tree stumps.  

 

The majority of sea level indicators from around the British Isles are taken from low 

energy coastal environments, such as salt marshes, or isolation basins. An isolation basin 

is defined as a „naturally enclosed rock basin that was once below sea level but has 

subsequently been raised above it and hence become isolated from the sea (Lloyd and 

Evans (2002)). This isolation procedure is recorded in the litho- and biostratrigraphy by a 

transition from marine to terrestrial deposits and in a change in the microfossil 

assemblages preserved within the basin sediments. The microfossils are sensitive to 

changes in the salinity within the basin and as such, provide a record of the change from 

brackish to freshwater depositional environment. The age of the sample is derived by 

dating the contact between the marine and terrestrial deposits and associated microfossils, 
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with the altitude and indicative meaning defined by the height of the lowest part of the 

rock sill which separates the basin from the open sea (Edwards (2006)). 

 

SLIP records from other low energy coastal environments, such as salt marshes are also 

derived from the transitions recorded in lithostratigraphic records between terrestrial and 

marine sediments, with supporting microfossil evidence (such as pollen or diatoms). The 

most common sequence found in such records around the British Isles is alternating 

horizons of freshwater peats, organic rich sediments and marine clastic sediments. The 

age and altitude of sea level indicator is derived from the contact between these 

contrasting stratigraphic sequences, with microfossil analyses often used to corroborate 

and further quantify the indicative meaning.  

  

When modelling sea level data it is important to quantify the magnitude and possible 

sources of the uncertainty associated with determining the altitude and indicative 

meaning. Altitude errors may arise during sampling, such as associated with levelling to 

the datum, or measurement of lithostratigraphic contacts, or in establishing the indicative  

meaning. A standardized vertical error calculation as described in Shennan (1986) or   

Horton et al., (2000) can account for all quantifiable vertical errors, including problems 

with field levelling, present tide heights and interpretation of the indicative meaning. This 

calculation has been applied throughout the RSL database used in this thesis. 

 

An unquantifiable factor which may affect the reliability of a SLIP is post-depositional 

compaction (or consolidation), which acts to lower the reconstructed altitude of the 

sample. There is no widely accepted approach to quantify or account for the affect of this 

process (Shennan and Horton (2002)). Most studies aim to minimise its impact on the 

quality of the SLIP by concentrating on sediment samples that have undergone minimal 

or no compaction. For example, in isolation basin reconstructions, since the altitude of 

the sample is defined from the height of the sill which is commonly bedrock, these SLIPs 

are not affected by compaction. Samples taken from thin basal peats or the base of basal 

peats which are deposited over a hard substrate are also not as significantly affected by 

sediment compaction, in contrast to samples derived from thick intercalated clay, silt and 

peat sequences.  

25



 

Another possible source of error is the assumption, when estimating the indicative 

meaning, that there have been no significant changes in the local tidal range since sample 

deposition. In reality, many regions will have experienced some change in tidal range 

which may produce changes in the reference water level through time. These will be 

greatest within macro-tidal regions such as estuaries or regions with pronounced changes 

in coastal geometry. One method to account for this is to correct the affected sites using 

estimates of these changes from a paleo-tidal model (Shennan and Horton (2002)).  

 

1.3.2. Continuous GPS data 

 

Over the last ~ 10 years, the CGPS network across the British Isles has steadily expanded 

to now include over 130 receivers (see www.bigf.ac.uk). The majority of these were not 

deployed with the aim of monitoring the secular motion of the solid earth; most were 

established as a network real-time system that did not require a stable site that monitors 

the solid earth motion and as such can be located on unstable buildings. As such, the 

number of receivers which provide an accurate measure of the 3D crustal motion at a 

precision of sub mm yr
-1

 is significantly less than the total number of receivers. A number 

of criteria were considered when choosing which CGPS sites to use within this thesis.  

 

First, sites with less than 4 years of consistent and uninterrupted recorded data and whose 

station-specific monumentation was considered to be unstable or unsuitable were 

removed (see Teferle et al., (2009) for a complete discussion of these issues). Second, the 

time series and crustal velocities at each site were compared using two different 

processing techniques (Teferle et al., (2009)): (a) the IESSG‟s (Institute of Engineering 

Surveying and Space Geodesy, Nottingham) GPS analysis software version 2.4 which 

produced a series of daily double-difference regional network solutions and (b) a series of 

daily precise point positioning globally transformed solutions generated using Bernese 

GPS software version 5.0 (Dach et al., (2007)). In both cases crustal velocities (vertical 

and horizontal) at each site were obtained from a model-fit using maximum-likelihood 

estimation (Williams et al., (2004)), which has been shown to accurately take into 

account uncertainties and systematic offsets in the processed signal arising from, for 
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example, white and coloured noise, unmitigated tropospheric delays or bias in the 

satellite orbits. Sites where difference in the vertical and horizontal velocities obtained 

using these two processing techniques was greater than 1 mm yr
-1

, and the calculated time 

series displayed anomalous trends, were rejected. Also if the calculated site velocities 

were inconsistent with the rates from surrounding stations, the anomalous sites were 

removed. When all of  these criteria were applied, the total number of suitable sites 

reduced to 16 for vertical motion and 21 for horizontal motion.  

 

When processing the CCPS data to produce an estimation of the vertical crustal motion, a 

systematic bias can also be introduced due to uncertainties in the adopted terrestrial 

reference frame, which in this study was ITRF2000 (Altamimi et al., (2002)). A simple 

procedure to address this and also improve the accuracy of the vertical velocity estimates, 

as shown by Teferle et al., (2006), is to calibrate the CGPS derived velocities with those 

estimated from measurements of absolute gravity (AG). AG-derived estimates of vertical 

velocity were taken from two sites; Lerwick in Scotland and Newlyn in SW England. By 

calculating the difference between the CGPS and AG derived estimates of vertical 

velocities at these two stations (rates summarised in Teferle et al., (2009)) and subtracting 

this offset from the CGPS-vertical velocity at each station, AG-aligned CGPS estimates 

of vertical velocity can be generated. More information is provided in Chapter 3. 

 

1.3.3. Geomorphological Data  

 

When developing an ice model for any given region there are key elements that need to 

be constrained: the timings of the main advance and retreat phases as well as the lateral 

and vertical extent through time. Geomorphological field evidence can provide 

constraints on the vertical and lateral extent of the past ice sheets, and a combination of 

radiocarbon and cosmogenic dating of such features can be used to constrain the 

associated chronological history.  

 

In the following section a brief overview of the main landforms and associated dating 

techniques mentioned within this thesis will be given. It is noted that a complete 

description of all glacial landforms and related dating techniques is beyond the scope of 
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this thesis. The reader is referred to the following papers for more information: Evans and 

Benn (2007), Colgan (2007), Mickelson and Winguth (2007). 

  

There are two main dating techniques mentioned within this thesis: Accelerator Mass 

Spectrometry (AMS) radiocarbon and cosmogenic nuclide surface exposure dating. The 

former method is most commonly applied in the dating of RSL data but also routinely 

used to date landform features such a glacial moraines. This method is limited to deposits 

which contain organic material, and to the last 50 kyr BP due to the practical limitations 

of the technique. 

 

Cosmogenic nuclides, such as 
26

Al, 
36

Cl or 
10

Be are produced in surface rocks by the 

action of cosmic radiation. The length of time that a rock surface has been exposed can 

therefore be determined by calculating the concentration of such nuclides within a sample 

of the rock surface. Other natural processes can affect the concentration of the 

cosmogenic nuclides in the rock sample, such as erosion, weathering and as such will act 

to produce older exposure ages. As most glacial surfaces will have experienced some 

level of post-exposure erosion, locating a sample from a fresh surface is complicated. As 

there is no reliable estimation of erosion rates for rock surface across the British Isles, a 

range of rates are usually considered, between 0- 3 mm kyr
-1

 taken from studies in other 

similar glaciated regions (Ballantyne (2010), Bowen et al., (2002)). This dating technique 

is commonly used to produce surface exposure ages at older, pre-LGM times.  

 

The main geomorphological feature which is used to constrain the vertical extent (i.e. the 

thickness) of the BIIS is periglacial trimlines, which are defined as “the upper level to 

which glacial erosion has removed or „trimmed‟ a pre-existing cover of pre-glacial or 

periglacial (frost-weathered) regolith on the flanks of nunataks or other mountain 

surface” (Ballantyne (2007)). This marks a weathering limit or horizon which separates 

an upper zone of more advanced rock breakdown (generally due to frost action) from a 

lower zone which is characterised by glacial erosion and more limited post-deglaciation 

rock weathering.  
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There are a range of theories proposed to account for the development of trimlines, which 

have been recently reviewed in Ballantyne (2007). Three of the main theories which have 

been considered within mapping studies across the British Isles are summarised below 

and illustrated on Fig. 1.6.  

 

 

Fig. 1.6: Three proposed mechanisms for the formation of periglacial trimlines (adapted 

from Ballantyne, (2007). (A) the ice-marginal (nunatak) hypothesis, in which the trimline 

marks the upper surface of the glacier at its maximum thickness, (B) the englacial 

hypothesis, where the trimline represents a thermal boundary between a lower warm 

based (erosive) ice and upper cold based (passive) ice within an ice sheet, (C) the 

readvance hypothesis, where the trimline forms due to the later readvance of a warm-

based ice sheet.  

 

 

The most widely applied theory to explain the formation of trimlines, and adopted in the 

early mapping studies across the British Isles can be referred to as the ice-marginal 

hypothesis (Fig. 1.6A), where the trimline marks the upper limit of a warm-based 
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(erosive) ice sheet with ice free nunataks above the ice limit. In this theory, the trimline is 

used to define the maximum vertical thickness of the ice sheet. A second theory (Fig. 

1.6B), referred to as the englacial hypothesis, proposes that the trimline represents a 

thermal boundary between a lower horizon of warm based ice and an upper region of 

passive, cold based ice within an ice sheet. In this theory the highest summits were 

overridden by the regional ice sheet and the trimline can only be used to infer the 

minimum thickness of the lower warm based horizon. The final theory, shown on Fig. 

1.6C, is where the trimline is produced due to the later readvance of a warm based ice 

sheet and as such will delimit the maximum thickness of this later glacial episode and not 

the vertical height at LGM. The main method applied to distinguish between hypothesis 

one and three is dating (either radiocarbon or surface exposure) the blockfields and frost-

weathered debris on the exposed higher ground. 

 

There are a range of techniques which can be applied to identify an horizon as a 

„periglacial trimline‟, most of which relate to the identifying different degrees of rock and 

soil weathering between the two zones. Some of these include: a Schmidt hammer device 

which records the percentage of rebound from a rock surface. This is related to the elastic 

properties of the rock which will be affected by the amount of weathering that the surface 

has experienced. Generally, samples taken from a more weathered or „rough‟ rock 

surface will produce lower rebound values, such as above a trimline. Other techniques 

include the distribution of dilation (open) joints which are generally deeper and more 

open above a trimline; or clay mineral analysis within soil samples. Ballantyne et al., 

(1998) found that gibbsite is preferentially represented in soil samples taken from above a 

trimline or rock surface which have escaped glacial erosion.  

 

Once a feature has been identified as a trimline, assigning a method of formation between 

hypothesis one and hypothesis two is more problematic. Interpretation of a trimline as 

forming due to the ice-marginal hypothesis is only valid if three main lines of evidence 

can be satisfied; (1) lack of erratics or glacially transported boulders above the trimline, 

(2) application of cosmogenic nuclide dating, generally using 
26

Al/
10

Be to test for 

uninterrupted exposure of the rock surface above the trimline, indicated by pre-LGM 

exposure ages. (3) Consistency with other geomorphological evidence, such as decline in 
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the altitude of trimlines along former flowlines and glaciological constraints (such as 

reconstructed ice surface altitudes). Any one of these lines of evidence does not on its 

own provide unequivocal support of hypothesis one over hypothesis two. For example, it 

was initially proposed that a sharp contact between the lower ice scoured and upper frost-

weathered terrain was indicative of an ice-marginal origin, but it has now been shown 

that sharp boundaries can develop at englacial trimlines (Ballantyne (2007)). 

 

Ballantyne (2010) proposed four lines of interpretation to support an englacial rather than 

ice-marginal hypothesis for the trimlines across the British Isles. First, the presence of 

local sourced erratics within the blockfield debris above the trimline and preservation of 

the higher summits under a cold-based ice sheet. Second, maps of the ice surface altitude 

were interpolated based on an assumed ice thickness taken from the trimline evidence 

following hypothesis one (ice-marginal). These ice heights were found to be inconsistent 

with the spatial limits inferred from other evidence in the surrounding region, mostly 

relating to the offshore extent, implying a thicker ice sheet was required. Finally, 

numerical modelling of the BIIS using a glaciological model (Boulton and Hagdorn 

(2006)) has shown it is difficult to produce an ice model which complies with the 

thickness defined using the ice-marginal hypothesis. Additionally, optimum basal melting 

temperatures from these reconstructions were consistent with the development of 

englacial trimlines. 

 

Reinterpretation of trimlines across the British Isles as having formed as englacial rather 

than ice-marginal boundaries will have important implications for the future modelling of 

the BIIS as discussed later in this thesis.   

 

Unlike constraining the vertical extent of an ice sheet, there are numerous possible 

geomorphic landforms which are used to constrain the spatial extent, including moraines, 

outwash plains, eskers, many of which have been identified and summarised for the 

British Isles in, for example, Clark et al., (2004), Evans et al., (2005). The complete 

range of data used to constrain the BIIS in this thesis will be outlined in Section 2.2.2, 

with some of the main landforms that are most commonly adopted for this task defined 

below. 
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A moraine is one of the most commonly used landforms to constrain the early LGM ice 

limits across the British Isles and is defined as an ice marginal accumulation of sediment 

with a topographic expression defining a distinct landform. There are many different 

types of moraines, including lateral moraines which form along the edge of a glacier, end 

(or terminal) moraines, which define the maximum lateral extent that ice margin reached 

onshore or submarine morainal banks which can be used to constrain the offshore extent 

of an ice sheet. The two main offshore landforms which are mentioned in the 

development of the BIIS model are mega-scale glacial lineations (MGSL) and trough 

mouth fans. MSGL‟s are longitudinally aligned topographic ridge-groove corrugations, 

up to 100km long and tens metres high (Clark (1993) and represent the signature of fast-

flowing ice within a grounded ice sheet. Due to the larger size of these landforms, they 

are most often identified on satellite images, or using 2D and 3D swath-bathymetry and 

marine seismic data. Trough mouth fans are large accumulations of subglacial sediment, 

which are deposited by debris flow processes from ice streams, during periods of shelf 

edge glaciations. Examination of the various sediment packages within the fans can be 

used to infer the history of ice-sheet advance and retreat across the continental shelf.  

 

U1.4. Aims and Outline of Thesis  

 

The principal focus of the work presented in this thesis is to develop a revised GIA model 

for the British Isles by using independent datasets to reduce the ambiguity and sensitivity 

to both the local and global model input parameters. This will be achieved in a number of 

stages using a combination of relative sea level data from both near and far-field sites, as 

outlined in Section 2.2.3 and 4.2, CGPS data as described in Section 3.2 and the most 

recent geomorphological field constraints outlined in Section 2.2.2 and within Chapter 5.  

 

The first step is to create a revised spatial and temporal history for the BIIS which is 

consistent with the most recent geomorphological data from the British Isles and the 

NorthSea (Section 2.2.2) and takes into account the underlying terrain. The model will be 

developed in two stages; first a regional model for the complete BIIS will be developed 

which will be calibrated against an extended RSL database from across Great Britain. 
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Second, the Irish Ice Sheet (IIS) component of the BIIS will be examined in more detail, 

an aspect of the GIA model for the British Isles which has largely been overlooked in 

past modelling studies. A revised IIS will be produced which addresses specific issues 

relating to the history of the IIS, and examines the sensitivity of RSL predictions to 

transient and small scale changes in the ice sheet. This model will be calibrated against a 

new, previously un-modelled RSL database from Ireland. A final BIIS model will be 

produced which combines the regional model with the revised IIS. This model will be 

adopted within later chapters in the thesis (Chapters 3 and 5).  

 

In Chapter 3, a new CGPS dataset from across Great Britain will be employed to provide 

an independent constraint on the choice of regional earth model parameters (shallow 

viscoelastic structure). This is one of the key inputs into a GIA model which, as discussed 

above, has significantly varied within past studies. It will be shown that the CGPS data 

are relatively insensitive to uncertainties in the choice of both global and regional ice 

model. Predictions of vertical crustal motion for a suite of earth models will be examined 

to identify an optimal range of earth model parameters, which will be adopted within 

Chapter 5.  

 

Another key input into GIA models and to which the GIA of the British Isles is distinctly 

sensitive is the adopted model of eustatic sea level change (or the melt history of the 

global ice model).  In Chapter 4, I will address this issue by using a previously un-

modelled far-field RSL dataset, from across China and the Malay-Thailand region to 

develop a revised model of eustatic sea level change over the Holocene. This work will 

extend an earlier published global ice model (Bassett et al., (2005)), which was tuned to 

fit a suite of far-field data from LGM to 10 kyr BP. The model remains unconstrained 

over the Holocene, a time period, as mentioned above, where misfits to the RSL data 

across Great Britain are still unresolved. This will be achieved by examining a range of 

eustatic melt scenarios investigating both the pattern and rate of global melting over the 

last 10 kyr BP for a suite of earth models. The final optimum model of eustatic sea level 

change or global ice model will be adopted in Chapter 5. 
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In Chapter 5, the results of each of the previous chapters will be combined to produce the 

final revised GIA model. The revised regional ice model from Chapter 2 will be 

combined with the new global ice model from Chapter 4 to produce a final BIIS model. 

For the first time, predictions will be compared to a complete RSL database containing 

data from both Ireland and Great Britain for a complete suite of earth models. The range 

of earth models will be compared to the limits for the regional shallow viscoelastic 

structure constrained from the CGPS data considered in Chapter 3.  
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Chapter 2: Developing an improved British-Irish Ice Sheet model 

 

2.1. Introduction 

 

Over the past decade there have been numerous GIA modelling studies for the British 

Isles: from the early work of Lambeck (1993a), Lambeck (1993b) to the more recent 

studies of Johnston and Lambeck (2000), Peltier et al., (2002). In these studies a loading 

history model for the British-Irish Ice sheet (BIIS) was developed. While the results 

produced a reasonable fit to the observed RSL data, there are a number of differences 

between some of the analyses including the choice of input parameters - most specifically 

the BIIS - and the size of the available RSL database. 

 

One noted similarity between all the proposed BIIS models (Shennan et al., (2002), 

Johnston and Lambeck (2000)) has been the use of trimline data to constrain the 

thickness of the input ice model. As was pointed out by Milne et al., (2006) this neglects 

to take into account the considerable underlying terrain across Central Scotland, which 

will lead to a significant overestimation in the defined ice thickness.  

 

Only the most recent studies of Peltier et al., (2002) and Shennan et al., (2002) had 

available the extended RSL database, with data from 55 locations and a total of 943 SLIP 

but did not include any SLIP data from across Ireland. Some of the earlier modelling 

work such as Johnston and Lambeck (2000) did include data from across Ireland but 

there was a much smaller number of SLIP's, only 441 available. 

 

It is evident from examining these past studies, that the changes to the BIIS 

reconstructions over the past few decades reflect both the constraints from  new 

geomorphological evidence and the choice of key model input parameters (as outlined in 

Chapter 1). For example, the early model of Lambeck (1993a) proposed an advance of 

the BIIS across the North Sea to join with the SIS, which was later rejected by Lambeck 

(1993b) due to new evidence that suggested the LGM ice sheet terminated close to the 

coastal margins. Peltier et al. 2002 assumed that the BIIS was in equilibrium at the LGM, 

with the same spatial extent maintained throughout the Devensian up to the start of 
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deglaciation. In contrast, Johnston and Lambeck (2000) stated the importance of the pre-

LGM glacial period and proposed a BIIS model in which the British Isles was ice free 

prior to 27 kyr BP. Additionally, within this later model, a more extensive ice sheet was 

proposed, compared to Peltier et al. 2002, with ice margins extending onto offshore 

regions and with ice across the entire of Irish mainland.  

 

The main aim of this chapter is to revise an earlier published regional BIIS model 

(Shennan et al., (2002)) to take into account a large amount of new geomorphological 

and chronological constraints which provide a much improved picture of the spatial and 

temporal history of the ice sheet during the Devensian. Also, as was mentioned above, the 

thickness of the input ice model needs to be adjusted to take into account the underlying 

terrain. This revised model is also tested by comparing predictions of RSL to 

observations from both Ireland and Great Britain. In this chapter, these two databases are 

considered separately, due to the avaibility of the new Ireland RSL data at the time of the 

model development. A more extensive comparision, for the entire combined RSL 

database and a large suite of earth models, is performed in Chapter 5. 

 

The key steps followed to produce a new BIIS model are reflected in the structure of this 

chapter. In Section 2.2, the geomorphological and sea level data used to constrain the 

model are described. A revised model is generated in Section 2.3 that complies with the 

new geomorphological constraints and accounts for underlying terrain; this is done for 

the component over Great Britain (2.3.2.2) and Ireland (2.3.2.3) separately and the results 

from these sections are combined (2.3.3) into a new model for the BIIS that is used to 

generate predictions to compare to the RSL database. The results are then discussed in 

Section 2.4 and conclusions drawn in Section 2.5  

 

2.2. Data 

 

2.2.1. Introduction 

  

When developing an ice model for any given region there are key elements that need to 

be constrained: the timings of the main advance and retreat phases as well as the lateral 
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and vertical extent through time. Examining geomorpholigcal field evidence, such as 

moraines and trimlines can provide constraints on the vertical and lateral extent of the 

past ice sheet, and a combination of radiocarbon and cosmogenic dating of such features 

can be used to define the chronological pattern of the glacial history. New 

geomorpholigcal evidence from recent studies focussing across and around the British 

Isles will be outlined below. 

 

The accuracy of a given ice model can also be tested by comparing modelled GIA output, 

such as predictions of RSL, present-day vertical land motion and palaeo-shoreline 

positions, to the respective observations. The main observables utilised in this chapter to 

gauge the accuracy of the ice sheet reconstruction will be sea level data. The sea level 

database is composed of SLIPs and limiting data from 80 locations around Great Britain 

and Ireland, as described in detail below.  

 

2.2.2. Geomorphological Data 

  

2.2.2.1. Introduction 

 

Despite a wealth of field evidence and modelling studies examining the pattern of Mid-

Late Devensian glacial history of the BIIS, a number of contentious issues relating the 

reconstruction of the ice sheet have been debated over the years, most specifically to the 

possible coalescence of the BIIS with the SIS across the North Sea basin (NSB) and 

whether northeast Scotland (Caithness and Orkney) remained ice free. Early models, such 

as Sissons (1967) proposed that the ice sheet across Scotland terminated near the 

continental shelf edge along the west coast and was confluent with the SIS across the 

NSB. Later studies rejected this expanded model, preferring instead an independent BIIS 

with ice margins restricted to the coastal regions and peripheral ice-free regions across 

NE Scotland and along the north and west coast of Ireland (Anderson (1981), Bowen et 

al., (1986), Lambeck (1993b)).  

 

As an increasing amount of new evidence from across the British Isles and NSB now 

supports the earlier view of a larger, more laterally extensive BIIS (e.g Carr et al., (2000), 
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Sejrup et al., (1994), Sejrup et al., (2000)). These new data, used to constrain the revised 

ice model (Section 2.4) are outlined below.  

 

2.2.2.2. Chronology of main ice sheet advance and retreat phases 

 

The timings of the main growth and retreat phases to be used for the revised ice model 

are taken from the Sejrup et al., (1994) glaciation curve (Fig. 2.1), which was developed 

from a series of AMS-dated material from boreholes and gravity cores from a range of 

sites across the NSB. The radiocarbon dating of carbonate fossils found within till and 

sub-till sediments across the region suggest periods of marine sedimentation, and as such, 

ice free conditions. During the Mid-Late Devensian a two stage-glaciation across the 

NSB is proposed with an initial coalescence between the BIIS and SIS marking the end of 

the Ålesund interstadial, ~ 33 kyr BP. This advance was interrupted by a rapid retreat ~ 

26 kyr BP and opening of an ice-free corridor across the central NSB. A second 

readvance of the two ice sheets commences ~ 24 kyr BP, but with the central NSB 

remaining ice free.  

 

The timing of the initial ice build up, after 33 kyr BP, correlates with the end of a period 

of restricted or ice free conditions across the British Isles, defined as the Tolsta 

interstadial (Whittington and Hall (2002)), which spanned 37- 31 kyr BP. A range of 

dates have been published to support this period of reduced ice cover, with a selection 

summarised in Table 1. Most of the studies are concentrated across in Scotland and are 

based upon the radiocarbon dating of organic deposits. Jacobi et al., (2009) reviewed the 

dating of Woolly Rhinoceros bones at a range of sites across the British Isles.  Based 

upon these dates it is implied that the Woolly Rhinoceros became extinct after 34 kyr BP, 

suggesting ice free or limited ice cover up to this time.  
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Fig. 2.1: Glaciation curve for the northern North Sea, which was used to constrain the 

timing of the growth and retreat phases for the BIIS and SIS. The diagram is adapted 

from Sejrup et al., (1994) and is an illustrative profile extending between NE Scotland 

and Norway, where the shaded region represents periods of ice cover. The dates shown 

on the figure are 
14

C radiocarbon ages, which were obtained from foraminifera samples 

taken from a range of core sites across the region. More information on the data analysis 

and location of the cores can be found within the text and in Sejrup et al., (1994).  

 

The number of dates to constrain the Mid Devensian or pre-LGM history of the BIIS is 

limited, partly due to later re-growth of the ice sheet across the same regions. A few 

studies are discussed below.  

 

The earlier advance (32-27 kyr BP) of the BIIS across the NSB is partly corroborated by 

a range of 
36

Cl cosmogenic dates published by Bowen et al., (2002). Within this study, 

however, it is argued that the advance was initiated as early as 37.5 kyr BP with a 

widespread retreat by 25.1 kyr BP, which conflicts with the extensive range of dates used 

to identify the Mid-Devensian interstadial (see Table 1). The study does highlight though 

that the BIIS was more variable in extent prior to LGM than previously considered.   
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Another study into ice rafted debris (IRD) within the Barra Fan, northwest Scotland by 

Knutz et al., (2001) suggested a grounded ice sheet was present across the shelf from ~ 

30 kyr BP, indicated by the change from hemipelagic to glaciomarine environment within   

core samples. This period of glacial activity across the shelf lasted until ~ 21 kyr BP, 

when ice margin retreat from the shelf edge began, indicated by an increase in fine clastic 

sediments within the examined core material.  

 

The chronology of deglaciation in the starting model (Shennan et al., (2002)) will not be 

altered; the major phase of ice retreat was completed by 15 kyr BP. During this regional 

deglaciation, a localised readvance across Ireland, generally referred to as the Killard 

Point Stadial (KPS) is included within the model at ~ 18 kyr BP (Mccabe and Clark 

(2003), Mccabe et al., (2005), Brooks (2007)). A later second readvance during the 

Younger Dryas or Loch Lomond Stadial (LLS) has been dated to have occurred between 

12.5- 11.5 kyr BP (Benn (1997), Lowe et al., (1999)) and as such is included in the 

starting model as a 1 kyr event initiated at 13 kyr BP. 

 

 

2.2.2.3. Constraints on lateral and vertical extent 

 

As recent work and the glaciation curve in Fig. 2.1 indicates, the BIIS was more laterally 

extensive than represented in a number of previous models, including the starting model 

(Bowen et al., (2002), Bowen et al., (1986), Lambeck (1993b), Sutherland (1984)). For 

example, the work of Ballantyne, (2001) (Fig. 2.2) is compatible with an ice margin 

extending almost to the continental shelf edge off Western Scotland. Additional studies of 

offshore records around the coastline of the British Isles also support the occurrence of a 

relatively extensive ice sheet. An overview of these records is outlined below, in terms of 

constraints on vertical extent (or ice height) and lateral extent.  
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Locality Material dated 
Radiocarbon 

Age 
Calibrated 

Age Reference 

    14C kyr BP (kyr BP)   

          

Sourlie, West Scotland Organic Sediments 33,270 ±370 38.7±0.4 Bos et al., (2004) 

    29000 ±430 34.4±0.5   

          

Tolsta Head, Outer 
Hebrides Organic Sediments 26150±280 31.3±0.3 

Whittington and Hall, 
(2002) 

    31500±600 37.1±0.6   

          

Bishopbriggs, W Central   Woolly rhinoceros Bones 31,140 ±170 36.5±0.2 Jacobi et al., (2009) 

Scotland   32,250 ±700 32.3±0.7   

          

Goats Hole, Swansea  Woolly rhinoceros Bones 32,870 ±200 38.3±0.2 Jacobi et al., (2009) 

          

Torquay, Devon  Woolly rhinoceros Bones 36,040 ±330 41.3±0.3 Jacobi et al., (2009) 

          

Balglass, Scotland Organic Sand 30 080±200 35.5±0.2 Brown et al., (2007) 

    34 480 ±340 39.8±0.4   

          

Derryvree, Ireland Organic sediments  30500±1100 35.88±1.1 Colhorn et al., (1972)  

 

Table 1:  Range of ages and associated sources to infer initial timing of Mid-Devensian ice sheet build up. In cases where a 

range of values were published, only the maximum and minimum vales are shown to indicate the date range.
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Carr et al., (2000), Carr et al., (2006) examined seismic, sedimentological and 

micromorphological data at a number of borehole sites across the NSB to infer three 

Weichselian glacial episodes, two during the Mid Devensian when the BIIS and SIS were 

confluent, and extended out to the continental shelf edge. The lateral extent of these ice 

margins was delimited by the occurrence of subglacial till units across the area. 

Subsequent to this, there is less extensive readvance of the two ice sheets, with an ice-free 

corridor developing across the NSB. The eastern limit of the BIIS is marked by the 

location of the Wee Bankie and Bosies Bank moraines.  

 

 
Fig. 2.2: Three dimensional reconstruction of ice surface altitude at the LGM. Note that 

the offshore margin is placed at the outermost morainal bank, close to the continental 

shelf edge. Taken from Ballantyne et al., (2001). 

 

Numerous studies examining the behaviour of BIIS around the coasts of Scotland support 

the view of an earlier more laterally extensive advance of the ice sheet beyond the limits 

of the Wee Bankie and Bosies Bank moraines out across the NSB (Evans et al., (2005), 

Hall et al., (2003), Merritt et al., (2003)). Across the Firth of Tay, eastern Scotland, flow 

patterns of ice streams, recorded within terrestrial and marine subglacial bedforms, 

suggest that the BIIS either terminated to the east of the Wee Bank moraine or was 

confluent with the SIS during the Mid Devensian (Golledge and Stoker (2006), Bradwell 

et al., (2008)). It is widely believed that an ice stream originating within the Moray Firth 
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was deflected northwards due to the presence of a grounded ice sheet within the NSB 

(Hall and Whittington (1989), Merritt et al., (2003), Sissons (1967), Sutherland (1984)). 

 

Submarine morainal banks (e.g. St. Kilda) and MSGL mapped across the Minch and 

Hebridean shelf off the west coast of Scotland, provide evidence for the extension of a 

grounded ice sheet out to the shelf edge, with sediment eroded from the mainland 

deposited in large trough mouth fans (Barra and Sula Sgeir) along the shelf edge (Clark et 

al., (2004), Evans et al., (2005), Stoker and Bradwell (2005), Stoker et al., (1993)). 

 

The main geomorphological features used to constrain the vertical extent (or thickness) of 

the BIIS are periglacial trimlines (see section 1.3.3. for further information). Extensive 

mapping of the trimlines across north-west Scotland (Ballantyne (1997), Ballantyne et 

al., (1998)), Outer Hebrides (Ballantyne and Hallam (2001)) and the highlands 

(Ballantyne (1999), Ballantyne and Mccarroll (1997)) has led to the production of 3D 

reconstructions of the maximum ice surface elevation (Fig. 2.2). These limits indicate that 

the highest summits across Wester Ross (900 -1100 m) were over run by ice at the LGM. 

Also the ice reached over 600 m and 700 m across Skye and North Uist, respectively.   

 

As is shown on Fig. 2.2, it is possible to extrapolate from the ice surface heights, 

assuming an approximate parabolic ice sheet profile, beyond the mapped limits and into 

the offshore regions, to infer the lateral extent of the ice sheet. Although no account is 

taken for additional factors such as seabed topography, these limits indicate that the ice 

sheet extended beyond the coastal margin and out to the continental shelf around the 

northwest coast of Scotland (Ballantyne (1999), Ballantyne and Hallam (2001), 

Ballantyne et al., (1998)).  

 

It should be noted that there is a relative paucity of similar studies to constrain the ice 

surface height across other areas of Great Britain and Ireland. Lamb and Ballantyne 

(1998) inferred a maximum ice sheet altitude over the southwest Lake District of between 

800-870 m. Mccarroll and Ballantyne (2000) conducted a similar study across 

Snowdonia, North Wales to infer that the ice reached up to 850 m across the central 

massifs. Glasser and Smith (1999) inferred from modelling that an ice sheet between 250 
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– 500 m thick was required to produce meltwater channels mapped across the Mid 

Cheshire Ridge, northwest England. 

 

These trimline limits across Scotland were adopted as the main constraint for the 

maximum ice surface elevation and as such the defined maximum thickness of the BIIS 

within the starting model and have not been altered with this study. It is also worth noting 

that deglaciation pattern of the British component of the BIIS was also not altered from 

that adopted within the starting model, taken from Shennan et al., (2002), and was 

constrained within the starting model by limits taken from Bowen et al., (1986). (It is 

noted that since the development of the starting and final ice model within this Chapter, 

reinterpretation of the trimline evidence across Scotland (Ballantyne (2010)) now 

suggests these feature may not mark the maximum ice surface elevation (see section 2.4). 

As this information was not available at the time of the model development, it is not 

considered but is suggested for future work)  

 

Since the development of the starting model, there has been an increase in information on 

the lateral extent (Ballantyne et al., (2006), Hiemstra et al., (2006), O' Cofaigh and Evans 

(2001)) and thickness (Ballantyne et al., (2006), Rae et al., (2004)) of the IIS. Also, new 

AMS radiocarbon dates have been published that constrain the timing of the deglaciation 

(Mccabe et al., (2005)). A full review of this information was published within Brooks 

(2007). In the remainder of this section, only a few key points are discussed that will be 

used when conducting RSL sensitivity tests of the IIS later in this chapter. 

 

At the LGM, field evidence suggests that Ireland was covered by a laterally extensive ice 

sheet which extended out onto the adjacent continental shelf (Clark and Meehan (2001), 

Mccabe and Clark (2003), Mccabe et al., (2005)). Constraints on the vertical thickness of 

the LGM ice sheet are limited. Across County Kerry, southwest Ireland, Rae et al., 

(2004)) constrained the ice surface height across the area to lie between 440-600 m. 

Ballantyne et al., (2006) suggested that the Wicklow Mountains, east Ireland, were 

covered by a thick ice sheet, with only summits over 725 m remaining ice free at the 

LGM. To the south, it is now believed that ice extended beyond the traditional South of 

Ireland End moraine (SIEM), with a thicker more expansive ice sheet within the Irish Sea 
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basin (ISB) (Ballantyne et al., (2006), Hegarty (2004), Hiemstra et al., (2006), O' Cofaigh 

and Evans (2001), Scourse and Furze (2001)). Recent studies suggest that the Irish Sea 

glacier underwent a rapid, short lived advance into the Celtic Sea and down to the Isles of 

Scilly (Hiemstra et al., (2006), O' Cofaigh and Evans (2001), Scourse and Furze (2001)). 

At the time of development of the revised ice model for the IIS, as discussed later in this 

chapter, there were no published dates to constrain the timing of this advance. Therefore, 

it was introduced into the model as a short lived, 1 kyr event at ~ 24 kyr BP, when the ice 

sheet was at its maximum extent. Subsequently, Cofaigh and Evans (2007) have 

published dates taken from marine shells to constrain the advance of the Irish Sea ice 

stream to between 25 and 23.9 kyr BP.  

 

Unlike the steady retreat of the BIIS across Scotland during deglaciation, which is 

adopted, the IIS is believed to have retreated rapidly, with the Irish Midlands being ice 

free and the ice margin located close to, or on the Isle of Man by 19 kyr BP (Brooks et 

al., (2008)). This retreat is interrupted by the KPS readvance where ice extended across 

most of the country, extending as far south as the Shannon estuary (Mccabe and Clark 

(2003)). It is noted that during the deglaciation of the BIIS, this steady retreat pattern is 

now implied to be an oversimplifcation, with a regional-scale readvance of the retreating 

ice margin across Scotland, defined the Wester Ross Readvance occurring between 13.5 

and 14.0 kyr BP (Ballantyne et al., (2009)). As the pattern of the deglaciation was 

adopted from Shennan et al., (2002) these were not added to the model and additionally, 

the modelling processes is not sensitive to these smaller scale episodes (see section 

2.4.3.2.1).  

 

During the LLS, a major ice field up to 700m thick (Thorp (1986)) grew across the west 

highlands of Scotland, extending from Loch Lomond in the south to Wester Ross in the 

north. Smaller ice fields developed within mountain corries in some Scottish islands (e.g. 

Skye and Mull), across the Lake District, Ireland and Wales. The overall extent of the ice 

cover is well established through extensive mapping of geomorphological features such 

as trimline data, lateral or frontal moraines (Ballantyne (2002), Benn (1997), Benn and 

Ballantyne (2005), Thorp (1986)) and using a high resolution numerical ice model 

(Golledge and Hubbard (2005), Hubbard (1999)). 
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2.2.3. Relative Sea-Level Data  

 

2.2.3.1. Introduction 

 

The accuracy of the BIIS model revised to comply with the geomorphological data 

outlined above can be tested further using RSL data. This is done is Section 2.3. In this 

section the RSL data used later in this chapter and also in Chapter 5 will be reviewed. 

Two databases of sea-level reconstructions from across Great Britain and Ireland will be 

outlined. The total database consists of 80 localities, 59 across Great Britain and 21 

across Ireland, as shown on Fig. 2.3. The data at each site have been separated based 

upon the criteria outlined below, and as summarised in Appendix A.  

 

The range of data types within each RSL database has been outlined in greater detail in 

past studies (e.g. Brooks et al., (2008), Shennan et al., (2006), Shennan and Horton 

(2002), Brooks and Edwards, 2006), therefore only a brief summary is given here. For a 

data point to be classified as a SLIP, information regarding the following is required: 

location (longitude and latitude), the age (defined in calibrated radiocarbon years), 

altitude and the indicative meaning. These data points are the most useful for constraining 

model predictions as they provide a direct measure of past relative sea-level with a 

clearly defined height uncertainty. At sites across Ireland, a data sample is classified as a 

secondary SLIP when the indicative meaning was less well quantified (Brooks et al., 

(2008)). When it is not possible to define the direct relationship of the sea-level data point 

to contemporaneous tidal regime it was classified as a limiting date, either a primary 

point where the source environment could be defined (such as from a freshwater peat) or 

a secondary point if the environment of formation was unclear or contested. 

 

The Great Britain dataset is composed of a total of 1107 primary SLIPS and 194 limiting 

data. This compares to the significantly smaller dataset for Ireland, which contains only 

61 primary SLIPs, 15 secondary SLIPs and 161 limiting data (including primary and 

secondary). It is important to note that the majority of the data, from both Great Britain 

and Ireland, are from the southern coasts of both regions. 
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Fig. 2.3: Map showing the locations of the 80 data localities used in this study. The black 

triangles mark the locations of sites where primary and intercalated sea level index points 

have been obtained; the black circles mark sites where only intercalated sea level index 

points or other data points that provide a less precise constraint on sea level have been 

obtained. See Appendix A for a listing of all the data. Data and model predictions from 

sites labeled with white numbers in black boxes are shown in this chapter. Data and 

model predictions for all sites are shown in the Appendices 

 

 

. 
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When using primary SLIPs, it is important to also consider the additional local scale 

processes within the coastal system that may affect the reliability of the data point, such 

as compaction or consolidation.  It is generally considered that SLIP samples taken from 

basal peats (i.e. peat layer deposited on top of bedrock) provide the most accurate 

measure of sea-level change, as they are deposited over a hard substrate and as such, are 

not affected by sediment consolidation. Intercalated SLIPs, on the other hand, from host 

material that lies within a sequence of clay and peat deposits, may have been compacted 

or consolidated. Consequently, the palaeo sea-level marker could have been displaced 

lower over time. Within the Great Britain database, the 1107 primary SLIPs were further 

divided based upon these criteria into two smaller subsets; those which are taken from 

either basal peat layers or a sediment horizon that was considered to be unaffected by 

consolidation or compaction (referred to as basal points within Appendix A) and those 

classed as either an intercalated SLIP or from a sample which may provide a less precise 

constraint on the observed sea-level (referred to in Appendix A as Intercalated points).  

 

An additional factor to consider is long term variations in tidal regime, which may result 

in variations of the reference water level through time (Uehara et al., (2006)) and 

therefore influence the indicative meaning of a given SLIP. At present, palaeo-tidal 

corrections have only been applied to five localities within the database (as indicated in 

Appendix A), but other sites where changes in tidal regime go unresolved and may be 

important when using the sea-level data are sites 28, 29, 32, 45, and 47. 

 

2.2.3.2. Data from Great Britain 

 

Fig. 2.4a shows reconstructed sea-level change at a subset of eight localities from across 

Great Britain, which were chosen to illustrate the variation in the character of the sea-

level signal across the study region and the range of available sea-level data types, as 

described above, within the database.  Note that the complete data set is shown Appendix 

B.  

 

Site 13, located on the eastern coast of Scotland is the most northern site displayed in Fig. 

2.4a. The sea-level record at this locality, composed of a mixture of primary and 
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intercalated SLIPs, typifies the characteristic trend of data from the NE coast and 

highland regions of Scotland, with a rise from below present, -10 m at ~ 9.5 kyr, to form 

a small highstand of amplitude ~ 1m at ~ 5.5 kyr BP. Sites 11 and 17 display the typical 

record of sites situated close to the centre of an ice sheet, with sea-level elevated above 

present, during and following the deglaciation period. The signal recorded in these 

northerly data is sensitive to both local and global processes (see Section 1.1.3 and 

Chapter 5). Site 11, situated on the NW coast of Scotland, contains the longest and most 

complete record, with over 16 kyr of data composed entirely of primary SLIPs.  

 

The sea level record is characterised by a fall from 34 m at ~ 16 kyr BP, with noted data 

gaps over the observed timings of meltwater pulses 1A and 1B, reaching a minimum of 3 

m at  ~ 10 kyr BP. Following this, sea-level rises gradually towards a late Holocene 

highstand of magnitude ~ 6.5 m between 6 -7.5 kyr BP, before falling towards present 

day level. Although the data record at site 17, is shorter than at site 11 and composed of a 

mixture of both primary and intercalated SLIPs, the observed trend over the majority of 

the Holocene is similar, with sea-level rising to produce the highest Holocene highstand 

in the entire study area of 11.5 m at 7.5 kyr BP. This site is inferred to be very near to the 

area of maximum ice thickness, and as such, should record the maximum uplift following 

the deglaciation of the BIIS. 
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Fig. 2.4a: Comparison of predicted and observed sea level at eight locations across Great Britain (Results for all sites are 

shown in Appendix B). Symbols for the observed data are summarized in Appendix A and within the text. Predictions are 

shown for the Shennan ice model (shown in Fig. 2.5) for two earth models with different lithosphere thickness values: 71 km 

shown by solid red line and 96 km shown by the solid blue line; the upper and lower viscosity values are 5×10
20

 Pa s and 

4×10
22

 Pa s, respectively
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Sites 28, 35, and 25 typify the pattern of sea level change across the central region of 

Great Britain (NE and NW England) where there is a transition from sites with a small 

(site 28) or minor (site 25) Holocene highstand, to sites where RSL is below present 

throughout the late Holocene (site 35). The geographical location of this region of 

transition between sites where Holocene sea level was above present to those where it 

was not is inferred to fall between sites 25 and 27, along the east coast and sites 33 and 

35 on the west coast. This region is often defined as the Holocene hingline, or region of 

zero sea-level change and will be referred to in this chapter as the zero-isobase. This is 

not to be confused with the location of the zero-isobase referring to present day rate of 

sea-level change, which is described within later Chapters.) This is a key feature with 

which to validate the model predictions and within past studies was a region which 

exhibited consistent discrepancies between predictions and observations (Brooks et al., 

(2008), Shennan et al., (2006), Shennan and Horton (2002)). This gradual north-south 

reduction in the height of the Holocene highstand and associated location of the zero 

isobase is more apparent when examining data at all sites (see Appendix B).  

 

Not only is there the noted N-S reduction in the height of the highstand, there is also a 

pronounced W-E trend across this central region, with notably higher sea-level at sites 

along the west coast of Great Britain compared to latitudinally sites along the east coast. 

This variation can be seen by comparing two sites such as 25 and 28, situated along the 

NE and NW coast of England. At 28, sea-level rises from -4m below present at 9 kyr BP 

to form a highstand of ~ 4m between 6-4 kyr BP before falling towards present day level. 

In contrast, at 25, sea-level again rises from ~ -5m at 9 kyr BP, but forms only a minor (~ 

0.5m), if any, highstand at 3kyr BP. As mentioned above, the observed record at 28 may 

be affected by variations in tidal regime through time, which would alter the height of the 

observed highstand. However, this would not account for the total ~ 4 m difference.  

 

At site 35, the record is much shorter, with a rise from -9m at 8.5 kyr BP to – 2.5m at 4.5 

kyr BP. Although there is a noted lack of SLIPs at this site and 25 with which to constrain 

the variation of sea-level during the mid-late Holocene, it is possible to infer the 

occurrence of a relatively minor highstand from the field evidence. At site 25, field 

evidence indicates that sea-level did not rise above 0.5m over the last 3 kyr and so a 
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steady fall towards present day levels can be inferred. At site 35, there is again no 

evidence that sea level rose significantly above present day level over the last 5 kyr.  

 

Sites 40 and 50 located along the southern coast of Great Britain, illustrate the typical 

pattern of relative sea-level change at sites furthest from the main centre of ice loading in 

Scotland. The characteristic sea level trend at both of these sites is similar, with a gradual 

rise over the last 7 kyr BP towards present day sea levels. There is no record of sea level 

reaching above present day levels or abrupt changes in the rate of sea-level rise. Site 40 

not only consists of by far the greatest number of SLIPs (194) but is one of the few sites 

where the data, using modelled estimates taken from Shennan and Horton (2002), have 

been corrected for changes in tidal range over the late Holocene. This resulted in a shift 

of  ~ 2 m in the observed sea level during the mid-holocene. 

 

2.2.3.3. Data from Ireland 

 

Fig. 2.4b shows reconstructed sea-level change at a subset of eight localities from across 

Ireland, which were chosen to illustrate the variation in the character of the sea-level 

signal across this region and the range of available sea-level data types, as described 

above, within the database.  Note that the complete data set is shown in Appendix B.  

 

As mentioned above, the greatest concentration of primary SLIPs (2/3 in total) within the 

Irish database is found at sites along the southern coast (Sites 81 and 85) and these are 

concentrated on the last 6 kyr BP. These sites (a selection of which are shown on Fig. 

2.4b) display the typical pattern of sites distal from the major centre of ice loading (as 

described above for sites 40 and 50), with a gradual rise over the past 7 kyr BP towards 

present day levels. 

 

Across the central region of Ireland, and similar to that observed for central Great Britain, 

there is a marked transition from sites with no or a minor highstand (such as 90 and 92,  

on the west coast and 80, on the east coast) to the pronounced highstand along the 

Northern coast, as seen at sites 96 and 100. The location of the zero isobase is inferred to 

fall between sites 93 and 94 along the west coast and close to site 80 on the east coast. 
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Additionally, there is an evident east to west trend in the height of the highstand, where 

sites along the NW coast (such as 93 and 94) have a lower Holocene sea-level maximum 

(<1m) compared to NE coast where sea-level is inferred to rise to over 3m (from the 

maximum/minimum limits of the limiting data). This is most evident when comparing 

two sites from the west coast such as site 92, where there is a lack of field evidence for 

sea level being elevated above present during the Holocene, and site 100 on the east 

coast, where using only the minimum height of the primary limiting data as a guide, sea 

level rose to at least 4m at ~ 6 kyr BP.    

 

Sites 93 and 94, located on the west coast of Ireland, were previously highlighted as 

being important sites for constraining the predicted sea level over the Holocene and 

location of the zero isobase (Brooks et al., (2008)). Although there is a lack of data over 

the last 3 kyr BP from 94, the general trend between the two sites and this coastal area is 

very similar. Sea level rises from -2 m below present at ~ 5 kyr BP and reaches present 

day level at  ~ 3 kyr BP, with evidence for only a minor (< 1 m), if any, highstand over 

the last 2 kyr BP. 

 

Even though along the NE coast of Ireland there is a noted paucity of primary SLIPs, 

(only two at site 99), limiting data when combined with additional field evidence (such as 

raised shorelines) can be used to provide a useful constraint on the general pattern of sea-

level change. This is especially useful in areas such as Ireland where there are a restricted 

number of SLIPs both in space and time. A major feature of the observed trend at sites 

along this coastline, compared to the NW coast, is the evidence for sea levels 

significantly elevated above present during the late Devensian. The height of the elevated 

sea-level over this period is constrained from numerous studies investigating abundant 

raised shorelines around the coastline and a range of limiting data. For example, at sites 

96 and 98 around the timing of the LGM, raised shorelines have been found between 25 

and 30 m (Brooks et al., (2008) and references therein). Producing these elevated sea 

levels in past studies has been a problem. It is noted that the dating of raised shorelines 

can be problematic and the heights inferred from these data are only taken as a guide for 

the possible height of sea level over this period.  
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Fig. 2.4b: As 2.4a except for the eight chosen data localities across Ireland (Results for all sites across Ireland are shown in 

Appendix B). 
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The two sites illustrated on Fig. 2.4b from this coastline were chosen to illustrate this 

trend. At site 99, the limiting data at ~ 16 kyr BP suggest that sea-level was falling from a 

minimum of 2 m. Following this fall, sea level rises from an unconstrained lowstand, 

initially reaching present day levels at ~ 8 kyr BP. The trend is unconstrained, but 

possibly elevated above present between ~ 8 – 4 kyr BP, to be followed by a fall towards 

present day level constrained by the secondary SLIPs at ~ 2 kyr BP.  At site 97, the 

limiting data at ~ 14 kyr BP constrain the minimum height of the lowstand to 2 m and are 

useful to distinguish between various model predictions over this period of large and 

rapid changes.  

 

2.3. Preliminary Data-Model Comparisons Using the Shennan et al. BIIS Model  

 

The three key input parameters within a GIA model have been explained in greater detail 

in Chapter 1 and so are only summarised here; a model of the late Pleistocene ice history, 

which will be considered in terms of a regional (British-Irish) component and a global 

model; an Earth model to reproduce the solid earth deformation resulting from surface 

mass redistribution (between ice sheets and oceans) and a model of sea-level change to 

calculate the redistribution of ocean mass (e.g Kendall et al., (2005), Mitrovica and 

Milne, (2003) and as outlined in section 1.2.1). 

 

The regional BIIS model was taken from Shennan et al., (2002), with key time slices 

illustrating the evolution the model shown on Fig. 2.5, note that the maps display ice 

thickness, not ice elevation. Between 32- 21 kyr BP, the lateral extent and thickness of 

the ice model remains the same, this was done to ensure that the ice sheet reached (or was 

close to) isostatic equilibrium by the LGM. The maximum thickness of the ice sheet 

across Scotland, centred over the west, is 1193 m; this is constrained by the trimline 

limits as outlined in Section 2.2.2.3. Across NE Ireland ice reaches up to 680 m with an 

independent ice cap over SW Ireland (Kerry) up to 128 m. The ice margins are restricted 

to the coastal regions with ice expanding within the Irish Sea (to thicknesses of ~ 100m) 

but with Pembrokeshire in Wales and Wexford in Ireland remaining ice free. Also, a lobe 

of ice extends down the eastern coast of England. As deglaciation commences at 20 kyr, 

the ice sheet gradually thins and retreats, with complete ice retreat by 15 kyr BP. During 
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the Younger Dryas event, ~ 13 kyr BP, there is small scale ice growth across the 

highlands of Scotland, with ice modelled up to 716m based on trimlines and field 

evidence, as described in Section 2.2.2.  

 

This regional model was combined with the global ice model, Bassett et al. (as defined in 

Section 1.2.3). This model was tuned to fit a suite of far-field data spanning the LGM to 

10 kyr BP. The combination of these two components will be referred to in the following 

as the „Shennan model‟. Using the Shennan model, predictions were generated at the 16 

localities indicated on Fig. 2.4a and 2.4b (see Fig. 2.3 for map of locations) using two 

reference earth models with the same upper and lower mantle viscosity of 5×10
20 

Pa s and 

4×10
22

 Pa s, respectively, and two different lithosphere thickness values of 71 km and 96 

km. 

 

In the following section, these earth models will be referred to as the 71 km and 96 km 

models and, when combined with the Shennan ice model, as Shennan-71 and Shennan-

96, note the complete set of predictions at all sites is shown in Appendix B).  

The choice of lower mantle viscosity values was taken from the Bassett et al., (2005) 

study as this produced the optimum fit to the far-field data set used in the development of 

the  model. The upper mantle viscosity value was chosen as an average value between the 

ranges used in earlier studies (Peltier et al., (2002), Shennan et al., (2000)).Two values of 

lithosphere thickness are investigated to incorporate the spread of possible values that 

have been used in previous studies; a thicker model (96 km) to be consistent with that 

favoured by Peltier et al., (2002)) and a thinner model (71 km) to be closer to that 

favoured by Lambeck et al., (1996) and Shennan et al., (2000).  
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Fig. 2.5: Ice thickness maps of the British-Irish Ice Sheet model presented in Shennan et 

al. (2002)) at the times (in kyr BP): (a) 32, (b) 25, (c) 21, (d) 20, (e) 19, (f) 18, (g) 17, (h) 

16, (i) 13. Note the varying contour intervals: in frames a-g and heights between 0-150m 

the contour interval is 50m with annotation every 100m; for heights 150m and above the 

contour interval is 150m, with annotation every 300m.  
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Of the two models shown, the Shennan-96 model produces a consistently better fit to the 

observed data at most sites. At sites across Scotland and northern regions, located close to 

the centre of the ice loading, the predictions display the characteristic non-monotonic 

pattern of RSL (such as seen at sites 11, 17, 97, or 99) where, following deglaciation, 

predicted RSL falls from significantly elevated levels. This fall is punctuated by two 

inflections or periods of rapid sea-level rise, ~ 14 kyr BP and 11 kyr BP, followed by a 

steady rise towards a pronounced mid-Holocene highstand before falling towards present 

sea levels. At these sites, the Shennan-96 model captures the trend in the data more 

consistently over the mid-late Holocene. The Shennan-71 model does produce a closer fit 

to some of the older, late Devensian data due to the higher predicted RSL around, for 

example, the NE coast of Ireland (such as sites 98, 99, 100) and at site 11 across 

Scotland.  

 

Neither model adequately replicates the RSL pattern, during these periods of rapid 

change as inferred in the SLIP data (such as sites 11 or 17); with an underprediction using 

the Shennan-96 model and an overprediction using the Shennan-71. Also, note that, 

although the Shennan-96 model generally captures the trend better at the Scottish and 

Central sites, it results in sea levels that are too low during the Late Devensian.   

 

At sites across the central region of Great Britain and Ireland, located close to the ice 

margin, there is a transition in the predictions from sites where sea level rises over the 

late Holocene from below present to produce either a noted highstand (such as at sites 94, 

97, or 25) or no highstand at all (such as at site 43). At these sites the difference between 

the two models is smaller than at the northern sites, with the difference in the predicted 

height of the highstand between 4-1 m. Generally, the Shennan-96 predicts a smaller 

highstand and so produces is a closer fit to the SLIPs. However, both models produce a 

pronounced overprediction in the height of RSL over the late Holocene. This is discussed 

in the remainder of this section. 

 

As a result of this overprediction, neither model reproduces the north-south/west-east 

variation in the height of the Holocene highstand. This results in the location of the zero 

isobase being displaced too far south across both Great Britain and Ireland. Across 
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Ireland this transition falls between sites 91 and 92, along the west coast and 81 and 82, 

along the east coast.  Across Great Britain the transition falls between sites 27 and 37, on 

the east coast and between 36 and 43, along the west coast. This overprediction is most 

evident at sites such as 94 and 35, where both models predict RSL up to 4m higher than 

the observed SLIPs. 

 

At the distal sites situated along the southern coastlines, such as sites 40, 50 or 83 there is 

little variation between either models, with both producing the characteristic steady rise 

towards present from the onset of deglaciation. It is noted though, that the apparent sharp 

slowdown in the rate of rise at ~ 6 kyr BP is not shown within the SLIPs. Also, the 

predictions tend to sit slightly above the SLIPs, as seen at sites 40 and 48, partly due to 

the previously mentioned inflection.  

  

 

2.4 Modifications to the British Isles Ice Sheet Model 

 

2.4.1. Introduction 

  

Although a reasonable fit was produced at the majority of the RSL data sites using the 

Shennan ice model, there are some major inconsistencies with the adopted regional 

component of this model which need to be addressed: Firstly to correctly adjust the ice 

model to account for the underlying terrain and secondly to revise the regional ice model 

to comply with new geomorphological constraints (as outlined in Section 2.2.2).   

With regard to the first point, the thickness of the adopted ice sheet is constrained using 

trimline data, which was taken to mark the maximum surface elevation the ice sheet 

reached (as outlined in Section 1.1.3 and  2.2.2.3), assuming that ice grew over a flat 

terrain at sea-level. But in regions of high terrain, such as across Scotland, this will lead 

to an overestimation in the defined thickness of the ice sheet within the model and as 

such, the corresponding loading signal. 

 

This is highlighted for one selected site in Scotland: site 11, (Fig. 2.6), where the 

predicted RSL is shown for the Shennan-96 and Shennan-71 models, and a 'terrain-
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corrected' version of each of these models (referred to as Shennan96-terrain and 

Shennan71-terrain). 

 

 

Fig. 2.6:  Examining the affect of correcting the input ice model for underlying terrain at 

site 11, Arisaig. Predictions are shown for the Shennan model (solid lines) and Shennan-

terrain corrected (dashed line) as described within the text using the two earth models 

with varying lithosphere thickness: 71km (grey line) and 96 km (black line) combined 

with an upper mantle viscosity of 5*10
20

 Pa s and lower mantle viscosity of 4*10
22

 Pa s.  

 

 

Correcting the thickness of the ice sheet for underlying terrain leads to a thinning of over 

400 m at the LGM, and a general lowering in the predicted RSL throughout the last 20 

kyr BP. The greatest impact is during the main stage of deglaciation (20-16 kyr BP), 

where sea-level is lowered by over 20 m, which results in the optimum fit to the RSL data 

now produced using an earth model with a 71 km lithosphere thickness. This comparison 

highlights the trade-off that can be produced between lithosphere and ice model 

thickness, (comparing the solid-black and dashed-grey lines on Fig. 2.6) where an equally 

good fit to the RSL data is achieved with either a thick ice model and lithosphere 

(Shennan-96) or with a thinner ice model and lithosphere (Shennan71-terrain). The affect 

of revising the ice model for underlying terrain upon the RSL predictions will be variable 

across the data sites, with the greatest impact across the Scottish Highlands.  
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The second major aspect of the Shennan model to be addressed is to ensure that the 

spatial and temporal patterns of the main glacial and deglacial phases comply with the 

new geomorphological evidence as outlined in section 2.2.2. This will be addressed in 

three stages: First a revised regional BIIS model will be produced that addresses the 

„terrain correction‟ issue and complies with the regional geomorphological data (Section 

2.3.2.2). This model will be compared initially to the Great Britain RSL data only. The 

results of this work have been published in Shennan et al., (2006). The second stage will 

involve examining only the IIS component of the revised regional BIIS model. The aim is 

to address specific issues relating to the history of the IIS and the Ireland RSL data, 

which have largely been neglected in past GIA modelling studies of the British Isles 

(Section 2.3.2.3). A key aspect of stage two will involve examining the sensitivity of the 

RSL predictions to relatively transient and small scale changes in the ice sheet. The main 

conclusions from this work have been published in Brooks et al., (2008). Finally, in the 

third stage, the regional BIIS and local IIS models will be combined and compared to the 

complete British Isles RSL database (Section 2.3.3), with a more extensive comparision 

in Chapter 5. 

 

2.4.2. Modelling the component for Great Britain 

 

The Shennan model was revised in two steps in the following section to address the 

aspects outlined above. Firstly, the ice model was corrected for underlying terrain, which 

results in a thinner ice sheet within the onshore regions. Secondly, the spatial and 

temporal patterns of BIIS evolution over the last glaciation were revised to comply with 

the above described geomorphological evidence (Section 2.2.2). Key time slices from this 

new ice model, referred to in the following section as the North Sea (NS) models, are 

shown on Fig. 2.7. The major changes applied to the Shennan model to arrive at these 

models are outlined below. 

 

When the NS models were developed, there was little information to constrain the 

vertical height of the ice sheet across the NSB; therefore, some basic assumptions were 

followed to define the thickness of ice across this area. Firstly, it was assumed that as the 
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ice sheet grew outwards either across the British Isles or Scandinavia, the maximum 

surface elevation in the NSB could not exceed that within onshore regions. Secondly, to 

adjust the ice sheet for underlying terrain, as has been applied in the onshore regions, the 

thickness of the ice sheet was increased to account for the deepening of the seabed across 

the NSB. These assumptions lead to the possibility of two models with different 

thicknesses in these offshore regions. A thicker model, which will be referred to as NS-

Thick (as shown in Fig. 2.7 a, b, c and g), where the maximum thickness of the ice sheet 

as it expanded into the offshore regions was maintained further both across the NSB and 

the western coastal regions. The thickness across the Central NSB, in the approximate 

zone of confluence between the BIIS and SIS, is between 800-750 m, and reaches up to 

650-500 m at the margin near to the Hebridean shelf. In the second model, which will be 

referred to as NS-Thin (as shown in Fig. 2.7, d, e, f and h), the ice sheet was assumed to 

thin more rapidly once expanding into the offshore regions, reaching only 600-500 m 

across the Central NSB and between 480-360 m around the western Highlands. 

 

The following revisions to the timings of glacial and deglacial phases were applied to 

both the NS-Thin and NS-Thick models.  
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Fig. 2.7: Ice thickness maps of two British-Irish Ice sheet models generated from the 

Shennan model. The NS-Thick model at the times (in kyr BP): (a) 32, (b) 26, (c) 24, (g) 

21; and the NS-Thin model at the times (in kyr BP): (d) 32, (e) 26, (f) 24, (h) 21. See 

main text for a description of these models. Note the varying contour intervals 
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The pattern of the late Devensian growth and retreat has been revised to fit with the 

timings suggested by Sejrup et al., (1994) (as summarised in Fig. 2.1), which defines a 

two-stage glaciation pattern during this period across the NSB. It is worth noting, for 

comparison, that the Shennan model had only one main glacial phase, extending 

throughout the Mid-Late Devensian). An initial early growth phase begins after 33 kyr 

BP, with the BIIS extending across the Central and Northern NSB to coalesce with the 

SIS between 32-27 kyr BP (shown on Fig. 2.7, a and d). Following a rapid retreat 

between 26-25 kyr BP (shown in Fig. 2.7, b and e), there is a second readvance starting at 

24 kyr BP ( shown in Fig. 2.7, c and f), where the SIS advances across the Central and 

Northern NSB but does not coalesce with the BIIS. Instead an ice free corridor remains 

between the two ice sheets, extending approximately north-south across the Northern 

NSB to Central NSB. During both these advance phases, the spatial limits of the ice sheet 

have been extended to reach the continental shelf edge. The ice sheet has been thickened, 

reaching up to 250 m within the ISB, and 650 m and 220 m along the coasts of NW 

Scotland and Ireland respectively. Additionally, the model now includes two short-lived 

ice streams, one at 24 kyr BP (see Fig. 2.7, c and f), extending down to the Isles of Scilly 

and one at ~ 21.5 kyr, extending down the east coast of Great Britain (see Fig. 2.7, g and 

h). The pattern of deglaciation remains unchanged from the Shennan model, apart from 

the previous mentioned correction for underlying topography, and so these time steps are 

not shown on Fig. 2.7.  

 

Predictions were generated using the NS-Thick and NS-Thin models at the eight sites 

across Great Britain (Fig. 2.8), using the same two reference earth models as defined 

above (Note the predictions are shown at all sites in Appendix C). The combination of the 

two ice models with each of these earth models will be referred to as NS-Thick71, NS-

Thin71 and NS-Thick96, NS-Thin96 (abbreviated to NS-71 and NS-96). Additionally, 

the predictions are shown for the Shennan-96, which produced the optimum fit to the 

RSL data and the Shennan96-terrain model (as described above) 
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Fig. 2.8: Comparisons of predicted and observed sea level at eight locations across Great Britain for the NS-Thick and NS-

Thin ice models and the two reference earth models (see caption to Fig. 2.6). Predictions were generated using: the 71 km 

lithosphere earth model for the NS-Thick (solid red line) and NS-Thin (red-dashed line) models; the 96 km lithosphere earth 

model for the NS-Thick (blue solid line) and NS-Thin (blue dashed line). Additionally, predictions are shown using the 96 km 

lithosphere model for the Shennan model (solid black line) and the Shennan terrain-corrected model (grey line). Results are 

shown for all sites across Great Britain in Appendix C.
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Comparing the results for the Shennan model to the NS models (96km or 71km), it is 

evident that the greatest difference is at sites located near to to the centre of the ice sheet 

across Scotland, where the predictions based on the terrain-corrected models are 

displaced to substantially lower RSL values compared to the Shennan model (compare 

the solid black line to blue lines on Fig. 2.8). For example, at sites 17 and 11, the 

predictions are reduced by ~20 -25 m over the deglacial period (20 -15 kyr BP) and ~2 m 

in the mid Holocene. This difference is primarily due to the correction of the ice model 

for underlying terrain, as described above and is highlighted by comparing the NS-96 

model predictions on Fig. 2.8 to the Shennan96-terrain model (compare blue lines to grey 

line). There are some noted exceptions to this noted sensitivity across the Scottish sites. 

Along the NE coast of Scotland, such as site 13 (sites 14 or 15, as shown in Appendix C) 

there is little change in the predictions between the Shennan and NS models. The 

reduction in the predictions due to the correction for underlying terrain, which is evident 

at most other sites across the Scotland, has been offset at these sites by the influence of 

the increased ice load across the NSB. At a selection of sites along the eastern coastline 

of Great Britain, such as site 40, (also sites 37 and 38 shown in Appendix C), the NS 

models generate a shift in the depth of the RSL over the last 8 kyr BP (between 2-1 m) 

compared to the Shennan model and, correspondingly, produces a closer fit to the SLIP 

data at these sites 

 

Of the two lithosphere thickness models investigated, the NS-71 models now produce the 

optimum fit to the majority of data sites, although there is some spatial variability in the 

quality of fits for these models, as highlighted below. This contrasts with the Shennan 

model, where the optimum fit was generated using the 96 km lithosphere model.  

 

The significantly higher predicted RSL generated using the NS-71 models at most of the 

Scottish sites, such as sites 11, or 17 (also sites 54, 18, and 21,in Appendix C), captures 

the trend in the older SLIP data. Despite this, the new model does not resolve the 

underprediction prior to 16 kyr BP, as can be seen at site 11 or the size of the fall-rise-fall 

sequence during the periods of rapid change (~ 14 kyr BP) 
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At sites across the Central region of Great Britain, differentiating between the NS-96/NS-

71 models is more complex. Both models still produce an overprediction in the height of 

the Holocene highstand, between 2-5 m, which is most pronounced along the NE and 

NW coasts of England (sites such as 23, 24, 30 and 35). Although the NS-96 model 

generates a slightly lower highstand compared to the NS-71 at these central sites, and 

hence a better fit to the SLIP data, it significantly underpredicts at sites across Scotland. It 

is for this reason that the NS-71 model is still the preferred model to use for the complete 

Great Britain dataset. 

 

The misfit in the location of the RSL zero isobase still remains, as there has only been a 

minor reduction in the height of the Holocene highstand compared to the Shennan model 

(between 2-1 m). It has moved little on the west coast of England, still falling between 

sites 36 and 43, but on the east coast of England this transition now occurs very close to 

site 27.  

 

At most of the distal sites there is, again, little or no difference in the predictions using 

either the NS-96 or 71 models. Sites 40 and 50 on Fig. 2.8, illustrate the typical pattern at 

these sites: a steady rise towards present but with sharp slowdown at ~ 6 kyr BP, which is 

not seen in the SLIPs. 

 

Comparing the predictions using the NS-Thick(96 or 71) and Thin(96 or 71) models 

(dashed and solid lines on Fig. 2.8, respectively) the maximum impact of extending and 

thickening the ice sheet, both across the NSB and around the west coast of the British 

Isles, is over the deglacial period (20-15 kyr BP). There is an obvious lack of SLIP data at 

most sites over this time period with which to differentiate between the two models. Over 

the last 12 kyr BP, where the majority of the SLIPS are concentrated, the differences are 

either negligible (e.g. at southern sites such as 50) or between 1- 0.5 m (such as site 23) 

and generally lie within the spread of the SLIP data.  

 

There are a few sites along the western and eastern margins of Scotland where the 

differences in thickness between the two NS models have a greater impact on the RSL 

prediction, but there are still a limited number of SLIP data points with which to 
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differentiate between the models. For example, at site 7, situated close to the western 

shelf margin, there is an offset of between 6-2 m over the deglacial period (20-15 kyr 

BP), reducing to less than 0.5 m over the last 8 kyr BP where there are only two SLIPs. 

Along the east coast of Scotland (sites such as 13 on Fig. 2.8 and the following sites in 

Appendix C: 15, 3, 2, and 1), differences between the two NS models again have the 

most significant impact on predictions prior to 12 kyr BP. For example, at 13, between 

20-15 kyr BP there is a difference of 7- 3 m between the two models, but < 1.5 m over 

the last 10 kyr BP where most of the SLIP data occur. Clearly, new RSL data or new 

geomorphological constraints dating to this earlier period from sites in NE Scotland (e.g. 

sites 7 or 13) would provide useful information that could help to discriminate between 

these two ice models.   

 

There are only two sites where the difference in ice thickness between the NS-Thick and 

NS-Thin models has a visible impact on the predictions, at a time when SLIP data is 

available. At site 11, with the oldest RSL data record, using the NS-Thick model slightly 

reduces the amount of underprediction at ~ 16 kyr BP (by about 1 m) although a noted 

misfit of ~ 10 m remains. At site 1, there was also an underprediction using the Shennan 

model (96 or 71) between 8-6 kyr BP, where there is a cluster of SLIP data. The NS 

Thick model (96 or 71) produces a 1.5 m higher RSL around this time, reducing the 

underprediction and generating a closer fit to the RSL data.  

 

Despite the relative insensitivity of the RSL to changes in thickness of the ice across the 

NSB and coastal region (NS-Thick vs NS-Thin models), a choice must be made between 

which of the two should be adopted within the rest of the study. At sites where there are 

differences between predictions (such as site 1 or 11) the NS-Thick model performed 

better. Also, as the general view regarding the behaviour of the BIIS is of an ice sheet that 

was more expansive and thicker than previously assumed (see section 2.2.2 and 2.4), 

using the thicker model is the most appropriate choice. However, the reader should note 

that this choice was made on only a few data sites and so this aspect of the model may 

require adjustment in the future as more data become available.  
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To summarise, a revised ice model has now been created which is more consistent with 

the new geomorphological data and accounts for the underlying terrain. An optimum fit 

to the complete Great Britain RSL database is produced with the NS-Thick model 

combined with a 71 km thick lithosphere model. While some of the earlier identified 

misfits from the Shennan model (Section 2.3.1) have been reduced, there remain a 

number of issues, the most notable of which are summarised here. There is an 

underprediction in the amount of sea-level fall across the northern sites following the end 

of glaciation (15-16 kyr BP). During the two periods of rapid change at ~ 14 kyr and 11 

kyr BP, also most evident at the northern sites, the NS model has not resolved the 

overprediction in the magnitude of this change. This is to be expected, as these inflections 

(as was discussed in the Introduction section), are primarily due to accelerations in the 

rate of melting, driven by the global ice model, which has not been altered at this stage in 

the modelling. The height of the Holocene highstand has been reduced using the NS-

Thick71 model, but an overprediction of between 2-5 m  still remains and the Holocene 

zero isobase is still displaced to far to the south along the NE and NW coastline of 

England. At the distal sites, the sharp slowdown in the rate of rise at 6 kyr BP, which is 

not seen in the SLIP data, still remains. Again, this is related more to the global ice model 

which will be considered in Chapter 4. 

 

 

2.4.3. Modelling the component for Ireland 

 

2.4.3.1. Preliminary modelling comparison 

 

In past BIIS GIA modelling studies there has been a noted lack of work which has 

examined both or either Irish RSL data or the IIS, with two noted exceptions (Lambeck 

(1996), Lambeck and Purcell (2001)). This section aims to address this by examining the 

spatial and temporal history of the IIS in greater detail, which is motivated by new 

geomorphological data to constrain the IIS history. Additionally, the new and more 

extensive RSL database for Ireland needs to be examined, with key misfits specific to this 

region and model sensitivities to be explored.  
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Initially, predictions using the revised regional NS-Thick model (highlighted just for 

Ireland on Fig. 2.9) will be examined at the Irish data sites to identify the ability of the 

model to capture the general trends within the data set. Only the NS-Thick model was 

adopted within this section as this model produced the optimum fit to the Great Britain 

data and the new field evidence implies that the IIS was thicker within the offshore 

region, most specifically along the western margin. Results are shown on Fig. 2.10 for 

NS-Thick model and the two earth models considered for the Great Britain analysis. 

Eight representative sites are shown in Fig. 2.10, but the complete set of predictions at all 

data sites are shown in Appendix D.  

 

When examining the fit of the predictions to the Holocene and Late Devensian RSL data 

in Fig. 2.10 (and at all sites in Appendix D), it is apparent that the NS-Thick71 model 

produces the optimum fit and so this Earth model (71 km lithosphere) will be used most 

frequently in the following ice model sensitivity tests.  

 

The model captures reasonably well the trend in the sea level data along the south (such 

as site 83) and south west coast (85), where there is little variation between the NS-

Thick71 and NS-Thick96 predictions. But at sites across Northern Ireland, which are 

more sensitive to changes in the ice and earth model, there are a number of misfits 

associated with both NS-Thick71 and NS-Thick96. The first problem, as highlighted with 

the Shennan-96 model, is recreating the inferred height of sea level during the late 

Devensian, around the LGM, along the NE coastline (as can be seen at sites 97 or 99). 

Adopting the NS-Thick71 model does increase the predicted RSL over this time 

compared to the Shennan-96 model (or the NS-Thick96), but there is still an 

underprediction compared to the constraints given by the limiting data and raised 

shoreline evidence from across this region. This evidence suggests that along this 

coastline, sea level reached over 20 m compared to the modelled sea level of ~ 10 m.  
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Fig. 2.9: Ice thickness maps of the NS-Thick BIIS model presented in Shennan et al., 

(2006) for Ireland only at the times (in kyr BP): (a) 32, (b) 26, (c) 24, (d) 21, (e) 20, (f) 

19, (g) 18, (h) 17, (i) 16. Note the varying contour interval. 
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Fig. 2.10: Comparison of predicted and observed sea levels at eight locations across Ireland. Predictions are shown using the 

96 km lithosphere earth model (described in caption for Fig. 2.6) for the Shennan model (solid black line) and for the NS-

Thick model (solid blue line). Results are also shown for the 71km lithosphere earth model for the NS-Thick model (solid red 

line). Results are shown for all sites across Ireland in Appendix D
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Adopting the NS-Thick71 model does not resolve the earlier described discrepancy in 

capturing the north-south/west-east variation in the height of the Holocene highstand and 

location of the zero isobase. The height of the Holocene highstand has been increased 

along the Northern coastline compared to the Shennan-96 model, with an overprediction 

now of between 4-6 m. This is highlighted at site 93, where at ~ 5 kyr BP the data 

constrain sea level to ~ -2 m, compared to the model RSL of 2.7 m. The misfit in the 

location of the zero isobase along the west coast has not changed, with the predicted 

location still falling between sites 91 and 92. However, this isobase is now displaced 

further south along the east coast to lie between sites 82 and 83. Using the NS-Thick96 

model would generate a lower highstand, by 3-4 m along the west coast (such at site 97) 

and 1-1.5 m along the east coast (such as sites 92 or 93) compared to the NS-Thick71 

model. However, using the NS-Thick96 model would significantly underpredict the 

height of RSL along the NE coastline.  

 

This issue of reducing the height of RSL during the Holocene while maintaining the 

elevated RSL during the Late Devensian is a problem also highlighted with the Great 

Britain data. This issue, for the case of Ireland, will be addressed further in the following 

section by revising the spatial extent and timing of the glacial and deglaciation phase of 

the IIS.  

 

2.4.3.2. Sensitivity analysis to changes to the Irish ice sheet history: Local Scale Ice 

Readvances. 

  

The ability of GIA ice models to capture local scale ice movements (or ice loading 

events) has been questioned by past researchers (Mccabe (1997)). Furthermore, the IIS 

component typically used within GIA models has been criticised as not being an accurate 

geographical reconstruction of the ice sheet, with small scale advance-retreat phases and 

the location of ice margins significantly at odds with the field evidence.  

 

To investigate this, two ice models are developed that include small scale adjustments in 

the spatial and temporal history of the IIS to determine the extent to which these impact 

regional and local scale RSL predictions. This sensitivity test will shed light on the ability 
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of RSL data to constrain local small scale and transient changes in the ice model. Two 

scenarios will be considered: (1) an ice model where deglaciation across Ireland is 

complete by 19 kyr BP, removing the later KPS readvance (which will be referred to as 

Model A), and (2) a model where the ice stream down to the Isles of Scilly at 24 kyr BP 

(as shown in Fig. 2.9c) is not included.  

 

Predictions using Model A are compared to the NS-Thick71 model on Fig. 2.11 (shown 

in Appendix E for all Ireland sites and a selection of sites across Great Britain). At sites 

along the south and SW coast of Ireland (such as 83 or 86) and NW coast of England 

(selected sites in Appendix E such as 33 or 36), the impact of the removal of the KPS 

readvance is minimal (less than 1-1.5 m), over the late Holocene where the majority of 

the SLIP data are concentrated. This highlights that these sites distal to the main centre of 

ice loading, along the southern coast, are relatively insensitive to changes in the 

deglaciation pattern of the IIS.  At sites around Northern Ireland (such as site 94, 95, or 

99) and selected Great Britain sites (54, 18, or 31 shown in Appendix E), which were 

closer to the centre of ice loading, the impact of this change is more pronounced. 

Between 18-15 kyr BP RSL predictions for Model A are reduced by 18-15 m compared 

to the NS-Thick71 model, increasing the already noted underprediction. The complete 

removal of the ice sheet at 19 kyr BP which introduces a very rapid deglaciation, 

produces the sharp fall in RSL from this time onwards, as can be seen at 97 (and site 100, 

in Appendix D). In contrast, the height of the Holocene highstand along the northern 

coastline has been significantly reduced, by ~ 2.5m, as can be seen at 94 or 31. Adopting 

Model A does produce a closer fit to the RSL data over this period compared to the NS-

Thick71 model but an overprediction remains, with the zero isobase still situated too far 

south along the NW coastline (falling between 91 and 92). This result emphasises the 

more pronounced sensitivity of sites across North Ireland sites to changes in the deglacial 

pattern of the IIS.  
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Fig. 2.11: Comparison of predicted and observed sea levels at eight locations across Ireland. Predictions were generated for the 

NS-Thick (solid red line) and Model A (solid blue line) ice models using the 71 km lithosphere earth model. Results for all 

Ireland sites are shown in Appendix E
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The second scenario, in which the ice stream flowing down to the Isles of Scilly was 

removed, had no discernable impact on the RSL predictions at any of the data sites (and 

so the results are not shown).   

 

As briefly stated above, the IIS model used within this study is not intended to be an 

accurate reproduction of the spatial and temporal history of the ice sheet at scales of 10‟s 

of km and less. Many small advances, localised ice lobes or meltwater channels which 

form during the glacial and deglacial phases and are recorded in the field evidence (e.g. 

see Clark et al., (2004), Evans et al., (2005)) would have no effect on the RSL predictions 

and so do not need to be built into the ice model. This insensitivity is illustrated by the 

results for models with and without an Isles of Scilly ice stream. This contrasts with the 

impact of the more substantial loading event of the KPS advance, both in terms of spatial 

extent and duration; in this case RSL predictions at sites near or under the ice were 

significantly affected.  

 

The insensitivity of the predictions to small-scale loading changes arises from the 

mechanical properties of the lithosphere, which includes the crust and shallow upper 

mantle. The lithosphere is defined as a mechanically strong layer that can behave as an 

elastic material over time scales considerably longer than those under investigation here. 

Surface loads of relatively small spatial scale (10‟s of km) are supported by the 

lithosphere and so the resultant stresses will not be transmitted to produce significant 

flow in the mantle, thus producing minimal impact on the RSL predictions. 

 

The above sensitivity analysis has indicated that one possible method of removing the 

overprediction of RSL in the late Holocene, at sites across NE Ireland and NW Great 

Britain, is to introduce a very rapid retreat and thinning during the deglacial period. On 

the other hand, this will significantly impact on the ability of the model to recreate the 

Late Devensian sea-level data, around the Northern coastline and sites across Great 

Britain. These issues will be considered in the following sections. 
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2.4.3.3. Sensitivity analysis to changes to the Irish ice sheet history: Improving the 

fit to the Holocene data  

 

Revisions to the spatial and temporal history of the IIS will be examined within this 

section with the aim of reducing the overprediction from both the NS-Thick71 and 

Shennan-71 models during the late Holocene at sites around North Ireland and Great 

Britain. It is noted that within the remainder of this section the 71 km earth model will be 

combined with all revised ice models.  

 

It is useful to first discuss the processes which could act to generate the Holocene 

highstand across these near-field sites. The height of Holocene sea levels is controlled by 

the interaction between local isostatic processes (dominated by ice unloading), which 

produces a fall in sea level, and non-local processes such as the melting of non-local ice 

and increase in ocean basin volume through isostatic deflection of the ocean floor (ocean 

syphoning – see Mitrovica and Milne (2002).). If the local crustal loading signal and the 

syphoning signal (which also drives a sea-level fall) exceed the global melt signal, the 

Holocene sea level is elevated above present. Conversely, Holocene sea levels remain 

below present. A reduction in the height of Holocene sea levels could be achieved by 

adjusting a model parameter to either increase the rate of sea-level rise through melting 

(for example the global ice model) or decrease the rate of fall through local and global 

isostatic processes.  

 

In this section, the second option is considered; specifically, the spatial extent and 

thickness of the IIS will be revised in order to reduce the size of the crustal loading 

signal. This could be achieved by reducing the thickness and lateral extent of the IIS 

during the glacial period (24-21 kyr BP). However, this would also have a considerable 

impact on the predictions during the Late Devensian, which are already too low. 

Alternatively, altering the pattern of deglaciation by adjusting the timing for the onset of 

ice sheet retreat (hence reducing the length of the glacial phase and loading period) or 

introducing a rapid retreat and thinning, would also achieve a similar result.  
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To examine this, the NS-Thick model was altered in two ways; firstly, an earlier 

deglaciation was induced, now starting at 22 kyr BP (as suggested in Mccabe et al., 

(2005)) and secondly, during the deglacial period, a thinner IIS is adopted, approximately 

half of the NS-Thick, while maintaining the same spatial extent. This model will be 

referred to as Model B, with predictions compared to the NS-Thick71 model on Fig. 2.12  

(Note the complete set of predictions at all sites across Ireland and a selection of sites 

across Great Britian is shown in Appendix E). As to be expected, the impact of Model B 

on the RSL predictions is similar to that produced using Model A, as both models 

recreated a restricted IIS during the deglacial phase. Once again, at distal sites along the 

southern coastline, (such as 83 to 90), the differences in RSL predictions using Model B 

compared to NS-Thick71 is minimal. Generally, the depth of predicted sea level over the 

last 10 kyr is reduced by < 1 m, which does produce a minor improvement in the fit to the 

observed sea level data, as can be seen at 84.  

 

However, along the Northern coastline, the difference between Model B and NS-Thick71 

is more pronounced, with a reduction in predicted sea level throughout the glacial period, 

by up to 20m during the Late Devensian (20-15 kyr BP) and up to 5m over the Holocene. 

The reduction in the Holocene highstand along the NW coastline (by ~ 2m), results in a 

far better fit to the SLIP (such as at sites 93 and 94) and resolves some of the mismatch in 

the location of the Holocene zero isobase: now falling between sites 81 and 82, along the 

SE coast and displaced closer to sites 91 along the NW coast. Additionally, the revised 

deglacial history in Model B reduces the size of the misfit during the Holocene, at the 

selected sites from Great Britain along the NW coast of England and Scotland (as can be 

in Appendix E for sites such as 33 and 36). This is exemplified at sites 31, where the 

reduction by ~ 2m during the last 9 kyr generates a closer fit to the SLIP record, but a 4 m 

misfit still remains. 
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Fig. 2.12: Comparison of predicted and observed sea levels at eight locations across Ireland for three Irish ice models. 

Predictions were generated for the NS-Thick model (solid red line), Model B (solid blue line) and Model C (solid green line) 

using the 71 km lithosphere earth model. Results for all Ireland sites are shown in Appendix E 
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As expected, altering the deglacial phase has not improved the ability of the model to 

capture the RSL trend during the Late Devensian, with the fit of the RSL predictions to 

the data worse than using the NS-Thick71 model. This is most evident at sites along the 

NE coast of Ireland (such as at sites 95 and 97) and NW Scotland (such as sites 18 and 54 

shown in Appendix E). Introducing an earlier and very rapid thinning produces a sharp 

fall in predicted sea-level, which further displaces sea level below present by between 11 

and 20 m. For example, at 100, at ~ 20 kyr BP, Model B predicts sea level at -10 m 

whereas the limiting data suggest sea level was at present levels, if not higher. 

  

To summarise, the misfit over the Holocene can be reduced by introducing an earlier and 

more rapid thinning of the IIS during deglaciation. However, this change does not 

reproduce well the higher sea-levels around the NE coast between 20-15 kyr BP. This 

issue will be examined further in the following section.  

 

2.4.3.4. Sensitivity analysis to changes to the Irish ice sheet history: Improving the 

fit to Late Devensian data 

 

As discussed above, the key aim is to recreate the relatively high sea levels during the 

Late Devensian around the NE coastline of Ireland while producing lower sea levels 

during the Holocene. Using the NS-Thick model, predicted sea levels across this region 

are around ~ 10 m or more lower than observational constraints, which suggest heights of 

over 20 m. The discrepancy is greater with Model B.  

 

One method of generating higher sea levels during this period is through an increase in 

the ice volume (and as such the crustal loading signal); either by extending the duration 

of the glacial phase, increasing the thickness and spatial extent of the IIS, or adopting a 

slower retreat during deglaciation. As the latter would impact significantly on the 

predicted Holocene sea level (as was seen in the above section), a revised model will be 

created where the final glacial phase is adjusted. However, it must be noted that 

introducing a considerable thickening of the ice sheet across the onshore regions of north 

Ireland would have a direct impact on the Holocene predictions across this region. 

Therefore, initial revision to the NS-Thick model will be concentrated within the offshore 
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regions and south Ireland. Model B will be adopted to generate an improved fit 

(compared to NS-Thick) over the Holocene. Additionally the first glacial period (32-25 

kyr BP) from the NS-Thick model remains unchanged. During the final glacial phase (24-

22 kyr BP), the IIS is thickened and extended into the offshore regions along the NW 

coast of Ireland and within the North ISB, to now reach up to 650m . The southern limit 

for the IIS has so far been taken as the SIEM, as can be seen in Fig. 2.7h and 2.9c, which 

separated the main ice sheet from a smaller ice dome across SW Ireland. The SIEM was 

assumed to be an end moraine and marked the LGM limit of the IIS. As was alluded to in 

section 2.2.2.3, it can also be interpreted as having formed during a retreat phase. To take 

this into account, the revised IIS has been extended across the entire Irish mainland down 

to the coastline. This model will be referred to as Model C with predictions shown on 

Fig. 2.12 (Note the complete set of predictions at all sites across Ireland and selected sites 

across Great Britian is shown in Appendix E).  

 

Comparing the predictions using Model B and C on Fig. 2.12, there is minimal difference 

over the last 10 kyr, with an increase in the height of the highstand at most sites of < 0.5 

m. Despite increasing the thickness of the ice sheet between Model B and C (by ~ 300 

m), the increase in sea level over the late Devensian around the NE coast of Ireland and 

NW Scotland is only ~ 5 m, at most. See, for example, sites 97 and 95, where predictions 

still lie below the limiting data and those produced using the NS-Thick model. This 

suggests that the increase in the loading signal within Model C is still not sufficient to 

offset the reduction in the crustal loading signal due to the earlier onset of deglaciation 

(22 kyr BP compared to 21 kyr BP) and the more rapid retreat and thinning during the 

earlier phase of deglaciation. This implies that further revisions to the IIS during this 

earlier glacial phase are required, such as altering the earlier onset of deglaciation 

introduced in Model B and/or increasing the ice volume, to recreate the higher sea levels 

inferred from the field evidence (such as O‟Cofaigh and Evans (2007)).  

 

2.4.4. Combined final revised BIIS model 

 

In the above sections, the spatial and temporal history of the IIS was modified with the 

aim of reducing key misfits of predicted sea level using the NS-Thick71 model to the 
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Irish sea-level data. It was demonstrated that introducing a rapid thinning and retreat 

during the deglacial phase can reduce, but not remove entirely, the overprediction along 

the northern coastline throughout the late Holocene. The underprediction during the late 

Devensian across this region remains, despite a thickening and extension of the IIS within 

the offshore region and ISB.  

 

To address these remaining problems a final BIIS is produced, which is a combination of 

the regional BIIS (taken from the NS-Thick Model) and a revised IIS model. The main 

advance and retreat phases are summarised as follows, with key time slices illustrated on 

Fig. 2.13 for Ireland. During the Mid-Late Devensian, the first glacial advance (32-27 kyr 

BP) and later retreat (26-25 kyr BP) in the model is unaltered from NS-Thick model as 

described in section 2.3.2.2 (see Fig. 2.7 a and b).  During the second glacial phase (24-

21 kyr BP) the Great Britain component is taken from the NS-Thick model (see Fig. 2.7c 

and g), but with the start of deglaciation at 21 kyr BP, rather than 22 kyr BP as used in 

the above IIS modifications. This Great Britain component was combined with a final 

revised IIS, which incorporates some of the revisions discussed above. Following on 

from Model C, the IIS model has been extended and thickened further out into the 

offshore region along the NW coast and across southern Ireland. The maximum thickness 

is increased across the central regions (Wicklow Mountains) and the entire ISB to over 

600 m to comply with the trimline evidence (Ballantyne et al., (2006), Rae et al., (2004)). 

These time slices are illustrated in Fig. 2.13a and b. During the deglacial period, the Great 

Britain component (unaltered from that used in NS-Thick model) is combined with an IIS 

model similar to Model B, where the ice sheet thins and retreats rapidly. The maximum 

thickness is reduced, now reaching only 400 m across NE Ireland following the KPS 

readvance, compared to 650 m with the NS-Thick model (compare Fig. 2.9g to Fig. 

2.13e).  

 

This model will be referred to in the following sections and chapters as the Brooks et al. 

model and is published in Brooks et al., (2008). Predictions using this model are 

compared to the starting model (i.e. the Shennan ice model), using the 71 km earth model 

on Fig. 2.14a for the eight selected Great Britain sites and Fig. 2.14b for the eight Ireland 

sites. Predictions for the complete data set are shown in Appendix F. 
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When comparing the fit of the Brooks et al. model to the Shennan model, it may not be 

apparent that there has been a significant improvement in resolving the original misfits or 

in the ability of the model to capture the regional trends in the SLIP data. However, it 

must be reiterated, as was noted in section 2.1 and in the above discussions, the main aim 

of this chapter is to adjust the Shennan model to produce a revised regional ice model 

which is both compatible with the new geomorphological evidence (as outlined in section 

2.2.2), and correctly accounts for the underlying terrain when defining the maximum 

thickness of the ice sheet. In this regard, the two ice models are significantly different, 

with the Brooks et al. model being the more up-to-date and accurate of the two.  

 

In the above sections, a more in-depth study of IIS was conducted to address specific 

issues regarding the fit of the RSL predictions to the Irish data. This will be concluded by 

examining the impact of the Brooks et al. model in capturing the SLIP trends at the Irish 

sites. 

 

The thickening of the IIS within the Brooks et al. model (from that used in Model C) has 

gone someway to resolve the earlier identified problem of increasing the height of sea 

level during the Late Devensian, while maintaining a lower sea level during the Holocene 

around the northern coastline of Ireland. At sites along the southern coastline of Ireland 

(82 to 87), the removal of the SIEM constraint and thickening across southern Ireland has 

impacted slightly on the predictions during the last 10 kyr. The height of sea-level has 

increased by < 0.7 m, which does not significantly influence the ability of the model to 

capture the late Holocene trend. Along the NW coast, the minor increase in the predicted 

amplitude of the Holocene highstand of less than 0.5 m (such as at site 93), also does not 

significantly alter the geographic location of the zero-isobase or misfit to the SLIP data. 

A noted exception is site 81 (compare Fig. 2.14b to Fig. 2.12), where the thickening of 

the ice across this region and within the ISB has elevated predicted RSL and increased 

the misfit to the SLIP data.  
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Fig. 2.13: Ice thickness maps for the revised British- Irish ice model presented in Brooks 

et al., (2008) for Ireland only at the following times (in kyr BP) steps: (a) 24, (b) 21, (c) 

20, (d) 19, (e) 18, (f) 17, (g) 16. Note the varying contour intervals 
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Fig. 2.14a: Comparison of predicted and observed sea level at eight locations across Great Britain. Predictions were generated 

for the original starting ice model (i.e. the Shennan model; solid red line) and the new revised ice model taken from Brooks et 

al., (2008) (solid blue line) using the 71km lithosphere earth model. The dashed blue line is the prediction for the Brooks et al 

model but with a post modeling correction applied to create a continued rise in eustatic sea level of 5 m between 7-1 kyr BP. 
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Fig. 2.14b: As 2.14a but for the eight chosen data localities across Ireland.  Results for all Ireland and Great Britain sites are 

shown in Appendix F.
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The most pronounced improvement of the Brooks et al. model is at sites along the NE 

coast such as sites 100 or 97, where the predicted height of sea-level during the Late 

Devensian has been increased by between 11 m and 5 m respectively (compared to 

Model C). This goes someway to satisfy the mismatch to the limits inferred from the 

shoreline evidence and limiting data that sea level reached up to 25-30 m during this 

period. It is noted though that an underprediction of ~ 15 m still goes unresolved.  

 

Examining the predicted sea level using the Brooks et al. model at all British Isles sites it 

is apparent that the results are generally lower than using Shennan-71, which is to be 

expected given the considerable reduction in the thickness of the ice sheet between the 

two ice models. This reduction is most pronounced across the northern and central sites 

(for example sites 17 or 25, across Great Britain and site 97, across Ireland), where the 

height of predicted sea level during the late Devensian has been reduced by ~ 20m and 

over the Holocene by 5m. The impact of this revision was described in greater detail in 

Section 2.3.2.1., when altering the thickness of the ice sheet to take into account the 

underlying terrain.   

 

The Brooks et al. model captures the pattern of sea level on a regional scale reasonably 

well, as can be seen in Fig. 2.14a and 2.14b, but there are a number of consistent misfits 

to highlight. Firstly an underprediction in the magnitude of sea level fall during the late 

Devensian (between 20-15 kyr BP), as can be seen at sites 11 or 99. As was highlighted 

for the Irish sites, this could not be resolved through reasonable changes to the local IIS 

model. Possible solutions to address this misfit will be discussed below, specifically in 

light of new geomorphological evidence. Secondly, the late Holocene highstand remains 

too high, by up to 4 m (for example at sites 93, 11 and 25) which leads to the location of 

the Holocene zero isobase being displaced too far south: falling between sites 26 and 27 

and close to site 36, along the NE and NW England coasts, respectively, and close to sites 

81 and 91, along the east and west coasts of Ireland.  Finally, at southern sites, the late 

Holocene rise towards present is characterised by a sharp change in rate at ~ 6 kyr BP, 

which is not consistent with the smooth trend inferred from the SLIP data, as is 

highlighted at sites 40 or 50.  
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It has been highlighted in section 2.4.3.3. that reasonable adjustments to the spatial and 

temporal history of the IIS could not reconcile the misfit of predictions to the late 

Holocene SLIP data. As was discussed within this chapter (and in Section 1.1.3) the 

height of the highstand is also sensitive to the pattern of melting during the Holocene, 

which is governed by the non-local ice model. In the current global ice model, adopted 

from Bassett et al. 2005, the rise in eustatic sea level due to the melting of the global ice 

sheet reduces in magnitude abruptly at 6 kyr BP, with melting complete by 5 kyr BP - 

hence the timing of the highstand at central and northern sites. If the melting of the global 

ice model was to continue into the late Holocene, this would lower the height of the 

Holocene highstand.  

 

To investigate the impact of such a change on resolving the data-model misfit over the 

Holocene, predictions were generated by applying a post modelling correction to the 

predictions from the Brooks et al. model to replicate a gradual 5 m rise in eustatic sea 

level between 7 – 1 kyr BP. Results are shown for selected sites on Fig. 2.14a and 2.14b 

by the dashed blue lines.  

 

As expected, the revised pattern of Holocene melting impacts predictions at all sites, not 

only by lowering the height of sea level during the Holocene but also by altering the style 

of RSL rise over the last 7 kyr BP, which could not be achieved through revision to the 

local IIS. Introducing a gradual rise in eustatic sea level to 1 kyr BP produces a smoother 

trend to the RSL predictions more characteristic of that shown in the SLIP data, 

especially at the southern sites (such as at 40 or 50). The overprediction during the 

Holocene has been reduced at most sites by between 2-3 m, removing the misfit at 81 and 

improving the fit at most other sites (as can be seen at 11 or 35).  

 

These results indicate that adopting a revised global ice model, in which melting from the 

global ice sheets is continued into the late Holocene is an important step to take to reduce 

some of the remaining misfits. This step will be the focus of Chapter four, in which 

previously un-modelled far-field sea level data from China and Malay-Thai Peninsula are 

utilised to constrain a revised global ice model for the Holocene.  
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2.5. Discussion 

 

A new BIIS model has been developed within this chapter that is based on the model 

published in Shennan et al., (2002). The revised model is compatible with recently 

published geomorphological data and includes an extensive two-stage glaciation across 

the NS, thickening across Ireland and out onto the western continental shelf, and a rapid 

thinning and retreat of the IIS component during deglaciation. Additionally, the thickness 

of the ice model has been adjusted to correctly account for the underlying terrain. Using a 

small number of earth models, RSL predictions have been generated to perform some 

preliminary sensitivity tests with the new ice model for both Great Britain and Ireland. 

The new ice model will be utilised further within Chapters 3 and 5.  

 

Since the development of this model and publication in Brooks et al., (2008), Shennan et 

al., (2006) there has been a wealth of new information published regarding the history of 

the BIIS and SIS.  Some key papers include reviews of the spatial extent (Chiverrell and 

Thomas (2010), Finlayson et al., (2010), Lambeck et al., (2010), O' Cofaigh et al., 

(2010b), O' Cofaigh et al., (2010a), Sejrup et al., (2009)) and cosmogenic dates used to 

constrain the timing of glacial/deglacial phases (Ballantyne (2010), Phillips et al., (2008), 

Telfer et al., (2009)). New offshore geophysical data (Bradwell et al., (2008), Graham et 

al., (2007), Graham et al., (2009),Graham et al., (2010)) as well as updated and expanded 

IRD records (Hibbert et al., (2010), Scourse et al., (2009)) can both be used to constrain 

of the behaviour of the BIIS at earlier, pre-LGM times and also within offshore regions, 

when/where there are little or no SLIP data to constrain the model. Other new 

developments include numerical (Hubbard et al., (2009), Boulton (2010)) and 

geomorphological-driven models (Evans et al., (2009), Greenwood and Clark (2009b)) 

which also aim to replicate the evolution of the BIIS through the last glacial cycle. In 

general, the information published in these very recent studies supports a greatly 

extended BIIS during the last glacial period and so is compatible with the Brooks et al. 

model.  

 

Identification of offshore geomorphological features, such as MSGL and moraines on 

single beam bathymetric data (Bradwell et al., (2008)) and 3D/2D marine seismic data 
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from across the Central and Northern NSB (Graham et al., (2007), Graham et al., (2009)) 

support an extensive grounded ice sheet across the NSB, forming due to the convergence 

of the BIIS and SIS. Following a period of large-scale reorganisation when the two ice 

sheets separated, a marine embayment opened across the Witch Ground Basin, identified 

by overprinted moraines and seismic stratigraphy.  

 

Accumulating onshore records, developed from geomorphological mapping and 

lithostratigraphic data, also support a more laterally extensive, dynamic ice sheet around 

West-Central Scotland (Finlayson et al., (2010)). Golledge et al., (2008) suggested that 

the expanse of an independent ice sheet across Shetland during an early glacial period 

was prevented due to the confluence of the BIIS and SIS across the NSB. Greenwood and 

Clark (2009b) developed a model of the IIS evolution over the last glacial cycle using a 

new geomorphological data set of glacial landforms (such as glacial lineations, meltwater 

channels and moraines (Greenwood and Clark (2009a))). Although the highly dynamic 

and mobile nature of the IIS suggested by these data (e.g. changes in the location of ice 

divides and flow geometries) are not replicated well in the Brooks et al. model, the 

overall inferred glacial history is of an IIS which extended offshore and across the entire 

mainland. It was found that the decay of the IIS was twice as fast as during the advance 

phase, which adds some support to the revised behaviour of the IIS introduced in new 

model.  

 

In the Brooks et al. model, following the timings outlined in section 2.2.2.2, the initial 

build up of ice is rapid, expanding to the extensive, widespread glaciation across the 

onshore and offshore regions between 32-27 kyr BP (as shown in Fig. 2.7a). From the 

reviews of Ballantyne (2010), Telfer et al., (2009), and Sejrup et al., (2009) it is apparent 

how few available dates there are to constrain this early glacial advance of the ice sheet, 

thus highlighting some of the conflicting views on the behaviour and timings of the 

growth of the ice sheet over this period (as outlined below). One new set of AMS 

radiocarbon dates published recently by Graham et al., (2010) suggest that an active 

grounded ice sheet and extensive glaciation across the Witch Ground Basin, Central NSB 

developed after 30.8 
14

C kyr BP (36.1 kyr BP) and prior to 16.2 
14

C (19.2 kyr BP), when 

marine conditions developed, thus supporting the timings used in the new model.  
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Sejrup et al., (2009) refined the chronology of advance and retreat phases across the NSB 

such that the Mid Devensian growth of the BIIS and SIS across the NS occurred later, 

and followed a more gradual build up phase (compare Fig.2.1 to Fig. 2.15). (Note that, 

this revision was not based on new dates to constrain the timing of ice extent changes.)  

Following an early (~ 39-29 ka) restricted period of onshore glaciation, ice expanded 

gradually across the NS, leading to the coalescence of the BIIS and SIS for a shorter 

period, between 29-25 kyr BP only. At 25 kyr BP, in agreement with the earlier 

interpretation (Fig. 2.1), the more recent interpretation shows the ice sheets had separated 

due to the opening of the marine embayment across the NSB (as discussed above).  

 

This revised chronology for the NSB is supported by a recent GIA modelling study for 

the SIS, in which Lambeck et al., (2010) review information constraining the timings and 

pattern of glaciation between MIS4 and MIS2 and stated that the results from the NS and 

Norwegian coasts were not completely consistent. The growth of the SIS across the NSB, 

constrained to data from coastal regions around Denmark and Norway, was initiated from 

~30 kyr BP when ice advanced from within the Norwegian trench and out onto the 

continental shelf to join with the BIIS by 28 kyr BP. This was followed by a brief retreat 

period 26.5 kyr BP, with a later, more restricted growth of the SIS along the NS coastal 

margin. Although the timings of these glacial episodes do not completely correlate with 

the new BIIS model developed here, it does provide some validity to the two-stage 

glaciation across the NS region, with an earlier more extensive glacial phase. A complete 

review and correlation of the behaviour of the BIIS and SIS during the various 

interstadials/stadials is beyond the scope of this study. As the two ice sheets were 

independent during last glacial period, the growth and retreat phases do not necessarily 

have to correlate. However, there should be a level of consistency between the observed 

and modelled timing of coalescence across the NSB.  

 

Hubbard et al., (2009) published a 3D numerical (thermomechanical) model of the 

growth and retreat of the BIIS at various times slices between 38 and 10 kyr BP forced by 

climate change inferred from the North Greenland Ice Core project (NGRIP). Their 

model output shows that glaciation is limited to Central Scotland up until ~ 32 kyr BP, 
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when ice begins to advance and expand offshore, reaching onto the adjacent shelf areas 

around Scotland, Ireland and the NSB by 29 kyr BP. It is noted that during this phase the 

ice sheet extent is more restricted compared to the Brooks et al. model and that inferred 

by Sejrup et al., (2009) (Fig. 2.15). Following a short-lived retreat, a more substantial 

advance begins at 27 kyr BP, to produce an extensive glaciation, similar to that depicted 

in the Brooks et al. model between 23-19 kyr BP. Although the timings and spatial extent 

of the growth/retreat phase are not entirely consistent with the new glaciation curve (Fig. 

2.15) or the Brooks et al. model, the results do support a two-stage glaciation of the BIIS 

during the Late Devensian, separated by a rapid short-lived retreat. 

 

IRD records taken from around the coast of the British Isles can provide an additional 

record of the timings of glacial activity of the adjacent land based ice sheets (this is 

particularly useful at earlier periods when sea level records are limited). Peaks in the 

recorded flux can be directly related to episodes of either ice sheet advance or decay 

depending on a range of factors, including the presence of a marine margin, rate of 

iceberg calving or debris content of icebergs (Hibbert et al., (2010)). Therefore, although 

the record can be used to infer the presence of an ice sheet with an active calving margin 

on the continental shelf, it is insensitive to the presence of a small ice sheet with no 

calving margin, during either an initiation phase or late in the deglaciation (Scourse et al., 

(2009)). This needs to be considered when interpreting records and looking for past 

glacial episodes within the IRD records as not all records from along the Atlantic margin 

fully support the two-stage glaciation proposed by some authors and as incorporated in 

the Brooks et al. model. 
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Fig. 2.15: A revised glaciation curve for the main growth and retreat phases of the British-Irish Ice Sheet and Scandinavian Ice 

sheet across the NorthSea, adapted from Sejrup et al., (2009). Note NCIS is an abbreviation for Norwegian Channel Ice Stream 

and ages are given in calibrated 
14

C.  
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Hibbert et al., (2010) published a new record from the Barra-Donegal fan, NW Scotland, 

that shows a near continuous flux of IRD between  MIS3-MIS2, which was taken to 

indicate a prolonged period of glacial activity on the continental shelf. A noted peak at 27 

kyr BP was thought to result from either “expansion of the BIIS to the shelf margin or 

destabilisation of an existing marine margin” (page 477), the latter of which is consistent 

with the Brooks et al. model. Continuing high IRD values into MIS2 were also associated 

with (re)advance of the BIIS onto the continental shelf. In contrast, a review of IRD-

records from three locations along the NE Atlantic margin by Scourse et al., (2009) 

inferred multiple advance and retreat phases during this period. Major growth of the ice 

sheet onto the continental shelf did not occur until after 29 kyr BP, with the maximum 

extent reached by 24 kyr BP. A rapid retreat at ~ 23 kyr BP is followed by a second, more 

restricted readvance between 22-16 kyr BP. This inferred pattern of early growth onto the 

shelf along the NE Atlantic margin followed by a later more extensive episode is 

supported by the modelling results from Hubbard et al., 2009.  

 

One main point to conclude from the above information is that during the Mid-Late 

Devensian, the BIIS was a dynamic ice sheet, which extended beyond the coastal margins 

inferred in the Shennan model. Evidence from the NS records and modelling of ice sheets 

imply that, during this early phase, the BIIS expanded from a restricted onshore extent, 

across the NSB to join with the SIS. In contrast, IRD records from NE Atlantic margin 

suggest a more restricted extent during this early period, with the maximum expanse after 

24 kyr BP, which would contradict the timing for the growth across the NSB. The exact 

timings of these advance phases need to be examined further, but one point that can be 

concluded is that the initial glacial phase in the Brooks et al. model (32-27 kyr BP) most 

likely started later and was shorter (~ 30-27 kyr BP), with a gradual expansion to the 

extended limits (see Fig. 2.15). 

 

Preliminary calculations (not shown) to investigate the sensitivity of sea level predictions 

to revisions in the timing and spatial extent of the BIIS during this early glacial event 

were conducted. During this first glacial phase the BIIS was altered to create a gradual 

advance from a small ice sheet centred across Scotland extending into the offshore 

regions to reach the maximum limits later, (29 -27 kyr BP). The impact of these changes 
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on the RSL predictions was found to be relatively small (<5m) and occurs before or 

during LGM times. Given the lack of pre-LGM RSL data, the most direct means of 

improving the accuracy of the ice history during this earlier period lies with obtaining 

more dates from offshore morphological features and additional IRD records.   

 

Since the development of the Brooks et al. model, reinterpretation of trimline evidence 

from across Scotland and Ireland (Ballantyne et al., (2009), Ballantyne and Hall (2008), 

Ballantyne et al., (2008)) has some important implications for the definition of the model 

ice thickness in these areas (see section 1.3.3. for further information on trimlines).  In 

earlier studies (as outlined in section 2.2.2.3), these horizons were thought to mark the 

upper limit of glacial erosion from a warm-based ice sheet, and, as such, delimit the 

maximum altitude of the BIIS surface. New studies, summarised in Ballantyne (2010), 

suggest these horizons may have formed as englacial thermal boundaries, between a 

lower, warm based 'erosive' ice and an upper, cold based 'non-erosive' ice. This implies 

that the trimline evidence now marks the minimum altitude that the ice sheet reached. It 

was concluded in Ballantyne, 2010 that the reinterpretation is not conclusive but some 

key points cited to support it are: (1) reconstructed ice surface altitudes (such as 

illustrated in Fig. 2.2) will require a thicker ice sheet than inferred using the old 

interpretation to reach the extended offshore limits onto the continental shelf (Ballantyne 

et al., (2008)); (2) Examination of tors and blockfields across the Caithness mountains 

imply the area was over run by a cold-based ice sheet (Ballantyne and Hall (2008)); (3) in 

a numerical model of the BIIS by Boulton and Hagdorn (2006), it was shown that the 

optimum basal melting temperature from the reconstructions were consistent with the 

development of englacial trimlines. 

 

This alternative interpretation of the trimline observations has important implications for 

the defined thickness of the ice model and may provide a possible solution to address the 

underprediction of RSL during the Late Devensian. In earlier studies, no attempt was 

made to alter the thickness of the BIIS during the glacial phase as this was limited by the 

constraints from the trimline evidence. If, instead, the BIIS was thicker during the glacial 

advances, most specifically between 24- 21 kyr BP, this would in turn lead to an increase 

in the predicted RSL (as was seen for the IIS - see section 2.4.3.4). It is hoped that future 
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work will be conducted to rigorously determine which interpretation is accurate so that 

models of the BIIS can use this information in an unambiguous manner. At this time, the 

Brooks et al. model will remain based on the original interpretation (i.e., trimlines define 

the maximum ice surface altitude). 

 

2.6. Conclusions  

 

A new BIIS model has been developed using recently published geomorphological data 

and an extended RSL database with sites from across Great Britain and Ireland. 

Additionally, the thickness of the input ice model was adjusted to account for the 

underlying terrain. The model is characterised by a two stage glaciation across the NSB 

with an initial coalescence of the BIIS and SIS between 32-27 kyr BP, followed by a 

short lived retreat between 26-25 kyr BP. Following this retreat, the BIIS readvances out 

across the NSB, and is greatly thickened and extended within the ISB and along the NE 

Atlantic margin, with a short lived ice stream down to the Isles of Scilly. In this final 

glacial phase, the BIIS and SIS do not join. Deglaciation begins at 21 kyr BP, with a 

rapid thinning and retreat of the IIS, with complete ice retreat by 15 kyr BP.  

 

This model will be adopted within Chapter 3, in which CGPS data will be examined to 

provide an independent constraints on the choice of earth model parameters (shallow 

viscoelastic structure) and in Chapter 5, where additional constraints on the earth model 

(from Chapter 3) and the global ice model (from Chapter 4) will be combined to arrive at 

a final GIA model for the British Isles.  
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Chapter 3: Glacial Isostatic Adjustment of the British Isles: new 

constraints from GPS measurements of crustal motion 

 

3.1. Introduction 

 

The on-going viscous response of the solid Earth to the melting of the last great ice sheets 

is currently a significant contributor to intraplate deformation around the globe, 

particularly in previously glaciated regions such as Canada and NW Europe. In these 

regions, this geodynamic process, more formally known as glacial isostatic adjustment 

(GIA), dominates the solid Earth deformation field (e.g. Johansson et al., (2002), Sella et 

al., (2007)). A number of studies have considered the GIA of these previously glaciated 

(so-called ‘near-field’) regions through the measurement and interpretation of relative  

sea-level observations (e.g. Tushingham and Peltier (1991), Davis et al., (1999), 

Lambeck (1993a), Lambeck et al., (1998), Mitrovica (1996)) and, more recently, space 

geodetic data (e.g.Milne et al., (2001), Tamisiea et al., (2007)). Studies such as these 

have provided important constraints on both past ice extent and Earth viscosity structure. 

 

There is a long history of sea-level observation in the British Isles (e.g. Selby and Smith 

(2007), Shennan et al., (1995), Sissons (1966), Sissons and Brooks (1971), Tooley 

(1982), Tooley (1974)) and this has lead to the development of a high-quality and 

extensive regional data base (Shennan et al., (2006b)). This data base has been employed 

to determine empirical estimates of GIA-induced land motion (Dawson et al., (2002), 

Fretwell et al., (2004), Smith et al., (2000)) as well as constrain parameters in 

geophysical models of the GIA process  (Lambeck (1993a), Lambeck (1993b), Milne et 

al., (2006), Peltier et al., (2002), Shennan et al., (2006a), Shennan et al., (2000)) While 

there has been a dramatic advance in the development of GIA models for the British Isles 

since the early 1990s, there remain significant differences in key parameters inferred by 

different groups and the model fits to the ever-expanding data base have been poor in 

certain areas (e.g. Shennan et al., (2006a)). These discrepancies reflect the constant 

emergence of new geomorphological constraints on ice sheet extent and thickness as well 

as the high-degree of non-uniqueness inherent to modelling near-field GIA (Shennan et 

al., (2006a), see Chapter 1 and 2). This non-uniqueness is particularly acute for the 

97



British Isles given the relatively small size of the local ice sheet which results in the local 

isostatic component of the sea-level signal being of similar magnitude to that associated 

with the melt water (eustatic) contribution from non-local ice sheets (e.g.Lambeck 

(1993b)). 

 

The application of the global positioning system (GPS) to monitor secular variations of 

the solid Earth has provided a new data set that can be applied to the GIA problem. The 

main advantages of GPS measurements over those of past sea-level changes is that a 

direct measurement of present-day vertical and horizontal crustal motion is recorded at 

each site and spatial sampling is not limited to coastal areas.  

 

Results obtained from a regional GPS network in Fennoscandia demonstrated that 

continuous GPS (CGPS) was able to resolve both vertical and horizontal crustal motion at 

sub-mm yr
-1

 precision (Johansson et al., (2002),Lidberg et al., (2007)). Subsequent 

modelling studies have demonstrated that the Fennoscandian CGPS data provide useful 

constraints on GIA models that complement those imposed by the RSL observations and 

thereby reduce the level of non-uniqueness in inferring model parameters (Milne et al., 

(2001), Milne et al., (2004)).       

 

A CGPS network was first established across Great Britain in the late 1990s and there are 

currently around 130 receivers in operation (see www.bigf.ac.uk ). The position time 

series for a subset of these receivers are now long enough to constrain 3-D crustal motion 

at the sub-mm yr-
1
 level (Milne et al., (2006), Teferle et al., (2006)). A primary aim of 

this study is to examine the CGPS-derived 3D velocity field for Great Britain and to 

quantify the component of the motion associated with GIA. In addition, we aim to 

determine if the CGPS data will be useful in reducing the non-uniqueness of the British 

Isles GIA problem outlined above. Note that this study extends that of Milne et al., 

(2006) by: (1) considering a GPS solution based on longer time series and improved 

processing techniques; (2) adopting a recently improved British-Irish ice model that is 

consistent with a subset of the regional RSL data base as well as a variety of new 

geomorphological information on ice extent (Shennan et al., (2006a)); and (3) by 

performing a much more complete Earth model parameter study (243 models compared 
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to 7 in Milne et al., (2006)). In Section 3.2 we briefly introduce the CGPS data employed 

in this study and we present our modelling results in Section 3.3 

 

3.2. CGPS data 

 

The majority of CGPS stations in Great Britain were not deployed to monitor secular 

motions of the solid Earth and so most of the 130 sites now in operation are not suitable 

for this purpose. A companion paper (Teferle et al., (2009)), 44 of the 130 sites were 

initially considered after rejecting real-time kinematic (RTK) sites with time series less 

than 4 years in duration (non-RTK sites were not subjected to this criterion). This number 

was reduced to 24 after checking for consistency of results between two different 

processing strategies (sites were rejected when the discrepancy was greater than 1 mm yr
-

1
). For this analysis, we begin with these 24 stations and reduce the number further by 

applying the 4 year time series criterion to all sites and removing stations at which: (i) the 

observed velocity is clearly not consistent with surrounding stations and therefore 

suspect, (ii) the data quality is poor, or (iii) monumentation is unsuitable. After applying 

these criteria, the number of sites considered was reduced to 16 sites for vertical motion 

and 21 sites for horizontal motion (Fig. 3.1a, Table 2). Despite this reduction in the 

number of sites, there remains an adequate spatial sampling of crustal motion across 

Great Britain. 

 

The CGPS data were processed using the Precise Point Processing (PPP) strategy 

(Teferle et al., (2009), Teferle et al., (2007)) implemented in the Bernese GPS software 

(version 5.0, Astronomical Institute of the Uni. of Bern, Bern, Switzerland) (Dach et al., 

(2007)), to produce time series of daily position estimates from which the site velocities 

were obtained from a model-fit using maximum likelihood estimation (e.g.Williams 

(2008), Williams (2003)). Although all velocity errors are given to 1σ, these are of 

considerably larger magnitude, due to the proper handling of non-random errors in the 

time series during the model-fit, than those that would be obtained assuming random 

errors only (Teferle et al., (2009)).  When processing the CGPS data to produce an 

estimate of vertical crustal motion, a systematic bias can be introduced due, largely, to 

uncertainty in the adopted terrestrial reference frame (see Teferle et al., (2009) for greater 

detail and figures of all position time series). To address this issue and attempt to improve 
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the accuracy of the data, measurements of absolute gravity have been used to calibrate the 

CGPS-derived vertical rates (e.g Teferle et al., (2006)). Comparison of CGPS-derived 

vertical crustal motion to that inferred from absolute gravity measurements at Lerwick 

and Newlyn indicates that the CGPS rates are biased too high by around 0.5 mm yr
-1

 

(Teferle et al., (2009)). This result is somewhat tentative, however, given the small 

number of gravity measurements available in this region. 

 

In the following section, we estimate model parameters using site-differenced rates for 

two reasons: (i) it removes, to a large extent, uncertainty associated with the reference 

frame and (ii) it isolates the signal associated with the BIIS (see next section). We chose 

to calculate motion relative to Sheerness (18 in Fig. 3.1a), as this site offers one of the 

longest observation periods (since March 1997) and the time series data are of high 

quality (Teferle et al., (2009)). Since we model relative rates, the difference between the 

absolute gravity aligned and non-aligned versions of the CGPS vertical motion data is of 

no consequence.  

 

Figure 3.1b illustrates the pattern of absolute vertical motion for the aligned CGPS data 

(with associated error) across Great Britain. Note that the non-aligned data produce the 

same pattern but with an increase in rates of 0.56 mm yr
-1

 at each site.  The pattern, which 

comprises a region of maximum uplift centred over eastern Scotland and a zone of 

subsidence throughout most of England, is clearly correlated with the thickness extent of 

the most recent British-Irish ice sheet (BIIS) (e.g. Shennan et al., (2006a) and references 

therein). The maximum uplift velocity is 1.07 ± 0.35 mm yr
-1

 at EDIN (site number 5) 

and the maximum subsidence velocity is 1.2 ± 0.40 mm yr
-1

 at LOWE (site number 13). 

The pattern of vertical motion estimated from the AG-aligned CGPS time series is 

broadly consistent with estimates of land motion obtained from late Holocene RSL 

observations (Shennan and Horton (2002), Teferle et al., (2009)).  

 

The horizontal velocity field (Fig. 3.1c) is characterised by motion directed towards the 

NE, with a magnitude of ~15 mm yr
-1

, and an average error of 0.29 mm yr
-1

. This signal 

is dominated by motion of the Eurasian plate relative to the chosen reference frame. So, 

for each CGPS site, a modelled value of plate motion, estimated from the published 

ITRF2000 data set, was subtracted from the observed data to try and isolate a regional 
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intraplate deformation pattern. The resulting velocity field (Fig. 3.1d) shows poor spatial 

coherence and the scatter in the rates is near the level of data precision.  

 

The horizontal velocity field due to GIA predicted for this region is dominated by the 

deglaciation of the Laurentide ice sheet that covered most of North America at the last 

glacial maximum (e.g Milne et al., (2006)). The predicted signal is of magnitude 1-2 mm 

yr
-1

 directed predominantly NW (e.g. see Fig. 6 of Milne et al., (2006)). The isostatic 

component of horizontal motion associated with the BIIS – which has a radial geometry 

centred on western Scotland with a magnitude of ~0.1 mm yr
-1

 adds a minor perturbation 

to the Laurentide signal. We considered spatially differencing horizontal rates relative to 

a chosen reference station in order to isolate the BIIS signal. However, in contrast to a 

previous study (Milne et al., (2006)), a correlation between the predicted and observed 

strain field was not apparent. We conclude, therefore, that the current level of precision is 

not able to resolve a coherent pattern of horizontal motion associated with GIA. For this 

reason, the horizontal data will not be used in the remainder of this study. We will revisit 

the application of horizontal data in the future, when we would hope for a better 

correlation through the use of longer time series and a re-processing of the CGPS data, 

carried out using new and improved GPS satellite orbit and clock products (Steigenberger 

et al., (2006)).  

 

3.3. Modelling Results 

 

The GIA model adopted in this study has three key inputs – a model of the Late 

Pleistocene ice history, an Earth model to reproduce the solid earth deformation resulting 

from surface mass redistribution (between ice sheets and oceans), and a model of sea-

level change to calculate the redistribution of ocean mass (e.g Farrell and Clark (1976)). 
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Fig. 3.1: (a) Locations of CGPS sites considered in this analysis. (b) Contour map of 

absolute vertical rates over the UK region interpolated from CGPS data for data aligned 

to absolute gravity. The error bars show the uncertainty at each of the 16 data sites. (c) 

Horizontal velocity vectors estimated from the CGPS time series. (d) Same as (c) but 

with velocities from plate motion model removed. All uncertainties shown represent the 

1σ range and are based on a post-processing scaling of the formal least squares values by 

a factor of 3 or more at most sites (see Teferle et al., (2009) for further information).  
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NUMBER 
 

NAME Longitude Latitude East Error North Error Vertical Error 

1 LERW 358.82 60.14 13.65 0.18 15.94 0.18 -0.65 0.54 

2 THUR 356.27 58.58 14.53 0.24 15.72 0.19 -0.13 0.56 

3 INVE 355.78 57.49 15.18 0.27 15.55 0.13 / / 

4 MALG 354.17 57.01 14.13 0.17 15.70 0.11 0.39 0.44 

5 EDIN 356.71 55.92 15.34 0.12 15.47 0.10 1.07 0.35 

6 GLAS 355.70 55.85 14.89 0.15 15.84 0.13 0.45 0.39 

7 CARL 357.06 54.90 15.86 0.14 15.22 0.09 0.12 0.38 

8 NEWC 358.38 54.98 15.89 0.16 15.15 0.11 0.37 0.61 

9 LEED 358.34 53.80 16.35 0.14 15.27 0.08 -0.82 0.31 

10 DARE 357.36 53.34 16.41 0.13 15.66 0.09 -0.09 0.36 

11 IESG 358.81 52.94 16.96 0.14 14.78 0.07 / / 

12 KING 0.40 52.75 17.16 0.15 15.22 0.09 -1.07 0.32 

13 LOWE 1.75 52.47 17.96 0.19 14.99 0.10 -1.17 0.40 

14 PERS 357.96 52.15 15.97 0.36 15.42 0.22 -1.11 0.40 

15 BARK 0.10 51.52 16.85 0.40 15.56 0.57 / / 

16 NPLD 359.66 51.42 17.03 0.27 14.65 0.22 / / 

17 SUNB 359.58 51.40 16.49 0.40 15.44 0.30 / / 

18 SHEE 0.74 51.45 17.07 0.34 14.91 0.37 -0.77 0.67 

19 HERS 0.34 50.87 17.09 0.35 15.02 0.26 -0.43 0.65 

20 PMTG 358.89 50.80 / / / / -1.15 0.46 

21 CAMB 354.67 50.22 16.51 0.22 15.83 0.13 / / 

22 NEWL 354.46 50.10 16.45 0.21 15.71 0.17 -0.43 0.70 

 

 

Table 2: Estimated crustal velocities (mm yr
-1

) and locations of the CGPS sites 

considered in this study and shown on Fig. 3.1. The time series solutions are taken from 

Teferle et al., 2008: table 5 for the horizontal velocities and table 9 for the AG-aligned 

vertical velocities. The following sites have been removed due to processing problems 

and data errors: ABER, ABYW, DUNK, HURN, LIVE, MORP, NPLD, NSTG – for the 

vertical velocity estimates, and ABER, ABYW. DUNK. HURN, LIVE, MORP, LOND, 

BLAK, COLC, NSTG, PMTG, OSHQ for horizontal velocity estimates. Note that a 

model of plate motion has been adopted to remove the tectonic signal from horizontal 

velocities (see Fig. 3.1 frames c & d and related discussion in text). 

 

 

We adopt a recently developed ice model for the UK and North Sea that was constrained 

using both RSL and geomorphological data (see section 2.4.3, ‘NS-Thick model’ and 

Shennan et al., (2006a)). This regional model is patched into a global model of ice extent 

that provides an optimal fit to equatorial sea-level records (Bassett et al., (2005)). The 
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Earth model is a spherically symmetric, self-gravitating Maxwell body, with the elastic 

and density structure taken from a seismic model (Dziewonski and Anderson (1981)) 

with a depth resolution of 10 km within the crust and 25 km in the mantle. The viscous 

structure within the mantle is more crudely parameterized into three layers: a high 

viscosity (10
43

 Pa s) outer shell to simulate an elastic lithosphere, an upper mantle region 

of uniform viscosity extending from beneath the model lithosphere to the 660 km seismic 

discontinuity, and a lower mantle region extending from this depth to the Core-Mantle 

boundary. The thickness of the lithosphere and the viscosity within the upper and lower 

mantle are free parameters in the modelling. The initial reference earth models used is 

taken from ‘Shennan et al., (2006a), with a lithosphere thickness of 71km, and an upper 

mantle and lower mantle viscosity of 5*10
20

 Pa s and 1*10
22

 Pa s respectively. This 

model provided a good fit to the regional sea-level database.  

 

The sea-level model we adopt solves the generalised sea-level equation (Kendall et al., 

(2005), Mitrovica and Milne (2003)) and includes the influence of GIA-perturbations to 

Earth rotation (e.g.Milne and Mitrovica (1998)). The algorithm we adopt to calculate 

present-day crustal motion in response to a specified ice and ocean loading history is 

based on the spectral technique described by Mitrovica et al., (1994) and extended to 

incorporate the signal associated with GIA perturbations in Earth rotation (Mitrovica et 

al., (2001)).     

  

The predicted uplift pattern (Fig. 3.2a) is that of an ellipse, oriented approximately SSW-

NNE, covering most of Scotland and a part of Ireland. The centre of uplift is located in 

central western Scotland with a magnitude of ~0.6 mm yr
-1

. The majority of England is 

subsiding with rates exceeding ~1 mm yr
-1

 in places. While there is a broad similarity 

between predictions and observations (compare Fig. 3.1b and Fig. 3.2a), there are 

significant differences. Part of the difference is due to the contrasting spatial sampling of 

the two patterns in Figs 3.1b and 3.2a and so, to permit a more direct comparison, we 

show in Fig. 3.2b the pattern predicted when sampled at CGPS site locations only. On 

comparing Figs 3.1b and 3.2b, the most obvious difference is that the observed region of 

uplift is located further to the east and is of larger magnitude. Given the current precision 

and distribution of the data sites, it is not clear if this difference in geometry is necessarily 
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a flaw in the adopted ice-earth model, which has the largest impact on this aspect of the 

prediction. 

 

As the primary aim of this study is to employ the CGPS data from Great Britain to 

constrain parameters associated with the deformation driven by the local BIIS model, it is 

necessary to identify the contribution to the signal from non-local ice sheet loading in 

order to try and isolate the observed signal due to the BIIS and ocean loading only. The 

total predicted signal (Fig. 3.2a) was decomposed into two separate signals: that due to 

the non-local ice sheets only (Fig. 3.2c) and that due to the BIIS and ocean load only 

(Fig. 3.2d, note that the ocean loading is the sea-level change driven by all ice sheets). As 

expected, the signal due to the non-local ice sheets (predominantly the Fennoscandian ice 

sheet) is that of long wavelength subsidence of magnitude >1 mm yr
-1

 over the study 

area. The most straightforward way to isolate the signal associated with the BIIS and 

ocean load is to consider relative vertical rates. As described above, we chose to calculate 

motion relative to Sheerness (18 in Fig. 3.1a). The predicted rates relative to Sheerness 

associated with the non-local ice sheets (Fig. 3.2c) do not exceed -0.3 mm yr
-1

 and so this 

component of the signal is effectively removed by considering relative rather than 

absolute rates. 

 

We performed a forward modelling analysis using the relative vertical data. The analysis 

considered values of upper and lower mantle viscosity in the range 0.08-5 × 10
21

 Pa s and 

1-50 × 10
21

 Pa s, respectively, for assumed lithospheric thicknesses of 71, 96 or 120 km. 

The results for this suite of calculations are shown in Fig. 3.3.The solid black line in each 

frame indicates the χ
2
 value below which all earth viscosity models fit the data to within 

the 95 % confidence level. There are a number of points to conclude from Fig. 3.3. First, 

there is a relatively mild trade-off between values of lithospheric thickness and upper 

mantle viscosity. As the lithosphere is thickened (going from frame a – c) the region of 

‘best fit’ viscosity space migrates towards higher values of upper mantle viscosity. That 

is, an equally good fit can be achieved by raising or lowering the lithospheric thickness as 

long as the upper mantle viscosity is also raised or lowered to compensate. This 

parameter trade-off has been demonstrated in previous studies (e.g.Lambeck et al., 

(1996), Milne et al., (2004)).       
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Fig. 3.2: (a) Predictions of uplift rate on a 5 km by 5 km grid for the reference ice model 

and an Earth viscosity model that, when combined with the reference ice model, provides 

a good fit to the regional sea-level data base (Shennan et al., (2006a)).This model adopts 

a 71km lithosphere thickness, and a upper and lower mantle viscosity of 5*10
20

 Pa s and 

1*10
22

 Pa s respectively. The large positive uplift rates shown in the top right of the 

frame are associated with the deglaciation of the Fennoscandian component of the 

adopted ice model. (b) Same as (a) except that predicted velocity field sampled only at 

CGPS site locations. (c) Component of total predicted signal (a) associated with non-local  

ice sheet loading. (d) Component of total predicted signal (a) associated with local 

(British-Irish) ice sheet and ocean loading.  
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Second, the data rule out upper mantle viscosity values outside the (approximate) range 

0.3-2 × 10
21

 Pa s (for the range of lithospheric thicknesses considered). Viscosity values 

less than the lower bound of this range permit the uplift to proceed too rapidly following 

the end of the main phase of deglaciation (~15 kyr BP) which results in predicted uplift 

rates that are dramatically lower than those observed. A similar constraint on upper 

mantle viscosity was reached using the vertical CGPS rates from Fenoscandia (e.g. Milne 

et al., (2004)). Finally, the data do not provide a useful constraint on lower mantle 

viscosity or lithospheric thickness. The former is evident in the result that an equally 

good fit (to within 95% confidence) can be achieved for all values of lower mantle 

viscosity considered. This reflects the fact that the deformation field sampled by the 

relative rates does not extend significantly into the lower mantle. A similar result is 

evident for lithospheric thickness: the quality of fit is equally good to within the specified 

confidence limit for the range considered.  

 

 The range of viscosity models preferred by the CGPS data from Great Britain is 

compatible with those inferred using relative sea-level data from this region (Brooks et 

al., (2008), Lambeck et al., (1996), Shennan et al., (2006a)). We note, however, that the 

sea-level data display a clear preference for a relatively thin lithosphere (e.g. Lambeck et 

al., (1996)) and so a joint inversion of sea-level and CGPS data will likely provide a 

better constraint on Earth viscosity structure.  
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Fig. 3.3: χ
2
 values of data-model fit for a range of values for upper and lower mantle 

viscosity (υum and υlm , respectively) and lithospheric thicknesses of (a) 71 km, (b) 96 km 

and (c) 120 km. The black line and cross in each frame represent, respectively, the χ
2
 

value below which the quality of fit is equivalent at the 95% confidence level and the 

minimum value found 
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The above viscosity inference will depend, to some extent, on the adopted local ice sheet 

history. The greater this dependence, the more sensitive (and therefore less robust) the 

viscosity inference will be to errors in the ice model. We explored this issue by 

generating predictions for the Earth models considered in Fig. 3.3 and a significantly 

altered ice model that is still compatible with current field constraints. Given recent 

discussion on the extent and thickness of ice in Ireland and the Irish Sea (Ballantyne et 

al., (2006), Hiemstra et al., (2006), Roberts et al., (2007)), we considered a model that is 

significantly thickened and extended within the Irish Sea Basin and out to the continental 

shelf, with a more rapid deglaciation after 21 kyrs (see section 2.4.3 and Brooks et al., 

(2008)). Spatial plots of ice thickness for the two ice models are shown on Fig. 3.4 for 

key time steps.  

 

 
 

Fig. 3.4: Spatial plots of the contoured ice thickness for the reference ice model (Shennan 

et al., (2006a)) and as described in section 2.4.2) and comparison ice model taken from 

Brooks et al., (2008) and as described in section 2.4.3. Note the varying contour interval 

between each time slice. 
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The χ
2
 plot for this model, assuming a lithospheric thickness of 96 km, is shown in Fig. 

3.5. Comparison between Figs. 3.3b and 3.5 shows that the results are insensitive to the 

changes made to the ice model and so we conclude that the viscosity inference based on 

the CGPS data is insensitive to plausible variations in the ice history. This insensitivity 

was also evident for the other values of lithospheric thickness considered. This result is 

most likely related to the fact that the region has been free of extensive ice cover since 

~15 cal kyr BP. 

 
 

Fig. 3.5: Same as (b) in Fig. 3.3 except that an alternative ice loading history was adopted 

(see main text for details). 

 

 

Adopting an optimum earth model from Fig. 3.3a (we chose a thin lithosphere to be 

consistent with constraints from sea-level data), we present in Fig. 3.6 a comparison 

between predicted and observed relative vertical rates at each site. Inspection of Fig. 3.6 

shows that the predictions agree with the observations at all sites to within the estimated 

1-σ uncertainty.  

 

110



 
 

Fig. 3.6: Observed (triangles) and predicted (circles) uplift rates relative to Sheerness 

(site 18) for the sites located in Fig. 3.1a. The predictions are based on the best-fitting 

viscosity model with an assumed lithospheric thickness of 71 km (Fig. 3.3a). Error bars 

indicate 1σ precision 

 

 

3.4. Conclusions 

 

We considered CGPS-derived estimates of crustal velocities within Great Britain to 

constrain a model of GIA for the British Isles. Only the vertical component of the motion 

was employed to constrain model parameters since a coherent pattern of horizontal 

motion was not evident once a model of plate motion was removed. The observed vertical 

signal is strongly correlated with predictions based on a recent GIA model constructed to 

fit geomorphological constraints of ice extent as well as a subset of the extensive regional 

sea-level data base (Shennan et al., (2006a)). A detailed forward modelling search, using 

this ice model and observations of relative vertical motion, was performed to locate 

optimum parameters in a three layer Earth viscosity model. The results of this analysis 

indicate that the (relative) vertical CGPS rates are able to place a useful constraint on the 

average value of viscosity within the upper mantle but are not able to constrain 

effectively the lithospheric thickness or lower mantle viscosity. Furthermore, parameter 

trade-off between lithospheric thickness and upper mantle viscosity indicates that a 

unique constraint on upper mantle viscosity is not possible without the consideration of 

additional data (e.g. sea-level). A viscosity inference based on an alternative and 

plausible ice model demonstrate that the data are relatively insensitive to possible errors 
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in the adopted ice loading model. We conclude, therefore, that the CGPS data provide an 

important constraint on the Earth component of the GIA model and so will aid in 

reducing the non-uniqueness inherent to the British Isles GIA problem when combined 

with the sea-level and geomorphological data.  
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Chapter 4: Improving the Holocene melt history of the reference global 

ice model 

 

4.1. Introduction  

 

There have been a number of previous studies of far-field sea-level data that estimated 

the rate and magnitude of Holocene melting. For example, Nunn and Peltier (2001) 

compared predictions generated using the ICE-4G model to a suite of data from Fiji, and 

inferred a eustatic model with an initial decrease in the rate of global melting ~ 8 kyr BP, 

followed by a steady rise of 4m between 7 -4 kyr BP and no melt subsequent to 4 kyr BP.  

In a number of studies by Lambeck and colleagues using a range of data from around the 

coastline of Australia (e.g. Lambeck (2002), Lambeck and Nakada (1990) ), a markedly 

different conclusion was drawn about the pattern of Holocene melting. From the most 

recent study in 2002, a 5m rise between 7- 2kyr BP was inferred, with melting ending at 

2kyr BP. Fleming et al., (1998), one of a small number of studies that considered a global 

distribution of observations, concluded on a eustatic change consistent with that of 

Lambeck and colleagues, with a 3-5m rise in eustatic sea- level between 7-2 kyr BP.  At 

present there is no general consensus on the rate and magnitude of eustatic sea-level 

change throughout the Holocene. In contrast, it is widely agreed that the main source of 

meltwater during the mid-to-late Holocene was the AIS and mountain glaciers. Evidence 

to support this can be found in a number of studies (e.g. Sugden et al., (2006)).  

 

In this chapter, the primary aim is to improve the adopted reference global ice model by 

revising the Holocene melt history to fit previously unmodelled data from the coastlines 

of China and the Malay-Thai Peninsula. As stated above, the reference global ice model 

was not calibrated to fit observations during the Holocene. Considering the six zones of 

postglacial sea-level changes as defined by Clark et al., (1978), the study region lies 

within ‘zone VI’, where a band of offshore sea-level rise and on shore sea-level fall 

encompasses the major shorelines of the continental regions. This generates a 

characteristic sea level signal which rises throughout the early Holocene, reaching a 

maximum elevation above present day sea-level, followed by a subsequent fall towards 

the present. The timing and magnitude of the mid-Holocene highstand is affected by the 
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history of global ice melting during this period as well as the complex coastal geometries 

in some of these locations through the ocean loading process.  

 

The key steps followed to achieve the above aim are as follows: (1) sea-level predictions 

from the reference ice model and a small suite of Earth models were compared to each of 

the two data sets to identity key misfits; these misfits were then used to develop a range 

of melt scenarios; (2) an optimum history of Holocene melting was identified for each 

region from the range of defined melt scenarios and a large suite of Earth models; (3) in 

order to create a combined model which fitted both data sets, the spatial and temporal 

pattern of deglaciation was adjusted and a final revised eustatic sea-level model 

generated. This is compared to other published eustatic models in Section 4.5.  

 

4.2. Observations 

 

4.2.1. China sea-level data 

 

Sea level data were obtained from around the coastline of China, extending from Bohai 

Bay in the North, to HP Province in the South (see Fig. 4.1). Along the 2900 km 

coastline, the morphology and depositional environment is varied, from the chenier and 

deltaic plains in the north, to the fault controlled rocky headlands and small coastal plains 

in the central and southern regions. Additional information regarding these can be found 

in Zong (2004) and Wang and Vanstrydonck (1997).  

 

The coastal region is situated at the eastern edge of the Eurasian plate and therefore 

adjacent to a subduction zone. Despite the close proximity of some sea-level sites to an 

active plate boundary, the vertical tectonic motion is estimated to be relatively minor and 

so all site locations are classed as ‘geologically stable’ (Zong (2004)). As a consequence, 

no corrections for vertical tectonic motion were applied to the data in this analysis.  
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Fig. 4.1:  Map showing location of 16 data sites used in this study. The sites in China are: 

BB – Bohai Bay, JP  - Jingasu Province, YRD – Yangetese River Delta, FP – Fujian 

Province, HRD – Han River Delta, EG – East Guangdong, PRD – Pearl River Delta, WG 

– West Guangdong, HP – Hainan Province.  The sites in Malay-Thailand are: Chao 

Phraya (CP), Prachaub (PA), Phuket (PH), East coast Thailand (ET), Keelang (KG), 

Strait of Malacca (MAL), and Tiomin Island (TI). The contours show relative sea level at 

6 kyr BP predicted using the reference model. Black circles indicate the long/lat location 

of SLIP and red triangles shown average long/lat locations for each site used to calculate 

RSL at each locality. 
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The database comprises a range of sea-level indicators, including oyster reefs, beachrocks 

and organic silts. Each indicator has its own set of limitations which are reflected in the 

height error bars of each SLIP. These limitations and their assessment are outlined in 

Zong (2004). For example, deltaic areas can be problematic for sea-level studies due to 

long term subsidence and sediment consolidation affecting the quality of the data. At the 

YRD site, the SLIPs for the study were taken from the edge of the delta plain, into the 

lowlands region, which is considered geologically stable. This was not possible for the 

HRD, and the effect of subsidence upon the recorded sea-level recorded will be noted 

when comparing predictions to the data. 

 

The data were grouped into nine geographical regions (Fig. 4.1), based upon the spatial 

clustering of the indicators considered in each coastal sector. Within each of the nine 

localities, a spatial mean is computed to define a co-ordinate at which to generate a 

predicted RSL curve for that locality. When combining the data from a given locality to 

produce a sea level curve, it is important to ensure that the distribution of the data is such 

that the influence of spatial gradients in RSL, as contoured on Fig. 4.1 using the staring 

model (see next section), is minimal and within observational uncertainty. This is the case 

for all sites except HP; this issue will be returned to in Section 4.3.2. In addition, a 

reduced selection of the data sites will be modelled separately, including BB, JP, EG and 

WG (to be referred to as the 'reduced data set'). These sites were chosen on the basis of 

reliability and quality of the data, with the aim of removing localised effects due to site 

stability such as subsidence within the deltaic sites (HRD, YRD), localised uplift due to 

the plate margin (FP), or poor quality data.  

 

When comparing the nine RSL curves shown in Fig. 4.2, some spatial variability is 

evident.  In northern (BB, JP, YRD) and southern sites (WG, HP), sea level rises from  

around -20m at 9 Kyr BP, with a marked slowdown between 7-7.5 kyr, as it approaches 

present day levels. There is little evidence for sea levels above present day values. As an 

example, HP (which is the most stable of all the nine localities) displays a consistent sea 

level trend close to 0 mm yr
-1

 over the last 6.5 Kyr BP. In contrast, the central sites (FP, 

HRD, EG, PRD) exhibit a gradual slowdown in the rate of sea-level rise, approaching 

present day level later, between 5-6 Kyr BP. Furthermore, a small highstand of 1-1.5 m 
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can be identified at some of the central sites. As discussed below, some of this spatial 

variability is associated with isostatic processes while some is more likely of tectonic 

origin.      

 

4.2.2. Malay-Thailand Sea-level data 

  

Horton et al., (2005) compiled a database of SLIPs from the Malay-Thai peninsula, 

extending from Chao Phraya (CP) in northern Thailand to Tiomin Island (TI) in the south 

(Fig. 4.1). The study region lies within the ‘Sundaland Platform’ and is surrounded by 

active plate boundaries, indicated by frequent earthquakes and volcanic activity. Despite 

this, the region is defined as ’geologically stable’, undergoing very slow crustal 

movement at a rate of less than 0.1 mm yr
-1

 (Tjia (1996)). Therefore no corrections were 

applied for vertical tectonic motion. 

 

Previously published sea-level studies have inferred sea-level changes from a variety of 

indicators including corals, shoreline features or fossilised mangrove swamp and paleo-

environments. There was a noted lack of consistency between the studies in corrections 

applied (such as method used to reduce observations to mean sea-level, or tidal 

corrections applied) or age estimation methods adopted when interpreting the data. These 

limitations were addressed and are outlined, along with the revised data set in Horton et 

al., (2005).  The 75 SLIPs were separated into seven separate regions (Fig. 4.1) and are 

displayed on Fig. 4.3.  

117



 

Fig. 4.2: Comparison of sea-level predictions generated for a range of earth models and the reference global ice model to the observations 

from China. Solid black circles mark each SLIP (complete RSL dataset summarised in Appendix A). Predictions generated using the 

reference model (as described in Section 4.3.1) is shown by the solid black lines. Variations in the input lithosphere thickness are shown 

by the dashed line: 71km (grey) and 120 km (black). The dotted line shows changes in the upper mantle viscosity from 10
20 

Pa s (grey) to 

10
21 

Pa s (black). Changes in lower mantle viscosity are shown by the dot-dashed line: 10
21

 Pa s (grey) and 5×10
22

 Pa s (black).
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It is apparent that the Malay-Thailand dataset is less complete compared to the China 

data, with gaps between 6-3 kyr BP at most sites. This causes problems when 

constraining the overall sea-level trend across the region and when resolving an 

optimal Holocene melt history.  This is especially noticeable at sites CP and ET, 

where there are significant gaps in the data coverage. In general, the data are 

consistent with a marked slowdown between 7-8 kyr BP, with sea-level rising steadily 

to form a highstand of ~ 2- 4m between 6-4 kyr. This is followed by a steady fall, 

reaching present day levels by ~1 kyr.  There is some spatial variability in the 

observed highstand height, with a maximum sea level of ~ 4m at sites within the Strait 

of Malacca (KG+MAL) on the western coast and site CP, compared to ~1.5m at the 

central sites. This can be explained by the influence of hydro-isostasy across the 

region, which will be discussed in greater detail below.  

 

4.3. Preliminary Data-Model Comparisons 

 

4.3.1. Introduction 

 

The starting ice model, and hence ice-volume equivalent sea level change  )(tS i

esl  (as 

defined in Chapter 1) is Bassett et al., (2005). This model was tuned to fit a suite of 

far-field data prior to 10 kyr BP and hence is unconstrained from 10 kyr to present. 

The equivalent sea level curve during the Holocene is shown on Fig. 4.4. It is 

characterised by a relatively rapid rise in the early Holocene up to 6 kyr BP, 

associated with the final stages of global melting. Major melting ceased at 6 kyr BP, 

with a small amount melting (0.5 m) between 6-5 kyr. There is no further melting.   
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Fig. 4.3: Comparison of sea-level predictions generated for a range of earth models and the reference global ice model to the observations 

from Malay-Thailand. Solid black circles mark the location of each SLIP (complete RSL dataset summarised in Appendix A). The 

predictions generated using the reference model is shown by the solid black lines. Variations in the input lithosphere thickness are shown 

by the dashed line: 71km (grey) and 120 km (black). The dotted line shows changes in the upper mantle viscosity from 10
20 

Pa s (grey) to 

10
21 

Pa s (black). Changes in lower mantle viscosity are shown by the dot-dashed line: 10
21

 Pa s (grey) and 5×10
22

 Pa s (black). 
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Fig. 4.4: Graphical representation of selected eustatic sea-level functions. Solid black 

line represents the input eustatic function ( )(tS i

esl ) taken from the reference model 

(Basset et al., (2005)). Three alternative melt scenarios are also illustrated: melt1 

(light grey; solid line), melt2 (black; dotted line), and melt3a (dark grey; solid line) 

and melt3b (dark grey; dashed line) and are discussed in detail in 4.4.1. The height 

variation between the solid and dashed dark grey lines illustrates the range in 

highstand magnitude investigated for each of the three melt scenarios considered.  

 

 

The starting ice model was combined with an earth model (which is described in 

greater detail in chapter 1) characterised by a 96 km lithosphere, upper and lower 

mantle viscosity of 5 ×10
20

 Pa s and 10
22

 Pa s respectively, which is broadly 

compatible with a number of recent GIA studies e.g. Forte and Mitrovica (1996), 

Milne et al., (2001), Nakada and Lambeck (1989).  This ice-earth model combination 

(hereafter referred to as the reference model) will be adopted in the following 

sections. 

 

4.3.2. China 

 

Using the reference model, sea level predictions were generated at each of the nine 

localities discussed above and compared to the suite of SLIP (Fig. 4.2). The predicted 
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sea level across the study region (solid black line) displays the same general form 

with a slow steady rise up to a maximum highstand of 6-7m at 6 kyr BP - which 

marks the end of the main stage of melting within the reference ice model - followed 

by a subsequent steady fall towards zero. This fall is caused by two isostatic 

processes: hydro-isostasy and syphoning (e.g. Clark et al., (1978) Mitrovica and 

Milne (2002)). There is little spatial variation in the height of the highstand between 

the nine sites, with the amplitude at most sites falling between 6 - 7.5 m. This spatial 

variation is driven by hydro-isostasy (see Fig. 4.1). 

 

Inspection of the fit of the predictions to the data indicates that at most locations the 

misfit is generally large: the maximum height attained is too high, by up to 7 m at 

YRD, and the significant highstand predicted is not evident in the data. The data 

generally rule out sea level across the region reaching values greater than 1.5 m. 

Furthermore, the variation in the timing of the marked slowdown in the rate of sea-

level rise evident in the central and Southern sites is not captured by the model.  

  

The model adequately captures the timing at which sea level first reaches present day 

levels, between 7-8 kyr BP at the Northern and Southern sites. For example, at JP the 

model captures the cluster of SLIPs around 7.5 kyr. For the central sites, this is not the 

case. For example, at the HRD, the data suggest a gradual slowdown in global 

melting, with present day sea level attained around 5-6 kyr BP. The discrepancy is 

consistent at all central sites and may be related local tectonism or sediment 

compaction within the deltaic sites (as mentioned above).  

Previous investigations into the spatial and temporal variability of sea level at far-field 

locations (e.g. Lambeck and Nakada (1990)) have identified the main processes 

affecting the pattern of sea level:  hydro-isostatic loading (continental levering), ocean 

syphoning and/or local tectonism.  The origin of spatial variations within the study 

region will not be investigated in great detail, only briefly mentioned to examine 

marked differences. Comparing the predicted sea level (at 6 kyr BP) along the China 

coastline (contoured on Fig. 4.1), there is no notable difference between the Northern 

and Central sites, suggesting it is not hydro-isostasy that is driving the observed 

variability, but rather site-specific processes (e.g, sediment compaction, displacing the 

data to lower values, as mentioned at HRD) or tectonism, due to active plate margin, 

such as at FP.  
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It should be noted that there is a significant spatial gradient in the predicted isostatic 

signal across some of the data localities. The HP shows the greatest variability, with a 

range of up to 2 m (Fig. 4.1), which is not evident in the observations, however. It is 

important to note that this limitation in forward model (spatial averaging of data 

locations) will not impact the parameter estimation carried out below as the exact 

longitude and latitude position of each data point will be used. This procedure is only 

adopted here for the sake of visual comparison between data and observations over 

the Holocene.  

 

4.3.3. Malay-Thailand 

  

Fig. 4.3 illustrates the predicted sea level generated using the reference Earth and ice 

model at the seven localities in Malay-Thailand (Fig. 4.1). The general predicted trend 

(solid black line) is similar to that of China, with maximum sea-level reached at 6 kyr, 

followed by a steady fall towards zero. Compared to the predictions for the Chinese 

sites, there is an increased spatial variability in the resultant highstand (up to 4 m; see 

Fig. 4.1), which is also evident in the observations. This suggests that hydro-isostasy 

dominates the observed spatial variability in this region. This process results in sea-

level gradients that are parallel to the coastline (Fig. 4.1) with amplified sea-level fall 

(due to land uplift) increasing inland. As a consequence, the highest sea levels are 

found at sites closer to the larger landmasses, where this process is well established. 

For example at Keelang (KG), sea level reaches a height of 8m compared to Phuket 

(PH) where it reaches only 4.3m.   

 

Comparison of the starting model to the data indicates that, at most sites, there is a 

significant misfit between ~ 7- 2 kyr BP, with an overprediction of up to 4m. The 

timing of the initial slowdown and approach/reaching of present day sea-level 

between 7-8 kyr, is captured well by the model. For instance, at both MAL and CP, 

the predictions lie within error limits of the cluster of SLIPs ~ 7 kyr BP.  Despite this, 

when constraining the timing and maximum sea-level (or highstand) reached at each 

site, the above noted gaps in the data between 6-3 kyr, are a major limitation. At sites 

where there is data (such as PH or KG) it does not coincide with the timing of 

maximum sea-level predicted by the starting model.  
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The low rate of sea level change between 5-2 kyr BP at TI and PH is not captured by 

the model, or inferred at any of the other sites. As it is suggested that on a larger scale 

over this time period, the rate of global sea-level rise is falling, it would be hard to 

reconcile this pattern with regional scale sea-level processes. This infers that the 

observed trend is related to local scale processes affecting the change in sea level. For 

example, defining the indicative meaning for coral data, as used at Phuket PH, can be 

a limitation when correcting the sea-level data, which may affect the SLIPs. 

Additionally, underestimating the changes in tidal range can affect the altitude 

correction for each SLIP.  

 

4.3.4. Summary 

 

Despite the differences in the site-specific patterns of observed sea-level between 

China and the Malay-Thailand Peninsula, some of the main misfits to the starting 

model are notably consistent: (1) an overprediction in the height of the maximum sea 

level (or highstand) attained; (2) timing of the highstand: (3) temporal variation of 

sea-level from time of the highstand to present. This suggests that a modification to 

the input eustatic function and hence the global rate of melting would result in an 

improved data-model fit.  

 

Before doing this, however, it is important to determine if the data-model misfits can 

be accounted for by changing earth model parameters. It is well established that the 

character of a highstand at far-field sites is sensitive to both the chosen input earth 

structure and the rate and magnitude of melt water flux into the oceans.  For example, 

Nakada and Lambeck (1989) noted that simple modifications to the viscosity structure 

could resolve some of the misfits between predicted and observed sea-level around 

Australia. They also discuss in some detail the sensitivity of far-field sea level data to 

changes in earth structure and eustatic history (ice model). This leads to some degree 

of non-uniqueness when inferring these quantities (see next section).  

 

A suite of earth models was defined based on the spread of parameters inferred in a 

range of GIA sea level studies (Davis et al., (1999), Kaufmann and Lambeck (2002)). 

The maximum and minimum values are: 71, 120 km for lithosphere thickness, 0.1-1 

×10
21 

Pa s for upper mantle viscosity, and 1-50×10
21 

Pa s for lower mantle viscosity. 
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Predictions for these earth models and the starting ice model are shown on Fig. 4.2 

(for China data) and Fig. 4.3 (for Malay-Thailand data).  

 

It is apparent from Figs. 4.2 and 4.3 that the majority of the data-model misfits cannot 

be resolved with relatively large changes to the earth model parameters. Lithosphere 

thickness changes made little difference to the predicted sea-level with variations in 

highstand height generally less than a 1m. Adopting a weaker upper or lower mantle 

viscosity reduced the height of the highstand by up to 3m around the Malay-Thailand 

Peninsula and 2m around China, but this still did not resolve the significant misfit 

between 7-5 kyr BP. The rate of slowdown was also slightly modified by reducing the 

upper and lower mantle viscosity, which is evident for both data regions where the 

predicted sea-level broadens. For some of the Malay-Thailand sites, (PA, KG and TI) 

adopting a weak lower mantle removed the misfits, with predictions lying within the 

error limits of the observed data. This is quite an extreme value for lower mantle 

viscosity and it does not improve the fit at all sites across the region (such as CP) or 

the China sites.  

 

In summary, adjustments to the adopted earth model parameters primarily control the 

amplitude of the predicted highstand, reducing the noted overprediction at all sites, 

with the shape and timing of predicted sea-level remaining relatively unaltered. 

Therefore, changes in the adopted earth model parameters can not resolve the noted 

misfits in the timing of sea level across the region. For this reason, it is apparent that 

adjustments to the input ice history (eustatic sea level) are required to resolve the 

noted misfits to the data.. 

 

4.4. Towards an Improved Eustatic Model 

 

4.4.1. Methodology 

 

Outlined below is the procedure followed to estimate a revised eustatic Holocene melt 

history (summarised also as a flowchart in Fig. 4.5). In all revised models, the total 

global eustatic sea-level change between LGM and present was not altered from that 

defined in the starting model; only the timing and contribution of the two main ice 

sheets, (LIS and AIS) over the last 10 kyr. This ensures that the high-quality fit of the 
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ice model to far-field data between the LGM and the late glacial Bassett et al., (2005) 

is preserved. 

 

 

Fig. 4.5: Flow chart to summarise the stages used in estimation of optimum earth 

model. See text for more details 

 

 

As shown in 4.3.4, the data-model misfits cannot be accounted for by varying earth 

model parameters. Therefore, the first step is to develop a first iteration melt scenario 

that reduces the misfits to the data described above. In this process, the reference earth 

model was adopted as the predictions using this model lie, approximately, within the 

middle of the models considered above (see Figs 4.2 & 4.3). When a first iteration 

melt scenario is found for each data set - China (Section 4.4.2) and Malay-Thailand 

(Section 4.4.3), these are then combined in a final step that considers variations in 

both earth and ice model parameters to arrive at a final model that provides an 

optimum fit at all sites (Section 4.4.5). 

 

This first step in developing the first iteration melt scenario for each data set is to 

subtract the input eustatic function, )(tS i

esl , using the relationship defined in (1) (and 

outlined in greater detail in chapter 1) from the sea-level predictions at each SLIP 

location.  
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 )(),,(),,( tStStS i

eslrslI      (1) 

 

A set of ~ 300 eustatic melt scenarios based on the subset shown in Fig. 4.4 were 

added to the residual ),,( tS I   to produce a revised set of sea level predictions. 

The χ
2
 misfit was calculated between the observed data and the revised predictions to 

identify an optimum first-iterate melt scenario. 

 

The melt scenarios considered were adjusted systematically in three ways to address 

the key misfits identified between the observed data and the input model. Two of 

these relate to the timing of changes during the Holocene, specifically: (1) the initial 

timing and nature (rate) of melt slowdown in the early to mid Holocene and (2) the 

timing and nature (rate) of melt shutdown in the late Holocene. Three models are 

shown in Fig. 4.4 to outline the implementation of these changes (melt1, melt2 and 

melt3). These three models consider a reasonable range of temporal evolution in ice 

melting during the Holocene.  

 

First, timing of the initial melt slowdown was addressed, changing from 6 kyr (melt1) 

to 7 kyr (melt2 and melt3a/3b). Next, the period during which melt slowdown 

occurred was investigated, progressing from the ‘abrupt' slowdown (melt1) to the two-

staged slowdown illustrated models melt2, melt3a/3b.  Three different timings for the 

end of global melting are illustrated in the three models: 3 kyr (melt2); 2 kyr (melt1); 

1 kyr (melt3a/3b). Finally, the nature of the end of melting was investigated by 

considering a ‘uniform’ slowdown (melt2) and a ‘staged’ slowdown (melt3a/3b). 

Representing the end of global melting as a gradual slowdown in the rate of ice sheet 

deglaciation was considered a more realistic replication of ice sheet behaviour.  

The third aspect of the eustatic function that was varied is the distribution of melt 

between the early, mid and late Holocene, with the aim of adjusting the resultant 

height of the predicted highstand. For each of the three temporal scenarios illustrated 

in Fig. 4.4, the amount of Holocene melt distributed prior to and after 7 kyr BP was 

varied. For example, the difference between melt3a and melt3b in Fig. 4.4 illustrates 

the range explored in varying this aspect of that particular melt model. Clearly, the 

distribution of melt magnitude has an impact on the height of the predicted highstand: 

the greater the amount of melt added to the global oceans prior to the start of the 

initial melt slowdown, the higher the resultant highstand (as less melt is then available 
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from the time of the highstand to the present day to counter balance syphoning and 

continental levering).  

 

Note that the procedure outlined above does not take into account the ocean loading 

signal associated with the difference between the original eustatic function and that of 

the revised scenarios considered. In the case of the China data analysis (next section), 

the difference between these two functions is large (~ 5.5 m at 6 kyr BP) and so the 

ocean loading signal is considerable. Therefore, it was necessary to adjust the input 

ice model so that this ocean-loading signal would be accounted for in the prediction. 

At each time step between 10-0 kyr BP, the thickness of either the LIS or AIS was 

adjusted until the resulting eustatic function matched the melt scenario that produced 

the best fit to the data.  

 

4.4.2. An optimal eustatic model for China 

 

The χ
2 

misfit for the melt scenarios in Fig. 4.4 are displayed in Fig. 4.6 for a range of 

Earth viscosity models.  While these results are only a small subset of the eustatic 

models considered, they illustrate the sensitivity of the data-model fit to the three 

aspects of the eustatic function varied in this analysis (as detailed above).  

 

It is evident through examining Fig. 4.6 that the data are sensitive to alterations in the 

rate and timing of the initial slowdown in melting. Progressing from the sharp, rapid 

reduction at 6 kyr in the melt1 model (Fig. 4.6a), to the gradual and earlier staged 

reduction in the melt2 and melt3a models (Fig. 4.6b and 4.6c) reduces the χ
2
 misfit. 

This pattern of slowdown is more compatible with the observed trend. Introducing a 

reduction in the rate of melting towards present, (changing from melt2 to melt3a 

models in Fig. 4.4) further reduced the χ
2
 misfit (compare (b) and (c) in Fig. 4.6). 

Although the data do not effectively constrain when global melting ended, continued 

addition of melt water to the oceans from 3 kyr to 1 kyr is more consistent with 

observations on the evolution of the AIS during the late Holocene (e.g. Sugden et al., 

(2006)).  It is also apparent that there is little variation in the region of optimum earth 

structure (comparing (a) (b) and (c)) for three of the melt models investigated.  
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Fig. 4.6: Contour plots of the χ
2 

misfit between predicted and observed sea levels for 

the China data set as a function of upper and lower mantle viscosity (υum and υ lm, 

respectively). Each frame gives the results for the four melt scenarios illustrated in 

Fig. 4.4: (a) melt1, (b) melt2, (c) melt3a, (d) melt3b. The black line represents the χ
2
 

value below which the quality fit is equivalent at 95% confidence.  

 

 

The data-model fit is also significantly affected by varying the distribution of 

Holocene melt. On comparing the results in Fig. 4.6 c & d (melt3a & melt3b), it is 

evident that a better fit is achieved for the majority of Earth models considered when 

the amount of melting in the mid-to-late Holocene is increased significantly compared 

to the starting eustatic model. This is compatible with the fact that the data show no 

evidence of a clear, well-defined highstand across the region. In addition, comparing 
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the results for these two melt models, there is a shift in the optimum earth model 

parameters. This parameter trade-off will be discussed further in 4.4.5.  

 

Considering the chi-squared results for the entire suite of melt scenarios considered, 

an optimum first-iteration melt scenario is similar to model 3a in Fig. 4.4. As the 

pattern of melting in the optimum model is markedly different to that in the reference 

model, the ice model was altered to simulate this revised pattern, as outlined in 4.4.1. 

This model will be hereafter referred to as EUST1. 

 

The χ
2
 results for the starting model and EUST1 for all sites and reduced data set are 

displayed on Figs. 4.7 and 4.8, respectively. 

 

 

Fig. 4.7: Contour plots of the χ
2
 misfit between predicted and observed sea levels for 

the China data set as a function of upper and lower mantle viscosities(υum and υ lm, 

respectively) and lithosphere thickness (Lt) for the reference (a) and EUST1 (b) 

eustatic models.. Results in (a) and (b) are for a lithosphere thickness of 96km. The 

solid black line represents the 95% confidence level and the cross indicates the min. 

χ2 misfit.  Frame (c) shows χ
2
 values generated using the EUST1 ice model as a 

function of lithospheric thickness and upper mantle viscosity for a lower mantle 

viscosity of 2×10
21

Pa s. 
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Fig. 4.8: As in Fig. 4.7 except that results are based on a subset of data points from the 

China data set believed to be the most reliable (see Section 4.3.2 for more detail). 

 

 

It is apparent that the starting model (Fig. 4.7a, 4.8a) only produces a reasonable fit, 

within the 95% confidence, to the data for a small subset of viscosity models with low 

values of upper and lower mantle viscosity. Correcting the input ice model 

dramatically improves the fit to the data and influences the optimum earth model 

parameters (Fig. 4.7b, 4.8b, 4.7c and 4.8c). For the complete data set, the data rule out 

values of upper mantle viscosity greater than ~ 0.15×10
21 

Pa s (at the 95% confidence 

level). The data are less sensitive to variations in lower mantle viscosity and 

lithospheric thickness and so do not provide useful constraints on these parameters. 

The reduced data set shows a different sensitivity to the earth model parameters:  

there is a more pronounced trade-off between upper and lower mantle viscosity; 

specifically, the region of optimum fit migrates to larger values of υum for a 

progressively weaker lower mantle (Fig. 4.8b).  In contrast to the complete data set, 

the reduced data set is not able to constrain υum to lie within a subset of the range of 

values explored.  

 

Based on the results in Figs. 4.7 & 4.8, two earth models were adopted to partner the 

revised (EUST1) ice model. One based on the fit to the complete data set: upper and 

lower mantle viscosities of 1 × 10
20 

and 5 × 10
21

 Pa s, respectively; and the other 

based on the fit to the reduced data set: upper and lower mantle viscosities of 5×10
20 

and 2 ×10
21

 Pa s, respectively.  For both data sets an average lithosphere thickness of 
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96 km was chosen. Predictions based on these two ice-earth model combinations are 

compared to the observations in Fig. 4.9.  The predictions are characterised by a 

steady rise in sea-level towards a marked slowdown beginning at 7 kyr BP, followed 

by a staged slowdown (at 5 and 3 kyr BP)  towards present day levels.  

 

It is evident from Fig. 4.9 that the predictions based on the EUST1 model are a 

significant improvement compared to those for the starting model. As expected, the 

large highstand is removed and the predictions track the observed data more closely 

during the mid-Holocene. Furthermore, the revised model predicts the spatial 

variation in the time at which present day sea-level is reached: progressively earlier in 

the northern sites than central, which is consistent with the observations. For example, 

at BB the staged slowdown in the revised model reaches present day sea-level ~ 7 kyr, 

compared to 5 kyr BP at HRD.  

 

There remain some significant data-model misfits even with the revised ice model. At 

HRD the predictions closely match the observed trend from 5 kyr – present, but still 

over shoot the earlier data. This discrepancy is consistent with active compaction 

and/or subsidence at this locality in the mid-to-late Holocene. At HP, the predictions 

are too low between 6-4 kyr BP with present day sea-level reached too late in the 

model (3 kyr).  

  

As previously described, there was a noted spatial variation in the predicted RSL 

across HP of approximately 2m (see contours on Fig. 4.1) which is not evident within 

the observed data. On Fig. 4.9 predictions are shown (using earth model for complete 

data set; dashed-dotted line) for an additional location in the north of the island to 

highlight the overall reduction in this spatial variability (to less than 0.5 m) when the 

revised ice model is employed. This is a consequence of partitioning more ocean 

loading into the mid-to-late Holocene compared to the starting model, thus decreasing 

the continental levering signal across the Island in the mid-Holocene. 
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Fig. 4.9: Comparison of the predicted and observed sea-level change at each locality in China. Solid black circles mark each SLIP. The 

solid black line shows predictions for the reference ice-earth model. Predictions using the revised ice model (EUST1) were generated for 

an optimum earth structure inferred from the χ
2
 results in Fig. 4.7 and 4.8: for the complete data set (dashed) with a lithosphere thickness 

of 96 km, upper mantle viscosity 1*10
20

 Pa s and lower mantle viscosity 5*10
21 

Pa s; reduced data set (dotted) with a lithosphere 

thickness 96 km, upper mantle viscosity 5*10
20

 Pa s, lower mantle viscosity 2*10
21

 Pa s. At locality HP, predictions based on the revised 

ice model are also for a location to the north of the island (dashed-dotted; see text for more information). 

133



4.4.3. An optimal eustatic model for Malay-Thailand 

  

The method outlined above was repeated for the Malay-Thailand data set to identify 

an optimum Holocene melt history. The χ
2
 results for the four example melt models in 

Fig. 4.4 are displayed in Fig. 4.10. The EUST1 model, which provided an optimum fit 

to the China data, will also be compared to the Malay-Thailand data set. As 

mentioned previously, the Malay-Thailand data set contains fewer SLIPs compared to 

the China data set with a relatively small number of data during the mid-Holocene (7-

4 kyr BP). The resulting eustatic function will therefore be less well constrained, 

particularly during this period.  

 

From Fig. 4.10, similar conclusions can be made regarding the sensitivity of the 

Malay-Thailand data to revisions in the eustatic melt as for the China data set. While 

both data sets prefer the timing of the melt3a model, where following an initial 

slowdown around 7 kyr BP there is a gradual decrease in melt rate until cessation at 1 

kyr BP, they differ in the preferred rate of melt partitioned before and after 7 kyr BP. 

Specifically, comparing Fig. 4.10c- 4.10d, the Malay-Thailand data prefer a greater 

amount of melt to be placed prior to 7 kyr BP and so the optimal eustatic history is 

closer to that of the melt3b model (rather than the melt3a model preferred by the 

China data). This is not surprising given that the Malay-Thailand data display a clear 

highstand of up to 4 m during the mid-Holocene. Based on the ~300 melt models 

considered, an optimum melt scenario for the Malay-Thailand data set was identified 

and will be referred to as EUST2 (which is close in form to the melt3b model in Fig. 

4.4). 

 

As the alterations in the timing and rate of eustatic sea level rise were not as 

significant between EUST2 and EUST1 in comparison to EUST1 and the reference 

model (see Fig. 4.13), it was not necessary to alter the ice model to account for the 

residual ocean loading signal (see discussion in Section 4.4.1). Note that the isostatic 

component of the predictions ( ),,( tS I  ) in eqn (1) was calculated using the EUST1 

ice model rather than the starting model.  
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Fig. 4.10: Contour plots of the χ
2 

misfit between predicted and observed sea levels for 

the Malay-Thailand data set as a function of upper and lower mantle viscosity (υum 

and υlm, respectively).  Each frame gives the results for the four melt scenarios 

illustrated in Fig. 4: (a) melt1, (b) melt2, (c) melt3a, (d) melt3b. The black line 

represents the χ
2
 value below which the quality fit is equivalent at 95% confidence. 

The blue region represents χ
2 

values greater than the maximum on the scale bar (80) 

up to 243. 

 

 

Inspection of Fig. 4.11 demonstrates, in a similar fashion to Fig. 4.6, that the quality 

of fit is sensitive to both earth model parameters and the adopted eustatic model. For 

the first iterate eustatic model (EUST2; Fig. 4.11b), the optimum set of earth model 

parameters (within 95% confidence limit) does not place useful constraints on either 

lower mantle viscosity or lithospheric thickness. This model does, however, rule out 
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upper mantle viscosity values less than ~2 × 10
20

 Pa s. Note that this inference lies 

outside the 95% confidence zone as inferred from the China data (complete data set; 

Fig. 4.7b), suggesting that there are significant lateral variations in upper mantle 

structure between the two regions. 

 

Sea-level predictions using EUST1 and EUST2 are compared to the observed data 

(Fig. 4.12) for an earth model which fitted within the 95% confidence range of both 

eustatic models, so that the fit could be compared without the bias of adopting two 

different earth models. EUST1 and EUST2 produce a broadly similar pattern of sea-

level change across the data region and remove the over prediction in the maximum 

height of sea-level generated with the starting model. The EUST2 model shows a 

slowdown in the rate of melting at 7 kyr, reaching a sea-level maximum at 5 kyr 

followed by a steady fall towards present day levels. The two revised models bound 

the data at all sites, (apart from site PH), with EUST2 producing a closer match at 

most sites. Adopting the EUST2 model increases the highest predicted sea level by ~ 

2m due to the greater amount of melt added to the ocean prior to 7 kyr. This also 

results in present day sea levels being reached earlier than for the EUST1 model by up 

to 2 kyr. EUST1 does capture the trend reasonably well at some sites, such as Chao 

Phraya (CP) but generally under predicts the observed Holocene sea levels in this 

region. 

 

Predictions based on EUST1 and EUST2 diverge the most between 7-4 kyr BP, when 

there is relatively poor data control. At sites KG and MAL, where there is data during 

this period, only the EUST2 model predictions fall within the error limits of the data. 

Phuket (PH) also includes data during this period; however, neither model closely 

reproduces the trend observed between 7-5 kyr BP. The predicted sea levels show a 

steady rise compared to a minor but steady fall inferred from the observations. This 

difference is attributed to problems with the data, as described in Section 4.3.3.  
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Fig. 4.11:  Contour plots of the χ
2
 misfit between predicted and observed sea levels for 

the Malay-Thailand data set as a function of upper and lower mantle viscosities (υum 

and υ lm, respectively) and lithosphere thickness (Lt)  for the reference (a), EUST2 (b) 

and EUST1 (c) eustatic models. Results in (a), (b) and (c) are for a lithosphere 

thickness of 96km. The solid black line represents the 95% confidence level and the 

cross indicates the min. χ
2
 misfit.  Frame (d) shows χ

2
 values generated using the 

EUST1 ice model as a function of lithospheric thickness and upper mantle viscosity 

for a lower mantle viscosity of 2×10
21 

Pa s.  The blue colour represents χ
2
 values 

greater than the maximum on the scale bar (80) up to 193 
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Fig. 4.12: Comparison of predicted and observed sea levels at each of the seven localities in Malay-Thailand for three eustatic melt 

models. Solid black circles mark each SLIP. The solid black line represents prediction for the reference model, described in the text. 

Predictions for EUST1 (dashed) and EUST2 (solid grey) were generated for an earth model with a lithosphere thickness of 96km, upper 

mantle viscosity of 8 *10
20 

Pa s and lower mantle 5*10
21 

Pa s. This model produced a good fit for both of the revised eustatic models (see 

Fig. 4.11). 
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4.4.4. Summary of new eustatic models:  

 

Two first iterate melt scenarios (EUST1 and EUST2; Fig. 4.13) were created to 

provide a good fit to the China (EUST1) and Malay-Thailand (EUST2) data sets and 

addressed the three key misfits outlined above: (1) amplitude of the Holocene 

highstand, (2) timing of the highstand, (3) sea-level trend following the highstand. 

The two models were developed independently of each other, to produce an optimum 

fit to either the China or Malay-Thailand datasets.    

 

The overall style of the eustatic melting history is similar between the two revised 

models and is summarised by the following changes from the starting model: (1) the 

timing of the initiation of the slowdown in global melting was made earlier, from 6 

kyr to 7 kyr BP, (2) a staged slowdown (highlighted on Fig. 4.13) in global melting 

with melt rate reductions at 7, 5, 3 & 1 kyr (melting is ceased at 1 kyr BP). The 

average rate of melting over the last 5 kyr BP in EUST2 is half of that in EUST1. As 

described above, the main difference between EUST1 and EUST2 is the partitioning 

of melt prior to and following 7 kyr BP, which influences the development 

(magnitude) of a highstand across each region. In EUST2 an extra 2.5m of melt is 

added to the oceans prior to the slowdown at 7 kyr, compared to EUST1. As the style 

of melting and total eustatic sea-level rise is the same in both scenarios, this in turn 

reduces the contribution from EUST2 in the final 5 kyr to 1.9m less than EUST1. 

Finally, the rate of melting over the last 3 kyr is 1.2 mm yr
-1

 for EUST1, 

approximately twice the rate of EUST2. This highlights a distinct sensitivity between 

the two data sets to the amount of melt added to the oceans following the 7 kyr 

slowdown. It is noted that at 7 kyr BP, the amount of total eustatic sea-level change 

between EUST2 and the starting model is the same (see Fig. 4.13).  
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Fig. 4.13:  Graphical representation of the eustatic sea level curve for three models: 

reference (solid black), EUST1 (dashed) and EUST2 (solid grey). 

 

 

Distinctly different constraints are provided on the optimum earth structure for each 

region. Both are relatively insensitive to variations in the lower mantle viscosity but 

prefer markedly different upper mantle values. For China the best fit is achieved with 

a weak upper mantle, less than 2×10
20 

Pa s (for the complete data set), compared to 

Malay-Thailand data, where a stronger mantle, greater than 2×10
20 

Pa s is preferred. 

The ranges of inferred values using these data are broadly compatible to those 

identified from sea-level studies around Australia and other far-field locations 

(Lambeck (2002)).  

 

Using the two eustatic models tuned to fit each data set, it is not possible to define an 

optimum earth structure for the entire region (south East Asia). This is not surprising 

given the tectonic complexity and geographic size of the study region. It is likely that 

the proximity of some sites to subduction zones will have an impact on the subsurface 

rheology (e.g.James et al., (2000)). It is logical, therefore, to adopt distinct Earth 

models for each data set. In contrast, the eustatic history must be the same at all 

locations by definition. Therefore, in the next section, we identify a single melt model 

that provides an optimum fit to the combined data set under the condition that 
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different Earth parameters can be adopted for each region (China and Malay-

Thailand).    

 

4.4.5. An optimum model for combined China and Malay-Thailand data 

  

In the above section, the misfits to the data were reduced by revising the pattern and 

timing of Holocene melt to produce a eustatic model which fitted each data set. In this 

section, the aim is to create a combined eustatic model optimised to fit both data sets. 

The adopted stages are summarised in a flowchart on Fig. 4.14. 

 

 

 

Fig. 4.14:  Flow diagram to outline the key steps in determining a eustatic model that 

provides a good fit to both the China and Malay-Thailand data sets 

 

 

Firstly using the ‘melt3’ model (the model that provided the best fit to both data sets) 

as a template, a number of melt models were defined by varying the amount of melt 

partitioned prior to and following 7 kyr BP. Four examples are shown in Fig. 4.15. 

This partitioning is reflected in the value of eustatic sea level at 7 kyr BP (the greater 

the melt added prior to this time the shallower eustatic sea level will be). The depth of 
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eustatic sea level at 7 kyr was incremented from a maximum of 8m (Fig. 4.15 dashed 

line) to a minimum of 4.7m (Fig. 4.15 dotted dashed). The models will be referred to 

in the following discussion in terms of the depth of eustatic sea level at 7 kyr. (e.g. a 

model with a eustatic sea level at 7 kyr of 8m will be referred to as the ‘8 m’ model).  

 

 

Fig. 4.15: Four of the melt models adopted to investigate the sensitivity of the data-

model fit to the amount of melt partitioned before and after 7 kyr BP.  The amount of 

melt prior to 7 kyr BP was systematically reduced to produce eustatic sea level at this 

time ranging from a depth of 4.7 m (dotted-dashed) to a depth of 8 m (dashed). The 

dotted and solid lines illustrate two intermediate models, with the red line highlighting 

the median model. All models are based on the timing of the ‘melt3’ model (Fig. 4.4) 

used to obtain EUST1 and EUST2. 

 

 

Secondly, the dependence of the predicted sea level to changes in both the eustatic sea 

level (specifically the adopted melt model) and earth structure was investigated, with 

the aim of identifying (1) the best fit earth model parameters, (2) a sub-set of earth 

models that provide a fit to the data (within the 95% confidence) for the range of earth 

models considered.  

 

Following the method outlined in section, 4.4.1: a revised set of predictions were 

generated for each of the melt models and a suite of earth models (as described 

above), for the China (complete and reduced) and Malay-Thailand data sets. The 
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corresponding χ
2
 misfits are shown in Figs. 4.16, 4.17 and 4.18 are shown for a subset 

of four melt models.  

 

There are a number of points to conclude from these figures. Firstly, it is apparent that 

the fit to the China data (reduced and complete) as a function of earth model 

parameters is less sensitive to changes in melt model compared to the Malay-Thailand 

data (see Fig. 4.16 and Fig. 4.17). Specifically, there is little change from the 6.5 m 

melt model onwards in terms of the location of the 95% confidence region. Generally 

the data prefer a weak upper mantle viscosity (as indicated by the position of the 

triangle) and rule out lower mantle values greater than 2*10
21 

Pa s.  Comparing the 

progression in the value of the χ
2
 minimum with each melt model, it is again evident 

that the data prefer a eustatic melt pattern with less melt prior to 7 kyr BP. (Fig. 4.16a 

to 4.16c)  

 

For the Malay-Thailand data, the change in the value of the χ
2
 minimum for each melt 

model is the reverse of that for the China data, with the data preferring a greater 

amount of melt prior to 7 kyr (Fig. 4.18a to Fig. 4.18c). As stated above, the set of 

optimum earth model parameters is more sensitive to the choice of eustatic model in 

this case. For melt models with relatively little melt prior to 7 kyr BP (8-6m models, 

see Fig.. 4.18a and 4.18b), which have a higher χ
2
 misfit, the data rule out upper 

mantle viscosities less than 1.5 ×10
21 

Pa s. Progressing to models with a greater 

amount of melt after 7 kyr, the optimum region of earth parameter values remains 

relatively stable (see Fig. 4.18c and Fig. 4.18d). For these melt models, earth models 

that have weak upper and lower mantle viscosity values are ruled out (note that these 

are the models which fit the China data set).  

 

From the above investigations, an earth model/melt model combination was chosen 

for each region which produced both a minimum χ
2
 value and fitted within the 95% 

confidence earth model parameter range for most of the melt models considered. The 

earth model parameters were as follows:  (1) lithosphere thickness of 96 km for both 

data sets; (2) upper and lower mantle viscosities of 8×10
19 

Pa s and 1×10
21 

Pa s, for 

China and 2×10
20 

Pa s and 5×10
21 

Pa s for Malay-Thailand, respectively.  
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Fig. 4.16: Contour plots of the χ
2 

misfit between predicted and observed sea level for 

the China data set as a function of upper and lower mantle viscosity (νum and νlm 

respectively) for a lithosphere thickness of 96 km. The results are shown for four 

different melt models defined in terms of depth of eustatic sea level at 7 kyr BP (and 

described in greater detail within section 4.4.5): (a) 7.5 m, (b) 6.5 m, (c) 5.75 m and 

(d) 4.7 m. The black line represents the χ
2 

value below which the quality fit is 

equivalent at 95%. The black triangle marks the minimum χ
2
 misfit 
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Fig. 4.17: As in Fig 4.16 except that results are shown for the ‘reduced’ China data set 
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Fig. 4.18: As in Fig. 4.16 expect results are shown for the Malay-Thailand data set. 

The cross marks the location of the minimum χ
2
 misfit.   

 

 

The melt models chosen were the 7 m and 6.5 m for the complete and reduced China 

data set and 5.5 m for Malay-Thailand. Note that these optimum melt models are 

different to those inferred earlier based on the reference earth model (EUST1 and 

EUST2). In these models, eustatic sea level at 7 kyr BP was 9 m (EUST1) and 6.6 m 

(EUST2). This is entirely due to the different earth model parameters used and so 

highlights the importance of examining the trade off between the chosen earth model 

parameters and eustatic melt history.  
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Using these combinations of melt model and earth model to define a minimum χ
2
 

value, a 95% confidence interval was estimated (using F-test tables) for each data set. 

Melt models were then determined which produced a χ
2
 value (calculated for each 

region-specific earth model) within this 95% confidence interval. The results for each 

region were then compared to identify a range of possible models that fit each data set 

within the defined confidence limit (see Fig. 4.19). 

 

An optimum fit (minimum χ
2
) is produced for the Malay-Thailand data with melt 

model ‘5.5m’ compared to ‘7m’ for the complete and ‘6.5m’ for the reduced China 

data set. The noted difference in the ‘optimum’ melt model chosen for each data set 

was to be expected based on the conclusions made in the above sections: the China 

data set prefers a lower amount of melt prior to 7 kyr and hence the lower eustatic sea-

level. It is evident from Fig. 4.19, that the range of melt models which will fit both 

data sets is constrained by the upper limit from the Malay-Thailand data and the lower 

limit from the China data set. This limits the range of possible models, highlighted by 

the shaded region on Fig. 4.19, to between 5.7 m and 6.6 m. If the reduced China data 

set information is adopted this range is increased to 5.3-6.6 m.  A median model was 

adopted from within this range, with a eustatic sea-level of depth 6m at 7 kyr 

(represented by the red line in Fig. 4.15) 

 

Following the method described in Section 4.4.2, the EUST1 ice model was altered to 

generate this revised melting pattern, and will be referred to as EUST3. Revised sea-

level predictions were generated for each data set using EUST3 and the χ
2
 misfit re-

calculated. The χ
2
 misfit for the optimum (melt7m and melt5.5m) and combined 

(EUST3) eustatic models for each data set are shown in Fig. 4.20. 
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Fig. 4.19: The χ
2
 misfit for the range of melt models considered for the China data 

(black) and Malay-Thailand data (grey). Results are shown for both the complete 

China data set (A) and the reduced data set (B). The solid horizontal line marks the 

location of the 95% confidence limit – models which result in values below this limit 

are statistically equivalent to 95% confidence. The melt models which satisfy this 

criterion for both data sets are indicated by the shaded region. Note that different earth 

models were used to generate predictions for each region (China and Malay-Thailand; 

see text for details). 
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Fig. 4.20: Contour plots of the χ
2
 misfit between predicted and observed sea level data 

for a range of upper and lower mantle viscosities (υum and υ lm, respectively) and a 

lithosphere thickness of 96 km. The top two frames show results for the complete 

China data set for eustatic models melt7m (a) and EUST3 (b). The lower frames show 

results for the Malay-Thailand data set for eustatic models melt5.5m (c) and EUST3 

(d). The black line represents the χ
2
 value below which the quality fit is equivalent to 

a 95% confidence level. The triangle marks the location of the minimum χ
2
 value. 
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For the China data, there is a slight increase in the χ
2 

minimum between the EUST3 

and melt7m models, although both models are a significant improvement from the 

reference model (see earlier Figs). It is evident that the EUST3 model provides a 

tighter bound on the possible earth structure parameters, compared to melt7m, ruling 

out upper and lower mantle viscosities greater than 1.5 ×10
20

 Pa s and 2×10
21 

Pa s, 

respectively. The best fit model parameters chosen to fit within the 95% confidence 

level for both eustatic models are an upper mantle and lower mantle viscosity of 

5×10
19 

Pa s and 1×10
21

 Pa s respectively 

 

For the Malay-Thailand data, both revised models are an improvement on the fit 

achieved using the reference model, with EUST3 model providing the lower χ
2
 value. 

Similar constraints on the preferred earth model are inferred from both models, with 

the optimum region migrating to progressively weaker upper mantle viscosities for 

each lower mantle viscosity. There is a minor shift with EUST3, where upper mantle 

viscosities less than 0.8 *10
20

 Pa s are ruled out. Generally the lower χ
2 

misfit occurs 

with a combination of an average upper mantle and weak lower mantle, and, hence, 

the best fit parameters which fit both melt5.5m and EUST3 are an upper and lower 

mantle viscosity of 2×10
20 

Pa s and 8×10
21

Pa s respectively.  

 

It is not possible to define an earth model which will fit within the 95% confidence 

level for both data sets. Possible reasons for this will be discussed in the following 

section.  

 

Sea-level predictions were generated at each site (Figs. 4.21 and 4.22) for the EUST3 

model and compared to the results for the melt7m (China data) and melt5.5m (Malay-

Thailand data) models. The earth models defined above where adopted in each region.  

 

From Fig. 4.21, both revised eustatic models (EUST3 and melt7m) displays a broadly 

similar trend in sea-level across the region, with a gradual rise towards present day 

levels, slightly earlier with EUST3 (~7 kyr BP compared to ~ 5 kyr BP) to produce a 

minor highstand at 5 kyr BP. At most sites there is little difference between the two 

models from 5 kyr BP onwards. The most noted misfit is between 7-5 kyr BP at HRD 

where the rate of rise towards present day levels is too fast. As mentioned previously, 

these SLIPs may be affected by subsidence within the delta and so will sit below the 

predicted levels. At FP and EG, localised uplift may account for the slightly elevated 
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levels of SLIPs between 4 kyr and present, which were estimated in a recent study 

(Pedoja et al., (2008)) to be 0.18 mm yr
-1 

and 0.13 mm yr
-1

 or a displacement of 0.7 m 

and 0.52 m, respectively, over the past 4 kyr. Note that at two sites, the EUST3 

predictions produce an improved fit compared to EUST1 (see earlier Figs.) and 

melt7m: at HP the predicted sea level is close to the present day level from 6.5 kyr 

onwards; at WG, the cluster of SLI points around 7 kyr BP are captured well. These 

two sites are considered to be the most tectonically stable (Zong (2004)).  

 

The EUST3 and EUST2 models predict very similar patterns across the Malay-

Thailand region (Fig. 4.22), with a gradual rise towards present day sea-level at 7.5 

kyr, rising to a maximum sea level at ~5 kyr of between 1.5-4 m, followed by a 

gradual fall towards present. The greatest difference in the predicted sea level between 

the two models is ~1 m between 7-5 kyr BP.  The most marked improvement from the 

reference model is at sites CP and MAL, where EUST3 captures both the timing of 

slowdown and the gradual fall towards present from 5 kyr onwards. This predicted 

fall is also captured at sites PA, KG and TI, which supports the need for continued 

melting throughout the late Holocene. There are a few SLIPs which EUST3 fails to 

capture: (1) the previously mentioned uniform trend at Phuket (PH); (2) the cluster of 

points at sites MAL and ET at 5 kyr and 8 kyr, respectively, which display large 

vertical scatter. Clearly, it is not feasible to create a sea-level prediction which could 

capture these trends and, as such, this misfit is not considered important. 
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Fig. 4.21:  Comparison of the predicted and observed sea levels at each of the nine localities in China. Solid black circles mark the 

individual SLIPs. The solid black line shows predictions for the reference ice-earth model. Predictions for melt7m  (dashed black) and 

EUST3 (solid grey) were generated for an optimum earth structure inferred from the χ
2
 results presented in Fig. 4.20: lithosphere 

thickness 96 km, upper mantle viscosity 5×10
19 

Pa s, lower mantle viscosity 1*10
21 

Pa s 

 

152



 

Fig. 4.22:   Comparison of the predicted sea level and observations at each of the seven data regions in Malay-Thailand. Solid black 

circles mark the location of each SLIP. The solid line shows predictions for the starting ice-earth model. Predictions for melt5.5m 

(dashed-black) and EUST3 (solid grey) were generated for an optimum earth structure inferred from the χ
2
 analysis in Fig. 4.20 (frames c 

& d): lithosphere thickness 96 km, upper mantle viscosity 2×10
20 

Pa s, lower mantle viscosity 8×10
21 

Pa s 
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4.5. Discussion  

  

Three new Holocene eustatic models have been developed from the above 

investigation (shown on Fig.. 23); (1) melt7m which was optimised to fit only the 

China data set, (2) melt5.5m which was optimised to fit only the Malay-Thailand data. 

(Both of these models are non-ice corrected) (3) EUST3 a model produced to fit both 

the China and Malay-Thailand data using earth models optimised for each region. 

From Fig. 4.23 the three revised models display a similar pattern and timing of 

eustatic sea level change, with a notable reduction in the rate of melting over the late 

Holocene, from maximum of 0.6 mm yr
-1

 (melt7m) to 0.21 mm yr
-1

 (melt5.5m). As to 

be expected EUST3 forms an intermediate model between these two optimised 

models.  

 

 

Fig. 4.23: Comparison of the optimum eustatic models inferred in this analysis for 

each data set ( melt7 – dashed black; melt5.5 -dashed-dotted black; EUST3 – solid 

black) to two published models: ICE-5G model (grey dotted; Peltier 2005) and the 

model by Lambeck and Purcell (2005) (solid grey; referred to as LP in main text). 

 

 

Additionally on Fig. 4.23 these three revised models are compared to the two most 

widely cited global eustatic melt models: (1) ICE-5G (Peltier (2004)), (2) a model 

from the Australian National University group – in this case a recent model published 
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by Lambeck and Purcell (2005), which will be referred to as LP in the following 

discussion.  

 

The pattern of Holocene global eustatic sea level in the ICE-5G model is characterised 

by a rapid rise to 8 kyr BP, when there is a marked slowdown in the rate of melting. 

Following a secondary minor slowdown at 7 kyr, there is a continued steady rise until 

melting ceases at 4 kyr BP.  This is the most recent version in a series of models 

which have been progressively updated to incorporate new information regarding the 

spatial and temporal history of the major ice sheets, the earth viscosity structure and 

revisions to the sea-level theory (Peltier (2004), Peltier (1996)). It has been adopted in 

a wide range of sea-level studies (Peltier (2002)), including the British Isles (Shennan 

et al., (2002)) and North America (Tarasov and Peltier (2004)) as well as applications 

in geodetic studies, such as GPS and satellite gravity. 

 

Two key differences between the ICE-5G model and the other models shown in Fig. 

4.23 is the timing of the initial slowdown in global melting (8 versus 7 kyr BP) and 

the timing of cessation of global melting (4 versus 2-1 kyr BP). The early timing of 

the initial slowdown in global melting in ICE-5G contradicts the data from both China 

and Malay-Thailand. For example, at the northern sites in the China data set (BB, JP 

and YRD), where the slowdown is the earliest of all the data considered in this study, 

few data points support an initial slowdown prior to 7.5 kyr BP.   

 

Evidence in support of a cessation in global melting at 4 kyr in the ICE-5G model is 

mainly cited from to two far-field studies: Nunn and Peltier (2001) and Rostami et al., 

(2000). In the former, corals microatolls from the Fiji Islands were examined to infer 

an average sea-level trend for the region. Present day levels were reached initially 

around 6 kyr BP, with a continued rise in sea-level to a maximum of 1.35-1.5m 

around 4 kyr BP.  As the model produced a reasonable fit to the data, it was argued 

that no revisions were necessary (and so no need for further melting after 4 kyr). In 

the latter study, data of varied quality from the east coast of South America was 

compared to the model and, again, it was argued that no revisions were required. 

There is wide and abundant scatter in the data, with the model under-predicting the 

data at a number of sites. Although the sea-level predictions generated a reasonably 

close match to both of these data sets, there is certainly scope to fit a model with 

continued melting into the late Holocene given the observational uncertainty. 
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Cessation of melting at other times prior to present was not considered within the 

study.   

 

Not all comparisons of the ICE-5G model predictions to far-field data have been 

favourable. For example, in a review of paleoshoreline data from Pacific Islands 

(Dickinson (2001)), it was noted that predictions using the ICE4G model (which has 

the same Holocene eustatic history as the ICE-5G model) over-predicted the height of 

the highstand measured at Society Islands and French Polynesia by up to 1.6m. 

Although the model is widely adopted, it does not produce a reasonable fit at all sites, 

indicating there is room for revision.  

 

The LP eustatic sea-level model has been developed by modelling an extensive RSL 

database from around the coast of Australia (Lambeck and Nakada (1990),Lambeck 

(2002)) and the Mediterranean (Lambeck and Purcell (2005)). It has been applied in a 

wide range of global studies (Fleming and Lambeck (2004) Lambeck (1993), 

Lambeck (1997), Yokoyama et al., (2006), Yu et al., (2007)) highlighting its ability to 

reproduce the observed sea-level pattern at a wide range of locations. A similar model 

was obtained in a study that considered a wider global data set (Fleming et al., (1998)) 

including Africa, Barbados and Malaysia. Earlier studies (e.g. Nakada and Lambeck 

(1989)) used spatial differences in observed sea-level highstands to separate model 

sensitivity to earth and ice melt parameters – thus reducing parameter trade-off and 

arriving at a more robust solution. This is a notably different method as was used in 

the development of ICE-5G. Although a recent study has demonstrated that the 

resolving power of differential highstands to constrain mantle viscosity is relatively 

poor (Kendall and Mitrovica (2007)), the utility of the method in reducing parameter 

trade-off is sound.  

 

The results of the earlier studies (e.g. Nakada and Lambeck (1989)) have been refined 

in the past few decades (e.g. Lambeck (2002), Lambeck and Purcell (2005)) to arrive 

at the model shown in Fig. 4.23. The model is characterised by a steady rise in 

eustatic sea-level until a staged slowdown in the rate of melting at 7 and 6 kyr BP. 

From 5 kyr onwards eustatic sea level rises steadily at an average rate of 0.63 mm yr
-1 

until 1 kyr BP, which is similar to the rates and timings of EUST3 (0.68 mm yr
-1

) and 

melt5.5m (0.64 mm yr
-1

).  Although the chronology of melting is similar in melt7m, 

the amount of eustatic sea level rise is markedly greater than in the LP model.  
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In the LP model, the source for the continued melting into the late Holocene was 

attributed to the AIS and mountain glaciers. For the three eustatic models developed 

here, the overall total global eustatic sea level rise over the past 10 kyr was fixed and 

the deglaciation of the LIS completed by 5 kyr. To recreate this continued rise in 

eustatic sea level until 1 kyr, the AIS deglaciation history was altered and it is 

therefore important to compare evidence in support of this late Holocene deglaciation 

of the AIS.  

 

The AIS can be divided into three main ice regions, which underwent highly variable 

and desynchronised retreat patterns - detailed in a number of recent studies (Anderson 

et al., (2002), Bentley (1999), Ingolfsson et al., (1998), Sugden et al., (2006)). These 

areas are: marine based West AIS (WAIS) (including glaciers feeding the Weddell 

Sea, Central and Eastern Ross Sea), land based East AIS (EAIS) and the Antarctic 

Peninsula ice sheet (APIS).  

 

As the main period of deglacation of the APIS and EAIS ended by 7 kyr BP (Bentley 

et al., (2006), Ingolfsson et al., (1998), Mackintosh et al., (2007), Sugden et al., 

(2006)), it is unlikely that these ice regions contributed significantly to the late 

Holocene eustatic sea level rise. For instance, the main documented activity between 

5-2 ka for the APIS is local ice rafting from small ice shelves with the Prince Gustav 

Channel (Pudsey and Evans (2001)), with estimations of the total contribution to 

eustatic sea-level rise less than 1.7m (Evans et al., (2005)), while the EAIS was 

undergoing localised advances and retreats (Anderson et al., (2002), Bentley (1999), 

Ingolfsson et al., (1998)). Therefore, this leaves the WAIS as the most likely source 

for continued melting into the late Holocene.  

 

A full study of the extensive range of geomorphological onshore and offshore features 

supporting a late Holocene deglaciation of the WAIS is beyond the scope of this 

study, but the most recent evidence is summarised in Sugden et al., (2006). Three 

regions of the ice sheet are thought to have contributed to eustatic sea level during the 

mid-to-late Holocene: (1) Marie Byrd Land mountains, which fed outlet glaciers, such 

as Pine Island Bay glacier draining into the Amundsen Sea; (2) Ross Ice Shelf and 

Ross Sea; (3) Weddell Sea and Ellsworth Mountain. The reader is referred to the 

above article for more information. 
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Cosmogenic dating (
10

Be) of exposed peaks (glacially eroded boulders) within the 

Ford mountain ranges, Marie Byrd Land, has been used to infer thinning and retreat of 

the ice sheet by over 700m, continuing until at ~ 2.4 kyr  BP, with a reduction of 30-

40km in the grounding line extent over the last 3500 yrs (Stone et al., (2003)). This 

region of activity shows similar timing and pattern to a number of outlet glaciers, the 

Pine Island, Pope and Smith, whose thinning rates were estimated at between 23 ± 2 

mm yr
-1

 (over 14.5 kyr) and 38 ± 3 mm yr
-1

 (4.7 yrs) respectively. (Johnson et al, 

2008) There was no record of ceasing in thinning or recession but with activity 

continuing till present day 

 

The Ross Sea and Ross Ice Shelf are fed by glaciers draining from both the EAIS and 

WAIS. The contribution from glaciers draining the EAIS ended between 8.3-6.5 kyr 

BP (Bentley (1999), Hall et al., (2004), Ingolfsson et al., (1998)), which contrasts 

markedly with the noted continued thinning and retreat from the WAIS regions. In 

one recent model of the AIS, it is suggested that after 6 kyr BP (end of the retreat of 

the EAIS) and stabilisation of surrounding environmental forcing, the WAIS 

developed its own internally controlled dynamics, which aided this continued retreat 

throughout the Holocene (Huybrechts (2002)). Some studies (Conway et al., (1999), 

Pollard and Deconto (2009)) suggested that the grounding line (which marks the 

boundary between the ice shelf and the ice sheet) retreated across the Ross Ice Shelf, 

throughout the Holocene, reaching Roosevelt Island by 3.2 kyr BP and from there 

retreated towards its present day position. Although other studies have suggested a 

more complex pattern for retreat (e.g. Anderson et al., (2002)) most evidence supports 

continued thinning and retreat.  

 

The above studies highlight some of the observational evidence in support of 

continued melting from the AIS. Ivins and James (2005) published a revised AIS ice 

load model (IJ05), which was constrained by new published information on the glacial 

history and data of the present-day mass balance, and supports the view that the 

WAIS contributed to global eustatic sea-level rise until present day. Between 11.5-7.6 

kyr BP, the eustatic sea-level rise resulting from this AIS deglaciation was estimated 

at 1.75 mm yr
-1

, with a marked order of magnitude reduction after 3.2 kyr BP (0.23 

mm yr
-1

). This rate is comparable to the rate estimated from EUST3 between 10-7 kyr, 

at 1.6 mm yr
-1

, with a similar order of magnitude reduction after 3 kyr observed in the 
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model (0.36 mm yr
-1

). Although note that the rate for the earlier period includes a 

contribution from other ice sheets.  

 

Another widely used method to infer ice sheet deglaciation patterns is glaciological 

ice sheet models. Huybrechts (2002) published a 3D glaciological 

(thermomechanical) model which reproduced the growth and retreat of the AIS 

throughout the last glacial cycle forced by realistic climatic and environmental 

factors. Under these conditions it was found that the WAIS continued to melt 

throughout the late Holocene, with a total contribution to eustatic sea level of ~ 4.3 m 

over the last 4 kyr.  

 

The three new eustatic models are characterised by a specific chronology of Holocene 

eustatic sea-level change. Predictions based on the EUST3 model show a distinct 

slowdown around 7 kyr BP and a marked highstand reached 7 -5 kyr BP at most sites. 

In the following, other far-field sea-level data and additional datasets from the study 

region are examined to determine if they are consistent with the new EUST3 model. 

 

Dickinson (2001) reviewed a range of paleoshoreline data from sites across the 

Pacific Ocean to infer that the maximum sea-level reached between 5-4 kyr BP ranged 

from between 2.8-3.1m on Marianna Islands to 2m on Fiji. A reconstruction of the 

average sea-level trend from the Western Indian Ocean (volcanic islands including 

Mauritius, Comoros, Reunion, Seychelles, Madagascar) by Camoin et al., (2004) and 

Central and Eastern Indian Ocean (Woodroffe (2005)), found little evidence for 

Holocene sea levels lying above present day levels. The variation in predicted sea-

level using EUST3 across the Pacific and Indian Ocean over the last 7 kyr is broadly 

consistent with these data constraints. Fig. 4.24 illustrates one example time slice, at 4 

kyr BP, where sea level has risen to over 1.25 m across Pacific Ocean, and generally 

remains below 0 m within the Indian Ocean. Following this, sea level was found to 

rise slightly within the Indian Ocean, but remained less than 0.25 m (within the limits 

of the observational data).  

 

159



 

 

 

 

Fig. 4.24: Contour map of relative sea-level at 4 kyr BP using the EUST3 ice model and the reference earth model. Sites mentioned 

within the text are labelled as follows: FJ – Fiji Islands, CK – Cocos Keeling Islands, MU- Mauritius, and SI – Society Islands.  
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The chronological pattern of melt slowdown in EUST3 is supported by additional 

studies from across the study region. Yu et al., (2002) investigated the growth of 

corals at Leizhou Peninsula, South China Sea (close to the WG data locality) and 

estimated the timing of slowdown in sea-level rise between 7.2-6.7 kyr BP. 

Radiocarbon dating of plant matter and shells from sites around Hong Kong were 

combined with additional sedimentological and paleontological evidence to infer that 

sea level initially reached present day levels between 8-6 kyr BP (Yim (1999)). Bird 

et al., (2007) radiocarbon dated samples from mangrove swamps to produce a new 

sea-level curve for Singapore, covering the period 9.5-6.5 kyr BP. The data set covers 

a time period and data location (southern edge of the Strait of Mallaca, between sites 

MAL and TI) where as previously mentioned there is a lack of data. In this 

reconstruction, present day sea level is reached initially at ~ 7 kyr following a staged 

rise and remained constant between 7.7-7.3 kyr BP. Predictions using EUST3 from the 

nearby sites correlate well with the observed trend. However, the noted inflection 

interpreted from these data is not recreated by EUST3. 

 

Both study sites are located within the Eurasian plate and close to active subduction 

zones, illustrated on Fig. 4.25. Along the eastern coast of China the Pacific plate and 

Philippine sub-plate subducts below the Eurasian plate. The Sunda arc bounds the 

lower limit of the study region, where the Indo-Australian Plate subducts below the 

Eurasia plate, close to the Malay-Thailand data sites.  Despite the similar tectonic 

setting of the two study areas, the region around the coast of China appears a more 

geodynamically complex zone than across the Malay Peninsula. This may account for 

the notably different optimum earth structure inferred below China, compared to 

Malay-Thailand, of a very weak upper and lower mantle viscosity 
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Fig. 4.25: Map illustrating the location of the major plate boundaries and subduction 

zones across the study region: R.T – Ryukyu trench, M.T. – Manila trench, P.T. – 

Philippine trench. Red triangles mark the average longitude/latitude location of each 

data locality. Black circles highlight some recent earthquakes of magnitude 5 and 

greater. (Sourced from http://neic.usgs.gov/neis/epic/epic.html ) 
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Subduction zones define dynamic plate margins where cold oceanic lithosphere 

subducts into the hot, weaker oceanic mantle. Consequently, the complex geodynamic 

processes active at such margins affects the surrounding mantle viscosity. There are a 

range of methods used to estimate the mantle viscosity within these regions. For 

example, Hirth and Kohlstedt (2003) used flow law parameters for olivine to estimate 

a mantle wedge viscosity of ~ 10
18

 Pa s; with the viscosity of the adjacent upper 

mantle between 10
18

 - 10
22

 Pa s, depending on the choice of strain rate (deformation 

mechanism). Numerical models of subduction zones generally adopt a background 

upper mantle viscosity between 10
20

-10
21

 Pa s (Billen and Hirth (2005),Winder and 

Peacock (2001)), and have highlighted the development of weaker, lower viscosity 

regions with the mantle wedge, surrounding the subducting slab and extending into 

the back-arc region (Billen (2008),Currie and Hyndman (2006)). This reduction in 

viscosity has been associated with the addition of water and partial melt from the 

subducting slab and associated small scale convection (Billen (2008),Currie and 

Hyndman (2006)). Estimates of viscosity within these regions range between less than 

10
18

- 10
19 

Pa s. In a recent GIA study near the Cascadia subduction zone in the north 

east Pacific (James et al., (2009)) found that to fit the sea-level observations a weak 

upper mantle viscosity was required, with optimum values constrained to lie between 

5×10
18

 to 5×10
19

 Pa s. The upper limit is close to the value inferred above for the 

China region.  

 

The Sunda arc - the closest active subduction zone to the Malay Peninsula - is defined 

as a classic convergent margin (Kopp et al., (2002)) and has been analysed to infer 

many of the general characteristics of such active plate margins. Many studies 

analysing the upper mantle and crustal structure using seismic data have identified the 

lithospheric slab penetrating to depths greater than 1000 km (Widiyantoro and 

Vanderhilst (1997), Widiyantoro and Vanderhilst (1996),Puspito and Shimazaki 

(1995)). Although the subducting slab of the Philippine plate has been imaged using 

seismic tomography along the northern coast of China (Lebedev and Nolet (2003)), 

additional seismic anomalies were found within the upper mantle structure, creating a 

more complicated shallow earth structure than that associated with the Sunda Arc 

below the Malay Pennisula. For instance, seismic imaging of the active orgeny around 

Taiwan due to the interaction of the Ryukyu and Osaka trench have highlighted low 

velocities (high temperatures and therefore low viscosity values) within the crust and 

upper mantle. Recent tomography studies have imaged the Pacific slab below China 
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and suggest that it flattens or deflects near the mantle transition zone, without 

penetrating into the lower mantle (Ai et al., (2008)). A weak, ductile lower crustal 

layer, with an estimated viscosity of ~ 10
18 

Pa s (Clark et al., (2005)), has been 

identified below the Tibetan Plateau and mainland China and is thought to continue 

offshore below the China Sea. In addition, seismic images of the crust and upper 

mantle below the North China Craton, produced by inverting teleseismic data, have 

suggested a thinner lithosphere below the eastern edge of the craton (close to the 

coast) and that the continued subduction across the region generates asthenospheric 

upwellings into the upper mantle (Tian et al., (2009)). The most pronounced feature 

supporting a weaker region within upper earth structure was imaged below the south-

east coast and Hainan Island, extending from the surface to depths of up to 900km 

(Lebedev and Nolet (2003), Lei et al., (2009)) and is generally referred to as the 

Hainan Plume. 

 

In a recent review which summarised the most recent constraints on the mantle below 

China (Zang et al., (2008)), a degree of partial melt at a depth of 410 km was 

identified and attributed to high conductivity and low viscosity values (1.2 ×10
18

 Pa s 

and 3.6 ×10
19 

Pa s), estimated for the lower crust and upper mantle, respectively. 

Using seismic data, basin geometry and subsidence modelling, Clift et al., (2002) 

concluded that the continental slope of the South China Sea is underlain by a low 

viscosity layer, between 10
18

-10
19

 Pa s. 

 

The above constraints give support to the low viscosities inferred from the China data. 

They also highlight that the earth structure below China (and, to a lesser extent, 

Malay-Thailand) has significant lateral structure and so the application of a 1-D earth 

model is limited.   

 

4.6. Conclusions 

 

Using two previously un-modelled data sets from China and Malay-Thailand, a 

revised model of late Holocene eustatic sea-level was developed (EUST3). This model 

is characterised by: (1) an initial slowdown in the rate of eustatic sea level rise at 7 

kyr, (2) subsequent decelerations at 5 and 3 kyr, (3) a steady rise between 3 kyr and 1 

kyr at an average rate of 0.36 mm yr
-1

. It is suggested, based on a variety of evidence, 
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that the most likely source for the continuing rise in eustatic sea-level in the late 

Holocene is the WAIS. 

 

The model was compared to two previously published models, ICE-5G and LP, and 

found to be more consistent with the overall characterises of LP, where eustatic sea 

level rises steadily until a staged slowdown in the rate of melting at 7 and 6 kyr BP. 

From 5 kyr onwards eustatic sea level rises steadily at an average rate of 0.63 mm yr
-1

 

until 1 kyr BP, which compares to an average rate of 0.68 mm yr
-1 

in EUST3.  

 

Examining the χ
2
 misfit between the observed and predicted sea level for each data set 

identified a distinctly different optimum earth viscosity structure. Both data sets were 

relatively insensitive to variations in lower mantle viscosity but prefer markedly 

different upper mantle values. For China the best fit is achieved with a weak upper 

mantle, less than 2×10
20 

Pa s (for the complete data set), compared to Malay-Thailand 

data, where a stronger mantle, greater than 2×10
20 

Pa s is preferred. It is thought that 

this difference is related to distinct lateral variations with the upper earth structure 

below China, associated with the nearby active subduction zones and the Hainan 

Plume.  
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Chapter 5: An improved Glacial-Isostatic Adjustment model for the 

British Isles 

 

5.1. Introduction  

 

Many past studies have investigated the glacial isostatic adjustment (GIA) across the 

British Isles by modelling the comprehensive relative sea-level (RSL) database for this 

region (e.g. Johnston and Lambeck (2000), Lambeck et al., (1996), Peltier et al., (2002)). 

These studies have led to constraints on various model components including the regional 

ice sheet history, viscoelastic earth structure, and the global meltwater signal. The GIA 

sea-level models that have been developed through comparison to the British Isles RSL 

database play an important role in our understanding of past and present sea-level 

changes as well as our ability to predict future changes through the influence of vertical 

land motion on predictions of mean sea-level change (e.g. Lowe et al., (2009)). Recent 

studies have demonstrated that GIA is the dominant contributor to long-term (century to 

millennial) vertical land motion in the UK region (e.g. Teferle et al., (2009); Bradley et 

al., (2009) ).  

 

Despite significant improvements in the GIA models for the region, there remain 

significant differences in the quality of model fits to the expanding RSL database 

(Shennan et al., (2006)). In addition, earth model parameters inferred in different studies 

are not consistent (e.g. Milne et al., (2006)). These discrepancies are due to differences in 

model configuration and the complex non-monotonic form of RSL change in northern 

parts of Great Britain. Although the BIIS was small compared to the other major ice 

sheets during the last major glaciation, it still produced a substantial local isostatic signal 

which is recorded in elevated shorelines (Smith et al., (2006)) and past sea-level records 

(Brooks et al., (2008), Shennan et al., (2006)). Nevertheless, it is the relatively small size 

of the BIIS which results in a complex sea-level history because the local isostatic-driven 

sea-level fall is similar in magnitude to the rise associated with the melting of non-local 

ice sheets. As discussed in previous articles (e.g Lambeck (1993a), Lambeck (1993b)), it 

is the change in the dominance of the signals associated with these processes that results 
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in the complexity of the observed RSL changes and the sensitivity of the predictions to 

both local and non-local model parameters. 

 

The interplay between local and non-local signals is illustrated for three sites in Fig. 5.1, 

where the total predicted sea level is separated into the contribution due to the BIIS only 

and the contribution from all other ice sheets (abbreviated to non-local). The three sites 

shown were selected to highlight the north-south variation in the character of the RSL 

signal. From Fig. 5.1 it is evident that there is little spatial variation in the non-local ice 

signal (grey curve), compared to the progressive decrease in the magnitude of the BIIS 

signal (dotted curve) with increasing distance away from the centre of ice loading 

(compare site 17, Forth Valley to site 50, Hampshire). This results in the total predicted 

relative sea-level signal at localities across Scotland being equally sensitive to the BIIS 

and non-local ice sheet signal (as seen at site 17, Forth Valley), compared to the southern 

sites (such as site 50, Hampshire) where the non-local signal is the dominant contribution. 

Note that a Holocene RSL highstand is only predicted at sites where the local signal 

contributes to a fall in RSL that is larger than the rise due to non-local processes (e.g. 

Lambeck (1993a)). 

 

The complexity of the British Isles RSL signal and the sensitivity of the predictions to 

local and non-local ice and earth parameters means that it is difficult to fit the data 

(particularly from Scotland) and to obtain a robust solution due to the trade-off between 

parameters. Achieving a high quality and well-constrained solution requires the 

consideration of data that provide information that is complementary to that obtained 

from the RSL data. For example, field information can be used to constrain the lateral and 

vertical extent of the BIIS preceding, during, and following the last glacial maximum 

(LGM); also, far-field RSL data can be used to constraint the melt history of the non-

local ice sheets. The accuracy of this complementary information is a crucial component 

for addressing the British Isles GIA problem.  
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Fig. 5.1: Predictions of relative sea level at three selected sites (17, 99 & 50; see Fig. 

5.2) using the best-fitting ice and earth model from this analysis (see text for more 

information). The total signal (solid black line) is separated into the signal due to non-

local ice (grey line) and the local British–Irish ice sheet (dotted black line). Note that the 

influence of ocean loading and GIA-induced perturbations in earth rotation associated 

with each of these two ice model components is included in the predictions.   
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A primary contribution of this study is the comprehensive nature of the complementary 

constraints applied to supplement the information provided by the British Isles RSL data. 

Regarding the local BIIS model, the recent reconstruction described in Shennan et al., 

(2006) and Brooks et al., (2008) is adopted. The development of this model is outlined in 

much greater detail in Chapter 2, with the final model adopted described in Section 2.4.3. 

This reconstruction is an update of an earlier model to include a number of recent field 

observations on the extent of the ice sheet and also takes into account the underlying 

topography (Milne et al., (2006)).  The eustatic model, or melt history of the non-local ice 

sheets, is the combination of results from two recent studies: the eustatic model of Bassett 

et al., (2005)) for the period LGM to the end of the Lateglacial and the extension of this 

model (referred to as EUST3 model in Section 4.4.5 and Bradley et al., (2010)) to 

constrain the melt volume during the Holocene (see Section 5.3.1 for more details). The 

background to the development of this model is given in greater detail in Chapter 4. 

Constraints on local earth viscosity structure obtained from Global Positioning System 

(GPS) observations of vertical land motion are also considered to provide an independent 

control on this model component (see Bradley et al., (2009) and Chapter 3). As 

demonstrated in this previous study, the GPS data are relatively insensitive to 

uncertainties in the local ice model and so provide a robust constraint on local earth 

viscosity structure. This constraint is adhered to in seeking a fit to the RSL data in the 

Section 5.3.3. 

 

A second important aspect of this study is the consideration of RSL data from Great 

Britain and Ireland, which is outlined in Chapter 2, Section 2.2.3. Indeed, this is the first 

GIA modelling study that considers the entirety of RSL data from both islands. The data 

from Ireland are taken from the recent compilation by Brooks and Edwards (2006)) that 

were used in the modelling study of Brooks et al., (2008). Given the proximity of these 

two islands, and the fact that the ice sheets originating on each interacted with each other, 

it is perfectly logical to combine these two RSL data sets and seek a solution that is 

compatible with both.   

 

In essence, this study brings together elements from a number of recent papers on GIA in 

Great Britain and Ireland (Bradley et al., (2009), Brooks et al., (2008), Milne et al., 
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(2006), Shennan et al., (2006)) and combines the final results from each of the preceding 

Chapters: A revised BIIS model and updated global ice model, EUST3 from Sections 

2.4.3 and 4.4.5 respectively and incorporates the constraints on the optimum local earth 

structure from Section 3.3. The best-fitting model presented below can be considered as 

the culmination of these previous efforts in terms of seeking a GIA model that is 

compatible with a variety of observations from Great Britain and Ireland.  

 

5.2. Relative sea-level data 

 

The sea-level data employed in this study were reconstructed from field evidence that 

was interpreted using geological models and radiocarbon age models. These 

reconstructions comprise a database of 80 sites, including those from Shennan et al., 

(2006) for England, Scotland and Wales, and Brooks and Edwards (2006) for Ireland 

(Figure 5.2 and Appendix A). In total, there are 1169 primary sea-level index points 

(SLIPs), separated into 414 primary and 755 intercalated. Additionally, there are 15 

secondary SLIPs and 355 limiting data (primary and secondary), these terms are defined 

in the following two paragraphs. Significantly, there are fewer data points across Ireland 

compared to Great Britain, and the majority of the latter are from south and east England. 

 

The criteria used to define the data classifications mentioned above has been described in 

past studies (Brooks et al., (2008), Shennan et al., (2006), Shennan and Horton (2002)), 

therefore only a brief summary is given here. For a data point to be a SLIP, information 

regarding the following is required: location (longitude and latitude), age (defined in 

calibrated radiocarbon years), present elevation, and the indicative meaning. The 

indicative meaning of a given dated marker defines its vertical relationship to a chosen 

contemporaneous tide level. Most index points have a reference water level at or close to 

mean high water of spring tides. These data points are the most useful for constraining 

model predictions as they provide quantitative estimates of past relative sea-level with 

clearly defined height and age ranges. At sites across Ireland, a data sample was 

classified as a secondary SLIP when the indicative meaning was less well quantified 

(Brooks and Edwards (2006)). When it is not possible to define a quantitative relationship 

between the field evidence and the contemporaneous tidal regime, the sea-level 

information obtained is classified as a limiting date. A limiting date is defined as either a 
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primary point when the source environment can be defined (such as from a freshwater 

peat and therefore a maximum constraint on relative sea level) or a secondary point if the 

environment of formation is unclear or contested. 

 

 

Fig. 5.2: Map showing the locations of the 80 data localities used in this study. The black 

triangles mark the locations of sites where primary and intercalated sea level index points 

have been obtained; the black circles mark sites with only intercalated sea level index 

points or other data points that provide a less precise constraint on sea level have been 

obtained. See Appendix A for a listing of all the data. Data and model predictions from 

sites labelled with white numbers in black boxes are shown in the main text. Data and 

model predictions for all sites are shown in Appendix G. 
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When using SLIPs it is important to consider the additional local scale processes within 

the coastal system that may affect the reliability of the data point, such as compaction or 

consolidation.  SLIP samples taken from thin basal peats or the base of basal peats shown 

to have formed under a tidal influence (referred to in the database as primary SLIPs) 

provide the most accurate measure of sea-level change, as they are deposited over a hard 

substrate and as such, are not affected by sediment consolidation. Intercalated SLIPs, on 

the other hand, form within clay, silt and peat sequences, which may have been 

compacted or consolidated, and as such, may result in the palaeo sea-level marker being 

displaced lower over time. Within the Great Britain database, the 1107 primary SLIPs 

were further divided based upon these criteria into two smaller subsets; those which are 

taken from either basal peat layers or a sediment horizon that was considered to be 

unaffected by consolidation or compaction (referred to as basal points within Appendix 

A) and those classed as either an intercalated SLIP or from a sample which may provide a 

less precise constraint on the observed sea-level (referred to in Appendix A as 

intercalated points). The first subset, basal points, will be examined separately later 

within this study.  

 

An additional factor to consider is long term variations in tidal regime, which may result 

in variations in the estimation of the indicative meaning, due to changes in the reference 

water level through time (Shennan et al., (2003), Shennan and Horton (2002), Uehara et 

al., (2006)). At present, palaeo-tidal corrections have only been applied to five localities 

within the database (as indicated in Appendix A), but other sites where changes in tidal 

regime maybe important include areas with presently large tidal ranges, such as sites 28, 

North Solway; 29, South Solway; 32, Morecambe Bay; 45, Bristol Channel and 47, 

Thames.   

 

Fig. 5.3 shows reconstructed sea-level change at a subset of nine localities which were 

chosen to illustrate the variation in the character of the sea-level signal across the study 

region and the range of available sea-level data types, as described above, within the 

database.  Note that the complete data set is shown in the Appendix G. 
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Fig. 5.3: Observed sea level at nine locations across the study region. Symbols for the observed data are summarized within the text and 

Appendix A. Note the varying scale between each plot
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Site 13, N.E. Scotland, located on the eastern coast of Scotland is the most northern site 

displayed in Fig. 5.3. This sea-level record, composed of a mixture of primary and 

intercalated SLIPs, typifies the characteristic trend of data from the NE coast and 

highland regions of Scotland, with a rise from below present, -10 m at ~ 9.5 kyr, to form 

a small highstand of amplitude ~ 1m at ~ 5.5 kyr BP. Sites 11, Arisaig and 17, Forth 

Valley display the typical record of sites situated close to the centre of ice sheet, with sea 

level elevated above present, during and following the deglaciation period. As discussed 

above, the signal recorded in these northerly data is sensitive to both local and global 

processes. Site 11, Arisaig situated on the NW coast of Scotland, contains the longest and 

most complete record, with over 16 kyr of data composed entirely of primary SLIPs. The 

sea level record is characterised by a fall from 34 m at ~ 16 kyr BP, with noted data gaps 

over the observed timings of meltwater pulse 1A at 14 kyr BP and between 12 - 11 kyr 

BP, reaching a minimum of 3 m at  ~ 10 kyr BP. Following this, sea-level rises gradually 

towards a late Holocene highstand of magnitude ~ 6.5 m between 6 -7.5 kyr BP, before 

falling towards present day levels. Although the data record at site 17, Forth Valley is 

shorter than at site 11, Arisaig and composed of a mixture of both primary and 

intercalated SLIP, the observed trend over the majority of the Holocene is similar, with 

sea-level rising to produce the highest Holocene highstand in the entire study area of 11.5 

m at 7.5 kyr BP. This site is inferred to be very near to the area of maximum ice 

thickness, and as such, should record the maximum uplift following the deglaciation of 

the BIIS. 

 

Even though there is a noted paucity of primary index points along the NE coast of 

Ireland (only two at site 99, South Down), limiting data and secondary SLIPs, when 

combined with additional field evidence such as raised shorelines, can be used to provide 

a useful constraint on the general pattern of sea-level change over the late Devensian. 

(The term Late Devensian refers to the time interval extending from the Ålesund 

interstadial, ~ 33 kyr BP, to the start of the Holocene, ~ 11.5 kyr BP). This is especially 

useful in areas such as Ireland where there are a restricted number of SLIPs both in space 

and time. A major feature observed at sites along this coastline, compared to the NW, is 

the evidence for sea-level significantly elevated above present over the late Devensian, 

where raised beaches have been found up to 25-30 m above present (Brooks et al., 

(2008)). Producing these elevated sea levels in past studies has been a noted problem. 
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Site 99, South Down displays the typical pattern of sea-level change from around this 

region. At 16 kyr BP, constrained from the limiting data, sea-level falls a minimum of  + 

2m to produce an unconstrained lowstand, before rising again to initially reach present 

day levels at ~ 8 kyr BP. The subsequent changes are poorly constrained, but it is likely 

that sea level rose above present between ~ 8 – 4 kyr BP to be followed by a fall towards 

present day level as indicated by the secondary SLIPs at ~ 2 kyr BP.  

 

Sites 25, N.E. England South; 35, North Wales; 93, West Donegal and 99, South Down 

typify the pattern of sea level change across the central region of the British Isles (NE and 

NW England and Northern Ireland) where there is a transition from sites with a small or 

minor Holocene highstand (sites 25, N.E. England South; 99, South Down and 93, West 

Donegal) to sites where RSL is below present throughout the late Holocene (site 35, 

North Wales). The location of this transition (often referred to as the zero isobase) is 

inferred to fall between sites 25, N.E England South and 27, Tees along the NE coast and 

33, Lancashire and 35, North Wales along the NW coast of England and close to sites 93, 

West Donegal and 80, Dublin along the NW and NE coasts of Ireland.  Data from these 

sites exhibited consistent discrepancies compared to predictions in past studies (Brooks et 

al., (2008), Shennan et al., (2006), Shennan and Horton (2002)). Not only is there a noted 

N-S reduction in the height of the observed sea-level over the Holocene, there is also a 

pronounced W-E trend across this central region, with notably higher sea levels at sites 

along the west coast of Great Britain and east coast of Ireland, compared to sites along 

the opposite coasts.  

 

For example, along the east coast of Ireland (such as sites 93, West Donegal and 94, 

North Donegal) there is evidence for only a very minor (less than 1 m), if any, highstand 

over the late Holocene. This compares to the west coast (such as sites 97, North Antrim 

and 99, South Down), where the limiting data suggest that sea level was elevated above 

present by at least 2m. This gradual reduction in the height of the Holocene highstand is 

more apparent when examining the complete data set (see Appendix G) and is a key 

feature with which to validate the model predictions.  

 

At site 25, N.E. England South, located on the east coast of Great Britain, the data are 

composed of primary and intercalated SLIPs extending from 9 kyr BP. The data indicate 
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that sea level rose from -5 m to form a minor highstand of 0.5m at ~ 3 kyr BP. Although 

there are a noted lack of SLIPs at this site and site 35, North Wales, with which to 

constrain the variation of sea level during the mid-to-late Holocene, it is possible to infer 

the occurrence of only a minor highstand from the field evidence. At site 25, N.E. 

England South, field evidence indicates that sea level did not rise above 0.5 m during the 

past 3 kyr and so a steady fall towards present day levels can be inferred. At site 35, 

North Wales, there is again no evidence that sea level rose significantly above present 

day level over the last 5 kyr BP. Despite the shorter record at site 93, West Donegal, on 

the west coast of Ireland, the observed trend is similar to that implied at sites 25, N.E 

England South and 35, North Wales, with a small rise in sea-level over the last 5 kyr BP 

from – 3 m to produce a minor highstand of about 1 m between 2-1 kyr BP, before falling 

towards present day levels.   

 

Sites 83, East Cork and 50, Hampshire located along the southern coast of Ireland and 

Great Britain, respectively, illustrate the typical pattern of relative sea level change at 

sites furthest removed from the main centre of ice loading in Scotland. The characteristic 

sea level trend at both these sites is similar, with a gradual rise over the last 7 kyr BP 

towards present day levels and no evidence of sea levels reaching above present day 

values. 

 

5.3. Modelling 

 

5.3.1. Background to the GIA model 

 

The GIA model adopted in this study has three key inputs - a model of the late 

Pleistocene ice history; an Earth model to reproduce the solid earth deformation resulting 

from surface mass redistribution (between ice sheets and oceans) and a model of sea-level 

change to calculate the redistribution of ocean mass (Farrell and Clark (1976)). 

 

The sea-level model solves the generalized sea-level equation (Kendall et al., (2005), 

Mitrovica and Milne (2003)) and includes the most recent advances in GIA sea-level 

modelling: time-varying shoreline migration, an accurate treatment of sea-level change in 
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regions of ablating marine-based ice and the influence of GIA perturbations to the Earth’s 

rotation vector (Milne and Mitrovica (1998), Mitrovica et al., (2001)).  

  

The Earth model is a spherically symmetric, self-gravitating Maxwell body. The elastic 

and density structure are taken from a seismic model (Dziewonski and Anderson (1981)), 

with a depth resolution of 10 km within the crust and 25 km in the mantle. The viscous 

structure is more crudely parameterized into three layers: a high viscosity (10
43

 Pa s) 

outer shell to simulate an elastic lithosphere, an upper mantle region of uniform viscosity 

extending from beneath the model lithosphere to the 670 km seismic discontinuity, and a 

lower mantle region extending from this depth to the Core-Mantle boundary. The 

thickness of the lithosphere and the viscosity within the upper and lower mantle are free 

parameters in the modelling. 

 

As has been discussed in previous work (Shennan et al., (2006)) the optimum earth 

model adopted for the British Isles has varied within past GIA studies, most notably 

between the choice of parameters for the shallow viscous structure. To provide an 

additional, independent constraint on the choice of viscosity values in this study, the 

range of optimal earth model viscosity parameters inferred from a study of present-day 

vertical crustal motion around Great Britain (see Bradley et al., (2009)) and as described 

in Chapter 3 is also considered. The starting Earth model used here is the optimal model 

this chapter as discussed in Section 3.3: lithosphere thickness of 71km, upper mantle 

viscosity of 5×10
20

 Pa s, lower mantle viscosity of 3×10
22

 Pa s.  

 

As mentioned briefly above, the pattern of relative sea-level change across the British 

Isles is also sensitive to the adopted regional (BIIS) and global (non-local) ice model, 

which is evident by examining the contribution from these signals at three sites across the 

study region (Fig. 5.1). Site 17, Forth Valley, is situated below the estimated region of 

thickest ice at the LGM and, as such, will experience the maximum rebound and relative 

sea-level fall as the BIIS deglaciated. The BIIS signal produces a steady fall from 134 m 

towards present from the onset of deglaciation (~ 20 kyr) as the weight of the overlying 

ice sheet is removed and the solid earth rebounds. This signal is approximately equal in 

magnitude but opposite in sign to the relative sea-level signal produced from the non-

local ice sheets (grey line), where sea level rises from - 90 m at 20 kyr BP towards 
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present day levels, with a gradual slowdown throughout the mid-to-late Holocene. The 

gradual rise of the predicted signal due to non-local ice is punctuated by a period of rapid 

sea-level rise at ~ 14 kyr BP, known as meltwater pulse 1A (mwp-1A) (Bard et al., 

(1996), Bard et al., (1990), Clark et al., (2002), Fairbanks (1989), Hanebuth et al., 

(2000)). It is this event which produces the inflection evident in the total predicted sea-

level signal at this time. The change from fall to rise at ~ 11 kyr BP is also due to an 

increase in the rate of global ice melt following the Younger Dryas cold period (Bard et 

al., (1996), Bard et al., (2010)). This increased rate of melting, although not as high as 

that during mwp-1A, was sustained for several kyr until the early Holocene. Note that a 

secondary control on the shape of the predicted RSL curves in Scotland is the exponential 

decrease in the rate of land uplift following the removal of the ice load (~ 15 kyr BP). 

However, the relatively abrupt changes noted above are controlled primarily by the 

influence of meltwater addition from the non-local ice sheets.  

 

As the distance from the major centre of ice loading across Scotland is increased, the 

contribution of the BIIS (dotted line) to the total predicted sea-level signal is reduced, 

with little change in the magnitude of the far-field signal. This can be seen at site 99, 

South Down, which is situated on the NE coast of Ireland. This reduction in the BIIS 

signal results in the total predicted signal remaining below present from the onset of 

deglaciation, rising above present only in the early Holocene when local hydro-isostasy 

and (global) ocean syphoning (Mitrovica and Milne (2002)) dominate the signal. At site 

50 situated along the southern coast of Britain, the non-local signal dominates the total 

predicted sea-level change (compare the dotted curve to the grey curve). At this site, the 

magnitude of the relative sea-level change due to the BIIS has significantly reduced 

compared to sites 99, South Down and 17, Forth Valley, with a steady rise from about -8 

m at 14 kyr BP, reaching close to present day levels by 5 kyr BP. This sea-level rise is 

driven by subsidence of the solid surface due to the collapse of the BIIS glacial forebulge.  

 

The results shown in Fig. 5.1 demonstrate that RSL data across the British Isles vary in 

their sensitivity to the history of the BIIS. Clearly, RSL data from more northerly 

locations will provide the strongest constraints on the local ice history. As a consequence 

of this range in sensitivity, the ice model adopted in this analysis will be described 

explicitly in terms of the regional and non-local component. 
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The starting BIIS component of the model was taken from Section 2.4.3 (as published in 

Brooks et al., (2008)) and will be referred to as the Brooks et al. model. Key time slices 

illustrating the evolution of this regional ice sheet model are shown on Fig. 5.4. Note that 

the maps illustrate the thickness of the ice sheet, as opposed to the ice surface elevation, 

which has been corrected for underlying topography (see Shennan et al., (2006)). The 

chronology of the main advance and retreat phases are based upon the results of Sejrup et 

al., (1994), Sejrup et al., (2005)), with a coalescence of the BIIS and the Fennonscandian 

ice sheet across the North Sea between 32- 27 kyr BP. Following a short retreat phrase, 

the BIIS rapidly expands around the timing of the LGM, with extended and thickened ice 

on the continental shelf and within the Irish Sea basin. Deglaciation in the model begins 

at 21 kyr BP, with a rapid thinning and retreat of the Irish Ice sheet at 19 kyr BP, 

followed by a later readvance across northern Ireland to simulate the ‘Killard point 

stadial’, with complete ice retreat by 15 kyr BP. During the Younger Dryas event, ~ 13 

kyr BP, there is small scale ice growth across the highlands of Scotland. The model also 

includes two short lived ice streams, one extending down to the Isles of Scilly at 24 kyr 

BP and one extending down the east coast of Great Britain at 21.5 kyr BP. For more 

discussion of this model see published material in Brooks et al., (2008) and Shennan et 

al., (2006) and the model development in Section 2.4. 

 

To generate RSL predictions for the British Isles, the BIIS model must be partnered with 

a global (non-local) ice model. In the Brooks and Edwards (2006)) and Shennan et al., 

(2006)) studies, the model from Bassett et al., (2005) (hereafter referred to as the Bassett 

et al. model) was used for this purpose (note that the UK component of the Bassett et al. 

model was removed). The Bassett et al. model was tuned to fit a suite of far-field data 

from the LGM to 10 kyr BP (and so is unconstrained during the Holocene); the primary 

aim of their study was to constrain the volume partitioning of global ice loss during mwp-

1A. Their results demonstrated that far-field sea-level data are better fit when a dominant 

contribution to mwp-1A is sourced from the Antarctic ice sheet, as opposed to the North 

American ice sheets. The Holocene component of eustatic sea level predicted from the 

Bassett et al. model since 7.5 kyr BP is illustrated on Fig. 5.4k. It is characterised by a 

relatively rapid rise in the early Holocene with major melting ceasing at 6 kyr and a small 
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amount melting (0.5 m) between 6-5 kyr BP. There is no further melting from 5 kyr BP to 

present.  

 

Using the Brooks et al./Bassett et al. ice models (the British Isles component of the 

Bassett et al. model was removed) and the starting earth model defined above, RSL 

predictions were generated at the nine localities shown on Fig. 5.5. (Predictions at all 

sites are shown in Appendix G) Although the model produces a reasonable fit at most 

sites, there are a number of consistent misfits on a regional scale: (a) an underprediction 

in the magnitude of the late Devensian sea-level fall, which is especially evident at sites 

11, Arisaig and 100, Dundalk; (b) a late Holocene highstand which is generally too high 

(as seen at sites 35, North Wales and 93, West Donegal) and too late (as seen at sites 11, 

Arisaig; 17, Forth Valley and 25, N.E. England South); (c) a late Holocene rise towards 

present day levels which is characterised by a sharp change in the rate of sea-level rise ~ 

6 kyr BP which is not consistent with the smooth trend inferred from all southern sites 

(such as site 50, Hampshire). 

 

5.3.2. Modifying the eustatic model 

 

Brooks et al., (2008) and Shennan et al., (2006) both highlighted that many of the above 

misfits to the RSL data during the late Holocene, most notably the height of the Holocene 

highstand, were a result of the rapid termination of melting during the mid Holocene (see 

Fig. 5.4k). In these studies it was concluded that one method of resolving this issue was 

to continue global ice melting through the late Holocene. This was achieved by applying 

a post-modelling correction to reproduce ~ 5 m of eustatic sea-level rise distributed 

between 7 kyr and 2 kyr BP. Applying this correction is a reasonable method to improve 

the model fits. However, it will lead to a source of error as the loading signal associated 

with the additional 5 m of eustatic sea-level is not taken into account. Ideally, the ice 

model would be altered to implement this revision to the eustatic component.   
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Fig. 5.4:  Ice thickness maps of the British-Irish Ice sheet model presented in Brooks et 

al., (2008) and as described in Section 2.4.3 at the times: (a) 32 kyr BP, (b) 26 kyr BP, (c) 

24 kyr BP, (d) 21 kyr BP, (e) 20 kyr BP, (f) 19 kyr BP, (g) 18 kyr BP, (h) 17 kyr BP, (i) 

16 kyr BP, (j) 13 kyr BP. Note the varying contour intervals. Diagram (k) is a graphical 

representation of the two eustatic sea level models considered in this study: Bassett et al., 

(2005) (grey line) and the revision to this model presented by Bradley et al. (2010) (and 

as referred to in Section 4.4.5 as the EUST3 model)(black line). 
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This is the procedure applied here: the original Bassett et al. model is replaced by an 

improved non-local model, referred to as EUST3 in Section 4.5. The new model is a 

revision of the Bassett et al. model for the Holocene period only (not constrained in the 

original analysis) to fit a suite of far-field data from China and Malay-Thailand (Bradley 

et al., (2010)) as described in Chapter 4. The eustatic sea level change generated by this 

model is shown on Fig. 5.4k: following an initial slowdown at 7 kyr BP, sea-level rises 

steadily towards present, with melting ending by 1 kyr BP. This pattern of Holocene 

eustatic sea level change is compatible with another, independently constructed model 

(e.g. Lambeck and Purcell (2005)).  The combination of the EUST3 global model 

(Bradley et al., (2010)) (with the British Isles component removed) and the Brooks et al. 

BIIS regional model will be referred to as the new ice model.  

 

Comparing the predictions using the new ice model to the Brooks et al./Bassett et al. 

model, it is apparent that the key misfits over the late Holocene have been greatly 

reduced (see Fig. 5.5). Specifically, the over-predicted Holocene highstand is reduced at a 

number of sites: NW Coast of Ireland (site 93, West Donegal and site 94, North Donegal 

shown in the Appendix G); Northern England (e.g. sites 35, North Wales and 25, N.E. 

England South); and the following sites in the Appendix G: 24, N.E. England Central; 31, 

Isle of Man and 34, Mersey. In addition, the location of the zero isobase is more 

consistent with the general pattern inferred from the sea-level and shoreline data. At more 

southerly sites, such as site 50, Hampshire; 40, Fens and 48, Kent (latter two shown in 

Appendix G), the new ice model predicts a smooth rise in sea level during the mid-to-late 

Holocene which is more consistent with the general character of the data. Additionally, 

there has been a slight increase in the magnitude of the Late Devensian fall at the most 

Northern sites, as is apparent at sites 11, Arisaig; 12, Kentra and 54, Knapdale.  

 

Despite this improvement, there remain some misfits to be addressed. The model still 

underpredicts the amount of sea-level fall across the Northern sites following the end of 

glaciation (15-16 kyr BP) such as at site 11, Arisaig. As described above, the global ice 

model results in two periods when RSL changes from a fall to a rise at more northern 

sites (due to accelerations in the rate of melting at ~ 14 and ~ 11 kyr BP). At the time of 

these two accelerations, the predictions generally lie below the data or at a time with no 

SLIPS (e.g. see sites 11, Arisaig and 54, Knapdale). As discussed above, the RSL 
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oscillation at ~ 14 kyr BP is due to the occurrence of meltwater pulse 1A in the non-local 

ice model. Although there are no SLIPs at this time, the data following this event (dated 

at 12-13 kyr BP) come from isolation basins, with marine sedimentation prior to the age 

of the SLIP, indicating no RSL fall-rise-fall sequence. Therefore, the modelled 

oscillations, as shown at sites 11, Arisaig and 54, Knapdale are too large. 

 

 

Between 8-10 kyr BP there is an apparent spatial variation in the ability of the model to 

capture the observed trend in the data. At sites situated along the Northern and NE coast 

(e.g. sites 25, N.E. England South; 11, Arisaig; 21, Ayr and 16, Tay Valley) the predicted 

sea-level values fall either below the SLIPs or there are gaps in the data and therefore no 

constraint. This is not seen at more distal and central sites (e.g. sites 47, Thames; 45, 

Bristol Channel and 31, Isle of Man) where the predicted sea-level change captures the 

observed trend and lies within error limits of the SLIPs. 

 

 

5.3.3. Determining optimal earth model parameters 

 

 

The possibility of improving the fit further by varying the Earth model viscosity structure 

will now be considered. A forward modelling analysis was conducted for a suite of earth 

models and the χ
2
 misfit calculated; this is defined as: 
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iSL   and 
obs

iSL are the predicted and observed sea-level, respectively, defined at a 

given location and time i; i is the error on the observed sea-level point and N is the total 

number of data points. 
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Fig. 5.5: Comparison of predicted and observed sea level at nine locations across the study region. Symbols for the observed data are summarized 

within the text and Appendix A. Predictions based on the optimum earth model inferred in Bradley et al. (2009) and as described in Chapter 3 - 

lithosphere thickness 71 km, upper mantle viscosity 0.5 × 10
21

 Pa s, lower mantle viscosity 3 × 10
22

 Pa s - are shown for the Brooks et al./Bassett 

et al. ice model (dashed black line; see text for details) and the new ice model presented in this analysis (solid red line).  The solid blue line is for 

the new ice model and an earth model that is identified from χ
2
 results presented in Fig. 5.8. This Earth model is identical to the one inferred in 

Bradley et al. (2009) except that the viscosity in the lower mantle is higher, at 6×10
22

 Pa s. Note the varying scale for each plot. Predictions for 

all sites are shown in Appendix G
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The suite of earth models considered spans the spread of parameters inferred in a 

range of GIA sea level studies (e.g. Davis et al., (1999), Forte and Mitrovica (1996), 

Kaufmann and Lambeck (2002)). The minimum and maximum values for each earth 

model parameter are: 71, 120 km for lithosphere thickness, 0.1-5 × 10
21 

Pa s for upper 

mantle viscosity, and 1-50 ×10
21 

Pa s for lower mantle viscosity. Adopting a thicker 

lithosphere (96 km or 120 km) resulted in a significant increase in the minimum χ
2
 

value (greater than 99% confidence) compared to that for the 71 km model. Therefore, 

results in the following sections will only be shown for a lithosphere thickness of 71 

km. As mentioned before, the results will also be compared to the range of feasible 

earth models inferred in a recent analysis of GPS crustal motion data from across 

Great Britain (see Chapter 3 and Bradley et al., (2009)). 

 

Results are shown in Fig. 5.6 for both ice models considered - the Brooks et 

al./Bassett et al. model and the new model - as well as for the entirety of data from 

Great Britain (including all basal and intercalated sea level index points as listed in 

Appendix A) and Ireland separately. When the two data sets were combined, due to 

the greater number of SLIPs across Great Britain (1107) compared to Ireland (61), the 

Great Britain data set dominated the results to produce χ
2 

values which were very 

similar to those shown in Fig. 5.6a and 5.6c. Therefore, the results for the two data 

sets are shown separately to determine the optimum viscosity values for each region.  

 

There are a number of key points to conclude from the χ
2
 results in Fig. 5.6. Firstly, 

the minimum χ
2
 misfit (and thus optimum earth model parameters) falls within the 

range of best-fitting earth models inferred in the above mentioned study (Bradley et 

al., (2009) and Section 3.3) of present-day vertical land motion in Great Britain. 

When comparing the results for the two different ice models, there is a clear reduction 

in the χ
2
 values for the better fitting viscosity model; however, there is only a minor 

change in the optimum earth model parameters, with a slight shift in the optimum 

range of lower mantle viscosities to higher values. A similar result was found by 

Lambeck et al., (1996), who showed that the adopted late Holocene global melt 

history reduced the variance between predicted and observed sea level but did not 

alter the earth-model parameters at which the variance minimum occurred. For the 

new ice model, the Irish data prefer a lower mantle viscosity greater than 1×10
22

 Pa s, 
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for an upper mantle viscosity between 0.3-5×10
21 

Pa s. This broad range of plausible 

parameter values contrasts to the very limited range permitted by the Great Britain 

data (see the 95% confidence boundary in Fig. 5.6c). 

 

While the optimum models for each of the two data sets considered in Fig. 5.6 are not 

incompatible, the Great Britain data produce a remarkably tight constraint on 

plausible viscosity models (to within 95% confidence). To investigate this further, the 

complete Great Britain dataset was separated into three geographic regions: (1) 

‘northern data’ which includes all sites that were covered throughout the last 

glaciation and whose relative sea-level signal would contain a significant contribution 

due to the local ice loading. This set included sites 1-23, 28, 29 and 31; (2) ‘central 

data’ which includes sites 24-27, 30, 32-35, where the influence of the local ice 

loading is reduced; (3) ‘southern data’ which includes all sites with little or no 

evidence of a highstand and whose relative sea-level signal would be dominated by 

non-local ice sheet changes. This includes sites 36-65 across Great Britain. It is noted 

that the majority of SLIPs in this subset are limited to the late Holocene.  

 

The χ
2
 misfit functions for these three subsets of the Great Britain data are shown on 

Fig. 5.7. It is apparent when comparing Fig. 5.7a to Fig. 5.6c that it is the northern 

data sites, which result in the limited range of plausible earth models inferred for the 

complete Great Britain data set. There is a marked shift in the geometry of the χ
2 

surface when these northern sites are removed (compare Fig. 5.7a to 5.7b & 5.7c). 

The central and southern sites are compatible with a wider range of upper mantle 

viscosity values compared to the northern data. Indeed, sub-dividing the data further 

demonstrates that the pre-Holocene data from northwest Scotland are responsible for 

the remarkably tight constraint on upper mantle viscosity evident in Fig. 5.7a.  
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Fig. 5.6: Contour plots of the normalized χ
2
 misfit between predicted and observed sea 

level as a function of upper and lower mantle viscosity (νum and νlm respectively) for a 

lithosphere thickness of 71km. The top two frames (a & b) show results for the 

Brooks et al./Bassett et al. ice model (see text for details) and the lower two frames (c 

& d) show those for new ice model presented here. The results in frames (a) & (c) 

consider data from Great Britain data and those in frames (b) & (d) consider data from 

Ireland. The black line represents the χ
2
 value below which the quality fit is equivalent 

to 95 % confidence (194 in frame (a), 329 in frame (b), 106 in frame (c) and 272 in 

frame (d)). The triangle marks the location of the minimum χ
2
 value. The white line 

marks the region of optimum parameter values (95% confidence) inferred from the 

CGPS measurement of crustal motion (Bradley et al., (2009) and as described in 

Chapter 3).  Note that the darkest blue colour represents χ
2
 values greater than the 

maximum on the scale bar (400).   
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Fig. 5.7: Contour plots of the normalized χ
2
 misfit between predicted and observed sea 

level as a function of upper and lower mantle viscosity (νum and νlm respectively) for a 

lithosphere thickness of 71km for the new ice model.  Frame (a) shows results for 

'northern' data, (b) for 'central' data, and (c) for 'southern' data (see main text for more 

information).The triangle marks the location of the minimum χ
2
 value. The black line 

represents the χ
2
 value below which the quality fit is equivalent to 95 % confidence 

(96 in frame (a), 242 in frame (b) and 94 in frame (c)). Note that the darkest blue 

colour represents χ
2
 values greater than the maximum on the scale bar (400).   

 

 

The variation in the range of optimum earth models with data region can be attributed 

to two factors. Firstly, with increasing distance away from the centre of ice loading, 

the relative sea-level signal includes an increasingly larger contribution from non-

local processes (Fig. 5.1), such as the influence of peripheral bulge dynamics 

associated with Fennoscandian GIA. In addition, the influence of eustasy and 

syphoning will also become more significant. Peripheral bulge dynamics and 

syphoning are mostly sensitive to viscosity structure in the deep upper mantle and 

lower mantle (Mitrovica and Milne 2002). Therefore, the southern data (Fig. 5.7c), 

which are influenced more strongly by these processes, do not result in a tight 

constraint on upper mantle viscosity. This contrasts to the northern data, which exhibit 

a stronger sensitivity to changes in the value of upper mantle viscosity adopted. 

Secondly, the SLIPs within the southern Great Britain and/or Ireland datasets are 

concentrated over the late Holocene (two-thirds of the Primary SLIPs within the 

Ireland dataset are from the last 5000 yrs only). Given the relatively early demise of 

the BIIS (by ~ 15 kyr BP), the contribution of land motion due to this ice sheet is 

small by the late Holocene. Also, the amplitude of the signal during the late Holocene 
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is relatively small and so the data can be fit with a larger number of viscosity models 

(compared to those from the glacial period or early Holocene).  

 

This variation in sensitivity to earth model parameters with location emphasises the 

advantage of integrating the full range of the Great Britain and Ireland data to 

constrain both earth model and ice model parameters.  The northerly sites provide the 

best controls on earth model structure beneath the study region while the southern 

sites provide better constraints on non-local earth model structure and the background 

(non-local) ice model.  

 

As the optimum viscosity models for the Great Britain RSL data are constrained to 

such a small region of the viscosity space considered (Fig. 5.6c), these results have 

been extended to include values of lower mantle viscosity up to 1×10
23

 Pa s and a 

denser sampling of upper mantle viscosity in the range 3-8×10
20 

Pa s (at 1×10
20 

Pa s 

resolution). Fig. 5.8a shows the χ
2 

values for this extended and better resolved 

viscosity space for the complete data set (Great Britain and Ireland). The χ
2
 minimum 

is captured at viscosity values of 5×10
20 

Pa s and 6×10
22 

Pa s in the upper and lower 

mantle, respectively. Note that the 95% confidence limits on upper mantle viscosity 

are relatively tight compared to those for lower mantle viscosity. 

 

Fig. 5.8b shows the results when only SLIP data from the Great Britain database 

defined as 'basal points' (as listed in Appendix A and defined above) and Primary 

SLIP data from Ireland were used. This was to examine the affect of removing any 

data points which may be affected by local processes, such as compaction. The results 

in Fig. 5.8b indicate that if there are data significantly influenced by compaction in the 

data base, they do not impact the inference of Earth viscosity structure. A similar 

exercise was carried out to examine the possible influence of changes in palaeo-tidal 

range on the data, the effect of which has been highlighted in many studies (Hinton 

(1995), Gehrels et al., (1995), Shennan et al., (2003)). The results (not shown) 

indicate that this signal, which is not accounted for in the data used here, does not 

significantly impact the inferred earth viscosity model.  
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Fig. 5.8: Contour plots of the normalized χ
2
 misfit between predicted and observed sea 

level as a function of upper and lower mantle viscosity (νum and νlm respectively) for a 

lithosphere thickness of 71 km. Note that the range and density of viscosity values 

considered differs from those adopted in Figs 5.6 & 5.7 in order to better capture the 

region of best-fitting viscosity values. All results are based on the new ice model. 

Frame (a) shows results for all the data (from Great Britain and Ireland), while frame 

(b) shows the results using 'basal points' from Great Britain and primary index points 

from Ireland (see text). The triangle marks the location of the minimum χ
2
 value. The 

black line represents the χ
2
 value below which the quality fit is equivalent to 95 % 

confidence (111 in frame (a) and 130 in frame (b)).  

 

 

 

5.4. Discussion and Conclusions 

 

From the above forward modelling analysis, within the 95% confidence limits, the χ
2
 

misfit minimum was obtained for two earth models with the same lithosphere 

thickness and upper mantle viscosity (71 km and 5×10
20 

Pa s, respectively) but 

varying lower mantle viscosity: either 3×10
22

 Pa s (the starting model) or 6×10
22

 Pa s.  

At most sites an equally good fit is achieved adopting either model, with the higher 

viscosity model producing a consistently higher sea level, up to 1m (see Fig. 5.5).  

 

Despite the similarity in the predictions, there are a number of key sites where the data 

lie closer to predictions generated with the weaker lower mantle viscosity model 

(3×10
22

 Pa s) due to the reduced height of Holocene highstand. For example at sites 

along the West coast of Ireland (93, West Donegal and 94, North Donegal) and Great 
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Britain (31, Isle of Man; 34, Mersey and 35, North Wales) the stronger lower mantle 

viscosity model (6×10
22

 Pa s) generates a highstand outside the limits of the SLIP 

data. Additionally, from the analysis of GPS data (see Bradley et al., (2009) and 

Section 3.3), which provides a constraint on the earth model that is only weakly 

influence by uncertainties in the ice model; an optimum fit was also produced using 

the weaker lower mantle viscosity. Therefore, the following optimum earth model 

parameters were adopted: lithosphere thickness of 71km and upper and lower mantle 

viscosity values of 5× 10
20 

Pa s and 3×10
22

 Pa s, respectively. These model parameters 

are similar to those inferred from past relative sea level studies for the British Isles 

(e.g. Lambeck et al., (1998), Shennan et al., (2000)), in which the lower mantle 

viscosity was found to be greater than 1×10
22

 Pa s and the upper mantle viscosity ~ 4 

×10
20

 Pa s.  

 

Using this optimum earth model and the new ice model, maps of the spatial patterns 

of present day relative sea-level change and vertical land motion across the British 

Isles can be produced (Fig. 5.9). These maps are useful as they provide a baseline for 

studies investigating sea-level hazard associated with future climate change (Lowe et 

al., (2009)).  To better understand the origin of present day sea-level change due to 

GIA across the British Isles, the total signal (Fig. 5.9a) is decomposed into the signal 

due to non–local ice sheets (Fig. 5.9c) and the signal due to the BIIS only (Fig. 5.9d). 

The non-local ice sheets produce a long-wavelength sea level rise across the region, 

varying between 0.8 mm yr
-1

 across Scotland to 0.6 mm yr
-1

 across southern England. 

This contrasts with the concentric pattern of sea level fall due to the BIIS only, with a 

maximum rate of 1.7 mm yr
-1 

centred over central Scotland. The total present-day 

relative sea-level signal replicates this concentric pattern of sea level fall, but of 

reduced spatial magnitude due to the influence of the non-local ice sheets.  
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Fig. 5.9: Predictions of present-day sea-level change (a) and vertical land uplift (b) for 

the new ice model and its optimum earth model. The lower frames show the 

contribution to (a) from all ice sheets except the British-Irish Ice sheet (c) and from 

the British-Irish Ice sheet only (d). All predictions include the respective ocean 

loading and rotation component. 

 

192



 

Comparing Fig. 5.9a to Fig. 5.9b, the spatial pattern of present day sea level and 

vertical land motion are very similar in magnitude, but as to be expected, of opposite 

sign. The region of maximum uplift (0.95 mm yr
-1

) and present day sea level fall (- 

1.1 mm yr
-1

) are both centred over western Scotland, which is near the region of 

maximum ice thickness at the LGM. The predicted maximum uplift rate is compatible 

with that obtained from GPS data (1.1 ± 0.3 mm yr
-1

; Teferle et al., (2009)). Note, 

however, that the location of the GPS-inferred maximum is located in the east of 

Scotland (Edinburgh). In contrast, the location of our maximum predicted uplift rate is 

compatible with that inferred directly from the RSL data (Gehrels (2010); Shennan 

and Horton, (2002)) but the magnitude is less by 0.65 mm yr
-1

. However, the rate 

obtained from the RSL data is based on a single date (Gehrels (2010)) and so the 

significance of this difference in amplitude requires further investigation. An 

interesting point to note when comparing frames a & b in Fig. 5.9 is the location of 

the zone of zero sea-level change, or zero isobase in frame (a). This does not coincide 

with the zero uplift contour in Fig. 5.9b. This is largely due to ocean syphoning, 

which contributes a present-day global sea-surface fall of ~ 0.3 mm yr
-1

 and so is a 

component of the GIA-induced sea-level change but not vertical land motion.  

 

On comparing the dashed and solid lines in Fig. 5.5, it is evident that there remain a 

number of local scale misfits between predicted and observed sea-level changes, most 

notably at northern sites around the timing of mwp-IA (around 14 kyr BP). As 

mentioned above, the predicted magnitude of the sea-level oscillation (fall-rise-fall) 

associated with this event is too large, as there is no isolation basin at any site 

recording an oscillation.  The fit can be improved in a number of ways, for example: 

(1) changing the timing and amplitude of local ice loss as well as the earth viscosity 

model to steepen the land uplift component, (2) change the volume partitioning of the 

meltwater source. With regard to the latter, the amplitude of the rise associated with 

mwp-IA will be particularly sensitive to changes in the melt volume contribution from 

the Fennoscandian ice sheet. Other remaining misfits include an underprediction in 

amplitude of Late Devensian sea-level fall at some northern sites (e.g. 11, Arisaig and 

100, Dundalk). It is hoped that with future revisions to the regional ice model to 

incorporate revised interpretations of trimline data (Ballantyne (2010)), this misfit 

might be resolved. It is possible that some of the remaining data-model misfit relates 
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to the influence of lateral variations in earth properties. Lateral structure has been 

shown to play a significant role in the GIA of Fennoscandia (e.g. Whitehouse et al., 

(2006)) and so an important aim for future studies is to determine the significant of 

this structure for interpreting observations of both RSL and present-day land motion 

in the British Isles.  

 

As mentioned above, the main advance and retreat phases of the regional ice model 

were taken from Sejrup et al., (2005)), who suggested ice growth across the North Sea 

from 32 kyr BP. Recent studies (Scourse et al., (2009), Sejrup et al., (2009)) now 

suggest that this early phase of ice sheet growth across the North Sea was later, 

around 29 kyr BP. There still remain relatively few onshore dates with which to 

constrain the timing of this pre-LGM glaciation, with most published dates suggesting 

that Scotland remained ice free till after 35 kyr BP (Bos et al., (2004), Brown et al., 

(2007), Jacobi et al., (2009)). Preliminary calculations (not shown here) to investigate 

the sensitivity of the sea-level predictions to the timing of this early event indicate that 

the largest impact is relatively small (< 5 m) and occurs before and during LGM 

times. Given that there is a lack of pre LGM RSL data of this age, the most direct 

means of improving the accuracy of the ice history for this time period is by dating 

morphological features.  

 

In summary, a new GIA model for the British Isles is presented which brings together 

a number of elements from previous work and earlier Chapter of this thesis to address 

the inherent non-uniqueness in the model parameter inference procedure for this 

region. We adopted a regional ice sheet reconstruction that was based on some of the 

most recent field constraints from both Great Britain and Ireland (Brooks et al., 2008; 

Shennan et al., 2006 and as outlined in Chapter 2). This regional ice model was 

combined with a new global ice model which is the combination of results from two 

recent studies: one which focused on best-fitting a suite of far-field sea-level data for 

the LGM to late Glacial period (Bassett et al., (2005)) and a second which extended 

this model by calibrating to Holocene sea-level data from China and the Malay-Thai 

Peninsula (see Chapter 4, Section 4.5 and Bradley et al., (2010)). Incorporating this 

new global ice model resulted in a reduction in the magnitude of predicted Holocene 

highstands and, therefore, significantly improved data-model fits at a number of sites 
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compared to previous studies (Brooks et al., (2008), Shennan et al., (2006)). The new, 

hybrid, ice model was employed in a detailed forward modelling analysis to infer 

earth model viscosity structure using, for the first time, RSL data from both Great 

Britain and Ireland. This combined data set results in a small set of optimal viscosity 

models in which the upper mantle viscosity is tightly constrained. The set of optimal 

optimal earth models is compatible with that inferred using observations of present-

day vertical land motion (see Sections 3.3, 3.4 and Bradley et al., (2009)). 

 

The optimum ice-earth model pair resulting from this study represents a significant 

improvement compared to the earlier analyses of Shennan et al. (2006) and Brooks et 

al. (2008). However, there remain data-model misfits at a number of sites which 

reflect limitations in the GIA model (e.g. consideration of only 1D earth structure) as 

well as possible inaccuracies in the data linked to sediment compaction and the 

influence of changes in tidal range. Studies are already underway to address some of 

these issues.  
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Chapter 6: Summary and Future work 
 

 

6.1. Introduction  

 

Many past studies have investigated the GIA across British Isles by primarily modelling 

RSL data to provide constraints on various model components including the regional ice 

sheet history, viscoelastic earth structure and the global meltwater signal. But as with 

many GIA modelling studies using near-field RSL data, the inference procedure is non-

unique. This is particularly true for the British Isles data due to the comparable magnitude 

between the local isostatic signal and the global eustatic signal. As a result, the data are 

sensitive to both the choice of regional ice and earth model parameters and the global ice 

model. This sensitivity, along with the highly non-monotonic pattern of RSL change 

across the region has led to significant differences in the quality of the fit to the RSL data 

and between the choice of parameter values inferred in past studies.   

 

The main aim of the research presented in this thesis was to address the GIA of the 

British Isles using a methodology intended to reduce this ambiguity by adopting 

additional datasets that have different sensitivities to the key model parameters; 

specifically CGPS data from across the Great Britain and suite of far-field RSL data. In 

Chapter 3, for the first time, CGPS data of vertical land motion was shown to provide a 

robust constraint on the regional earth structure, relatively independent to the choice of 

input regional or global ice model. Holocene far-field RSL data, (Chapter 4) have been 

used to extend a previously published global ice model (Bassett et al., (2005)) by 

improving the melt history during this period. A new spatial and temporal history for the 

BIIS (Chapter 2) during the Late Devensian has been developed which is compatible with 

the most recent (at the time of publication) geomorphological evidence. These results 

have been combined to produce a final revised GIA model for the British Isles which has 

been constrained, for the first time, using an extended RSL database comprising data 

from across both Great Britain and Ireland.  

 

Given that extensive discussion and summaries are provided at the end of Chapters 2-5, 

the main aim of this chapter is to present the main findings and wider implications of the 

research with respect to the aims set out in Chapter 1, Section 1.4. In addition, possible 
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avenues for future research are suggested that either address issues outstanding from this 

work or expand upon the results obtained. 

 

6.2. Revised BIIS model and modelling of the RSL data 

 

A new BIIS model has been developed (Chapter 2) which is consistent the most recent 

geomorphological evidence from across the British Isles and North Sea and whose ice 

thickness has been corrected to take into account underlying topography. The glacial 

history of the BIIS prior to LGM has been considerably altered to include an extensive 

two-stage glaciation across the NSB. The ice sheet is greatly thickened and extended 

within the Irish Sea, out along the NE Atlantic margin and across Ireland. During 

deglaciation, the IIS now undergoes a rapid thinning and retreat, with complete ice 

removal across the British Isles by 15 kyr BP. A short lived ice stream advance down to 

the Isles of Scilly is also now included. 

 

The primary conclusion from the modelling to develop an improved IIS model was the 

need for a thick, spatially extensive ice sheet during the final glacial phase, which 

underwent a rapid retreat and thinning after 21 kyr BP and throughout the deglacial 

phase. This model is substantially different to an earlier proposed model for the IIS and 

highlights the importance of combining a realistic IIS component within GIA models for 

the British Isles.  

 

In the Brooks et al. model, the BIIS build up is rapid during the first glacial episode, with 

ice expanding across the NSB to coalesces with the SIS and out onto the continental shelf 

in ~ 1 kyr, reaching maximum extent by 32 kyr BP. Since the development of this model, 

some new evidence now questions the nature of this first glacial episode, implying it may 

have been a more gradual growth, expanding over 1000s yr and/or reaching maximum 

glacial extent later, after 30 kyr BP. Preliminary sensitivity tests have shown that the 

impact of this earlier glacial phase on the RSL predictions is small and occurs prior to or 

during LGM times. Also, accurately altering this earlier phase of the BIIS history is 

limited due to the relatively few available dates which constrain the spatial and temporal 

history. The Mid-Late Devensian behaviour of the BIIS is an aspect that requires further 
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research in the future, but such a study depends on an increase in older, pre 30 kyr BP 

records. Possible records to target include dating of offshore geomorphological landforms 

or additional IRD records.  

 

A second issue which arose during the development of the Brooks et al. model is the 

interpretation of trimline evidence used as the main constraint for the maximum surface 

elevation of the ice sheet, and as such the input ice thickness. This alternative 

interpretation has implications for the defined maximum thickness of the BIIS in future 

modelling work. Introducing a thicker ice sheet, which exceeds the maximum earlier 

altitude of 1100 m may provide a possible solution to address the underprediction of RSL 

during the Late Devensian (as discussed below) and would also be more consistent with 

ice model reconstructions generated using glaciological models (e.g. Boulton (2010), 

Hubbard et al., (2009))  

 

The new British Isles GIA model presented in Chapter 5 was calibrated using an RSL 

database which, for the first time, included data from across both Great Britain and 

Ireland. This new model captures reasonably well the regional trends in the RSL data at 

most of the 80 localities. By combining the regional Brooks et al. model (Chapter 2) with 

the new global eustatic model (Chapter 4), the previous identified misfit in the timing and 

height of the Holocene highstand and the form of sea level rise across Southern sites has 

largely been resolved.  

 

A key issue which has not been resolved is the underprediction in the sea level amplitude 

during the Late Devensian, which is most apparent across the Scottish Sites and around 

the North West coast of Ireland. In Chapter 2, the spatial and temporal history of the IIS 

was examined in greater detail to try and resolve this misfit for a selection of the Irish and 

Great Britain RSL data sites. It was concluded that it was not possible to recreate the 

higher predicted RSL during the Late Devensian while maintaining the fit to data during 

the Holocene through reasonable adjustments to the local ice sheet history. Note that, this 

sensitivity analysis did not consider increasing the thickness of the Great Britain 

component of the BIIS as, at the time of the model development; this was constraint by 

the trimline data.  
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One method of generating higher RSL during the Late Devensian is to increase the 

thickness of the BIIS, which would incorporate the revised interpretation of the trimline 

data, as mentioned above.  Using a 3D numerical (thermo-mechanical) ice model, which 

is forced by realistic climatic and environmental factors (Hubbard et al., (2009)), a model 

of the spatial and temporal history of the BIIS during the last glacial cycle was developed 

which suggests a thicker ice sheet than the trimline evidence indicates (when interpreted 

as an ice surface constraint). Preliminary calculations (G. A. Milne, personal 

communication) using the model output of Hubbard et al., (2009) to predict RSL across 

the British Isles have shown that a reasonable fit to the RSL data can be achieved and the 

underprediction during the Late Devensian is largely removed. To rigorously investigate 

resolving this remaining misfit and reinterpretation of the BIIS thickness will also require 

older sea level data (either SLIP or limiting data) with which to calibrate any revised 

model outputs. In the current database there is only 64 SLIP older than 10 kyr BP and it is 

hoped in the future this can be increased.  

 

A second issue which has not been addressed and only briefly mentioned within this 

thesis is the use of predicted and observed RSL data from sites across Scotland to 

constrain the magnitude and source of mwp-1A. The source distribution, magnitude and 

causal mechanism associated with this global ~20 m rise in eustatic sea level is still not 

fully resolved and is widely debated in the general science community. Yet it is important 

to understand these factors not only to better understand the behaviour of the climate 

system and ice sheets during periods of rapid climate change but also for the numerous 

feedback mechanisms. For example, the large flux of freshwater into the oceans during 

meltwater pulses would have most likely impacted the pattern of ocean circulation (e.g. 

Weaver et al., (2003)). Milne et al., (2006) highlighted the sensitivity of RSL predictions 

to changes in the adopted dominant source ice sheet for mwp-1A, with a 2 m higher sea 

level predicted with a AIS source compared to using a Northern hemisphere (LIS) source.  

But using this sensitivity to resolve some of the debate about the source of mwp-1A is 

only possible if there is a sufficient amount of suitable observed RSL data with which to 

test the differences between the possible scenarios. In the current RSL database there are 

only 4 sites (8, 9, 11 and 54) with records (SLIPs and associated field evidence) which 
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extend around the timing of mwp-1A and so could be used to constrain the magnitude 

and source of this event. The Brooks et al. model predicts a RSL oscillation (fall-rise-fall) 

at these sites ranging between 5.9 - 6.6 m. Despite no SLIPs and noted gaps in the records 

at these sites during this period, field observations of changes in the microfossils and 

sedimentation do not record a RSL fall-rise-fall of this magnitude, as is apparent by the 

noted misfits to the RSL predictions (see Chapter 2 and Chapter 5). Shennan (1999) 

constrained the maximum size of mwp-1A that could be fit within the limits from the 

observations of sea level change at site 11, to no larger than 1-2 m, which is notably 

smaller than that predicted using the Brooks et al. model. 

 

Capturing the trend in sea-level during this period could be improved by altering a 

number of components of the input model which affect the size of this oscillation.  

For example, the rate of modelled meltwater flux over this period could be too large, 

which in the Bassett et al. model is 22 mm yr
-1

. Alternatively the rate of regional uplift in 

the Brooks et al. model could be too low. Another factor which affects the size of this 

RSL oscillation is the contribution of the SIS to the meltwater pulse. Most past modelling 

studies have examined the sensitivity of RSL predictions to changes in the contribution 

from either the AIS or LIS, with little consideration to the possible contribution from the 

SIS over this period. Within this thesis, no sensitivity analysis was conducted to examine 

the affect of the SIS on RSL predictions, either as a possible avenue to address the misfit 

over the timing and amplitude of mwp-1A or the underprediction during the Late 

Devensian. It is noted that the SIS within the Bassett et al. model is largely unchanged 

from the version published in ICE3G (Tushingham and Peltier (1991)), which has been 

proceeded by newer, more up to date models of the spatial and temporal history of the ice 

sheet (e.g. Lambeck et al., (2010)). It is considered that prior to using the RSL record 

around the British Isles to constrain the magnitude or source of mwp-1A, the BIIS model 

should be combined with a more up to data SIS model and a more comprehensive 

examination of the affect of the SIS upon modelling predictions conducted.   

 

An extensive forwarding modelling analysis was conducted to examine the sensitivity of 

RSL predictions to changes in the modelled viscoelastic earth structure. This work 

highlighted the distinct spatial sensitivity of the British Isles RSL data in constraining the 
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choice of input model parameters. It was found that data taken from northern sites 

(predominately located across Scotland and Northern England) exhibited a stronger 

sensitivity to the choice of earth model parameters and provided the best constraint on the 

optimum range of regional viscoelastic earth model parameters. In contrast, data from 

sites across Southern Great Britain and Ireland are more strongly influenced by the non-

local earth and ice model parameters. This is important to bear in mind for future projects 

which aim to target new areas for data collection to better constrain regional model 

parameters: an increase in older records from across Scotland and Northern England 

would be more useful in this regard.  

 

SLIPs were one of the main data types used to constrain the new GIA model presented in 

this thesis. It is important to ensure that when using such data, any local scale processes 

not related to GIA that may affect the reliability and quality of the data samples have 

been fully considered. To address the issue of SLIP reliability, the results in Chapter 5 

were generated for different subsets of SLIPs which were considered to be of the highest 

quality and accuracy. Within these smaller subsets, all points were removed which may 

have been affected by post-depositional compaction or consolidation (such as intercalated 

samples), or by changes in the paleo-tidal regime over the Holocene. Using these smaller 

subsets of data had little or no impact on the inference of regional earth viscosity 

structure.  

 

The affect of changes in the paleo-tidal regime on the RSL data was only briefly 

addressed within this thesis. Post-modelling corrections have so far only been applied at a 

few sites across Southern Britain and only for during the Holocene. Early modelling work 

into changes in paleo-tidal ranges across the NW European shelf and post LGM have 

highlighted that along the NW coast of Scotland and Ireland, tidal currents were 

considerably larger prior to 10 kyr BP, by up to 8 m (Scourse et al., (2010), Uehara et al., 

(2006)). RSL data from along this coast have been shown to provide the best constraint 

on earth model parameters and also the source and magnitude of mwp-1A. Additionally, 

these are some of the main regions where misfits between the predictions and the 

observations go unresolved. Therefore, an important avenue for future study is a careful 
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examination of the influence of changes in tidal range on the interpretation of SLIPs at 

sites across this region (such as 11 and 54).  

 

6.3. Modelling of CGPS data  

 

A principal aim of this thesis was to determine if a new CGPS dataset of present-day 

vertical and horizontal crustal motions could be useful in reducing the non-uniqueness of 

the British Isles GIA problem by providing an independent constraint on the range of 

earth model parameters.  

 

To isolate the deformation signal driven by the BIIS only and effectively remove the 

influence of other ice sheets, relative rates were calculated for both the vertical and 

horizontal motions. It was concluded that adopting this method did not produce a 

coherent pattern in the observed horizontal motion, and as such this motion component 

was not used within the modelling analysis. This was not due to limitations with the 

approach of calculating relative rates, but the small magnitude of the horizontal 

deformation signal due to the BIIS only (See Fig. 3.1 b and c) compared to the much 

larger and dominant contribution from the tectonic motion of the Eurasian plate and the 

deglaciation of the LIS and SIS. The current accuracy of the absolute observed horizontal 

motion (0.29 mm yr
-1

) is larger than the maximum size of the predicted regional BIIS 

signal (0.1 mm yr
-1

). The precision of the horizontal rates will improve as time series 

lengthen and analysis techniques are improved. It will certainly be worth revisiting the 

horizontal data once the level of precision is high enough to resolve a signal of amplitude 

~ 0.1 mm yr
-1

.   

 

Although there was a broad agreement in the spatial pattern of absolute predicted and 

observed vertical signal, a difference in the location of the centre of uplift between the 

two signals which was raised briefly in Chapter 3. The predicted centre of uplift is 

located across western Scotland whereas the observed is located across eastern Scotland. 

It was suggested that this difference could be due a number of factors such as the 

precision of the observed signal, the limited distribution of data sites (only 16 in the 

current study) or a flaw in the adopted ice-earth model. Since the publication of the data 
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used in this study, a revised set of vertical motions at the same 16 sites has been 

developed. This updated dataset, which will be published soon, was generated using the 

new ITRF2005 reference frame, an updated atmospheric modelling technique and a 

newer reference frame network (F. N. Teferle, personal communication). In this new 

dataset, the centre of uplift is now situated across western Scotland, which is more 

consistent with both the spatial pattern of predicted vertical motion and the inferred 

location of centre of the BIIS. This implies that the earlier difference in the geometry was 

due to limitations in the observed data rather than problems with the choice of model 

parameters.  

 

From the forward modelling analysis in Chapter 3, it was concluded that the relative 

vertical rates can be used to limit the possible range of viscosities for the upper mantle 

but are not able to constrain effectively the lithosphere thickness or lower mantle 

viscosity. The lack of sensitivity to the deeper earth structure is to be expected as the 

deformation field sampled by the data does not extend significantly into the lower mantle.  

A 71 km lithosphere thickness was chosen as the optimum value despite the same 

minimum χ
2 
misfit achieved for both the 71 km and 96 km values. This thinner 

lithosphere value is consistent not only with constraints from forward modelling of the 

RSL data but with estimates of the lithosphere thickness across the region inferred from 

seismic data (as outlined below).   

 

Another main conclusion from this thesis is that the range of viscosities constrained using 

the relative vertical rates were insensitive to changes in the regional ice history.  The two 

ice models compared (NS-Thick and Brooks et al.) may be considered insufficiently 

different to have fully examined the sensitivity to changes in the regional ice history; with 

the main difference between the two models being the revised deglaciation history for the 

IIS and the thickness and spatial extent along the western continental margin (see Chapter 

2, Section 2.4.3). In earlier preliminary work conducted as part of the forward modelling 

analysis (not shown), the range of optimum earth models was considered for a 

significantly different BIIS: the Shennan model (see Chapter 2), which has a significantly 

different spatial and temporal history compared to both the Brooks et al. and the NS-

Thick model. Using this model as an input to the GIA model had a minimal impact on the 
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range of inferred optimum viscosity values. These results were not presented as this 

model is now considered implausible; however, as part of the sensitivity analysis, they 

add further weight to the conclusion that the data are relatively insensitive to regional 

scale changes in the adopted BIIS model. 

 

A limitation of the CGPS analysis is the relatively small number of data sites (only 16 

across Great Britain) and lack of data from sites across Ireland. Since the publication of 

the CGPS dataset modelled in Chapter 3, as mentioned above, a newer version has been 

developed with vertical rates from 46 stations including sites from across Northern 

Ireland (F. N. Teferle personal communication). It is still not possible to determine rates 

from sites across the Republic of Ireland due to the relatively short time series of these 

CGPS stations. Due to the improved processing techniques applied to these 46 stations, 

the accuracy of the vertical rates has improved, with an average 0.34 mm yr
-1

, compared 

to 0.47 mm yr
-1

 for the dataset presented in Chapter 3. The aim is to extend this revised 

processing technique to include the horizontal rates in the near future. When the complete 

dataset becomes available, it is hoped that future research will consider the implication of 

a more precise and spatially extensive data set on the inference of earth model 

parameters. 

 

All sensitivity analysis conducted within this thesis were based upon the assumption of a 

simplified 1-D (depth dependant) viscosity structure. Recent work has shown that lateral 

variations in earth viscosity structure, whether heterogeneities in lithosphere thickness or 

mantle viscosity structure, can directly impact the prediction of 3D crustal velocities and 

RSL predictions (e.g. Kaufmann et al., (2000), Wu (2006), Wu et al., (2005)) A range of 

investigations using seismic data (including tomography and wide angle reflection data) 

have proposed that Great Britain, specifically Scotland and central Ireland is underlain by 

a 'hot, low density region within the upper mantle, possible originating from the Icelandic 

plume' (Bott and Bott (2004), Arrowsmith et al., (2005), Wawerzinek et al., (2008)). 

Clegg and England (2003) mapped the depth to the Moho across Great Britain and 

suggested a pronounced thinning below Scotland compared to Southern Britain.  No work 

has been conducted to examine the possible impact of such structure upon predictions of 
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either the 3D velocities or RSL predictions across the British Isles, so this is most 

certainly a target for future research. 

 

The influence of lateral earth structure may be particularly important for modelling the 

RSL data given the distinct spatial sensitivity of the RSL predictions to the choice of 

earth model parameters. It was demonstrated in Chapter 5 that data from northern sites 

exhibited a stronger sensitivity to the choice of earth viscosity structure compared to data 

from southern sites. It is also noted that the most significant and yet unresolved data-

model misfit exists at northern sites. 

 

6.4. Modelling of far-field RSL data   

 

One of the original aims of this thesis, and a key input to the final BIIS GIA model, was 

the development of a new global ice model, EUST3 (Bradley et al., (2010b) and as 

described in Section 4.4.5), which extended the published ice model of Bassett et al., 

(2005), which was unconstrained over the last 10 kyr, using a set of un-modelled far-field 

RSL data from China and Malay-Thailand. 

 

The EUST3 model was optimised to fit both datasets and is characterised by an initial 

slowdown in the rate of eustatic sea level rise at 7 kyr BP, associated with the final 

deglaciation of the LIS, followed by a continued rise in eustatic sea level till 1 kyr BP. 

The pattern of eustatic sea level rise between 5 and 1 kyr BP is driven by continued 

melting from the AIS, at an average rate of 0.68 mm yr
-1

, slowing to 0.36 mm yr
-1

 after 3 

kyr BP.  

 

As discussed in greater detail in Chapter 4, there is a large amount of evidence to support 

the continued melting of the AIS during the late Holocene (over the last 5 kyr), with the 

WAIS being the most likely source for the continued rise. However, it is important to 

note that, during the development of EUST3, no direct comparison was made between the 

revised pattern for the Holocene deglaciation history of the ice sheet and models of AIS 

deglaciation constrained using near-field evidence, such as RSL data or 

geomorphological observations. As far-field RSL data are generally only sensitive to the 
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total volume of the input global ice model, rather than the specific spatial and temporal 

history of the ice sheet configuration, this was not of key importance for this thesis. 

However, it is hoped that future research may compare the new Holocene deglacial 

pattern in EUST3 with an AIS model which is consistent with near-field observations.  

 

As was recently addressed in Milne and Mitrovica (2008), modelling eustatic sea level 

using far-field RSL records is not a straightforward procedure where observations of sea 

level change from a few or limited sites can be used as a direct indication of the global 

change in ice volume. This is emphasised by the differences between the two Holocene 

melt models that were developed in Chapter 4 when optimised to fit only the data from 

China or Malay-Thailand. Although the chronology and style of the melting between the 

two models was similar; with both preferring a staged slowdown beginning at 7 kyr BP 

and continued melting till 1 kyr BP; the average rate at which melt was added to the 

oceans during the last 5 kyr is markedly greater (0. 96mm yr
-1

) for the China model 

compared to the Malay-Thailand model (0.63 mm yr
-1

).  

 

Since the development of EUST3, the model has subsequently been compared to other 

far-field RSL data, including those from Sumatra, the Caribbean and along the Spain-

Portugal coastline (Leorri et al., (2010), Peros and Milne (2010)). Although these 

modelling studies were not as extensive as the analyses carried out as part of this 

research, the predicted RSL at these additional sites was compatible with the observed 

data. It would be useful in future work to further compare the model to other far-field 

RSL datasets. 

 

An important result from the forward modelling analysis in Chapter 4 is the distinctly 

different optimum earth viscosity structure identified for each region. It was not possible 

to define a single earth model that produced a high quality fit for the complete study area. 

The China data preferred weak values of upper and lower mantle viscosity, ruling out 

values greater than 1.5 × 10
20

 Pa s and 2 × 10
21 

Pa s, respectively. In contrast, the Malay-

Thailand data prefer larger values, generally ruling out upper mantle values that are less 

than 2 ×10
20

 Pa s.  Although both studies regions are located within the Eurasian plate 

and close to active subduction zones, these results imply a more geodynamically complex 
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shallow earth structure below China, related to a weak upper mantle region associated 

with the subduction zone and the influence of the Hainan Plume. Only recently has the 

influence of active subducting margins on RSL predictions using GIA models been 

explored (James et al., (2009)). One avenue of future research is to examine the impact of 

inferred lateral structure across China on RSL predictions using either a complete 3D 

earth model or a model with distinct weak layer within the upper mantle. Such a study 

may provide additional information on the possible range of viscosity values associated 

with regions of active subduction.  
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Appendix A: Relative Sea Level data used within this thesis and corresponding 
references 
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 Site Name. Latitude Longitude Primary Sea-Level Index Points  
    Basal Intercalated Limiting  
        Points  Points Data 
         +  + ┴  
1 Shetland 60.34 -1.03 4     
2 Orkney 58.97 -2.97 3 3 9 
3 Wick 58.45 -3.12   11 3 
4 Dornoch Firth 57.86 -4.26 1 6   
5 Moray Firth 57.49 -4.46   9   
6 Coigach 58.05 -5.36   7 1 
7 Hebrides 57.51 -7.55 1 1 1 
8 Skye 57.14 -5.96   7 1 
9 Applecross 57.32 -5.78 7     

10 Kintail 57.25 -5.48 16     
11 Arisaig 56.91 -5.85 39   8 
12 Kentra 56.76 -5.84 14   2 
13 NE Scotland 57.66 -1.98 8 11 5 
14 Aberdeen 57.33 -1.99   4   
15 Montrose 56.71 -2.52 1  6   
16 Tay Valley 56.38 -3.21    36   
17 Forth Valley 56.12 -4.15 2 19   
18 Islay 55.81 -6.34 10     
19 Ardyne 55.87 -5.04   6   
20 Clyde 55.86 -4.49   5   
21 Ayr 55.53 -4.68   10   
22 SE Scotland 56.03 -2.69 1 2   
23 NE England North 55.69 -1.92 5 7 5 
24 NE England Central 55.60 -1.73 1 7 2 
25 NE England South 55.34 -1.60 9 17 1 
26 Tyne 54.96 -1.67 1     
27 Tees 54.63 -1.23 9 21   
28 North Solway Firth 54.97 -3.15 6 24 2 
29 South Solway Firth 54.90 -3.17 6 8 1 
30 Cumbria 54.40 -3.32 1 5   
31 Isle of Man  54.40 -4.39 1 11 2 
32 Morecambe Bay 54.09 -2.96 7 21 3 
33 Lancashire 53.69 -2.99 4 38 1 
34 Mersey 53.40 -3.14 3 12   
35 North Wales 53.30 -3.75 1 8   
36 Mid Wales 52.47 -4.06 7 7 3 
37 Humber (Inn. Estuary)* 53.65 -0.66 11 20 30 
38 Humber (Outer Estuary)* 53.66 -0.07 12 22 8 
39 Lincolnshire Marshes * 53.50 0.24 12 18 3 
40 Fens * 52.74 0.04 84 110 28 
41 Norfolk * 52.97 0.79 5 26 18 
42 East Anglia 52.49 1.64 10 15 5 
43 Pembrokeshire 51.66 -5.07 1     
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44 Glamorgan 51.58 -3.77 2 3 3 

45 Bristol Channel 51.35 -3.03 15 55   
46 Essex 51.70 0.83   11 1 
47 Thames 51.46 0.31 13 37 24 
48 Kent 51.07 1.02   71   
49 Sussex 50.84 0.33 1 10 3 
50 Hampshire 50.80 -1.35   11 4 
51 Dorset 50.62 -2.54 1 3   
52 Devon 50.39 -3.75   6 2 
53 Cornwall 50.13 -5.48 4 3   
54 Knapdale 55.78 -5.56 10   7 
60 German Bight 55.07 6.00   3   
61 Dogger Bank 55.02 2.98 1     
63 Offshore Yorkshire 53.99 0.17 1   1 
64 Offshore North Norfolk 52.99 1.11   1 1 
65 Offshore N.E. Norfolk 53.21 2.08 1 1 6 

       
Site 
No. Site Name. Latitude Longitude Primary  Secondary  Limiting Data 

        Index Point Index points Primary Secondary 

        + + 
┴ (max); 
┬(min) 

    (max);     
(min) 

80 Dublin 53.14 -6.12   1 3 3 
81 South Wexford 52.52 -6.23 11 1  3 1 
82 North Wexford 52.32 -6.41 1       
83 East Cork 51.95 -7.94 10 1     
84 West Cork 51.61 -8.91 13  3 1 
85 Kerry 52.11 -9.92 13 4 20 2 
86 South Clare 52.60 -9.72   1 4   

87 
Middle 

Shannon 52.60 -9.21   3     
88 Inner Shannon 52.66 -8.71     15 8 
89 Galway 53.24 -9.31     1   
90 Connemara 53.68 -9.90     10   
91 North Mayo 54.32 -9.54       8 
92 Sligo 54.26 -8.61     1   
93 West Donegal 54.89 -8.43 8   10 1 
94 North Donegal 55.16 -7.98 3   3 3 
95 Lough Swilly 55.12 -7.38       7 
96 Derry 55.15 -6.85     4 6 
97 North Antrim 55.05 -6.01     5 3 
98 North Down 54.55 -5.66    10 5 
99 South Down 54.33 -5.77 2 2 4 4 

100 Dundalk 53.95 -6.34     4 12 

 
A1: Number of sea-level index points and data type at each site (see Fig. 2.3) used within Chapter 2 
and 5. The graphical symbol used for each data type is shown in the third row. Sites 1-65 are located 
across the Great Britain and sites 80-100 are located in Ireland. Note that predictions and data at all 
sites are shown in Appendix B-G. The asterix indicates sites where corrections for changes in tidal 
regimes have been applied. 
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Site 
reference Site Name Latitude Longitude 

Primary Sea level Index 
Points  

    • 
BB Bohai Bay 38.98 119.33 23 
JP Jiangsu Province 33.55 119.84 13 

YRD Yangtze river delta 31.18 120.71 43 
FP Fujian Province 24.43 118.81 30 

HRD Han River delta 23.52 116.84 25 
EG East Guangdong 22.64 114.98 36 

PRD Pearl River Delta 22.63 113.53 55 
WG West Guangdong  21.81 111.84 9 
HP  Hainan Province 18.77 109.71 39 
CP Chao Phraya 13.80 100.55 24 
PA Prachaub 11.75 99.75 2 
PH Phuket 8.53 98.42 11 
ET East Coast of Thailand 8.75 100.18 7 
KG Keelang 3.00 101.25 6 
TI Tiomin Island 2.80 104.07 5 

MAL Strait of Malacca 2.01 102.64 20 

 
A2: Number of sea-level index points at each site (see Fig. 4.1) within the far-field RSL 
dataset used within Chapter 4. Sites BB, JP, YRD, FP, HRD, EG, PRD, WG and HP are 
located in China. Sites CP, PA, PH, ET, KG, MAL and TI are located across Malay-
Thailand.  
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A3: References for all the British Isles RSL data, summarized for the Great Britain and 
Ireland dataset. 

Site No. Site Name. Reference(s)  

     

1 Shetland Hoppe, 1965 

2 Orkney De La Vega and Smith, 1996 

3 Wick Dawson and Smith, 1997 

4 Dornoch Firth Smith et al., 1992 

5 Moray Firth Firth and Haggart, 1989; Haggart, 1987 

6 Coigach Shennan et al., 2000c 

7 Hebrides Ritchie, 1985 

8 Skye Selby et al., 2000 

9 Applecross Shennan et al., 2000c 

10 Kintail Shennan et al., 2000c 

11 Arisaig Shennan et al., 1993; 1994; 1995b; Shennan et al., 1999; Shennan et al., 2000c 

12 Kentra Shennan et al., 1995a; Shennan et al., 1996; Shennan et al., 2000c 

13 NE Scotland Smith et al., 1982 

14 Aberdeen Smith et al., 1983 

15 Montrose Smith and Cullingford, 1985 

16 Tay Valley Smith et al., 1985a; Smith et al., 1985b 

17 Forth Valley Robinson, 1993 

18 Islay Dawson et al., 1998 

19 Ardyne Peacock et al., 1978 

20 Clyde Haggart, 1988 

21 Ayr Donner, 1970; Jardine, 1975; 1982 

22 SE Scotland Robinson, 1982 

23 NE England North Shennan et al., 2000a 

24 NE England Central Plater and Shennan, 1992; Shennan et al., 2000a 

25 NE England South Plater and Shennan, 1992; Shennan et al., 2000a 

26 Tyne Shennan et al., 2000a 

27 Tees Gaunt and Tooley, 1974; Plater and Poolton, 1992; Tooley, 1978b; c 

28 North Solway Firth Jardine, 1975; 1982; Lloyd et al., 1999 

29 South Solway Firth Huddart et al., 1977; Lloyd et al., 1999; Tooley, 1978c 

30 Cumbria Huddart et al., 1977; Tooley, 1978c 

31 Isle of Man  Tooley, 1977 

32 Morecambe Bay Birks, 1982; Tooley, 1974; 1978c; Zong and Tooley, 1996; Zong, 1997 

33 Lancashire Huddart, 1992; Tooley, 1978a; c; 1985 

34 Mersey Bedlington, 1993; Cowell and Innes, 1994; Tooley, 1974; 1978a; c 

35 North Wales Bedlington, 1993; Kidson and Heyworth, 1982; Tooley, 1978c 

36 Mid Wales Heyworth and Kidson, 1982 
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37 Humber (Inn. Estuary)* 
Andrews et al., 2000; Gaunt and Tooley, 1974; Long et al., 1998; Metcalfe et al., 2000; Millett 

and Mcgrail, 1987; Smith, 1958; Van de Noort and Ellis, 1995; 1997; 1998 

38 Humber (Outer Estuary)* 
Andrews et al., 2000; Gaunt and Tooley, 1974; Long et al., 1998; Metcalfe et al., 2000; Rees 

et al., 2000; Van de Noort and Ellis, 1995 

39 Lincolnshire Marshes * Horton et al., 2000; Waller, 1994 

40 Fens * Brew et al., 2000; Shennan, 1986a; b; Waller, 1994 

41 Norfolk * Andrews et al., 2000; Funnell and Pearson, 1989 

42 East Anglia Brew et al., 1992; Coles and Funnell, 1981 

43 Pembrokeshire Heyworth and Kidson, 1982 

44 Glamorgan Heyworth and Kidson, 1982 

45 Bristol Channel Heyworth and Kidson, 1982 

46 Essex Devoy, 1982; Greensmith and Tucker, 1980; Wilkinson and Murphy, 1986 

47 Thames Devoy, 1982; Devoy, 1979 

48 Kent Long, 1992; Long and Innes, 1993; 1995; Tooley and Switsur, 1988 

49 Sussex Devoy, 1982; Jennings and Smyth, 1987 

50 Hampshire Long and Tooley, 1995 

51 Dorset Devoy, 1982 

52 Devon Devoy, 1982 

53 Cornwall Healy, 1995 

54 Knapdale Sutherland, 1981 

60 German Bight Ludwig et al., 1981 

61 Dogger Bank Shennan et al., 2000b 

63 Offshore Yorkshire Shennan et al., 2000b 

64 Offshore North Norfolk Shennan et al., 2000b 

65 Offshore N.E. Norfolk Shennan et al., 2000b 

Site No. Site Name. Reference(s) 

     

80 Dublin Mitchell, 1976 

81 South Wexford 
Carter and Orford, 1982; Dresser, 1980; Maloney, 1985; Mitchell, 1977; Orford and Carter, 

1982; Sinnott, 1999 

82 North Wexford Sinnott, 1999 

83 East Cork Carter et al., 1989; Mitchell, 1976; 1977; Sinnott, 1999 

84 West Cork Buzer, 1980; Sinnott, 1999; Stillman, 1968 

85 Kerry Carter et al., 1989 

86 South Clare Devoy et al., 1996; O'Sullivan, 2001; Pearson, 1979 

87 Middle Shannon O'Sullivan, 2001 

88 Inner Shannon O'Sullivan, 2001 

89 Galway Mitchell, 1976 

90 Connemara Devoy et al., 1996; Jessen, 1949 

91 North Mayo McCabe et al., 1986; McCabe et al., 2005 

92 Sligo Burenhult, 1980 
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93 West Donegal 
Carter, 1982; Gaulin et al., 1983; Gehrels, 2004; Harmon, 2006; Pearson, 1979; Shaw, 1985; 

Shaw and Carter, 1994; Smith and Pilcher, 1973; Telford, 1978 

94 North Donegal Shaw, 1985; Shaw and Carter, 1994 

95 Lough Swilly Colhoun et al., 1973; McCabe and Clark, 2003; Shaw and Carter, 1994 

96 Derry 
Woodman (unpuba); Bazley (unpuba);Battarbee et al., 1982; Carter and Wilson, 1980; 

Pearson, 1979 

97 North Antrim Mitchell and Stephens, 1974; Prior et al., 1981; Smith et al., 1974 

98 North Down 

Harkness and Wilson, 1979; Kelley et al., 2006; Manning et al., 1970; McCabe and Clark, 
1998; Morrison et al., 1965; Morrison and Stephens, 1961; Pearson and Pilcher, 1975; Smith 

et al., 1974; Stephens and Collins, 1960 

99 South Down 
Carter, 1982; Dresser et al., 1973; Harmon, 2006; Hubbs et al., 1965; McCabe and Clark, 

1998; Singh and Smith, 1973 

100 Dundalk 
Jessen, 1949; McCabe and Haynes, 1996; McCabe and Clark, 1998; McCabe et al., 2005; 

Mitchell, 1971; Penney, 1983;Clark et al. (submittedb) 

  
a cited in Carter, 1982 

bcited in McCabe et al., 2005 
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Appendix B: Predictions at all British Isles RSL data sites using the 
Shennan model  

 
Comparison of predicted and observed sea level at all sites across Great Britain and 
Ireland. Symbols for the observed data are summarized in Appendix A. Predictions are 
shown for the Shennan model (shown in Fig. 2.5) for two earth models with different 
lithosphere thickness values: 71 km shown by solid red line and 96 km shown by the 
solid blue line; the upper and lower viscosity values are 5×1021 Pa s and 4×1022 Pa s, 
respectively. The data are separated into a series of plots numbered B1-B10 in relation to 
geographical location as follows: B1: North and NE Scotland; B2: NW Scotland; B3: 
Central Scotland; B4: NW and NE England; B5: NW England and Wales; B6: East 
England; B7: South England; B8: Southern Ireland; B9: West and North Ireland; B10: 
NE Ireland, Isle of Man and North Sea Basin  
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Appendix C: Predictions at all Great Britain RSL data sites for the     
Northsea ice models (NS-Thick and NS-Thin) 

 
 
 

Comparison of predicted and observed sea level at all sites across Great Britain for the 
NS-Thick and NS-Thin ice models and the two reference earth models.. Symbols for the 
observed data are summarized in Appendix A. Predictions are shown using: the 71 km 
lithosphere earth model for the NS-Thick (solid red line) and NS-Thin (red-dashed line) 
models; the 96 km lithosphere earth model for the NS-Thick (blue solid line) and NS-
Thin (blue dashed line). Additionally, predictions are shown using the 96 km lithosphere 
model for the Shennan model (solid black line). The data are separated into a series of 
plots numbered C1-C8 in relation to geographical location as follows: C1: North and NE 
Scotland; C2: NW Scotland; C3: Central Scotland; C4: NW and NE England; C5: Central 
England; C6: East England; C7: South England; C8: All offshore sites  
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Appendix D: Predictions at all  Irish and at a selection of Great Britain 
sites for the NS-Thick and Shennan model  

 
Comparison of predicted and observed sea levels at all sites across Ireland and a selection 
from across Great Britain. Predictions are shown using the 96 km lithosphere earth model 
for the Shennan model (solid black line) and for the NS-Thick model (solid blue line). 
Results are also shown using the 71 km lithosphere earth model for the NS-Thick model 
(solid red line). The data are separated into a series of numbered plots D1-D3 in relation 
to geographical location as follows: D1: Southern Ireland; D2: West and North Ireland; 
D3: NE Ireland, Isle of Man and sites from the NW coast of Great Britain.  
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Appendix E: Predictions at all Irish and at a selection of Great Britain 
sites for the three revised Irish Ice models  

 
Comparison of predicted and observed sea levels at all sites across Ireland and a selection 
from across Great Britain for the three revised Irish Ice models. Predictions are shown 
using the 71 km lithosphere earth model for the NS-Thick model (solid black line); 
Model A (solid blue line); Model B (solid green line) and Model C (dashed red line). 
The data are separated into a series of numbered plots E1-E3 in relation to geographical 
location as follows: E1: Southern Ireland; E2: West and North Ireland; E3: NE Ireland, 
Isle of Man and sites from the NW coast of Great Britain.  
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Appendix F: Predictions at all British Isles RSL data sites using the 
Brooks et al. model   

 
Comparison of predicted and observed sea level at all sites across Great Britain and 
Ireland. Predictions are shown using the 71 km lithosphere earth model for the Shennan 
model (solid red line) and the Brooks et al. model (see Fig. 2.13) (solid blue line).  
The data are separated into a series of plots numbered F1-F10 in relation to geographical 
location as follows: F1: North and NE Scotland; F2: NW Scotland; F3: Central Scotland; 
F4: NW and NE England; F5: NW England and Wales; F6: East England; F7: South 
England; F8: Southern Ireland; F9: West and North Ireland; F10: NE Ireland, Isle of Man 
and North Sea Basin  

249



−12

−10

−8

−6

−4

−2

0

0 2 4 6 8 10 12

(1) Shetland

0 2 4 6 8 10 12

(2) Orkney

R
SL

 (
m

)

Age (kyr)BP
−8

−6

−4

−2

0

2

4

6

0 2 4 6 8 10 12

(3) Wick

−8

−4

0

4

8

12

0 2 4 6 8 10 12

(4) Dornoch Firth 

0 2 4 6 8 10 12

(5) Moray Firth

−2

0

2

4

6

8

0 2 4 6 8 10 12

(6) Coigach

−12

−8

−4

0

4

0 2 4 6 8 10 12

(13) NE Scotland

0 2 4 6 8 10 12

(14) Aberdeen

−2

0

2

4

6

8

10

0 2 4 6 8 10 12

(15) Montrose

F1 250



−8

−6

−4

−2

0

2

4

6

0 2 4 6 8 10 12

(7) Herbrides

Age (kyr) BP 

R
SL

 (
m

)

−8

−4

0

4

8

12

16

20

24

0 2 4 6 8 10 12 14 16 18

(8) Skye

−4

0

4

8

12

0 2 4 6 8 10 12

(10) Kintail

−8

−4

0

4

8

12

16

20

24

0 2 4 6 8 10 12 14 16 18

(9) Applecross

0

8

16

24

32

40

0 2 4 6 8 10 12 14 16 18

(11) Arisaig
R

SL
 (

m
)

0

4

8

12

16

20

24

28

32

0 2 4 6 8 10 12 14 16 18

(12) Kentra

F2 251



−4

0

4

8

12

0 2 4 6 8 10 12 14

(16) Tay Valley

R
SL

(m
)

Age (kyr) BP
0

4

8

12

16

0 2 4 6 8 10 12

(17) Forth Valley

0

8

16

24

32

0 2 4 6 8 10 12 14 16

(19) Ardyne 

0 2 4 6 8 10 12 14 16

(54) Knapdale

−4

0

4

8

12

0 2 4 6 8 10 12

(18) Islay

0

4

8

12

0 2 4 6 8 10 12

(20) Clyde

0 2 4 6 8 10 12

(21) Ayr

−12

−8

−4

0

4

8

0 2 4 6 8 10 12

(22) SE Scotland

F3 252



−4

−2

0

2

4

6

0 2 4 6 8 10

(23) NE Eng. North

0 2 4 6 8 10 12

(24) NE Eng Central

Age (kyr) BP

R
SL

 (
m

)

−6

−4

−2

0

2

4

0 2 4 6 8 10

(25) NE Eng. South

−16

−12

−8

−4

0

4

0 2 4 6 8 10

(26) Tyne 

0 2 4 6 8 10 12

(27) Tees

−8

−4

0

4

8

0 2 4 6 8 10 12

(28) N. Solway Firth

−6

−4

−2

0

2

4

6

8

0 2 4 6 8 10

(29) S. Solway Firth

0 2 4 6 8 10 12

(30) Cumbria −24

−16

−8

0

0 2 4 6 8 10 12

(32) Morecambe Bay 

F4 253



−20

−16

−12

−8

−4

0

4

0 2 4 6 8 10

(33) Lancashire

R
SL

(m
)

Age (kyr) BP

−12

−8

−4

0

4

0 2 4 6 8 10

(34) Mersey

0 2 4 6 8 10

(35) North Wales
−8

−4

0

0 2 4 6 8 10

(36) Mid Wales

−24

−16

−8

0

0 2 4 6 8 10

(43) Pembrokeshire

0 2 4 6 8 10 12

(44) Glamorgan

−24

−16

−8

0

0 4 8

(45) Bristol Channel

F5 254



−20

−16

−12

−8

−4

0

0 2 4 6 8 10

(37) Humber (In. Estuary)

0 2 4 6 8 10

(38) Humber (Outer Estuary)

Age (kyr) BP

R
SL

 (
m

)

−20

−16

−12

−8

−4

0

0 2 4 6 8 10

(39) Linch. Marshes

−20

−16

−12

−8

−4

0

0 2 4 6 8 10

(40) Fens

0 2 4 6 8 10

(41) Norfolk

−20

−16

−12

−8

−4

0

0 2 4 6 8 10

(42) East Anglia

−60

−50

−40

−30

−20

−10

0

0 2 4 6 8 10 12 14

(63) Off. Shr. Yorkshire

0 2 4 6 8 10 12 14

(64) Off. Shr. N Norfolk
−60

−50

−40

−30

−20

−10

0

0 2 4 6 8 10 12 14

(65) Off. Shr. NE Norfolk 

F6 255



−12

−10

−8

−6

−4

−2

0

0 2 4 6 8 10

(48) Kent

R
SL

(m
)

−12

−10

−8

−6

−4

−2

0

0 2 4 6 8 10

(50) Hampshire

−40

−32

−24

−16

−8

0

0 2 4 6 8 10

(49) Sussex(47) Thames
−24

−20

−16

−12

−8

−4

0

0 2 4 6 8 10

(46) Essex

−10

−8

−6

−4

−2

0

0 2 4 6 8 10

(51) Dorset (52) Devon

−16

−14

−12

−10

−8

−6

−4

−2

0

0 2 4 6 8 10

(53) Cornwall 

Age (kyrs) BP

F7 256



−8

−4

0

4

0 2 4 6 8 10

(80) Dublin

0 2 4 6 8 10

(81) S. Wexford

Age (kyrs) BP

R
SL

 (
m

)

−8

−4

0

0 2 4 6 8 10

(82) N.Wexford

−20

−16

−12

−8

−4

0

0 2 4 6 8 10

(83) E.Cork

0 2 4 6 8 10

(84) W. Cork

−10

−8

−6

−4

−2

0

0 2 4 6 8 10

(85) Kerry

−10

−8

−6

−4

−2

0

0 2 4 6 8 10

(86) S.Clare

0 2 4 6 8 10

(87) M. Shannon

−8

−6

−4

−2

0

0 2 4 6 8 10 12

(88) In. Shannon

F8 257



−10

−8

−6

−4

−2

0

0 2 4 6 8 10

(89) Galway

0 2 4 6 8 10 12 14

(90) Connemara

R
SL

(m
) 

Age (kyr) BP

−56

−48

−40

−32

−24

−16

−8

0

8

0 4 8 12 16 20

(91) North Mayo 

−10

−8

−6

−4

−2

0

2

4

0 2 4 6 8 10

(92) Sligo

0 2 4 6 8 10 12

(93) W. Donegal

−6

−4

−2

0

2

4

6

0 2 4 6 8 10 12

(94) N. Donegal 

−24

−16

−8

0

8

0 4 8 12 16 20

(95) L. Swilly

0 4 8 12 16 20

(96) Derry
−8

0

8

16

24

0 4 8 12 16 20

(97) N. Antrim 

F9 258



−8

−6

−4

−2

0

2

4

6

8

10

0 2 4 6 8 10

(31) Isle of Man

Age (kyr) BP

R
SL

 (
m

)

−16

−12

−8

−4

0

4

8

12

16

20

0 4 8 12 16 20

(98) N. Down

−24

−16

−8

0

8

0 4 8 12 16 20

(100) Dundalk−16

−8

0

8

16

0 4 8 12 16 20

(99) S. Down

−48

−40

−32

−24

−16

−8

0

0 2 4 6 8 10 12

(60) German Bight −48

−40

−32

−24

−16

−8

0

0 2 4 6 8 10 12

(61) Dogger Bank

F10 259



Appendix G: Predictions at all British Isles RSL data sites using the 

Brooks et al. model  and the final BIIS GIA model 
 

Comparison of predicted and observed sea level at all sites across Great Britain and 

Ireland. Predictions are shown using the optimum earth model inferred in Bradley et al. 

(2009) lithosphere thickness 71 km, upper mantle viscosity 0.5 × 10
21

 Pa s, and lower 

mantle viscosity 3 × 10
22

 Pa s for the Brooks et al. model (dashed black line) and the final 

BIIS GIA model (solid red line). Additionally, predictions are shown using the final BIIS 

GIA model using an earth model identical to the optimum earth model except that the 

viscosity in the lower mantle is higher, at 6 × 10
22

 Pa s (solid blue line). The data are 

separated into a series of plots numbered G1-G10 in relation to geographical location as 

follows: G1: North and NE Scotland; G2: NW Scotland; G3: Central Scotland; G4: NW 

and NE England; G5: NW England and Wales; G6: East England; G7: South England; 

G8: Southern Ireland; G9: West and North Ireland; G10: NE Ireland, Isle of Man and 

North Sea Basin  
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