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Abstract

A mathematical and numerical analysis has been carried out for two cross diffusion

systems arising in applied mathematics. The first system appears in modelling the

movement of two interacting cell populations whose kinetics are of competition type.

The second system models axial segregation of a mixture of two different granular

materials in a long rotating drum. A fully practical piecewise linear finite element

approximation for each system is proposed and studied. With the aid of a fixed

point theorem, existence of the fully discrete solutions is shown. By using entropy-

type inequalities and compactness arguments, the convergence of the approximation

of each system is proved and hence existence of a global weak solution is obtained.

Providing further regularity of the solution of the axial segregation model, some

uniqueness results and error estimates are established. The long time behaviour

of both systems is investigated and estimates between the weak solutions and the

mean integrals of the corresponding initial data are derived. Finally, a practical

algorithm for computing the numerical solutions of each system is described and

some numerical experiments are performed to illustrate and verify the theoretical

results.
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Chapter 1

Introduction

In recent years much attention has been paid to the study of cross diffusion systems

in the field of strongly coupled parabolic equations. Cross diffusion, which is only of

relevance in multi-species models, was defined in Okubo, [54] page 170, as the diffu-

sion of one type of species due to the presence of another species. Mathematically,

cross diffusion occurs when the diffusion matrix of a system of partial differential

equations is not strictly diagonal (see Murray [52] page 11 ). We see some examples

later in this introduction. In mathematical biology applications, cross diffusion sys-

tems arise to model segregation phenomena between two competing species and are

often expected to be relevant to the classical model of Lotka [49] and Volterra [65]

for the interaction between a predator, u, and its prey, v,:

du

dt
= αuv − βu,

dv

dt
= δv − γuv,

where the non-negative parameters α, β, δ and γ represent the interaction of the

two species.

To illustrate and understand the meaning of cross diffusion we give an example of

a Lotka-Volterra type cross diffusion model. Let S1(x, t), S2(x, t) be the population

densities of predator and prey, then the usual Lotka-Volterra predator-prey model

1



Chapter 1. Introduction 2

with diffusion can be written as

∂S1

∂t
= D1

∂2S1

∂x2
− a1S1 + b1S1S2,

∂S2

∂t
= D2

∂2S2

∂x2
+ a2S2 − b2S1S2,

where D1 and D2 are the diffusivities of the two populations, a1 and a2 are the rates

of death and birth of the individual species and finally the parameters b1 and b2 are

the growth and decay factors due to binary interactions.

The above model can be modified to include cross diffusion terms that express

the population flux of each species due to the presence of the another species (see

Okubo [54] ) :

∂S1

∂t
= D1

∂2S1

∂x2
+D12

∂2S2

∂x2
− a1S1 + b1S1S2,

∂S2

∂t
= D2

∂2S2

∂x2
+D21

∂2S1

∂x2
+ a2S2 − b2S1S2,

where the cross diffusion constants D12 and D21 can be positive, negative or zero.

Positive cross diffusion means that one type of species tends to move in the direction

of the lower density of the other type and vice versa. For instance, if a predator

tends to diffuse in the direction of higher concentrations of prey and the prey tends

to diffuse in the direction of lower concentrations of its predator, as expected, we

assume D12 < 0 and D21 > 0. Of course, D12 or D21 may vanish for a non-

responsive predator or non-motile prey. For further details about this model, see [54]

Section (10.3.3 ). See [52] Section (1.2), for a description of another example of cross

diffusion.

For the concepts of diffusion and cross diffusion, and their backgrounds and

applications we refer to, e.g., [54], [52], [25], [50] and [64] and the references cited

therein. For some earlier work on modelling cross diffusion systems see [60] and [54].

For more recent work on modelling cross diffusion systems see [3], [28], [55], [44]

and [39]. We also refer to [33], [21], [9], [51] and [67] for some mathematical studies

of a number of cross diffusion models of Lotka-Volterra type. Other mathematical

studies of cross diffusion systems can be found in the literature, see for example [34],

[20], [40], [45] and [15].
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In this thesis, we use the finite element method as a technique to study two

classes of strongly coupled cross diffusion systems arising in certain biological and

physical applications. The first is a population model of competition type arising in

biological study of the movement of two interacting cell populations. The second is

an axial segregation model arising in physical study of granular materials.

1.1 Introduction to the population model

The scenarios of the movement of two interacting cell populations vary dependent

on the details of the cells behaviour and other environmental factors. When indi-

vidual cells in each population are widely separated, the movement of interacting

cell populations is often represented simply via independent linear diffusion of each

population (Painter and Sherratt [55] page 327). However, when cells are close

enough for regular contacts, those of one type will influence the movement of the

other cell population. Thus, as the cell density increases, cell-cell interactions will

effect movement. One biological question is: how does the total cell density effect

the movement properties of the cells? In fact, there are some mechanisms that may

lead to dispersal of the population. One of these mechanisms is when cells detect

and respond to a local gradient in the cell density. In such a movement, in one

dimension space, the appropriate model for the dynamics of two cell populations is

(see Painter and Sherratt [55]):

∂u

∂t
=

∂

∂x

(
D
∂u

∂x
+ χ u

∂

∂x
(u+ v)

)
, (1.1.1a)

∂v

∂t
=

∂

∂x

(
D
∂v

∂x
+ χ v

∂

∂x
(u+ v)

)
, (1.1.1b)

where u and v are the densities of the two cell populations. χ is assumed to be a

positive constant to ensure that cells move down gradients in the total density, i.e.

to ensure that u and v move in the direction of lower concentrations of the total cell

density (u + v). This constant can be eliminated by rescaling the variables u and

v, but for simplicity we choose χ = 1. The diffusion coefficient D is non-negative
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where D > 0 implies that cells move down gradients of their own density, and D = 0

if the cells respond only to the total density gradient (see [55] for more details).

In the above model, the terms ∂
∂x

(
D ∂u

∂x

)
and ∂

∂x

(
D ∂v

∂x

)
are diffusion terms.

The terms ∂
∂x

(
u ∂u
∂x

)
and ∂

∂x

(
v ∂v
∂x

)
are called self-diffusion terms. Finally, the terms

∂
∂x

(
u ∂v
∂x

)
and ∂

∂x

(
v ∂u
∂x

)
are cross diffusion terms. It is indicated in the literature that

cross diffusion seems to create pattern formation whereas diffusion and self-diffusion

tend to prevent pattern formation (see Lou and Ni [50]).

In the case of interacting two cell populations whose kinetics are of competition

type, the model (1.1.1a)-(1.1.1b) will include predator-prey reaction terms repre-

senting the competitive situation. Assuming that the v cells have a competitive

advantage over the u cells, the appropriate model can be written as (see Painter and

Sherratt [55]):

∂u

∂t
=

∂

∂x

(
D
∂u

∂x
+ u

∂

∂x
(u+ v)

)
+ u ( 1− u− v ),

∂v

∂t
=

∂

∂x

(
D
∂v

∂x
+ v

∂

∂x
(u+ v)

)
+ v ( γ − u− v ),

where the constant γ > 1 reflects the competitive advantage of the v cells. A specific

instance to which this model could be applied is early tumour growth. For more

details on the biological background, we refer the reader to [55] and the references

therein.

In the first part of this thesis, we will consider mathematical aspects of the

multi-dimensional version of the above model with homogeneous Neumann boundary

conditions and appropriate initial data.

Let Ω be an open bounded domain in Rd (d ≤ 3) with a Lipschitz boundary ∂Ω. We

consider a nonlinear system of cross diffusion partial differential equations modelling

the movement of two interacting cell populations whose kinetics are of competition

type:

(P) Find {u(x, t), v(x, t)} ∈ R≥0 × R≥0 such that

∂u

∂t
= ∇ · (D∇u+ u∇(u+ v)) + f(u, v) in ΩT , (1.1.2a)

∂v

∂t
= ∇ · (D∇v + v∇(u+ v)) + g(u, v) in ΩT , (1.1.2b)
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with boundary conditions

[D∇u+ u∇(u+ v)] · ν = 0

[D∇v + v∇(u+ v)] · ν = 0
on ∂Ω× (0, T ), (1.1.2c)

and initial conditions

u(x, 0) = u0(x) , v(x, 0) = v0(x) ∀ x ∈ Ω, (1.1.2d)

where ΩT := Ω × (0, T ), T > 0 and ν denotes the outward unit normal to ∂Ω.

As hinted above, the functions u and v are the densities of the two cell types. D

is non-negative diffusion coefficient, and for the analysis of the problem we assume

D > 0. The nonlinear predator-prey reaction terms are given as:

f(u, v) = u ( 1− u− v ),

g(u, v) = v ( γ − u− v ),

where the competition coefficient γ > 1 represents a growth advantage of v over u.

The parabolic system (1.1.2a)-(1.1.2b) is strongly coupled with full and non-

symmetric diffusion matrix

A =

D + u u

v D + v

.

We also not that there are values of D > 0 and u, v ≥ 0 for which A is not positive

definite. For this kind of strongly coupled system, it is well known that there is

no general abstract theory that can be applied directly to obtain existence results

(see [20]). Therefore, one must find an alternative bespoke approach to deal with

the problem (P).

1.2 Introduction to the axial segregation model

In the second part of the thesis we consider the following cross diffusion parabolic

system:
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(Q) Find {w(x, t), z(x, t)} ∈ [−1, 1]× R such that

∂w

∂t
= ∇ ·

(
ρ∇w − (1− w2)∇z

)
in ΩT , (1.2.1a)

∂z

∂t
= ∇ · (∇z + λ∇w ) + µw − z in ΩT , (1.2.1b)

where Ω = (0, L) ⊂ R for some L > 0, and ΩT := Ω×(0, T ) for positive time T > 0.

Together with Neumann-type boundary conditions[
ρ∇w − (1− w2)∇z

]
(0, ·) = [∇z + λ∇w] (0, ·) = 0,[

ρ∇w − (1− w2)∇z
]

(L, ·) = [∇z + λ∇w] (L, ·) = 0,
in (0, T ), (1.2.1c)

and initial conditions

w(x, 0) = w0(x), z(x, 0) = z0(x) ∀ x ∈ Ω, (1.2.1d)

where, for consistency of notation with the previous model, we write ∇ instead

of ∂
∂x

.

The above system models axial separation of a mixture of two sorts of particles,

A1 and A2, in a long rotating drum with length L > 0. Here w = wA1 − wA2 ∈

[−1, 1] is the relative concentration of the mixture, where wA1 , wA2 ∈ [0, 1] are the

concentrations of the two particles A1 and A2. The variable z represents the so-called

dynamic angle of repose which is defined as the angle of the slope of the free surface

of grains in the drum as they flow continuously. The constant ρ > 0 is related to

the Fick diffusion constants arising in the surface fluxes of the two materials, while

the positive constant λ > 0 is proportional to the difference of the Fick diffusivities.

Finally, the non-negative constant µ ≥ 0 is related to the static angle of repose of

the particles.

Although cross diffusion equations are often considered in biological modelling,

the cross diffusion model (Q) was proposed by Aranson et al. [3] in their study of

the evolution of the relative concentration and the dynamic repose of a mixture of

two different granular materials in a long rotating drum. From the physical point

of view, mixtures of grains with different sizes in a long rotating drum exhibit both

radial and axial size segregation. During the first few revolutions of the drum,
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radial segregation occurs and is often followed by slow axial segregation which leads

to either a stable array of concentration bands or, after a very long time, to complete

segregation (see [4]). For a fuller discussion on the background and derivation of the

model we refer to [3], [4], [5], [34] and [43].

We note that the cross diffusion in the system (1.2.1a)-(1.2.1b) is represented by

the terms ∇ · ( (1− w2)∇z ) and λ∇2w. Furthermore, as for the problem (P), the

system (1.2.1a)-(1.2.1b) is strongly coupled with full and non-symmetric diffusion

matrix

B =

ρ −(1− w2)

λ 1

,

which is generally not positive definite.

1.3 Research objectives and methodology

The work in this thesis will consist of three main parts:

(1) Analysis of the problem (P).

(2) Analysis of the problem (Q).

(3) Numerical experiments for (P) and (Q).

In the first part, Chapters 2, 3 and 4, we provide an extended study of the prob-

lem (P). As a main objective, we study the existence of a global weak solution of

the system (1.1.2a)-(1.1.2d). An efficient method to do that is by introducing and

analyzing a fully discrete finite element approximation of (P). The main features

of the system will be reflected explicitly in the analysis of the fully approximation

problem. For this reason, the need to derive an entropy inequality “energy esti-

mate” of the problem (P) is the key in the analysis of the approximation problem.

The entropy inequality of the problem (P) can be made by testing the equations

(1.1.2a) and (1.1.2b) with lnu and ln v respectively. However, this will require us

to go through a regularization procedure in order that we treat the singular nature

of the derived inequality in the region R≤0. Hence, a well defined entropy inequality
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of the regularization problem of (P) can be established and uniform bounds on the

regularized functions, independent of the regularization parameter, can be obtained.

The entropy inequality and the uniform bounds of the regularized problem provide

the foundation of a discrete analogue entropy inequality and uniform estimates of

the corresponding approximation problem. Such estimates are needed to prove the

convergence of the regularized fully approximated problem as the regularization pa-

rameter and the discretization parameters simultaneously tend to zero, and therefore

we obtain existence of a weak solution to the system (1.1.2a)-(1.1.2d).

To sum up, the finite element approach used to show the existence of a non-

negative global weak solution of (P) consists of four main steps. Firstly, we introduce

a regularized problem of (P) and establish its entropy inequality. Secondly, we

consider a fully discrete finite element approximation of the regularized problem and

prove the existence of the approximate solutions at each time step using appropriate

initial data. Thirdly, we derive a discrete analogue entropy inequality and obtain

some bounds of the approximate solutions. Finally, we study the convergence of the

fully approximation problem.

Unfortunately, the lack of H1-norm bounds in the problem (P) will prevent the

proof of convergence in the final step. Indeed, this will be treated successfully using

a crucial idea, where we consider an alternative “equivalent” problem to (P), that

gives us the necessary bounds to prove the convergence.

The second part of the thesis, Chapter 6, will be devoted to the analysis of the

system (1.2.1a)-(1.2.1d). As both systems (1.1.2a)-(1.1.2d) and (1.2.1a)-(1.2.1d)

belong to a similar class of equations, the analysis of problem (P) will significantly

contribute to our study of the problem (Q). In particular, similar arguments used

for (P) will be employed to prove the existence of a global weak solution of the

system (1.2.1a)-(1.2.1d). Due to the structure of (Q), the second part of this thesis

will also involve a discussion of the uniqueness of the weak solution of (Q) as well

as a derivation of some fully discrete error estimates.
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In the third part of the thesis, Chapters 5 and 7, we perform some programming

in Fortran and Matlab to verify the established theoretical results in the first two

parts.

The idea of defining and exploiting an entropy inequality has been used in the

study of different types of partial differential equations, see [10] and [12], where a thin

film equation is studied, and [33], [34], [21], [9] and [22] where cross diffusion systems

are considered. The approach adopted in this thesis uses the standard piecewise

linear finite element method. For references that use this approach, or employ

similar arguments and tools to our own, see for example [7], [9], [10], [11], [12], [35]

and [63]. For the theoretical tools, techniques and results used in this thesis see

e.g. [1], [46], [23], [57], [58] and [32]. Below we give a brief description of the content

of each chapter of the thesis.

In Chapter 2, the population model (1.1.2a)-(1.1.2d) is considered. A truncated

alternative “equivalent” solvable problem to (P) is introduced. A regularized prob-

lem of the truncated system is studied and some a priori estimates of the regularized

functions are obtained. A practical fully discrete approximation of the regularized

problem is presented using a finite element method, with piecewise linear basis func-

tions, to discretise in space and using backward Euler method to discretise in time.

Then, some technical lemmata necessary for the analysis of the approximate prob-

lem are discussed. Finally, existence of the approximate solution at each time level

is proven using the Schauder’s fixed point theorem.

In Chapter 3, the analysis of the population model (1.1.2a)-(1.1.2d) is continued.

Some stability bounds on the fully discrete approximations, defined in Chapter 2, are

derived. Using classical compactness arguments, the convergence of the approximate

problem to (P) is studied. Existence of a global weak solution of the system (1.1.2a)-

(1.1.2d) is shown.

In Chapter 4, improved results for the system (1.1.2a)-(1.1.2d) are achieved by

considering a “fully” truncated alternative problem to (P). In the absence of the

reaction terms, further features of the system (1.1.2a)-(1.1.2d) are explored.
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In Chapter 5, Some practical algorithms for computing the numerical solutions

of problem (P) are described. Some numerical simulations in one space dimension

are performed and discussed.

In Chapter 6 , the axial segregation model (1.2.1a)-(1.2.1d) is considered. A

regularized fully discrete finite element approximation of the problem (Q) is studied.

Existence and uniqueness of the approximations are established. By studying the

convergence of the fully discrete approximate problem, existence of a global weak

solution of the system (1.2.1a)-(1.2.1d) is shown. The uniqueness of the derived

weak solution is discussed. Furthermore, an error bound between the fully discrete

and weak solutions is studied. Finally, the long time behaviour of the solutions of

the system (1.2.1a)-(1.2.1d) is discussed and an estimate between each variable and

its mean integral is derived.

In Chapter 7, a practical algorithm for solving the finite element problem of (Q)

at each time step is introduced. Some numerical results are presented to illustrate

the segregation behaviour.

Finally, in Chapter 8, some conclusion remarks are given and some possible

future work are addressed.



Chapter 2

The population model: A fully

discrete approximation of a

regularized truncated problem

In Section 2.1 we briefly review some basic notation, definitions and tools that will

be used throughout the thesis. In Section 2.2 we introduce a truncated alternative

problem to (P). In Section 2.3 we introduce a regularized problem of the trun-

cated system. Then we obtain some a priori estimates of the regularized functions,

independent of the regularization parameter, via deriving a well defined entropy in-

equality of the regularized problem. In Section 2.4 we present some finite element

notation which will be used in the current and the following chapters. We propose a

practical fully discrete finite element approximation of the regularized problem and

present some necessary lemmata. Finally, we use a fixed point theorem to show the

existence of the approximate solutions.

2.1 Notation

Let G be a bounded domain in Rd, d = 1, 2, 3, with boundary ∂G. For d = 2, 3 we

assume that ∂G is a Lipschitz boundary. Throughout this thesis we use the usual

11
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Sobolev spaces Wm,p(G), m ∈ N0 := N ∪ {0} and p ∈ [1,∞], which are defined by

Wm,p(G) := {u ∈ Lp(G) : Dαu ∈ Lp(G) for 0 ≤ |α| ≤ m} ,

with the associated norms and semi-norms given, respectively, by

‖u‖m,p,G :=



 ∑
0≤|α|≤m

‖Dαu‖p0,p,G

 1
p

if 1 ≤ p <∞,

max
0≤|α|≤m

‖Dαu‖0,∞,G if p =∞;

and

|u|m,p,G :=



∑
|α|=m

‖Dαu‖p0,p,G

 1
p

if 1 ≤ p <∞,

max
|α|=m

‖Dαu‖0,∞,G if p =∞;

where Dα is the standard multi-index notation for the partial derivative of order |α|

and

‖η‖0,p,G :=


(∫

G

|η|pdx
) 1

p

if 1 ≤ p <∞,

ess sup
x∈G

|η(x)| if p =∞,

(e.g., see Adams [1] or Robinson [58]). For m = 0, the space W 0,p(G) will be denoted

by Lp(G). In the case p = 2, the Hilbert space Wm,2(G) will be denoted by Hm(G)

with the associated norm and semi-norm written as ‖ · ‖m,G and | · |m,G, respectively.

For ease of notation, when G ≡ Ω the subscript “Ω” will be dropped on the above

norms and semi-norms.

In our work, the usual L2(Ω) inner product over Ω with the norm ‖ · ‖0,2 ≡ ‖ · ‖0

is denoted by (·, ·). The dual space of a Banach space X is denoted by X ′, and we

write 〈·, ·〉X′,X for the duality pairing between X ′ and X.

We also use function spaces depending on space and time. Let 1 ≤ p ≤ ∞ and

X be a Banach space. We denote Lp(0, T ;X) to be the Banach space that consists

of all those functions u(t) : (0, T )→ X a.e. such that t→ ‖u(t)‖X in Lp(0, T ), with
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norm

‖u‖Lp(0,T ;X) :=


(∫ T

0

‖u(t)‖pXdt
) 1

p

if 1 ≤ p <∞,

ess sup
t∈(0,T )

‖u(t)‖X if p =∞.

For ease of notation, we write the commonly used time-dependent space Lp(0, T ;Lp(Ω))

as Lp(ΩT ).

Furthermore, we define C([0, T ];X), the space of continuous functions from [0, T ]

into X, which consists of those u(t) : [0, T ] → X such that u(t) → u(t0) in X as

t → t0. We recall that C([0, T ];X) is a Banach space with the associated norm

(see [62] page 43):

‖u‖C([0,T ];X) := sup
t∈[0,T ]

‖u(t)‖X .

For later purposes, we recall the Sobolev interpolation theorem (see Adams [2]):

Let u ∈ Wm,p(Ω), for 1 ≤ p ≤ ∞ and m ≥ 1, then there are constants C and

σ = d
m

(
1
p
− 1

r

)
such that the following inequality holds

‖u‖0,r ≤ C‖u‖1−σ
0,p ‖u‖σm,p, for r ∈


[p,∞] if m− d

p
> 0,

[p,∞) if m− d
p

= 0,

[p,− d
m−d/p ] if m− d

p
< 0.

(2.1.1)

We also need the following version of the Sobolev interpolation results (e.g.

see [19]): Let u ∈ H1(Ω) then there are constants C and θ = 2 d (r−1)
r (d+2)

such that the

following inequality holds

‖u‖0,r ≤ C‖u‖1−θ
0,1 ‖u‖θ1, for r ∈


[1,∞] if d = 1,

[1,∞) if d = 2,

[1, 6] if d = 3.

(2.1.2)

It will be useful in the work that follows to note the following well-known Sobolev

embedding results (which can be seen immediately from the above interpolation
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inequalities) :

H1(Ω) ↪→ Lr(Ω), holds for r ∈


[1,∞] if d = 1,

[1,∞) if d = 2,

[1, 6] if d = 3;

(2.1.3)

where “↪→” denotes the continuous embedding. Further, we have from the Rellich-

Kondrachov theorem, e.g. see [23] page 114 and [19] page 8, that the embedding in

(2.1.3) is compact with r ∈ [1, 6] replaced by r ∈ [1, 6) in the case d = 3 1. The

compact embedding will be denoted by the symbol “
c
↪→”.

For later use, we recall the following embedding compactness result (see [48],

page 58): Let X, Y and Z be three Banach spaces with X and Z being reflexive

and X
c
↪→ Y ↪→ Z. Also let

W =

{
u : u ∈ Lr(0, T ;X),

∂u

∂t
∈ Ls(0, T ;Z)

}
,

where T <∞ and 1 < r, s <∞. Then

W
c
↪→ Lr(0, T ;Y ). (2.1.4)

We also require the Grönwall lemma both in its integral and differential form.

For completeness we state the lemma and we refer to [31] for the proof of more

general results. We start with the integral form:

Let β be a non-negative constant and let u(t) ∈ L∞(0, T ) and v(t) ∈ L1(0, T ) be

non-negative functions such that for a.e. t ∈ (0, T )

u(t) ≤ β +

∫ t

0

u(s) v(s) ds.

Then for a.e. t ∈ (0, T )

u(t) ≤ β exp

(∫ t

0

v(s) ds

)
. (2.1.5)

1To deduce the compact embedding results for d = 1, we note the fact H1(Ω)
c
↪→ L∞(Ω) ↪→

Lr(Ω), r ∈ [1,∞], (see [19], page 9).
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We now state the differential form:

Let f(t) ∈ W 1,1(0, T ) and g(t), h(t), w(t) ∈ L1(0, T ) be non-negative functions such

that for a.e. t ∈ (0, T )

f ′(t) + g(t) ≤ h(t) + f(t)w(t).

Then for a.e. t ∈ (0, T )

f(t) +

∫ t

0

g(s) ds ≤ eΛ(t)f(0) + eΛ(t)

∫ t

0

h(s) ds, (2.1.6)

where Λ(t) :=
∫ t

0
w(s) ds.

For later purposes, we recall the generalized version of the Hölder’s inequality:

Let u1 ∈ Lp1(Ω), u2 ∈ Lp2(Ω) and u3 ∈ Lp3(Ω) such that 1 ≤ p1, p2, p3 ≤ ∞ with

1
p1

+ 1
p2

+ 1
p3

= 1, then u1 u2 u3 ∈ L1(Ω) and∫
Ω

|u1 u2 u3|dx ≤
(∫

Ω

|u1|p1dx
) 1

p1

(∫
Ω

|u2|p2dx
) 1

p2

(∫
Ω

|u3|p3dx
) 1

p3

. (2.1.7)

Another well-known inequality we need is the Poincaré inequality (e.g. see Wloka

[66], page 117)

‖η‖2
0 ≤ Cp

(
|η|21 + |(η, 1)|2

)
∀η ∈ H1(Ω), (2.1.8)

where Cp is a positive constant that depends on the domain Ω.

For completeness we also mention some elementary results which will be used

later on. We make frequent use of the Young’s inequality

a b ≤ εp1
ap1

p1

+ ε−p2
bp2

p2

,
1

p1

+
1

p2

= 1,

valid for any a, b ≥ 0, ε > 0 and p1, p2 > 1.

We shall also need the following simple inequality

(a− b)2 ≥ a2

2
− b2 ∀a, b ∈ R, (2.1.9)

which follows from a direct application of the Young’s inequality.

Another useful consequence of the Young’s inequality is the following

a b ≥ −ε a
2

2
− b2

2 ε
∀a, b ∈ R ∀ε > 0. (2.1.10)
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Finally, we note the following elementary inequalities, valid for any a ∈ R:

(1− a) = [1− a]+ + [1− a]− ≤ [1− a]+ ≤ 1− [a]− , (2.1.11)

(a− 1) = [a− 1]+ + [a− 1]− ≥ [a− 1]− ≥ [a]− − 1, (2.1.12)

where [a]+ = max{a, 0} and [a]− = min{a, 0}.

Throughout C represents a generic positive constant, independent of any regu-

larization and discretization parameter, which may change from one expression to

another. In addition, C(c1, c2, · · · , cn) denotes a constant depending on {ci}ni=1.

2.2 A truncated alternative problem

In this short, but important, section we make a significant step towards showing

the existence of a global in-time weak solution of the problem (P). Our approach to

prove existence is based on the idea of defining an entropy inequality that leads us to

obtain energy estimates. One of the main difficulties of (P) is how to deal with the

diffusion terms to derive H1-norm bounds of the solutions u and v. To overcome

this difficulty, we need to note that from a biological point of view one does not

expect both densities, u and v, to be unbounded. Noting this and the advantage of

the v cells over the u cells, it is convenient for the mathematical analysis of (P) to

replace the term u∇(u+ v) in (1.1.2a) by φ(u)∇(u+ v) and to replace the reaction

terms f(u, v) and g(u, v) by fM(u, v) and gM(u, v), respectively, where

φ(u) := [u−M ]− +M, (2.2.1)

fM(u, v) := u− φ(u) (u+ v ), (2.2.2)

gM(u, v) := γ v − v (φ(u) + v ). (2.2.3)

Here M is fixed positive number, and for later computational purposes we choose

M ≥ e. Without loss of generality, such a replacement can be considered even if v

does not have advantage over u.
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Thus the modified problem is:

(PM) For fixed M ≥ e, find {u(x, t), v(x, t)} ∈ R≥0 × R≥0 such that

∂u

∂t
= ∇ · (D∇u+ φ(u)∇(u+ v)) + fM(u, v) in ΩT , (2.2.4a)

∂v

∂t
= ∇ · (D∇v + v∇(u+ v)) + gM(u, v) in ΩT , (2.2.4b)

with homogeneous Neumann boundary conditions

[D∇u+ φ(u)∇(u+ v)] · ν = 0

[D∇v + v∇(u+ v)] · ν = 0
on ∂Ω× (0, T ), (2.2.4c)

and initial conditions

u(x, 0) = u0(x) , v(x, 0) = v0(x) ∀ x ∈ Ω, (2.2.4d)

where φ(u), fM(u, v) and gM(u, v) are defined by (2.2.1)-(2.2.3) above.

We mention that the functions u , v and φ(u) in the problem (PM) should

be written with a subscript “M”, i.e. uM , vM and φM(uM) respectively, but the

subscript is dropped for ease of notation.

It is clear that the problem (PM) is equivalent to the problem (P) if the number

M is chosen large enough such that u ≤ M where u is solution to (PM). This has

meaning since we expect at least one of the densities to be bounded. Actually, it is

well known in the biological literature that all densities are assumed to be bounded.

This is not wasted, as improved results can be derived by considering an alternative

problem to (PM) (see the discussion in Chapter 4). The replacement employed above

will play a crucial role in the study of problem (P) as it is the key to obtaining the

needed bounds, on u and v, in the analysis. We indicate that the idea of considering

an alternative solvable problem to (P) is inspired from an argument employed in [10]

on the study of a thin film equation.
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2.3 A regularized problem

The key step of our analysis in proving existence of a global weak solution of the

system (2.2.4a)-(2.2.4d) is to derive a priori estimates. To achieve this, we use

a mathematical approach that deals with an entropy inequality of a regularized

problem of (PM). Such an approach has been employed in studying different kinds of

partial differential equations, e.g. see [9], [10], [11] and [12]. By using an appropriate

entropy functional, we first obtain some a priori estimates on any positive solution

of the model (PM).

We define a function F ∈ C2(R>0) such that φ(u)F ′′(u) = 1 and F (1) = 0; that

is F : R>0 → R≥0 given by

F (s) :=


(ln s− 1) s+ 1 if 0 < s ≤M ,

s2−M2

2M
+ (lnM − 1) s+ 1 if s ≥M ;

(2.3.1)

and hence,

F ′(s) :=


ln s if 0 < s ≤M ,

s
M

+ lnM − 1 if s ≥M ,

and F ′′(s) :=


1
s

if 0 < s ≤M ,

1
M

if s ≥M .

We also define the function G ∈ C∞(R>0) satisfying v G′′(v) = 1 ; that is

G : R>0 → R≥0 given by

G(s) := (ln s− 1) s+ 1; (2.3.2)

and hence,

G′(s) = ln s and G′′(s) = 1
s
.

Assuming positive values of the population densities, u and v, one can define the

non-negative entropy functional

E(t) =

∫
Ω

(
F (u) +G(v)

)
dx ,
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with the corresponding entropy inequality

E(t)+

∫ t

0

(
D
M
||∇u||20 + ||∇u+∇v||20

)
dt

≤ E(0) +

∫ t

0

∫
Ω

(
fM(u, v)F ′(u) + gM(u, v)G′(v)

)
dx dt, (2.3.3)

for 0 < t < T . This can be derived by multiplying (2.2.4a) and (2.2.4b) by F ′(u) and

G′(v) respectively, integrating by parts over Ω and summing the resulting equations,

after recalling (2.3.1), (2.3.2) and (2.2.4c). However, as the functions F (u) and G(v)

are defined on R>0, the inequality (2.3.3) can be made rigorous only if both u(x, t)

and v(x, t) are positive. To deal with the singularity on the non-positive part, we

need to go through an appropriate regularization procedure.

For computational purposes, we replace the function F ∈ C2(R>0) for any

ε ∈ (0, e−1) by the regularized function Fε : R→ R≥0 given by

Fε(s) :=



s2−ε2
2 ε

+ (ln ε− 1) s+ 1 if s ≤ ε ,

(ln s− 1) s+ 1 if ε ≤ s ≤M ,

s2−M2

2M
+ (lnM − 1) s+ 1 if s ≥M .

(2.3.4a)

Therefore,

F ′ε(s) :=



s
ε

+ ln ε− 1 if s ≤ ε ,

ln s if ε ≤ s ≤M ,

s
M

+ lnM − 1 if s ≥M ;

(2.3.4b)

F ′′ε (s) :=



1
ε

if s ≤ ε ,

1
s

if ε ≤ s ≤M ,

1
M

if s ≥M .

(2.3.4c)

We also replace the function φ(s) by the regularized function φε : R → [ε,M ]
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defined by

φε(s) := [F ′′ε (s)]−1 :=


ε if s ≤ ε ,

s if ε ≤ s ≤M ,

M if s ≥M .

(2.3.5)

For later purposes, we recall the following properties concerning the functions

Fε(s) and φε(s) :

• For all ε ∈ (0, e−1) and for all s ≤ 0 we note that

Fε(s) :=
s2 − ε2

2 ε
+ (ln ε− 1) s+ 1 ≥ s2

2 ε
. (2.3.6)

• For all ε ∈ (0, e−1) and for all s ≥ 0 we have that

Fε(s) ≥ s2

4M
− 3M

2
. (2.3.7)

To show this, we note firstly for any s ∈ [0, 1] that F ′ε(s) ≤ 0 and hence

Fε(s) ≥ Fε(1) = 0 ≥ s2

4M
− 3M

2
.

Secondly, for s ∈ [1,M ] we have that

r(s) := 1
s
− 1

M
≥ 0 =⇒

∫ s

1

∫ t

1

r(u) du dt ≥ 0,

that is

(ln s− 1) s+ 1− s2

2M
+ s

M
− 1

2M
≥ 0,

and hence for all s ∈ [1,M ]

Fε(s) ≥ s2

2M
− s

M
+ 1

2M
≥ s2

4M
− 3M

2
.

Finally, for s ≥M we have from the Young’s inequality that

Fε(s) ≥ s2

2M
− M

2
− s ≥ s2

4M
− 3M

2
.
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• Furthermore, it is a simple matter to show that for all ε ∈ (0, e−1) and for all

s ∈ R

s F ′ε(s) ≤ 2Fε(s) + 1, (2.3.8)

s F ′ε(s) ≥ φε(s)F
′
ε(s) ≥ s− 1. (2.3.9)

To see (2.3.8), define

Jε(s) = 2Fε(s)− s F ′ε(s) + 1 ⇒ J ′ε(s) = F ′ε(s)− s F ′′ε (s) .

For s ≤ ε , J ′ε(s) = ln ε− 1 ≤ 0 and so

Jε(s) ≥ Jε(ε) = ε (ln ε− 2) + 3 ≥ 0 .

For ε ≤ s ≤M , J ′ε(s) = ln s− 1 . Hence, J ′ε(s) = 0 at s = e ∈ [ε,M ] and

Jε(s) ≥ Jε(e) = 3− e > 0 .

For s ≥M , we have as M ≥ e that J ′ε(s) = lnM − 1 ≥ 0 and

Jε(s) ≥ Jε(M) = M (lnM − 2) + 3 ≥ 0 .

Thus we conclude (2.3.8) for all s ∈ R .

The first inequality in (2.3.9) follows directly on noting that

φε(s) ≥ s and F ′ε(s) ≤ 0 ∀s ≤ ε ,

φε(s) ≤ s and F ′ε(s) ≥ 0 ∀s ≥M .

On setting

Qε(s) := φε(s)F
′
ε(s)− s+ 1

=


Fε(ε) if s ≤ ε ,

Fε(s) if ε ≤ s ≤M ,

Fε(M) if s ≥M ,
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we have from the non-negativity of Fε(s) that Qε(s) ≥ 0 . So, the second inequality

in (2.3.9) holds.

We also replace the function G ∈ C∞(R>0) for any ε ∈ (0, e−1) by the regularized

function Gε : R→ R≥0 where

Gε(s) :=



s2−ε2
2 ε

+ (ln ε− 1) s+ 1 if s ≤ ε ,

(ln s− 1) s+ 1 if ε ≤ s ≤ ε−1 ,

ε (s2−ε−2)
2

+ (ln ε−1 − 1) s+ 1 if s ≥ ε−1 ;

(2.3.10a)

and therefore,

G′ε(s) :=



s
ε

+ ln ε− 1 if s ≤ ε ,

ln s if ε ≤ s ≤ ε−1 ,

ε s+ ln ε−1 − 1 if s ≥ ε−1 ,

(2.3.10b)

G′′ε(s) :=



1
ε

if s ≤ ε ,

1
s

if ε ≤ s ≤ ε−1 ,

ε if s ≥ ε−1 .

(2.3.10c)

For all ε ∈ (0, e−1) we define the function ψε : R→ [ε, ε−1] such that

ψε(s) := [G′′ε(s)]
−1 :=


ε if s ≤ ε ,

s if ε ≤ s ≤ ε−1 ,

1
ε

if s ≥ ε−1 .

(2.3.11)

Similarly to the regularized functions Fε(s) and φε(s), on noting (2.3.10a)-

(2.3.10c) and (2.3.11), it is easy to show that the following properties concerning
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the functions Gε(s) and ψε(s) hold for all ε ∈ (0, e−1) :

Gε(s) ≥ s2

2 ε
for all s ≤ 0, (2.3.12)

Gε(s) ≥ ε s2

2
− 1 for all s ≥ 0, (2.3.13)

max{ψε(s), sG′ε(s)} ≤ 2Gε(s) + 1 for all s ∈ R, (2.3.14)

ψε(s)G
′
ε(s) ≥ s− 1 for all s ∈ R. (2.3.15)

We now consider the corresponding regularized version of the problem (PM) for

any ε ∈ (0, e−1):

(PM,ε) For fixed M ≥ e, find {uε(x, t), vε(x, t)} ∈ R× R such that

∂uε
∂t

= ∇ · (D∇uε + φε(uε)∇(uε + vε)) + fM,ε(uε, vε) in ΩT , (2.3.16a)

∂vε
∂t

= ∇ · (D∇vε + ψε(vε)∇(uε + vε)) + gM,ε(uε, vε) in ΩT , (2.3.16b)

with boundary conditions

[D∇uε + φε(uε)∇(uε + vε)] · ν = 0

[D∇vε + ψε(vε)∇(uε + vε)] · ν = 0
on ∂Ω× (0, T ), (2.3.16c)

and initial conditions

uε(x, 0) = u0(x) , vε(x, 0) = v0(x) ∀ x ∈ Ω; (2.3.16d)

where

fM,ε(uε, vε) := uε − φε(uε) (uε + ψε(vε) ),

gM,ε(uε, vε) := γ vε − ψε(vε) (φε(uε) + ψε(vε) ).

Here, the functions fM,ε and gM,ε are considered to be appropriate to control the non-

linearity and obtain the intended results. Later, we discuss other possible choices of

fM,ε and gM,ε ( see Remark 3.3.1 and Remark 3.3.2 ).

In the following lemma we derive an analogue to the entropy inequality (2.3.3)

for the regularized problem (PM,ε) which will provide us with some uniform bounds

on the regularized solutions uε and vε under our assumption that D > 0.
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Lemma 2.3.1 Let u0(x) and v0(x) be non-negative bounded functions. There ex-

ists a positive C(u0, v0,M, γ) independent of ε such that any solution of (PM,ε)

satisfies

sup
0<t<T

∫
Ω

(
Fε(uε) +Gε(vε)

)
dx+ D

M

∫
ΩT

|∇uε|2 dx dt

+

∫
ΩT

|∇uε +∇vε|2 dx dt ≤ C . (2.3.17)

In addition,

sup
0<t<T

∫
Ω

(
|[uε]−|2 + |[vε]−|2

)
dx ≤ C ε. (2.3.18)

Proof : Multiplying (2.3.16a) and (2.3.16b) by F ′ε(uε) and G′ε(vε) respectively, in-

tegrating by parts over the domain Ω, summing the resulting equations and noting

(2.3.5) and (2.3.11) yields, after recalling the boundary conditions (2.3.16c), that

d

dt

∫
Ω

(
Fε(uε) +Gε(vε)

)
dx+D

∫
Ω

(
|∇uε|2

φε(uε)
+
|∇vε|2

ψε(vε)

)
dx+

∫
Ω

|∇uε +∇vε|2 dx

=

∫
Ω

(
fM,ε(uε, vε)F

′
ε(uε) + gM,ε(uε, vε)G

′
ε(vε)

)
dx , (2.3.19)

where we have noticed that

φε(uε)∇ [F ′ε(uε)] = ∇uε , (2.3.20)

ψε(vε)∇ [G′ε(vε)] = ∇vε . (2.3.21)

It follows from (2.3.5), (2.3.11), (2.3.8), (2.3.9), (2.1.11), (2.3.14), the Young’s in-

equality and (2.3.6) that

fM,ε(uε, vε)F
′
ε(uε) = uε F

′
ε(uε)− φε(uε) (uε F

′
ε(uε))− ψε(vε) (φε(uε)F

′
ε(uε))

≤ (2Fε(uε) + 1) + (1− uε) (φε(uε) + ψε(vε))

≤ (2Fε(uε) + 1) + (1− [uε]−) (φε(uε) + ψε(vε))

≤ 2Fε(uε) + 2Gε(vε) + 1
ε

[uε]
2
− + ε

2
(φ2

ε(uε) + ψ2
ε(vε)) + C(M)

≤ 4Fε(uε) + 2Gε(vε) + 1
2
ψε(vε) + C(M)

≤ 4Fε(uε) + 3Gε(vε) + C(M) . (2.3.22)
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Similarly to (2.3.22), on noting (2.3.5), (2.3.11), (2.3.14), (2.3.15), (2.1.11), the

Young’s inequality and (2.3.12), we have that

gM,ε(uε, vε)G
′
ε(vε) = γ vεG

′
ε(vε)− ψε(vε)G′ε(vε) (φε(uε) + ψε(vε))

≤ γ (2Gε(vε) + 1) + (1− vε) (φε(uε) + ψε(vε))

≤ γ (2Gε(vε) + 1) + (1− [vε]−) (φε(uε) + ψε(vε))

≤ (2 γ + 2) Gε(vε) + 1
ε

[vε]
2
− + ε

2
(φ2

ε(uε) + ψ2
ε(vε)) + C(M,γ)

≤ (2 γ + 4) Gε(vε) + 1
2
ψε(vε) + C(M,γ)

≤ (2 γ + 5) Gε(vε) + C(M,γ) . (2.3.23)

Combining (2.3.19), (2.3.22) and (2.3.23) yields, on noting (2.3.5) and (2.3.11), that

d

dt

∫
Ω

(
Fε(uε) +Gε(vε)

)
dx+ D

M

∫
Ω

|∇uε|2 dx+

∫
Ω

|∇uε +∇vε|2 dx

≤ C(M,γ)

(
1 +

∫
Ω

(
Fε(uε) +Gε(vε)

)
dx

)
. (2.3.24)

Applying the Grönwall inequality (2.1.6), on recalling the initial conditions (2.3.16d)

and the assumption on u0 and v0, leads to the desired result (2.3.17). The result

(2.3.18) follows immediately from (2.3.17), (2.3.6) and (2.3.12). 2

On noting (2.3.17), the triangle inequality and the Poincaré inequality, one can

obtain a uniform L2(0, T ;H1(Ω)) bound on the solutions uε and vε independently

of the regularization parameter ε. Furthermore, a uniform L∞(0, T ;L2(Ω)) bound

on uε can be easily obtained from (2.3.17), (2.3.6) and (2.3.7).

The existence of a non-negative solution of (PM) can be shown by passing to the

limit ε → 0 on noting (2.3.17) and (2.3.18) where the estimate (2.3.18) is the key

to prove the non-negativity of the solution. However, this can only be performed in

the case that we have existence of a solution to the regularized problem (PM,ε). To

deal with this issue, in our study of problem (PM), we use the power of the finite

element method.

We now formulate a fully discrete finite element approximation of (PM,ε) and

prove existence of fully discrete approximation solutions.
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2.4 A fully discrete finite element approximation

In this section we introduce a practical fully discrete finite element approximation

of the system (PM,ε). To do that we discretise the system in space using the finite

element method and discretise in time using the finite differences. In Subsection 2.4.1

we recall definitions of different types of partitioning in space. We state the required

assumptions on the partitioning of Ω and (0, T ). We also define the standard finite

element space and discuss some associated results. In Subsection 2.4.2 we formulate

a practical fully discrete finite element approximation of the system (PM,ε) and

prove some technical lemmata. Then, in Subsection 2.4.3, we prove existence of the

finite element approximations under appropriate assumption on the discretization

parameters.

2.4.1 Notation and associated results

Let T h be a partitioning of Ω ⊂ Rd, d = 1, 2, 3 . A simplex τ ∈ T h is defined

as an interval if d = 1, a triangle if d = 2 and a tetrahedron if d = 3. We define

hτ := diam τ to be the length of τ if d = 1, the longest side of τ if d = 2 and

the longest edge of τ if d = 3. The parameter h indicates the maximal diameter

of the simplices of the partitioning. We recall that a partitioning T h is said to be

“quasi-uniform” if there exists a positive constant β such that

%τ
hτ
≥ β ∀ τ ∈ Th,

where %τ denotes the diameter of the sphere inscribed in τ . For instance, in the case

d = 2, the quasi-uniform condition means that the angles of the triangles τ ∈ T h

are not allowed to be arbitrarily small; see Johnson [42] page 85. We also recall that

a partitioning T h is said to be “acute” for d = 2 if all the angles of the triangles

are less than or equal to π/2, and for d = 3 if the angles made by any two faces of

the same tetrahedron are less than or equal to π/2. Another type of partitioning is

the “right-angled” that is, in the case d = 2, if all triangles are right-angled; and in

the case d = 3, if all tetrahedra have a vertex at which all the edges meet at right
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angles. From the definitions, we note that the right-angled partitioning is acute.

In the work that follows we consider the finite element approximation of (PM,ε)

under the following assumptions on the spacies and temporal meshes:

(A) Let Ω ⊂ Rd, d = 1, 2, 3, be a polygonal domain in d = 2 and a polyhedral

domain in d = 3. Let T h be a quasi-uniform and right-angled partitioning of

Ω into disjoint open simplices { τ } with hτ := diam τ and h := max
τ∈T h

hτ , so

that Ω =
⋃

τ∈T h
τ . Let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partitioning of

(0, T ) into time steps ∆tn := tn− tn−1, n = 1, · · · , N , with ∆t := max
n=1,··· ,N

∆tn.

Let Sh ⊂ H1(Ω) be the standard finite element space of continuous piecewise linear

function:

Sh := {χ ∈ C(Ω) : χ |τ is linear ∀ τ ∈ T h}.

Denote by N h := { pj }Jj=0 the set of nodes of the partitioning T h and let {ϕj }Jj=0

be the canonical basis functions associated with Sh, satisfying ϕj(pi) = δij for

i, j = 0, · · · , J .

We also introduce

Sh≥0 := {χ ∈ Sh : χ(pj) ≥ 0, j = 0, · · · , J}

⊂ H1
≥0(Ω) := {η ∈ H1(Ω) : η ≥ 0 a.e. in Ω} .

Let πh : C(Ω)→ Sh be the interpolation operator such that for all η ∈ C(Ω)

πhη(pj) := η(pj) for j = 0, · · · , J,

and define a discrete semi-inner product on C(Ω), and inner product on Sh, as

follows

(u, v)h :=

∫
Ω

πh(u(x) v(x)) dx =
J∑
j=0

M̂jj u(pj) v(pj), (2.4.1)

where M̂jj := (ϕj, ϕj)
h = (1, ϕj) > 0. The induced discrete semi-norm on C(Ω),

and norm on Sh, is | . |h := [ ( . , . )h ]1/2. We note that | . |h is equivalent to the norm

|| . ||0 := [ ( . , . ) ]1/2. Namely,

||χ||20 ≤ |χ|2h ≤ (d+ 2) ||χ||20 ∀χ ∈ Sh, (2.4.2)
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(see, e.g., Raviart [56]).

On noting (2.4.1) it is easy to show that

(η1, η2)h = (πhη1, η2)h = (πhη1, π
hη2)h ∀η1, η2 ∈ C(Ω). (2.4.3)

Let M̂ :=

(
M̂ij

)J
i,j=0

and K :=

(
Kij

)J
i,j=0

to be the lumped mass matrix and the

stiffness matrix, respectively, where

M̂ij := (ϕi, ϕj)
h and Kij := (∇ϕi,∇ϕj) .

As the partitioning T h is acute, we have that (see [53] page 49 )

Kjj > 0 ∀ j and Kij ≤ 0 ∀ i 6= j . (2.4.4)

Using the fact
J∑
j=0

ϕj = 1, we also have

J∑
j=0

Kij =

(
∇ϕi,∇

J∑
j=0

ϕj

)
= 0 . (2.4.5)

Providing that the partitioning T h is acute, we prove the following lemma about

the regularized functions φε(s) and ψε(s) which will be needed later on to derive

some useful estimates. See Section 2.4.2 in [53] and Section 4.2 in [35] for similar

results.

Lemma 2.4.1 Let the assumptions (A) hold. Then for all χ ∈ Sh

||∇πh[φε(χ)]||20 ≤ (∇χ,∇πh[φε(χ)]) , (2.4.6)

||∇πh[ψε(χ)]||20 ≤ (∇χ,∇πh[ψε(χ)]) . (2.4.7)

Proof : We prove (2.4.6) and the proof of (2.4.7) will follow similarly. On noting

(2.3.5) we find that

(φε(a)− φε(b))2 ≤ (φε(a)− φε(b)) (a− b) ∀ a, b ∈ R , (2.4.8)

where we have noticed that φε is 1-Lipschitz continuous and non-decreasing function.

Also, as Kij = Kji , we note for any aj, bj, cj ∈ R that

J∑
i=0

J∑
j=0
j 6=i

ai (bj − ci) Kij =
J∑
i=0

J∑
j=0
j 6=i

aj (bi − cj) Kij . (2.4.9)
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A function χ ∈ Sh can be expressed as χ :=
J∑
j=0

χj ϕj where χj := χ(pj),

j = 0, · · · , J . Noting this and (2.4.5) we have that

(∇χ,∇πh[φε(χ)]) =

(
∇

J∑
i=0

χi ϕi ,∇
J∑
j=0

φε(χj)ϕj

)

=
J∑
i=0

J∑
j=0

χi φε(χj)Kij

=
J∑
i=0

J∑
j=0
j 6=i

χi φε(χj)Kij +
J∑
i=0

χi φε(χi)Kii

=
J∑
i=0

J∑
j=0
j 6=i

χi φε(χj)Kij −
J∑
i=0

J∑
j=0
j 6=i

χi φε(χi)Kij

=
J∑
i=0

J∑
j=0
j 6=i

χi (φε(χj)− φε(χi)) Kij . (2.4.10)

It follows from (2.4.10) and the notation (2.4.9) that

(∇χ,∇πh[φε(χ)]) =
J∑
i=0

J∑
j=0
j 6=i

χi (φε(χj)− φε(χi)) Kij

=
1

2

J∑
i=0

J∑
j=0
j 6=i

[
χi (φε(χj)− φε(χi)) Kij + χj (φε(χi)− φε(χj)) Kij

]

=
1

2

J∑
i=0

J∑
j=0
j 6=i

(−Kij) (χi − χj) (φε(χi)− φε(χj)) . (2.4.11)

Similarly to (2.4.11), we obtain that

(∇πh[φε(χ)],∇πh[φε(χ)]) =
1

2

J∑
i=0

J∑
j=0
j 6=i

(−Kij) (φε(χi)− φε(χj))2 . (2.4.12)

Combining (2.4.11), (2.4.12), (2.4.4) and (2.4.8) yields the desired inequality (2.4.6).

The result (2.4.7) can be shown by following the same argument used for (2.4.6) on

noting that ψε is also 1-Lipschitz continuous and non-decreasing. 2

We now recall some well-known results about the space Sh under our assumption

that T h is quasi-uniform partitioning:
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For any τ ∈ T h, χ ∈ Sh, 1 ≤ p , q ≤ ∞ and m, l ∈ {0, 1} with l ≤ m, we have

||χ||m,p,“τ” ≤ C h
(l−m) + d min(0, 1

p
− 1
q

)

“τ” ||χ||l,q,“τ” , (2.4.13)

where the abbreviation “τ” means “with” or “without” τ , i.e. with τ or with Ω.

The above inequality is known as “the inverse inequality”, see [32] page 75-77, and

it also holds with || . || replaced by | . | , see [23] page 140-142.

In particular, in our work, we will make frequent use of the following cases of the

inverse inequality

|χ|1,p,“τ” ≤ C h−1
“τ” |χ|0,p,“τ” 1 ≤ p ≤ ∞ , (2.4.14)

|χ|m,p,“τ” ≤ C h
−d ( 1

q
− 1
p

)

“τ” |χ|m,q,“τ” 1 ≤ q ≤ p ≤ ∞, m ∈ {0, 1} . (2.4.15)

We also require the following interpolation results for all η ∈ W 1,s(Ω) , s ∈ [2,∞]

if d = 1 and s ∈ (d,∞] if d = 2 or 3:

|(I − πh)η|m,s ≤ C h1−m |η|1,s m ∈ {0, 1} , (2.4.16)

lim
h→0
‖(I − πh)η‖1,s = 0 , (2.4.17)

(see Theorem 1.103 and Corollary 1.110 in [32] respectively).

Due to the quasi-uniform partitioning of T h, we have for all η ∈ W 2,1(Ω) that

(see Theorem 5 in [24]):

||(I − πh)η||0,1 ≤ C h2 |η|2,1. (2.4.18)

It is easily established, see for instance the proof of Lemma 2.4.2 , from (2.4.1),

(2.4.18), the Hölder’s inequality and (2.4.14), for all χ1, χ2 ∈ Sh, that

∣∣(χ1, χ2)− (χ1, χ2)h
∣∣ ≤ ∥∥(I − πh)(χ1 χ2)

∥∥
0,1

≤ C h1+m |χ1|m,n1 |χ2|1,n2 , (2.4.19)

for m ∈ {0, 1} and 1 ≤ n1, n2 ≤ ∞ with 1
n1

+ 1
n2

= 1 .

For later purposes, we prove the following generalized version of the estimate

(2.4.19).
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Lemma 2.4.2 For all χ1 , χ2 , χ3 ∈ Sh

∣∣(χ1 χ2, χ3)− (χ1 χ2, χ3)h
∣∣ ≤ C h2 ||χ1||1,n1 ||χ2||1,n2 ||χ2||1,n3 , (2.4.20)

where 1
n1

+ 1
n2

+ 1
n3

= 1 , 1 ≤ n1, n2, n3 ≤ ∞.

Proof : On noting the generalized Hölder’s inequality we have for k1, k2, k3 = 1, 2, 3,

for i, j = 1, · · · , d and for any τ ∈ T h that∥∥∥∥ ∂χk1∂xi

∂χk2
∂xj

χk3

∥∥∥∥
0,1,τ

≤ ||χk1||1,n1,τ ||χk2 ||1,n2,τ ||χk3||1,n3,τ , (2.4.21)

where 1
n1

+ 1
n2

+ 1
n3

= 1 , 1 ≤ n1, n2, n3 ≤ ∞.

We now have from the definition (2.4.1), (2.4.18), (2.4.21) and the generalized dis-

crete Hölder’s inequality that

∣∣(χ1 χ2, χ3)− (χ1 χ2, χ3)h
∣∣ =

∣∣∣∣∫
Ω

(I − πh)(χ1 χ2 χ3) dx

∣∣∣∣
≤ C h2

∑
τ∈T h

∑
|α|=2

‖Dα(χ1 χ2 χ3)‖0,1,τ

≤ C h2
∑
τ∈T h

d∑
i,j=1

∥∥∥∥∂2(χ1 χ2 χ3)

∂xi ∂xj

∥∥∥∥
0,1,τ

≤ C h2
∑
τ∈T h

d∑
i,j=1

3∑
k1 ,k2 ,k3 =1
k1 6=k2 6=k3 6=k1

∥∥∥∥ ∂χk1∂xi

∂χk2
∂xj

χk3

∥∥∥∥
0,1,τ

≤ C h2
∑
τ∈T h

d∑
i,j=1

[
6 ||χ1||1,n1,τ ||χ2||1,n2,τ ||χ3||1,n3,τ

]
≤ C h2

∑
τ∈T h
||χ1||1,n1,τ ||χ2||1,n2,τ ||χ3||1,n3,τ

≤ C h2

(∑
τ∈T h
||χ1||n1

1,n1,τ

) 1
n1

(∑
τ∈T h
||χ2||n2

1,n2,τ

) 1
n2

(∑
τ∈T h
||χ3||n3

1,n3,τ

) 1
n3

≤ C h2 ||χ1||1,n1 ||χ2||1,n2 ||χ2||1,n3 .

2

We are now in a position to formulate a practical fully discrete finite element

approximation of the system (PM,ε).
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2.4.2 A practical fully discrete approximation

In order to introduce a fully discrete approximation that is consistent with the regu-

larized problem (PM,ε), we adapt a technique developed in [36] for studying a degen-

erate nonlinear fourth order parabolic equation modelling the height of thin films

of viscous fluids driven by surface tension. This technique has been also adapted

and employed in a number of numerical studies, see for example [9], [10], [11], [12]

and [13].

We define, for any ε ∈ (0, e−1), a function Λε : Sh → [L∞(Ω)]d×d such that for

all χ ∈ Sh and a.e. in Ω

Λε(χ) is symmetric and positive definite, (2.4.22a)

Λε(χ)∇πh[F ′ε(χ)] = ∇χ; (2.4.22b)

that is, the discrete analogue to (2.3.20). In the next few lines, we follow Grün et

al. [36] to give the construction of Λε on each simplex τ ∈ T h for any given χ ∈ Sh.

In one space dimension, we set

Λε(χ) |τ :=



χ(pk)−χ(pj)

F ′ε(χ(pk))−F ′ε(χ(pj))
= 1

F ′′ε (χ(ζ))

for some ζ ∈ τ if χ(pk) 6= χ(pj),

1
F ′′ε (χ(pk))

if χ(pk) = χ(pj),

(2.4.23)

where pj and pk are the vertices of the interval τ . Since F ′′ε (s) > 0 and
J∑
j=0

∇ϕj = 0,

it can be easily seen that the piecewise constant function Λε satisfies the conditions

(2.4.22a,b).

We now consider the case when d = 2 or 3 . Let {ei}di=1 be the orthonormal vectors

in Rd, such that ei denotes the i-th unit vector. Given non-zero constants αi,

i = 1, · · · , d, we define τ̂({αi}di=1) to be a reference open simplex in Rd with vertices

{p̂i}di=0, where p̂0 is the origin and p̂i := αi ei, i = 1, · · · , d. Note that the simplex

τ̂ is right angled in the vertex p̂0. Using this notation, we now define the function

Λε on each element of T h. On recalling assumption (A) that the partitioning T h

is right-angled, let τ ∈ T h with vertices {pji}di=0, such that pj0 is a right angled
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vertex. We can find non-zero constants {αi}di=1 and an orthogonal matrix Rτ in

such a way that the mapping Rτ : x̂ ∈ Rd → pj0 + Rτ x̂ ∈ Rd maps the vertex p̂i to

pji , i = 0, · · · , d, and hence τ̂ ≡ τ̂({αi}di=1) to τ . For any τ ∈ T h and χ ∈ Sh, we

then set

Λε(χ) |τ := Rτ Λ̂ε(χ̂) |τ̂ RT
τ , (2.4.24)

where χ̂(x̂) ≡ χ(Rτ x̂) for all x̂ ∈ τ̂ and Λ̂ε(χ̂) |τ̂ is the d × d diagonal matrix with

diagonal entries, k = 1, · · · , d,

[Λ̂ε(χ̂) |τ̂ ]kk :=



χ̂(p̂k)−χ̂(p̂0)
F ′ε(χ̂(p̂k))−F ′ε(χ̂(p̂0))

≡ χ(pjk )−χ(pj0 )

F ′ε(χ(pjk ))−F ′ε(χ(pj0 ))

= 1
F ′′ε (χ(ζ))

for some ζ between pjk and pj0

if χ(pjk) 6= χ(pj0),

1
F ′′ε (χ̂(p̂0))

≡ 1
F ′′ε (χ(pj0 ))

if χ(pjk) = χ(pj0).

(2.4.25)

As RT
τ ≡ R−1

τ , we have that

∇χ |τ≡ Rτ ∇̂χ̂ |τ̂ , (2.4.26)

where ∇̂ is the gradient on τ̂ . On noting (2.4.24), (2.4.25), (2.4.26), the positivity of

F ′′ε (s) and the fact
J∑
j=0

∇ϕj = 0, one can easily show that Λε satisfies the conditions

(2.4.22a,b).

In a similar fashion, for any ε ∈ (0, e−1), we introduce a function Ξε : Sh →

[L∞(Ω)]d×d such that for all χ ∈ Sh and a.e. in Ω

Ξε(χ) is symmetric and positive definite, (2.4.27a)

Ξε(χ)∇πh[G′ε(χ)] = ∇χ; (2.4.27b)

that is, the discrete analogue to (2.3.21). The construction (2.4.23)-(2.4.25) for Λε

can be extended to Ξε. In the case d = 1, we set for any χ ∈ Sh and τ ∈ T h having

the vertices pj and pk,

Ξε(χ) |τ :=



χ(pk)−χ(pj)

G′ε(χ(pk))−G′ε(χ(pj))
= 1

G′′ε (χ(ζ))

for some ζ ∈ τ if χ(pk) 6= χ(pj),

1
G′′ε (χ(pk))

if χ(pk) = χ(pj).

(2.4.28)
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When d = 2 or 3 , we set

Ξε(χ) |τ := Rτ Ξ̂ε(χ̂) |τ̂ RT
τ , (2.4.29)

where Ξ̂ε(χ̂) |τ̂ is the d× d diagonal matrix with diagonal entries, k = 1, · · · , d,

[Ξ̂ε(χ̂) |τ̂ ]kk :=



χ̂(p̂k)−χ̂(p̂0)
G′ε(χ̂(p̂k))−G′ε(χ̂(p̂0))

≡ χ(pjk )−χ(pj0 )

G′ε(χ(pjk ))−G′ε(χ(pj0 ))

= 1
G′′ε (χ(ζ))

for some ζ between pjk and pj0

if χ(pjk) 6= χ(pj0),

1
G′′ε (χ̂(p̂0))

≡ 1
G′′ε (χ(pj0 ))

if χ(pjk) = χ(pj0).

(2.4.30)

Under the assumptions (A), for any given ε ∈ (0, e−1) we consider the following

fully discrete finite element approximation of (PM,ε):

(Ph,∆t
M, ε ) For n ≥ 1 find {Un

ε , V
n
ε } ∈ Sh × Sh such that for all χ ∈ Sh(

Unε −U
n−1
ε

∆tn
, χ
)h

+ (D∇Un
ε + Λε(U

n
ε )∇ (Un

ε + V n
ε ) ,∇χ)

= (Un
ε − Un

ε φε(U
n−1
ε )− φε(Un

ε )ψε(V
n−1
ε ), χ)h , (2.4.31a)(

V nε −V
n−1
ε

∆tn
, χ
)h

+ (D∇V n
ε + Ξε(V

n
ε )∇ (Un

ε + V n
ε ) ,∇χ)

= (γ V n
ε − ψε(V n

ε )
[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
, χ)h , (2.4.31b)

where U0
ε ∈ Sh and V 0

ε ∈ Sh are given approximations of u0 and v0 respectively.

Before we prove existence of the approximate solutions, in the following sub-

section, we provide some lemmata which will be important in the analysis of the

approximation problem (Ph,∆t
M, ε ). The proofs of these lemmata will be based on

arguments considered in [11] and [12].

Lemma 2.4.3 Let the assumptions (A) hold. Then for any given ε ∈ (0, e−1) the

functions Λε : Sh → [L∞(Ω)]d×d and Ξε : Sh → [L∞(Ω)]d×d satisfy, respectively, for

a.e. in Ω

ε ξT ξ ≤ ξTΛε(χ)ξ ≤M ξT ξ ∀ ξ ∈ Rd, ∀ χ ∈ Sh, (2.4.32)

ε ξT ξ ≤ ξTΞε(χ)ξ ≤ ε−1 ξT ξ ∀ ξ ∈ Rd, ∀ χ ∈ Sh. (2.4.33)
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Proof : Let χ ∈ Sh and τ ∈ T h. It follows, on noting the symmetry of Λε(χ) |τ

and Λ̂ε(χ̂) |τ̂ , RT
τ ≡ R−1

τ and (2.4.24), that Λε(χ) |τ and Λ̂ε(χ̂) |τ̂ possess the same

eigenvalues. In particular, we have

‖Λε(χ) |τ ‖ = ‖Λ̂ε(χ̂) |τ̂ ‖ ∀ τ ∈ T h,

where ‖ . ‖ denotes the spectral norm on Rd×d. Noting this, (2.4.25) and (2.3.5)

yields the result (2.4.32), (see Theorem 9.12 in [18]). Similarly to (2.4.32), the

result (2.4.33) follows from (2.4.29), (2.4.30) and (2.3.11). 2

Lemma 2.4.4 Let the assumptions (A) hold. Then for any given ε ∈ (0, e−1) the

functions Λε : Sh → [L∞(Ω)]d×d and Ξε : Sh → [L∞(Ω)]d×d are continuous in the

following sense. For all χ1 , χ2 ∈ Sh and τ ∈ T h

‖(Λε(χ1)− Λε(χ2)) |τ ‖

≤ max
s∈R

[F ′′ε (s)] max
s∈R

[φε(s)] max
k=1,··· ,d

[ |χ1(pjk)− χ2(pjk)|+ |χ1(pj0)− χ2(pj0)| ]

≤ 2M
ε
‖χ1 − χ2‖0,∞ , (2.4.34)

‖(Ξε(χ1)− Ξε(χ2)) |τ ‖

≤ max
s∈R

[G′′ε(s)] max
s∈R

[ψε(s)] max
k=1,··· ,d

[ |χ1(pjk)− χ2(pjk)|+ |χ1(pj0)− χ2(pj0)| ]

≤ 2
ε2
‖χ1 − χ2‖0,∞ . (2.4.35)

Proof : We provide the proof of (2.4.34) which can be easily modified to show

(2.4.35). On noting the construction of Λε we have for any χ1 , χ2 ∈ Sh and τ ∈ T h

that

‖(Λε(χ1)− Λε(χ2)) |τ ‖ = ‖(Λ̂ε(χ̂1)− Λ̂ε(χ̂2)) |τ̂ ‖

= max
k=1,··· ,d

|[Λ̂ε(χ̂1)− Λ̂ε(χ̂2)]kk |τ̂ | := max
k=1,··· ,d

Ik , (2.4.36)

where we generally set for any k = 1, · · · , d

Ik = |φε(ξ1)− φε(ξ2)|

for some ξ1 between (or equal to) χ1(pj0) and χ1(pjk) and for some ξ2 between (or

equal to) χ2(pj0) and χ2(pjk).
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We have two cases:

(1) χ1(pj0) = χ1(pjk) or χ2(pj0) = χ2(pjk) .

(2) χ1(pj0) 6= χ1(pjk) and χ2(pj0) 6= χ2(pjk) with

either (2a) χ1(pj0) = χ2(pjk) and χ2(pj0) = χ1(pjk)

or (2b) χ1(pj0) 6= χ2(pjk) or χ2(pj0) 6= χ1(pjk) .

The cases (1) and (2a) can be easily treated on noting the Lipschitz continuity of

φε since in both cases we have

Ik = |φε(ξ1)− φε(ξ2)| ≤ |ξ1 − ξ2|

≤ max{|χ1(pj0)− χ2(pj0)|, |χ1(pj0)− χ2(pjk)|,

|χ1(pjk)− χ2(pj0)|, |χ1(pjk)− χ2(pjk)|}

= max {|χ1(pj0)− χ2(pj0)|, |χ1(pjk)− χ2(pjk)|} . (2.4.37)

We now consider the case (2b) which requires some technical calculations. Without

loss of generality, we assume that χ1(pj0) 6= χ2(pjk) and we set

φε(ξ1,2) :=
χ1(pj0)− χ2(pjk)

F ′ε(χ1(pj0))− F ′ε(χ2(pjk))
, ξ1,2 between χ1(pj0) and χ2(pjk) .

We have

Ik = |φε(ξ1)− φε(ξ2)| ≤ |φε(ξ1)− φε(ξ1,2)|+ |φε(ξ1,2)− φε(ξ2)|

=
∣∣∣ χ1(pj0 )−χ1(pjk )

F ′ε(χ1(pj0 ))−F ′ε(χ1(pjk ))
− χ1(pj0 )−χ2(pjk )

F ′ε(χ1(pj0 ))−F ′ε(χ2(pjk ))

∣∣∣
+
∣∣∣ χ1(pj0 )−χ2(pjk )

F ′ε(χ1(pj0 ))−F ′ε(χ2(pjk ))
− χ2(pj0 )−χ2(pjk )

F ′ε(χ2(pj0 ))−F ′ε(χ2(pjk ))

∣∣∣
:= Ik,1 + Ik,2 . (2.4.38)

We deal with the terms Ik,1 and Ik,2 separately. If χ1(pjk) = χ2(pjk) then Ik,1 = 0 .

Otherwise, we set

φε(ξ0) :=
χ1(pjk)− χ2(pjk)

F ′ε(χ1(pjk))− F ′ε(χ2(pjk))
, ξ0 between χ1(pjk) and χ2(pjk) .
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For any χ1(pj0), χ1(pjk), χ2(pjk) ∈ R, there are three possibilities

either |χ1(pjk)− χ2(pjk)| = |χ1(pjk)− χ1(pj0)|+ |χ1(pj0)− χ2(pjk)| (2.4.39a)

or |χ1(pjk)− χ2(pjk)| = |χ1(pjk)− χ1(pj0)| − |χ1(pj0)− χ2(pjk)| (2.4.39b)

or |χ1(pjk)− χ2(pjk)| = |χ2(pjk)− χ1(pj0)| − |χ1(pj0)− χ1(pjk)| . (2.4.39c)

If (2.4.39a) holds then we obtain from the Lipschitz continuity of φε that

Ik,1 := |φε(ξ1)− φε(ξ1,2)| ≤ |ξ1 − ξ1,2|

≤ |ξ1 − χ1(pj0)|+ |χ1(pj0)− ξ1,2|

≤ |χ1(pjk)− χ1(pj0)|+ |χ1(pj0)− χ2(pjk)|

= |χ1(pjk)− χ2(pjk)| . (2.4.40)

Suppose that (2.4.39b) holds. We note that

|ξ1,2 − ξ0| ≤ |ξ1,2 − χ2(pjk)|+ |χ2(pjk)− ξ0|

≤ |χ1(pj0)− χ2(pjk)|+ |χ2(pjk)− χ1(pjk)|

= |χ1(pjk)− χ1(pj0)| . (2.4.41)

Hence, after some calculations, it follows from the Lipschitz continuity of φε and

(2.4.41) that

Ik,1 : =
∣∣∣ χ1(pj0 )−χ1(pjk )

F ′ε(χ1(pj0 ))−F ′ε(χ1(pjk ))
− χ1(pj0 )−χ2(pjk )

F ′ε(χ1(pj0 ))−F ′ε(χ2(pjk ))

∣∣∣
=

∣∣∣∣F ′ε(χ1(pjk ))−F ′ε(χ2(pjk ))

χ1(pjk )−χ2(pjk )

∣∣∣∣× ∣∣∣∣ χ1(pj0 )−χ1(pjk )

F ′ε(χ1(pj0 ))−F ′ε(χ1(pjk ))

∣∣∣∣× ∣∣∣∣χ1(pjk )−χ2(pjk )

χ1(pjk )−χ1(pj0 )

∣∣∣∣
×
∣∣∣∣ χ1(pjk )−χ2(pjk )

F ′ε(χ1(pjk ))−F ′ε(χ2(pjk ))
− χ1(pj0 )−χ2(pjk )

F ′ε(χ1(pj0 ))−F ′ε(χ2(pjk ))

∣∣∣∣
= F ′′ε (ξ0)φε(ξ1) |χ1(pjk)− χ2(pjk)|

∣∣∣∣ φε(ξ1,2)−φε(ξ0)

χ1(pjk )−χ1(pj0 )

∣∣∣∣
≤ F ′′ε (ξ0)φε(ξ1) |χ1(pjk)− χ2(pjk)| . (2.4.42)

Finally, if (2.4.39c) holds we obtain, similarly to (2.4.42), that

Ik,1 = F ′′ε (ξ0)φε(ξ1,2) |χ1(pjk)− χ2(pjk)|
∣∣∣∣ φε(ξ1)−φε(ξ0)
χ2(pjk )−χ1(pj0 )

∣∣∣∣
≤ F ′′ε (ξ0)φε(ξ1,2) |χ1(pjk)− χ2(pjk)| . (2.4.43)
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Combining (2.4.40), (2.4.42) and (2.4.43) yields

Ik,1 ≤ max
s∈R

[F ′′ε (s)] max
s∈R

[φε(s)] |χ1(pjk)− χ2(pjk)| . (2.4.44)

Similarly to Ik,1, we can show that

Ik,2 ≤ max
s∈R

[F ′′ε (s)] max
s∈R

[φε(s)] |χ1(pj0)− χ2(pj0)| . (2.4.45)

Thus, the result (2.4.34) follows by combining (2.4.36), (2.4.37), (2.4.38), (2.4.44),

(2.4.45) and (2.3.5). 2

Lemma 2.4.5 Let the assumptions (A) hold. Then for any given ε ∈ (0, e−1) and

for any χ ∈ Sh and τ ∈ T h the functions Λε : Sh → [L∞(Ω)]d×d and Ξε : Sh →

[L∞(Ω)]d×d satisfy

max
x∈τ
‖Λε(χ(x))− φε(χ(x)) I‖ ≤ hτ |∇χ |τ | , (2.4.46)

max
x∈τ
‖Ξε(χ(x))− ψε(χ(x)) I‖ ≤ hτ |∇χ |τ | , (2.4.47)

where I is the d× d identity matrix.

Proof : From (2.4.24), (2.4.25) and 1-Lipschitz continuity of φε we obtain that

max
x∈τ
‖Λε(χ(x))− φε(χ(x)) I‖ = max

x∈τ
max

k=1,··· ,d
| [Λ̂ε(χ̂) |τ̂ ]kk − φε(χ(x)) |

= max
x∈τ

max
k=1,··· ,d

|φε(χ(ζk))− φε(χ(x)) | ζk ∈ τ

≤ max
x∈τ

max
k=1,··· ,d

|χ(ζk)− χ(x) | ζk ∈ τ

≤ max
x∈τ

max
k=1,··· ,d

| ζk − x | |∇χ(x) | ζk ∈ τ

≤ hτ |∇χ |τ | ,

which proves (2.4.46). Similarly to (2.4.46), the proof of (2.4.47) can be easily estab-

lished on noting (2.4.29), (2.4.30) and the 1-Lipschitz continuity of the regularized

function ψε. 2

In the following subsection we adapt the approach in Barrett and Nürnberg [12]

and Barrett and Blowey [9] to prove the existence of the fully discrete approximations

{Un
ε , V

n
ε } for n = 1, · · · , N .
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2.4.3 Existence of the approximations

In order to prove the existence of solution {Un
ε , V

n
ε }, n ≥ 1, of the system (2.4.31a)-

(2.4.31b) for given {Un−1
ε , V n−1

ε }, it is convenient to define the functions Au :

Sh × Sh → Sh and Av : Sh × Sh → Sh such that for all χ ∈ Sh

(Au(U, V ), χ)h =
(
U − Un−1

ε , χ
)h

+ ∆tn (D∇U + Λε(U)∇ (U + V ) ,∇χ)

−∆tn (U − U φε(Un−1
ε )− φε(U)ψε(V

n−1
ε ), χ)h , (2.4.48a)

(Av(U, V ), χ)h =
(
V − V n−1

ε , χ
)h

+ ∆tn (D∇V + Ξε(V )∇ (U + V ) ,∇χ)

−∆tn (γ V − ψε(V )
[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
, χ)h , (2.4.48b)

respectively. We first note that the continuous piecewise linear functions Au(U, V )

and Av(U, V ) can be defined uniquely in terms of their values at the nodal points

N h. This can be seen by setting χ ≡ ϕj , for j = 0, · · · , J , in (2.4.48a,b) and then

obtaining the following solvable square matrix systems

M̂ Au(U, V ) = S1 ,

M̂ Av(U, V ) = S2 ,

where M̂ is the lumped mass matrix introduced in Subsection 4.2.1 , and S1 and S2

are given vectors in terms of the nodal values of U , V , Un−1
ε and V n−1

ε . Thus, the

functions Au and Av are well defined.

From (2.4.48a,b) we note that the problem (Ph,∆t
M, ε ) can be restated as:

For given {U0
ε , V

0
ε } ∈ Sh × Sh, find {Un

ε , V
n
ε } ∈ Sh × Sh, n ≥ 1, such that

Au(U
n
ε , V

n
ε ) = 0 and Av(U

n
ε , V

n
ε ) = 0 . (2.4.49)

Lemma 2.4.6 For any given R > 0, the functions Au : [Sh]2R → Sh and Av :

[Sh]2R → Sh are continuous, where

[Sh]2R :=
{
{χ1, χ2} ∈ Sh × Sh : |χ1|2h + |χ2|2h ≤ R2

}
.
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Proof : Let {U1, V1} , {U2, V2} ∈ [Sh]2R . It follows from (2.4.48a) that for all χ ∈ Sh

(Au(U1, V1)− Au(U2, V2), χ)h = (U1 − U2, χ)h

+ ∆tn (D∇(U1 − U2) + Λε(U1)∇ (U1 + V1)− Λε(U2)∇ (U2 + V2) ,∇χ)

−∆tn
(
(U1 − U2) (1− φε(Un−1

ε ))− (φε(U1)− φε(U2))ψε(V
n−1
ε ), χ

)h
.

(2.4.50)

Choosing χ = Au(U1, V1) − Au(U2, V2) in (2.4.50) yields on noting the Cauchy-

Schwarz inequality, (2.4.14) and (2.4.2) that

|Au(U1, V1)− Au(U2, V2)|h ≤ C(h−1,∆tn) ‖Λε(U1)∇ (U1 + V1)− Λε(U2)∇ (U2 + V2)‖0

+ ∆tn
∣∣(φε(U1)− φε(U2))ψε(V

n−1
ε )

∣∣
h

+ C(h−1 ,∆tn ,M) |U1 − U2|h .

(2.4.51)

It follows from (2.3.11), (2.4.1) and the Lipschitz continuity of φε that

∣∣(φε(U1)− φε(U2))ψε(V
n−1
ε )

∣∣
h
≤ 1

ε
|φε(U1)− φε(U2)|h ≤

1
ε
|U1 − U2|h . (2.4.52)

We also have from (2.4.14), (2.4.2), (2.4.34), (2.4.32) and (2.4.15) that

‖Λε(U1)∇ (U1 + V1)− Λε(U2)∇ (U2 + V2)‖0

≤ ‖Λε(U1)− Λε(U2)‖0,∞ |U1|1 + ‖Λε(U2)‖0,∞ |U1 − U2|1

+ ‖Λε(U1)− Λε(U2)‖0,∞ |V1|1 + ‖Λε(U2)‖0,∞ |V1 − V2|1

≤ C(h−1) ‖Λε(U1)− Λε(U2)‖0,∞ (|U1|h + |V1|h)

+ C(h−1) ‖Λε(U2)‖0,∞ (|U1 − U2|h + |V1 − V2|h)

≤ C(h−1, ε−1, M ,R) ‖U1 − U2‖0,∞

+ C(h−1 , M) (|U1 − U2|h + |V1 − V2|h)

≤ C(h−1, ε−1, M ,R) (|U1 − U2|h + |V1 − V2|h) . (2.4.53)

Combining (2.4.51), (2.4.52) and (2.4.53) yields that Au is continuous. The conti-

nuity of Av follows similarly to Au on recalling (2.4.48b), (2.3.5), (2.3.11), (2.4.1),

(2.4.35) and (2.4.33). 2
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We now show the main result of this chapter where we establish the existence of

a solution {Un
ε , V

n
ε }Nn=1 to (Ph,∆t

M, ε ).

Theorem 2.4.7 Let the assumptions (A) hold, D > 0 and γ > 1. Let {Un−1
ε , V n−1

ε } ∈

Sh×Sh be a given solution to the (n− 1)-th step of (Ph,∆t
M, ε ) for some n = 1, · · · , N .

Then for all ε ∈ (0, e−1), for all h > 0 and for all ∆tn > 0 such that ∆tn ≤ 1
2 γ+2

,

there exists a solution {Un
ε , V

n
ε } ∈ Sh × Sh to the n-th step of (Ph,∆t

M, ε ).

Proof : At first, we recall that the proof is equivalent to the proof of existence

of {Un
ε , V

n
ε } ∈ Sh × Sh satisfies (2.4.49). An efficient approach to do that is by

contradiction. Let R be a fixed positive number and assume that there does not

exist {U, V } ∈ [Sh]2R with Au(U, V ) = Av(U, V ) = 0. This assumption enables us to

define a function B : [Sh]2R → [Sh]2R such that

B(U, V ) = (Bu(U, V ), Bv(U, V )) ,

where Bu(U, V ) and Bv(U, V ) are given by

Bu(U, V ) :=
−RAu(U, V )

|(Au(U, V ), Av(U, V ))|Sh×Sh
,

Bv(U, V ) :=
−RAv(U, V )

|(Au(U, V ), Av(U, V ))|Sh×Sh
,

(2.4.54)

where |(·, ·)|Sh×Sh is the standard norm on Sh × Sh defined by

|(χ1, χ2)|Sh×Sh :=
(
|χ1|2h + |χ2|2h

) 1
2 .

We note from the continuity of Au and Av , see Lemma 2.4.6 , that the function

B is continuous. Hence, on recalling that [Sh]2R is a convex and compact subset of

Sh × Sh, it follows from the Schauder’s theorem (see Appendix A.1.1) that there

exists {U, V } ∈ [Sh]2R which is fixed point of B; that is

B(U, V ) := (Bu(U, V ), Bv(U, V )) = (U, V ) .

We also note from (2.4.54) that the fixed point {U, V } satisfies

|U |2h + |V |2h = |Bu(U, V )|2h + |Bv(U, V )|2h = R2 . (2.4.55)
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We now prove a contradiction for R sufficiently large. Choosing χ ≡ πh[F ′ε(U)] in

(2.4.48a) and χ ≡ πh[G′ε(V )] in (2.4.48b) yields on noting (2.4.3), (2.4.22b), (2.4.32),

(2.4.27b) and (2.4.33) that

(Au(U, V ), F ′ε(U))h =
(
U − Un−1

ε , F ′ε(U)
)h

+ ∆tn
(
D [Λε(U)]−1∇U +∇(U + V ),∇U

)
−∆tn (U − U φε(Un−1

ε )− φε(U)ψε(V
n−1
ε ), F ′ε(U))h

≥
(
U − Un−1

ε , F ′ε(U)
)h

+
(
D
M

+ 1
)

∆tn |U |21 + ∆tn (∇U,∇V )

−∆tn (U − U φε(Un−1
ε )− φε(U)ψε(V

n−1
ε ), F ′ε(U))h (2.4.56a)

and

(Av(U, V ), G′ε(V ))h =
(
V − V n−1

ε , G′ε(V )
)h

+ ∆tn
(
D [Ξε(V )]−1∇V +∇(U + V ),∇V

)
−∆tn (γ V − ψε(V )

[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
, G′ε(V ))h

≥
(
V − V n−1

ε , G′ε(V )
)h

+ (D ε+ 1) ∆tn |V |21 + ∆tn (∇U,∇V )

−∆tn (γ V − ψε(V )
[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
, G′ε(V ))h.

(2.4.56b)

On noting Taylor’s theorem for any f ∈ C2(R)

(s1 − s2) f ′(s1) = f(s1)− f(s2) + (s1−s2)2

2
f ′′(ξ) for some ξ between s1 and s2 ,

(2.4.57)

we obtain from (2.3.5), (2.3.11) and (2.1.9) that

(U − Un−1
ε , F ′ε(U))h ≥ (Fε(U)− Fε(Un−1

ε ), 1)h + 1
2M
|U − Un−1

ε |2h

≥ (Fε(U)− Fε(Un−1
ε ), 1)h + 1

4M
|U |2h − 1

2M
|Un−1

ε |2h , (2.4.58a)

(V − V n−1
ε , G′ε(V ))h ≥ (Gε(V )−Gε(V

n−1
ε ), 1)h + ε

2
|V − V n−1

ε |2h

≥ (Gε(V )−Gε(V
n−1
ε ), 1)h + ε

4
|V |2h − ε

2
|V n−1
ε |2h . (2.4.58b)
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It follows from (2.3.8), (2.3.9), (2.1.12), (2.1.10) and (2.3.6) that

−∆tn
(
U − U φε(Un−1

ε )− φε(U)ψε(V
n−1
ε ), F ′ε(U)

)h
= −∆tn (U , F ′ε(U))h + ∆tn

(
φε(U

n−1
ε ), U F ′ε(U)

)h
+ ∆tn

(
ψε(V

n−1
ε ), φε(U)F ′ε(U)

)h
≥ −∆tn (2Fε(U) + 1, 1)h + ∆tn

(
φε(U

n−1
ε ) + ψε(V

n−1
ε ), [U ]−

)h
−∆tn

(
φε(U

n−1
ε ) + ψε(V

n−1
ε ), 1

)h
≥ −2 ∆tn (Fε(U), 1)h − ∆tn

ε
|[U ]−|2h −

ε∆tn
2

(
|φε(Un−1

ε )|2h + |ψε(V n−1
ε )|2h

)
−∆tn

(
φε(U

n−1
ε ) + ψε(V

n−1
ε ) + 1, 1

)h
≥ −4 ∆tn (Fε(U), 1)h − C(Un−1

ε , V n−1
ε ). (2.4.59a)

Similarly to (2.4.59a), we have from (2.3.14), (2.3.15), (2.1.12), (2.1.10) and (2.3.12)

that

−∆tn (γ V − ψε(V )
[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
, G′ε(V ))h

≥ −(2 γ + 2) ∆tn (Gε(V ), 1)h − C(Un−1
ε , V n−1

ε ). (2.4.59b)

Adding (2.4.56a,b) and noting (2.4.58a,b), (2.4.59a,b), the stated assumption on

∆tn and (2.4.55) yields for sufficiently large R that

(Au(U, V ), F ′ε(U))h + (Av(U, V ), G′ε(V ))h

≥ (1− 4 ∆tn) (Fε(U), 1)h + (1− (2 γ + 2) ∆tn) (Gε(V ), 1)h

+ ∆tn
(
|U |21 + 2 (∇U,∇V ) + |V |21

)
+ 1

4M
|U |2h + ε

4
|V |2h − C(Un−1

ε , V n−1
ε )

≥ ∆tn |U + V |21 +
(
|U |2h + |V |2h

)
min{ ε

4
, 1

4M
} − C(Un−1

ε , V n−1
ε )

≥ R2 min{ ε
4
, 1

4M
} − C(Un−1

ε , V n−1
ε ) > 0 . (2.4.60)

Noting that {U, V } is fixed point of the function B, (2.4.54) and (2.4.60) yields for

R sufficiently large that

(U, F ′ε(U))h + (V,G′ε(V ))h = (Bu(U, V ), F ′ε(U))h + (Bv(U, V ), G′ε(V ))h

=
−R

[
(Au(U, V ), F ′ε(U))h + (Av(U, V ), G′ε(V ))h

]
|(Au(U, V ), Av(U, V ))|Sh×Sh

< 0 . (2.4.61)
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Once again, it follows from (2.4.57), (2.3.5), and (2.3.11) that

(U, F ′ε(U))h ≥ (Fε(U)− Fε(0), 1)h + 1
2M
|U |2h, (2.4.62a)

(V,G′ε(V ))h ≥ (Gε(V )−Gε(0), 1)h + ε
2
|V |2h. (2.4.62b)

Thus, combining (2.4.62a,b) and (2.4.55) yields on noting the non-negativity of

Fε(s) and Gε(s) for R sufficiently large that

(U, F ′ε(U))h + (V,G′ε(V ))h ≥ R2 min{ ε
2
, 1

2M
} − (2− ε) |Ω| > 0 , (2.4.63)

which contradicts (2.4.61). This contradiction ensures that there exists {Un
ε , V

n
ε } ∈

Sh × Sh satisfying Au(U
n
ε , V

n
ε ) = Av(U

n
ε , V

n
ε ) = 0. Equivalently, we have existence

of a solution, which is {Un
ε , V

n
ε }, to the n-th step of (Ph,∆t

M, ε ). 2



Chapter 3

The population model:

Convergence and existence of a

weak solution

In this chapter we prove the existence of a global weak solution to the system

(2.2.4a)-(2.2.4d) by analysing the convergence of the fully discrete approximation

problem (Ph,∆t
M, ε ). In addition to the tools presented in the last chapter, in Section

3.1 we introduce some notation which is required for the analysis of this chapter.

In Section 3.2 we derive some stability bounds on the solutions of (Ph,∆t
M, ε ). Finally,

in Section 3.3 we discuss the convergence of the approximate problem (Ph,∆t
M, ε ) and

hence, we obtain the existence of a global weak solution to the system (2.2.4a)-

(2.2.4d).

3.1 Auxiliary results

For later use in this chapter, we define P h to be the discrete L2-projection operator

onto the finite dimensional space Sh where P h : L2(Ω)→ Sh is given by

(P hη, χ)h = (η, χ) ∀ χ ∈ Sh. (3.1.1)

45
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It follows from the Lax-Milgram theorem that P hη is a unique solution of (3.1.1).

Furthermore, we note from (3.1.1) and (2.4.1) for any η ∈ L2(Ω) that

(P hη)(pj) =
(η, ϕj)

M̂jj

j = 0 , · · · , J .

Therefore, we have

‖P hη‖0,∞ ≤ ‖η‖0,∞ . ∀ η ∈ L∞(Ω). (3.1.2)

Recalling that we have a quasi-uniform family of partitioning T h, it holds for

m ∈ {0, 1} that (see, e.g., [12]):

|(I − P h)η|m,s ≤ C h1−m |η|1,s ∀ η ∈ W 1,s(Ω) for any s ∈ [2,∞]. (3.1.3)

For later purposes, we introduce for any q ∈ (1, 2] the “inverse Laplacian” oper-

ator Gq :
(
W 1,q′(Ω)

)′ → W 1,q(Ω) such that

(∇Gqv,∇η) + (Gqv, η) = 〈v, η〉q′ ∀ η ∈ W 1,q′(Ω), (3.1.4)

where 1
q

+ 1
q′

= 1 and 〈·, ·〉q′ denotes the duality pairing between
(
W 1,q′(Ω)

)′
and

W 1,q′(Ω) that satisfies (see Appendix A.1.4):

〈v, η〉q′ = (v, η) ∀ v ∈ L2(Ω), η ∈ W 1,q′(Ω). (3.1.5)

The well-posedness of the operator Gq follows from the generalized Lax-Milgram

theorem, see Appendix A.1.3, which additionally asserts the existence of a positive

constant C such that

‖Gqv‖1,q ≤ C ‖v‖(W 1,q′ (Ω))′ ∀ v ∈ (W 1,q′(Ω))′. (3.1.6)

For consistency of notation, when q = 2 the indices “q” and “q′” will be dropped on

the above operator and duality pairing; that is G : (H1(Ω))
′ → H1(Ω) defined by

(∇Gv,∇η) + (Gv, η) = 〈v, η〉 ∀ η ∈ H1(Ω), (3.1.7)

where 〈·, ·〉 denotes the duality pairing between (H1(Ω))
′

and H1(Ω) such that

〈v, η〉 = (v, η) ∀ v ∈ L2(Ω), η ∈ H1(Ω). (3.1.8)
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Also, we note from (3.1.6) that

‖Gv‖H1(Ω) ≤ C ‖v‖(H1(Ω))′ ∀ v ∈ (H1(Ω))′. (3.1.9)

We finally recall the following lemma, about the operator Gq for q ∈ (1, 2], which

is a consequence of the quasi-uniform partitioning of T h:

Lemma 3.1.1 For any q ∈ (1, 2], it holds that

‖χ‖0,q ≤ C h−1 ‖Gqχ‖1,q ∀ χ ∈ Sh. (3.1.10)

Proof : It follows from (3.1.5), (3.1.4), the Hölder’s inequality, the Young’s inequal-

ity and (2.4.13) for any χ ∈ Sh and for any α > 0 that

‖χ‖2
0 = 〈χ, χ〉q′ = (∇Gqχ,∇χ) + (Gqχ, χ)

≤ 2 ‖Gqχ‖1,q‖χ‖1,q′

≤ α ‖Gqχ‖2
1,q + C

α
h
−2 (1+d ( 1

2
− 1
q′ ))‖χ‖2

0 . (3.1.11)

Choosing α = 2C h
−2 (1+d ( 1

2
− 1
q′ )) in (3.1.11) yields, on again noting (2.4.13), that

‖χ‖0,q ≤ C hd ( 1
q
− 1

2
)‖χ‖0 ≤ C h

d ( 1
q
− 1

2
)−(1+d ( 1

2
− 1
q′ ))‖Gqχ‖1,q ≤ C h−1 ‖Gqχ‖1,q .

2

3.2 Stability estimates

In this section we obtain a discrete analogue of the a priori estimates in Lemma

2.3.1. We also prove some uniform bounds on the solution {Un
ε , V

n
ε }, independent

of the parameters ε, h and ∆tn, which are necessary to prove the convergence of

the approximate problem.

The following estimate is discrete analogue of (2.3.24), and plays a key role to

obtain important stability bounds of various norms of the approximate solutions.

Lemma 3.2.1 Let the assumptions (A) hold, D > 0 and γ > 1 . Let {Un−1
ε , V n−1

ε } ∈

Sh× Sh be given for some n = 1, · · · , N . Then for all ε ∈ (0, e−1), for all h > 0 and
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for all ∆tn > 0 such that ∆tn ≤ 1
2 γ+2

, there exists a solution {Un
ε , V

n
ε } ∈ Sh × Sh

to the n-th step of (Ph,∆t
M, ε ) such that

(1− (2 γ + 2) ∆tn) (Fε(U
n
ε ) +Gε(V

n
ε ), 1)h + D

M
∆tn |Un

ε |
2
1 + ∆tn |Un

ε + V n
ε |

2
1

≤ (1 + 6 ∆tn) (Fε(U
n−1
ε ) +Gε(V

n−1
ε ), 1)h + C ∆tn . (3.2.1)

Proof : The existence was demonstrated in Theorem 2.4.7. We now show that the

solution {Un
ε , V

n
ε } satisfies (3.2.1). Choosing χ ≡ ∆tn π

h[F ′ε(U
n
ε )] as a test function

in (2.4.31a) and χ ≡ ∆tn π
h[G′ε(V

n
ε )] as a test function in (2.4.31b) yields, on noting

(2.4.22b), (2.4.27b) and (2.4.3), the discrete analogue of (2.3.19)

(
Un
ε − Un−1

ε , F ′ε(U
n
ε )
)h

+ ∆tn
(
D [Λε(U

n
ε )]−1∇Un

ε +∇(Un
ε + V n

ε ),∇Un
ε

)
= ∆tn (Un

ε − Un
ε φε(U

n−1
ε )− φε(Un

ε )ψε(V
n−1
ε ), F ′ε(U

n
ε ))h, (3.2.2a)(

V n
ε − V n−1

ε , G′ε(V
n
ε )
)h

+ ∆tn
(
D [Ξε(V

n
ε )]−1∇V n

ε +∇(Un
ε + V n

ε ),∇V n
ε

)
= ∆tn (γ V n

ε − ψε(V n
ε )
[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
, G′ε(V

n
ε ))h. (3.2.2b)

Similarly to (2.3.22), it follows from (2.3.5), (2.3.11), (2.3.8), (2.3.9), (2.1.11),

(2.3.14), the Young’s inequality and (2.3.6) that

∆tn (Un
ε − Un

ε φε(U
n−1
ε )− φε(Un

ε )ψε(V
n−1
ε ), F ′ε(U

n
ε ))h

≤ ∆tn (2Fε(U
n
ε ) + 1, 1)h + ∆tn

(
φε(U

n−1
ε ) + ψε(V

n−1
ε ), 1

)h
−∆tn

(
φε(U

n−1
ε ) + ψε(V

n−1
ε ), [Un

ε ]−
)h

≤ 2 ∆tn (Fε(U
n
ε ), 1)h + 2 ∆tn (Gε(V

n−1
ε ), 1)h + ∆tn

ε
|[Un

ε ]−|2h

+ ε∆tn
2

(
|φε(Un−1

ε )|2h + |ψε(V n−1
ε )|2h

)
+ C(M, |Ω|) ∆tn

≤ 4 ∆tn (Fε(U
n
ε ), 1)h + 3 ∆tn (Gε(V

n−1
ε ), 1)h + C(M, |Ω|) ∆tn . (3.2.3a)

We also obtain, similarly to (2.3.23), from (2.3.5), (2.3.11), (2.3.14), (2.3.15), (2.1.11),

the Young’s inequality and (2.3.12) that

∆tn (γ V n
ε − ψε(V n

ε )
[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
, G′ε(V

n
ε ))h

≤ (2 γ + 2) ∆tn (Gε(V
n
ε ), 1)h + 3 ∆tn (Gε(V

n−1
ε ), 1)h + C(M, |Ω|, γ) ∆tn .

(3.2.3b)
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Combining (3.2.2a), (3.2.3a) and the first inequality in (2.4.58a) leads to

(1− 4 ∆tn) (Fε(U
n
ε ), 1)h + ∆tn

(
D [Λε(U

n
ε )]−1∇Un

ε +∇(Un
ε + V n

ε ),∇Un
ε

)
≤ (Fε(U

n−1
ε ), 1)h + 3 ∆tn (Gε(V

n−1
ε ), 1)h + C ∆tn . (3.2.4a)

Combining (3.2.2b), (3.2.3b) and the first inequality in (2.4.58b) gives

(1− (2 γ + 2) ∆tn) (Gε(V
n
ε ), 1)h + ∆tn

(
D [Ξε(V

n
ε )]−1∇V n

ε +∇(Un
ε + V n

ε ),∇V n
ε

)
≤ (1 + 3 ∆tn) (Gε(V

n−1
ε ), 1)h + C ∆tn . (3.2.4b)

Hence, the estimate (3.2.1) follows by summing (3.2.4a) and (3.2.4b) on noting

(2.4.32), (2.4.33), Fε(s) ≥ 0, Gε(s) ≥ 0 and that γ > 1 . 2

Lemma 3.2.2 Let the assumptions of Lemma 3.2.1 hold and let u0 , v0 ∈ L∞(Ω)

with u0(x) , v0(x) ≥ 0 for a.e. x ∈ Ω . Let either U0
ε ≡ P hu0 and V 0

ε ≡ P hv0; or

U0
ε ≡ πhu0 and V 0

ε ≡ πhv0 if u0 , v0 ∈ C(Ω) 1. Then for all ε ∈ (0, e−1) , for all h > 0

and for all ∆t > 0 such that ∆t ≤ 1−δ
2 γ+2

, for some δ ∈ (0, 1) , the problem (Ph,∆t
M, ε )

possesses a solution {Un
ε , V

n
ε }Nn=1 satisfying

max
n=1,··· ,N

[
(Fε(U

n
ε ) +Gε(V

n
ε ), 1)h + ε−1‖πh[Un

ε ]−‖2
0 + ε−1‖πh[V n

ε ]−‖2
0 + ‖Un

ε ‖2
0 + ‖V n

ε ‖0,1

]
+

N∑
n=1

∆tn ‖Un
ε + V n

ε ‖2
1 +

N∑
n=1

∆tn ‖Un
ε ‖2

1 +
N∑
n=1

∆tn ‖V n
ε ‖2

1 ≤ C .

(3.2.5)

Proof : It follows immediately from (3.2.1) and our assumptions on ∆t , for

n = 1, · · · , N , that

(Fε(U
n
ε ) +Gε(V

n
ε ), 1)h ≤

(
1 + 2 (γ+4) ∆tn

δ

)
(Fε(U

n−1
ε ) +Gε(V

n−1
ε ), 1)h + C

δ
∆tn

≤ e
2 (γ+4) ∆tn

δ (Fε(U
n−1
ε ) +Gε(V

n−1
ε ), 1)h + C

δ
∆tn . (3.2.6)

On noting the assumptions on the initial data {u0 , v0} , (2.3.4a), (2.3.10a), the

definition of πh and (3.1.2), we have that

(Fε(U
0
ε ), 1)h + (Gε(V

0
ε ), 1)h ≤ C . (3.2.7)

1On recalling the definitions of Ph and πh we have, for non-negative initial data u0 and v0, that

U0
ε , V

0
ε ≥ 0.
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Combining (3.2.6), (3.2.7) yields that

max
n=1,··· ,N

[
(Fε(U

n
ε ) +Gε(V

n
ε ), 1)h

]
≤ C e

2 (γ+4)T
δ

[
T + (Fε(U

0
ε ) +Gε(V

0
ε ), 1)h

]
≤ C . (3.2.8)

It follows from (2.4.2), (2.3.6), (2.3.7) and (3.2.8) for n = 1, · · · , N that

‖Un
ε ‖2

0 ≤ |Un
ε |2h =

(
(Un

ε )2, 1
)h ≤ 4M (Fε(U

n
ε ), 1)h + 6M2|Ω| ≤ C. (3.2.9)

Choosing χ ≡ 1 in (2.4.31b) and noting the positivity of φε(s) and ψε(s) yields,

under the considered assumptions on the parameter ∆t, that for n = 1, · · · , N

(V n
ε , 1)h ≤ 1

1−γ∆tn
(V n−1

ε , 1)
h ≤

(
1 + γ∆tn

δ

)
(V n−1

ε , 1)
h ≤ e

γ∆tn
δ (V n−1

ε , 1)
h
.

(3.2.10)

Hence, if follows from (3.2.10), the definition of the interpolation πh, (3.1.2) and the

assumptions on v0 that

max
n=1,··· ,N

(V n
ε , 1)h ≤ e

γ T
δ
(
V 0
ε , 1
)h ≤ |Ω| eγ Tδ ‖v0‖0,∞ ≤ C . (3.2.11)

Observing that |s| = s − 2 [s]−, (3.2.11) and the Young’s inequality yields for

n = 1, · · · , N that

‖V n
ε ‖0,1 = (|V n

ε |, 1) ≤
(
πh|V n

ε |, 1
)

≤
(
V n
ε − 2 πh [V n

ε ]− , 1
)

= (V n
ε , 1)h − 2

(
πh [V n

ε ]− , 1
)

≤ C
(
1 + ‖πh[V n

ε ]−‖2
0

)
. (3.2.12)

From (2.4.2), (2.4.3), (2.3.6), (2.3.12) and (3.2.8) we obtain, after recalling that

s = [s]+ + [s]− and Fε(s) , Gε(s) ≥ 0 , that for n = 1, · · · , N

‖πh[Un
ε ]−‖2

0 ≤ |πh[Un
ε ]−|2h =

(
[Un

ε ]2−, 1
)h

≤ 2 ε (Fε(U
n
ε ), 1)h ≤ C ε , (3.2.13a)

‖πh[V n
ε ]−‖2

0 ≤ |πh[V n
ε ]−|2h =

(
[V n
ε ]2−, 1

)h
≤ 2 ε (Gε(V

n
ε ), 1)h ≤ C ε . (3.2.13b)
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We now note that the bounds 1→ 5 in (3.2.5) follow by combining (3.2.8), (3.2.9),

(3.2.12) and (3.2.13a,b). The sixth and the seventh bounds in (3.2.5) follow by

summing (3.2.1) over n , with the aid of (3.2.7), (3.2.8), the Poincaré inequality and

the bounds (4− 5) in (3.2.5). Finally, the last bound in (3.2.5) follows immediately

from the triangle inequality on noting the sixth and the seventh bounds in (3.2.5).

2

Remark 3.2.1 We mention that the first, the sixth and the seventh bounds in

(3.2.5) are discrete analogues of the estimates in (2.3.17). The second and the third

bounds in (3.2.5) are discrete analogues of the estimates in (2.3.18).

Theorem 3.2.3 Let the assumptions of Lemma 3.2.2 hold. In addition, let {∆tn}Nn=1

be such that

∆tn ≤ C ∆tn−1 ∀ n = 2, · · · , N.

Then a solution {Un
ε , V

n
ε }

N
n=1 to (Ph,∆t

M, ε ) satisfies

N∑
n=1

∆tn

[
‖Un

ε ‖α0,α + ‖V n
ε ‖

β
0,β + ‖ψε(V n

ε )‖β0,β + ‖πhψε(V n
ε )‖β0,β + ‖Ξε(V

n
ε )‖β0,β

]

+
N∑
n=1

∆tn

[
‖U

n
ε −U

n−1
ε

∆tn
‖2

(H1(Ω))′ + ‖
V nε −V

n−1
ε

∆tn
‖q

(W 1,q′ (Ω))′

]

+
N∑
n=1

∆tn

[
‖G[U

n
ε −U

n−1
ε

∆tn
]‖2

1 + ‖Gq[V
n
ε −V

n−1
ε

∆tn
]‖q1,q

]
≤ C , (3.2.14)

where α = 2 (d+2)
d

, β = 2 (d+1)
d

, q = 2 (d+1)
2 d+1

and q′ = 2 (d+ 1) .

Proof : It follows from the Sobolev interpolation theorem (2.1.1) and the fourth

bound in (3.2.5) for n = 1, · · · , N that

‖Un
ε ‖α0,α ≤ C ‖Un

ε ‖α−2
0 ‖Un

ε ‖2
1 ≤ C ‖Un

ε ‖2
1, (3.2.15)

where α d (1
2
− 1

α
) = 2 ; that is α = 2 (d+2)

d
.

We also have from (2.1.2) and the fifth bound in (3.2.5), for n = 1, · · · , N , that

‖V n
ε ‖

β
0,β ≤ C ‖V n

ε ‖
β−2
0,1 ‖V n

ε ‖2
1 ≤ C ‖V n

ε ‖2
1, (3.2.16)
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where β (2 d (β−1)
β (d+2)

) = 2 ; that is β = 2 (d+1)
d

.

On noting that ψε(s) ≤ |s|+ ε , it follows from (3.2.16) for n = 1, · · · , N that

‖ψε(V n
ε )‖β0,β ≤ C + ‖V n

ε ‖
β
0,β ≤ C

(
1 + ‖V n

ε ‖2
1

)
. (3.2.17)

After recalling that ψε(s) ≤ [s]+ + ε = s − [s]− + ε , we obtain from the Young’s

inequality and the third and the fifth bounds in (3.2.5) that for n = 1, · · · , N

‖πhψε(V n
ε )‖0,1 ≤

∫
Ω

(
V n
ε − πh[V n

ε ]− + ε
)

dx

≤ C
(
1 + ‖V n

ε ‖0,1 + ‖πh[V n
ε ]−‖2

0

)
≤ C , (3.2.18)

and

‖πhψε(V n
ε )‖2

0 ≤ C
(
1 + ‖V n

ε ‖2
0 + ‖πh[V n

ε ]−‖2
0

)
≤ C

(
1 + ‖V n

ε ‖2
0

)
. (3.2.19)

From (2.1.2), (3.2.18), (3.2.19) and (2.4.7) we have for n = 1, · · · , N that

‖πhψε(V n
ε )‖β0,β ≤ C ‖πhψε(V n

ε )‖β−2
0,1 ‖πhψε(V n

ε )‖2
1 ≤ C

(
1 + ‖V n

ε ‖2
1

)
. (3.2.20)

Now, on noting (3.2.15)→ (3.2.20), the bounds 1→ 4 in (3.2.14) follow from (3.2.5).

The fifth bound in (3.2.14) follows from the fourth bound in (3.2.14) since we have

from (2.4.29), (2.4.30), (2.3.11) and (2.4.15), for n = 1, · · · , N , that

‖Ξε(V
n
ε )‖β0,β :=

∫
Ω

‖Ξε(V
n
ε (x))‖β dx =

∑
τ∈T h

∫
τ

‖Ξε(V
n
ε (x))‖β dx

≤ C
∑
τ∈T h

hdτ ‖πhψε(V n
ε )‖β0,∞,τ ≤ C

∑
τ∈T h
‖πhψε(V n

ε )‖β0,β,τ

≤ C ‖πhψε(V n
ε )‖β0,β .

Before we start discussing the last four bounds in (3.2.14), it is useful to note

from the definition of πh , (3.1.2) and the assumptions on u0 and v0 that

‖U0
ε ‖0 + ‖V 0

ε ‖0 ≤ C
(
‖u0‖0,∞ + ‖v0‖0,∞

)
≤ C . (3.2.21)

We now consider the sixth bound in (3.2.14). It follows from (3.1.8), (3.1.1),

(2.4.31a), (2.4.2), (2.3.5), (3.1.3), (2.4.24), (2.4.25) and (3.2.19) for any η ∈ H1(Ω)
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and for n = 1, · · · , N that

〈U
n
ε −U

n−1
ε

∆tn
, η〉 =

(
Unε −U

n−1
ε

∆tn
, η
)

=
(
Unε −U

n−1
ε

∆tn
, P hη

)h
= (Un

ε − Un
ε φε(U

n−1
ε )− φε(Un

ε )ψε(V
n−1
ε ), P hη)h

−
(
D∇Un

ε + Λε(U
n
ε )∇(Un

ε + V n
ε ),∇P hη

)
≤ C

(
‖Un

ε ‖0 + ‖πhψε(V n−1
ε )‖0

)
‖P hη‖0

+ C (|Un
ε |1 + |Un

ε + V n
ε |1) |P hη|1

≤ C
(
‖Un

ε ‖1 + ‖V n
ε ‖1 + ‖V n−1

ε ‖0

)
‖η‖1 , (3.2.22)

and therefore,

‖U
n
ε −U

n−1
ε

∆tn
‖2

(H1(Ω))′ ≤ C (‖Un
ε ‖2

1 + ‖V n
ε ‖2

1 + ‖V n−1
ε ‖2

0) . (3.2.23)

Hence, we have from (3.2.23), (3.2.5), our assumption on the time steps and (3.2.21)

that

N∑
n=1

∆tn ‖U
n
ε −U

n−1
ε

∆tn
‖2

(H1(Ω))′ ≤ C
N∑
n=1

∆tn
(
‖Un

ε ‖2
1 + ‖V n

ε ‖2
1 + ‖V n−1

ε ‖2
0

)
≤ C .

To derive the seventh bound in (3.2.14), we first note from the generalized

Hölder’s inequality (2.1.7) and (3.1.3) for any η ∈ W 1,q′(Ω) and for n = 1, · · · , N

that

∣∣(Ξε(V
n
ε )∇(Un

ε + V n
ε ),∇P hη

)∣∣ ≤ ‖Ξε(V
n
ε )‖0,β|Un

ε + V n
ε |1|P hη|1,q′

≤ C ‖Ξε(V
n
ε )‖0,β‖Un

ε + V n
ε ‖1‖η‖1,q′ , (3.2.24)

where 1
2

+ 1
β

+ 1
q′

= 1 ; that is q′ = 2 (d+ 1) .

On noting (2.4.3), (2.4.2), (3.2.19), (3.1.2) and the embedding Lβ(Ω) ↪→ L2(Ω) , we

have for any η ∈ W 1,q′(Ω) and for n = 1, · · · , N that∣∣∣(ψε(V n
ε )ψε(V

n−1
ε ), P hη

)h∣∣∣ ≤ C ‖πhψε(V n
ε )‖0 ‖πhψε(V n−1

ε )‖0 ‖P hη‖0,∞

≤ C ‖πhψε(V n
ε )‖0,β

(
1 + ‖V n−1

ε ‖0

)
‖η‖0,∞

≤ C ‖πhψε(V n
ε )‖0,β

(
1 + ‖V n−1

ε ‖0

)
‖η‖1,q′ , (3.2.25)
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where we have also employed, from (2.1.1), the following continuous embedding

W 1,q′(Ω) ↪→ L∞(Ω) .

Similarly to (3.2.22), it follows from (3.1.5), (3.1.1), (2.4.31b), (3.1.3), (3.2.24) and

(3.2.25) for any η ∈ W 1,q′(Ω) and for n = 1, · · · , N that

〈V
n
ε −V

n−1
ε

∆tn
, η〉q′ =

(
V nε −V

n−1
ε

∆tn
, η
)

=
(
V nε −V

n−1
ε

∆tn
, P hη

)h
≤ CAn Bn ‖η‖1,q′ , (3.2.26)

where

An = ‖Un
ε ‖1 + ‖V n

ε ‖1 + ‖V n−1
ε ‖0 + 1 ,

Bn = ‖πhψε(V n
ε )‖0,β + ‖Ξε(V

n
ε )‖0,β + 1 .

Thus, (3.2.26) implies

‖V
n
ε −V

n−1
ε

∆tn
‖(W 1,q′ (Ω))′ ≤ CAn Bn . (3.2.27)

Hence we have from (3.2.27), the Cauchy-Schwarz inequality, (3.2.5), the bounds

(4− 5) in (3.2.14), the assumption on the temporal discretization and (3.2.21) that

N∑
n=1

∆tn ‖V
n
ε −V

n−1
ε

∆tn
‖q

(W 1,q′ (Ω))′
≤ C

N∑
n=1

∆tnAqn Bqn

≤ C

[ N∑
n=1

∆tnA2
n

] q
2
[ N∑
n=1

∆tn Bβn
] q
β

≤ C ,

where 1
2

+ 1
β

= 1
q

; that is 1
q

+ 1
q′

= 1 and q = 2 (d+1)
2 d+1

.

To complete the proof of the theorem, we note that the last two bounds in (3.2.14)

follow from the sixth and the seventh bounds in (3.2.14), respectively, on recalling

(3.1.9) and (3.1.6) . 2

As the condition u0 , v0 ∈ H1(Ω) will be essential in the analysis of the next

section, we close this section by giving the following short lemma:

Lemma 3.2.4 Let the assumptions (A) hold and let u0 , v0 ∈ H1
≥0(Ω). On choosing

either U0
ε ≡ P hu0 and V 0

ε ≡ P hv0; or U0
ε ≡ πhu0 and V 0

ε ≡ πhv0 if either d = 1 or

u0 , v0 ∈ W 1,r(Ω) with r > d , it follows that U0
ε , V

0
ε ∈ Sh≥0 and

‖U0
ε ‖2

1 + ‖V 0
ε ‖2

1 ≤ C . (3.2.28)
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Proof : We first mention that πhu0 and πhv0 are well defined as the Sobolev em-

bedding result (see Ciarlet [23], page 114):

Wm,r(Ω)
c
↪→ C(Ω) holds for r ∈ [1,∞] if m > d

r
.

It can be seen clearly from the definitions of the projection operator P h and the in-

terpolation operator πh that U0
ε , V

0
ε ∈ Sh≥0 . The bound (3.2.28) follows immediately

on noting (2.4.16), (3.1.3) and the assumptions on u0 , v0 . 2

3.3 Existence of a weak solution

In this section we prove the global existence of a non-negative weak solution of the

continuous problem (2.2.4a)-(2.2.4d) . This is achieved by taking the limit of the

regularization and discretization parameters of the problem (Ph,∆t
M, ε ).

We begin by introducing the following definitions:

Let

Uε(t) :=

(
t− tn−1

∆tn

)
Un
ε +

(
tn − t
∆tn

)
Un−1
ε t ∈ [tn−1, tn] n ≥ 1 , (3.3.1a)

Vε(t) :=

(
t− tn−1

∆tn

)
V n
ε +

(
tn − t
∆tn

)
V n−1
ε t ∈ [tn−1, tn] n ≥ 1 , (3.3.1b)

and

U+
ε (t) := Un

ε , U−ε (t) := Un−1
ε t ∈ (tn−1, tn] n ≥ 1 , (3.3.2a)

V +
ε (t) := V n

ε , V −ε (t) := V n−1
ε t ∈ (tn−1, tn] n ≥ 1 . (3.3.2b)

On noting (3.3.1a,b) and (3.3.2a,b) we have that

∂Uε
∂t

=
U+
ε − U−ε
∆tn

=
U+
ε − Uε
tn − t

=
Uε − U−ε
t− tn−1

t ∈ (tn−1, tn) n ≥ 1 , (3.3.3a)

∂Vε
∂t

=
V +
ε − V −ε

∆tn
=
V +
ε − Vε
tn − t

=
Vε − V −ε
t− tn−1

t ∈ (tn−1, tn) n ≥ 1 . (3.3.3b)
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Using the above notation, the problem (Ph,∆t
M, ε ) can be restated as follows:

Find {Uε, Vε} ∈ C([0, T ];Sh)× C([0, T ];Sh) such that for all χ ∈ L2(0, T ;Sh)∫ T

0

[(
∂Uε
∂t
, χ
)h

+D (∇U+
ε ,∇χ) + ( Λε(U

+
ε )∇(U+

ε + V +
ε ),∇χ)

]
dt

=

∫ T

0

(
U+
ε − U+

ε φε(U
−
ε )− φε(U+

ε )ψε(V
−
ε ), χ

)h
dt , (3.3.4a)∫ T

0

[(
∂Vε
∂t
, χ
)h

+D (∇V +
ε ,∇χ) + ( Ξε(V

+
ε )∇(U+

ε + V +
ε ),∇χ)

]
dt

=

∫ T

0

(
γ V +

ε − ψε(V +
ε )
[
φε(U

−
ε ) + ψε(V

−
ε )
]
, χ
)h

dt . (3.3.4b)

The argument in this section will consist of three main steps. We first uti-

lize the stability estimates derived in Section 3.2 on the approximate solutions.

Then we prove the existence of non-negative functions {u, v} bounded in various

time-dependent spaces using a classical sequential compactness arguments ( see the

results collected in A.1.5 → A.1.10 ). Finally, we prove that the functions {u, v}

represent a global weak solution of the system (2.2.4a)-(2.2.4d) via passage to the

limit ε , h , ∆t→ 0 of the approximate system (3.3.4a)-(3.3.4b) .

Theorem 3.3.1 Let the assumptions (A) hold, D > 0 , γ > 1 and u0 , v0 ∈

H1
≥0(Ω) ∩ L∞(Ω) . In addition, let

{
ε, h, {∆tn}Nn=1, U

0
ε , V

0
ε

}
be such that

( i ) either U0
ε ≡ P hu0 and V 0

ε ≡ P hv0; or U0
ε ≡ πhu0 and V 0

ε ≡ πhv0 if either

d = 1 or u0 , v0 ∈ W 1,r(Ω) with r > d .

( ii ) ∆t ≤ 1−δ
2 γ+2

, for some δ ∈ (0, 1) .

(iii) ∆tn ≤ C ∆tn−1 ∀ n = 2, · · · , N .

(iv) ∆t , ε → 0 as h → 0 .

Then there exists a subsequence of {Uε, Vε}h>0 , solving (3.3.4a)-(3.3.4b) , and func-

tions

u ∈ L2(0, T ;H1(Ω)) ∩ Lα(ΩT ) ∩ L∞(0, T ;L2(Ω)) ∩H1(0, T ; (H1(Ω))′) , (3.3.5a)

v ∈ L2(0, T ;H1(Ω)) ∩ Lβ(ΩT ) ∩W 1,q(0, T ; (W 1,q′(Ω))′) , (3.3.5b)
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with u(x, t) , v(x, t) ≥ 0 almost everywhere and

u(·, 0) = u0(·) in L2(Ω) and v(·, 0) = v0(·) in (W 1,q′(Ω))′ , (3.3.5c)

where

α = 2 (d+2)
d

, β = 2 (d+1)
d

, q = 2 (d+1)
2 d+1

and q′ = q
q−1

= 2 (d+ 1) .

Moreover, it holds as h→ 0 that

Uε, U
±
ε ⇀ u in L2(0, T ;H1(Ω)) ∩ Lα(ΩT ) , (3.3.6a)

Uε, U
±
ε ⇀∗ u in L∞(0, T ;L2(Ω)) , (3.3.6b)

∂Uε
∂t

⇀
∂u

∂t
in L2(0, T ; (H1(Ω))′) , (3.3.6c)

Uε, U
±
ε → u in L2(0, T ;Ls(Ω)) , (3.3.6d)

φε(U
±
ε )→ φ(u) in L2(0, T ;Ls(Ω)) , (3.3.6e)

πhφε(U
±
ε )→ φ(u) in L2(0, T ;Ls(Ω)) , (3.3.6f)

Λε(U
±
ε )→ φ(u) I in L2(0, T ;Ls(Ω)) , (3.3.6g)

and

Vε, V
±
ε ⇀ v in L2(0, T ;H1(Ω)) ∩ Lβ(ΩT ) , (3.3.7a)

∂Vε
∂t

⇀
∂v

∂t
in Lq(0, T ; (W 1,q′(Ω))′) , (3.3.7b)

Vε, V
±
ε → v in L2(0, T ;Ls(Ω)) , (3.3.7c)

ψε(V
±
ε )→ v in L2(0, T ;Ls(Ω)) , (3.3.7d)

πhψε(V
±
ε )→ v in L2(0, T ;Ls(Ω)) , (3.3.7e)

Ξε(V
±
ε )→ v I in L2(0, T ;Ls(Ω)) , (3.3.7f)

for any

s ∈


[2,∞] if d = 1 ,

[2,∞) if d = 2 ,

[2, 6) if d = 3 ;

where the symbols “→ ” “⇀ ” and “⇀∗ ” represent strong, weak and weak-star

convergence respectively ( see A.1.5 → A.1.7 ).



3.3. Existence of a weak solution 58

Proof : By using the assumptions (i)→(iii), (3.2.5), (3.2.14), (2.3.5), (2.4.24), (2.4.25),

(3.3.1a,b), (3.3.2a,b), (3.3.3a,b) and (3.2.28) we obtain the following uniform bounds

independently of the parameters ε , h and ∆t

‖U (±)
ε ‖L2(0,T ;H1(Ω)) + ‖U (±)

ε ‖Lα(ΩT ) + ‖U (±)
ε ‖L∞(0,T ;L2(Ω))

+ ε−
1
2‖πh[U (±)

ε ]−‖L∞(0,T ;L2(Ω)) + ‖∂Uε
∂t
‖L2(0,T ;(H1(Ω))′)

+ ‖G ∂Uε
∂t
‖L2(0,T ;H1(Ω)) + ‖φε(U (±)

ε )‖L∞(ΩT )

+ ‖πhφε(U (±)
ε )‖L∞(ΩT ) + ‖Λε(U

(±)
ε )‖L∞(ΩT ) ≤ C , (3.3.8a)

and

‖V (±)
ε ‖L2(0,T ;H1(Ω)) + ‖V (±)

ε ‖Lβ(ΩT ) + ‖V (±)
ε ‖L∞(0,T ;L1(Ω))

+ ε−
1
2‖πh[V (±)

ε ]−‖L∞(0,T ;L2(Ω)) + ‖∂Vε
∂t
‖Lq(0,T ;(W 1,q′ (Ω))′)

+ ‖Gq ∂Vε∂t ‖Lq(0,T ;W 1,q(Ω)) + ‖ψε(V (±)
ε )‖Lβ(ΩT )

+ ‖πhψε(V (±)
ε )‖Lβ(ΩT ) + ‖Ξε(V

(±)
ε )‖Lβ(ΩT ) ≤ C , (3.3.8b)

where (±) is an adopted abbreviation for “with” and “without” the superscripts

“+” and “−” .

Also, we note from (3.3.3a) and the fifth bound in (3.3.8a) that

‖U±ε − Uε‖2
L2(0,T ;(H1(Ω))′) =

∫ T

0

‖U±ε − Uε‖2
(H1(Ω))′ dt =

N∑
n=1

∫ tn

tn−1

‖U±ε − Uε‖2
(H1(Ω))′ dt

=
N∑
n=1

∫ tn

tn−1

∣∣t− t±n ∣∣2 ‖∂Uε∂t ‖2
(H1(Ω))′ dt t+n = tn , t

−
n = tn−1

≤
N∑
n=1

(∆tn)2

∫ tn

tn−1

‖∂Uε
∂t
‖2

(H1(Ω))′ dt

≤ (∆t)2

∫ T

0

‖∂Uε
∂t
‖2

(H1(Ω))′ dt

= (∆t)2 ‖∂Uε
∂t
‖2
L2(0,T ;(H1(Ω))′) ≤ C (∆t)2 . (3.3.9a)

Similarly to (3.3.9a), we have from (3.3.3b) and the fifth bound in (3.3.8b) that

‖V ±ε − Vε‖
q

Lq(0,T ;(W 1,q′ (Ω))′)
≤ (∆t)q ‖∂Vε

∂t
‖q
Lq(0,T ;(W 1,q′ (Ω))′)

≤ C (∆t)q . (3.3.9b)
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We now recall that L2(0, T ;H1(Ω)) and Lα(ΩT ) are reflexive Banach spaces,

while L1(0, T ;L2(Ω)), which is the pre-dual2 of L∞(0, T ;L2(Ω)), is separable Banach

space but not reflexive ( see A.1.12 and A.1.14 ). Noting that and the first three

bounds in (3.3.8a), we deduce from classical compactness arguments the existence of

a subsequence {Uε}h and a function u ∈ L2(0, T ;H1(Ω))∩Lα(ΩT )∩L∞(0, T ;L2(Ω))

satisfying the convergence results (3.3.6a)-(3.3.6b) . Where we have noticed from

(3.3.9a) that the subsequences {U+
ε , U

−
ε , Uε}h have the same limit, after recalling

that weak and weak-star limits are unique ( see A.1.8 ).

As L2(0, T ; (H1(Ω))′) is reflexive Banach space, it follows from the fifth bound

in (3.3.8a), on employing weak compactness arguments, that there exists

η̃ ∈ L2(0, T ; (H1(Ω))′) such that

∂Uε
∂t

⇀ η̃ in L2(0, T ; (H1(Ω))′) .

A well known argument can be easily adapted to show that η̃ = ∂u
∂t

, (see Robin-

son [58], page 204). Thus, the result (3.3.6c) holds. The result (3.3.5a) follows

immediately on noting the embedding L2(0, T ;H1(Ω)) ↪→ L2(0, T ; (H1(Ω))′) since

u ∈ L2(0, T ;H1(Ω)) ∩ Lα(ΩT ) ∩ L∞(0, T ;L2(Ω)) and ∂u
∂t
∈ L2(0, T ; (H1(Ω))′) .

From application of the Lions-Aubin theorem, see (2.1.4), on noting the following

embedding results

H1(Ω)
c
↪→ Ls(Ω) ↪→ (H1(Ω))′ ,

which hold from the Rellich-Kondrachov theorem under the stated choice of s , we

find that

Wu =
{
η : η ∈ L2(0, T ;H1(Ω)), ∂η

∂t
∈ L2(0, T ; (H1(Ω))′)

} c
↪→ L2(0, T ;Ls(Ω)) .

As Uε ∈ Wu, we can extract a subsequence, still denoted Uε, such that the conver-

gence result (3.3.6d) holds.

2Let X , Y are Banach spaces. We say that X is pre-dual of Y if X ′ = Y .
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Using the strong convergence of Uε to u in L2(0, T ;Ls(Ω)) and the fourth bound in

(3.3.8a), we can extract a subsequence, still denoted Uε, such that as h → 0 ( see

Appendix A.1.11 )

Uε → u and πh[Uε]− → 0 a.e. in ΩT . (3.3.10)

But we have from the definition of πh that

Uε = πh[Uε]+ + πh[Uε]− . (3.3.11)

Therefore, we deduce from (3.3.10) and (3.3.11) that u ≥ 0 almost everywhere.

In order to show (3.3.6e) and (3.3.6f), we first note that∥∥φε(U±ε )− φ(u)
∥∥
L2(0,T ;Ls(Ω))

≤
∥∥φε(U±ε )− φε(u)

∥∥
L2(0,T ;Ls(Ω))

+ ‖φε(u)− φ(u)‖L2(0,T ;Ls(Ω)) .

(3.3.12)

Noting (2.2.1), (2.3.5), the non-negativity of the function u and the assumption (iv)

yields that

‖φε(u)− φ(u)‖L2(0,T ;Ls(Ω)) ≤ C ε→ 0 as h→ 0 . (3.3.13)

From the Lipschitz continuity of the function φε and (3.3.6d), it follows that∥∥φε(U±ε )− φε(u)
∥∥
L2(0,T ;Ls(Ω))

≤
∥∥U±ε − u∥∥L2(0,T ;Ls(Ω))

→ 0 as h→ 0 . (3.3.14)

We also have from (2.4.16), (2.3.5), (2.4.15) and the first bound in (3.3.8a) that∥∥(I − πh)φε(U±ε )
∥∥
L2(0,T ;Ls(Ω))

≤ C h
∥∥∇U±ε ∥∥L2(0,T ;Ls(Ω))

≤ C h1−d ( 1
2
− 1
s

)
∥∥U±ε ∥∥L2(0,T ;H1(Ω))

≤ C h1−d ( 1
2
− 1
s

) → 0 as h→ 0 . (3.3.15)

Thus, the results (3.3.6e) and (3.3.6f) follow by combining (3.3.12)→(3.3.15).

We obtain from (2.4.46), (2.4.15), the first bound in (3.3.8a) and (3.3.6e) that∥∥Λε(U
±
ε )− φ(u) I

∥∥
L2(0,T ;Ls(Ω))

≤
∥∥Λε(U

±
ε )− φε(U±ε ) I

∥∥
L2(0,T ;Ls(Ω))

+
∥∥φε(U±ε )− φ(u)

∥∥
L2(0,T ;Ls(Ω))

≤ C h1−d ( 1
2
− 1
s

)
∥∥U±ε ∥∥L2(0,T ;H1(Ω))

+
∥∥φε(U±ε )− φ(u)

∥∥
L2(0,T ;Ls(Ω))

≤ C h1−d ( 1
2
− 1
s

) +
∥∥φε(U±ε )− φ(u)

∥∥
L2(0,T ;Ls(Ω))

→ 0 as h→ 0 . (3.3.16)



3.3. Existence of a weak solution 61

Hence the result (3.3.6g) holds from (3.3.16).

Similarly to {U (±)
ε }, the convergence results for {V (±)

ε } in (3.3.7a)-(3.3.7c) follow

from classical compactness arguments on noting the bounds (1, 2 and 5) in (3.3.8b),

(3.3.9b) and the following application of (2.1.4) :

Wv =
{
η : η ∈ L2(0, T ;H1(Ω)), ∂η

∂t
∈ Lq(0, T ; (W 1,q′(Ω))′)

} c
↪→ L2(0, T ;Ls(Ω)) ,

after recalling that L2(0, T ;H1(Ω)) , Lβ(ΩT ) and Lq(0, T ; (W 1,q′(Ω))′) are reflexive

Banach spaces. As a result, we have

v ∈ L2(0, T ;H1(Ω)) ∩ Lβ(ΩT ) and ∂v
∂t
∈ Lq(0, T ; (W 1,q′(Ω))′) .

Noting this and the embedding L2(0, T ;H1(Ω)) ↪→ Lq(0, T ; (W 1,q′(Ω))′) gives (3.3.5b).

The fourth bound in (3.3.8b) and (3.3.7c) implies that v ≥ 0 almost everywhere.

We now show the results (3.3.7d)-(3.3.7f) by adapting the arguments used for de-

riving (3.3.6e)-(3.3.6g). First we note that

∥∥ψε(V ±ε )− v
∥∥
L2(0,T ;Ls(Ω))

≤
∥∥ψε(V ±ε )− ψε(v)

∥∥
L2(0,T ;Ls(Ω))

+ ‖ψε(v)− v‖L2(0,T ;Ls(Ω)) .

(3.3.17)

After recalling that v ∈ L2(0, T ;H1(Ω)) ↪→ L2(0, T ;Ls(Ω)), we obtain from (2.3.11),

the non-negativity of the function v and the assumption (iv), on using the dominated

convergence theorem, that

‖ψε(v)− v‖L2(0,T ;Ls(Ω)) → 0 as h→ 0 . (3.3.18)

Also, we have from the Lipschitz continuity of the function ψε and (3.3.7c) that

∥∥ψε(V ±ε )− ψε(v)
∥∥
L2(0,T ;Ls(Ω))

≤
∥∥V ±ε − v∥∥L2(0,T ;Ls(Ω))

→ 0 as h→ 0 . (3.3.19)

Similarly to (3.3.15) and (3.3.16), it follows from (2.4.16), (2.3.11), (2.4.15), (2.4.47),

the first bound in (3.3.8b) that

∥∥(I − πh)ψε(V ±ε )
∥∥
L2(0,T ;Ls(Ω))

+
∥∥Ξε(V

±
ε )− v I

∥∥
L2(0,T ;Ls(Ω))

≤ C h1−d ( 1
2
− 1
s

) +
∥∥ψε(V ±ε )− v

∥∥
L2(0,T ;Ls(Ω))

. (3.3.20)
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Thereby, the convergence results (3.3.7d)-(3.3.7f) follow by combining (3.3.17), (3.3.18),

(3.3.19) and (3.3.20).

To complete the proof of the theorem, we still have to deal with the initial

approximations and show that the solution {u, v} satisfies (3.3.5c). We first note

from the error estimates (3.1.3) and (2.4.16) and the stated assumptions on the

initial data, u0 and v0 , that

∥∥u0 − P hu0
∥∥

0
≤ C h

∣∣u0
∣∣
1
≤ C h ,∥∥v0 − P hv0

∥∥
0
≤ C h

∣∣v0
∣∣
1
≤ C h ,

and

∥∥u0 − πhu0
∥∥

0
≤


C h |u0|1 ≤ C h for d = 1 ,

C h |u0|1,r ≤ C h for d = 2 or 3 ,

∥∥v0 − πhv0
∥∥

0
≤


C h |v0|1 ≤ C h for d = 1 ,

C h |v0|1,r ≤ C h for d = 2 or 3 ,

which provide the following strong convergence results as h→ 0

U0
ε −→ u0 in L2(Ω), (3.3.21a)

V 0
ε −→ v0 in L2(Ω). (3.3.21b)

It follows from (3.3.6d), (3.3.7c) that for a.e. (see Theorem A.1.11)

Uε(t) −→ u(t) in L2(Ω) as ε→ 0 , (3.3.22a)

Vε(t) −→ v(t) in L2(Ω) as ε→ 0 , (3.3.22b)

We comment that (3.3.21a,b) and (3.3.22a,b) are not sufficient to prove the equal-

ities in (3.3.5c) since if t = 0 belongs to the null-set of the almost everywhere

statement for (3.3.22a,b) then possibly u(0) 6= u0 , v(0) 6= v0 (see Robinson [58],

Section 7.4.4, for further discussion). In addition to (3.3.21a,b) and (3.3.22a,b), we

actually exploit other properties of the solutions {Uε, Vε} and the functions {u, v}

in order to conclude that (3.3.5c) holds.
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We note that since

Uε , u ∈ L2(0, T ;H1(Ω)) and ∂Uε
∂t
, ∂u

∂t
∈ L2(0, T ; (H1(Ω))′) ,

and

Vε , v ∈ W 1,q(0, T ; (W 1,q′(Ω))′) ,

it follows that

Uε , u ∈ C([0, T ];L2(Ω)) , (3.3.23a)

Vε , v ∈ C([0, T ]; (W 1,q′(Ω))′) ; (3.3.23b)

see Theorem 7.2 and Proposition 7.1 in Robinson [58], respectively.

Therefore, the desired result (3.3.5c) follows easily by combining (3.3.21a,b), (3.3.22a,b)

and (3.3.23a,b). This ends the proof of the theorem. 2

In the following lemma we prove further convergence results which are required

for studying the convergence of the system (3.3.4a)-(3.3.4b) in Theorem 3.3.3.

Lemma 3.3.2 Let the assumptions of Theorem 3.3.1 hold. Then the following

convergence results are valid as h→ 0 :

U+
ε π

hφε(U
−
ε )→ uφ(u) in Lq(ΩT ) , (3.3.24a)

πhψε(V
±
ε )πhφε(U

±
ε )→ v φ(u) in Lq(ΩT ) , (3.3.24b)

πhψε(V
+
ε )πhψε(V

−
ε )→ v2 in Lq(ΩT ) , (3.3.24c)

where q = 2 (d+1)
2 d+1

.

Proof : On noting (2.2.1), (3.3.8a) and the embedding Lα(ΩT ) ↪→ Lβ(ΩT ) we have

from the Hölder’s inequality that

∥∥U+
ε π

hφε(U
−
ε )− uφ(u)

∥∥
Lq(ΩT )

≤
∥∥πhφε(U−ε )− φ(u)

∥∥
L2(ΩT )

∥∥U+
ε

∥∥
Lβ(ΩT )

+
∥∥U+

ε − u
∥∥
Lq(ΩT )

‖φ(u)‖L∞(ΩT )

≤ C
(∥∥πhφε(U−ε )− φ(u)

∥∥
L2(ΩT )

+
∥∥U+

ε − u
∥∥
L2(ΩT )

)
. (3.3.25)
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Similarly to (3.3.25), it follows from the Hölder’s inequality, (2.3.5) and (3.3.5b), on

noting the Sobolev embedding L2(ΩT ) ↪→ Lq(ΩT ) , that

∥∥πhψε(V ±ε )πhφε(U
±
ε )− v φ(u)

∥∥
Lq(ΩT )

≤
∥∥πhψε(V ±ε )− v

∥∥
Lq(ΩT )

∥∥πhφε(U±ε )
∥∥
L∞(ΩT )

+
∥∥πhφε(U±ε )− φ(u)

∥∥
L2(ΩT )

‖v‖Lβ(ΩT )

≤ C
(∥∥πhψε(V ±ε )− v

∥∥
L2(ΩT )

+
∥∥πhφε(U±ε )− φ(u)

∥∥
L2(ΩT )

)
. (3.3.26)

With the aid of the Hölder’s inequality, we also obtain from (3.3.8b) and (3.3.5b)

that

∥∥πhψε(V +
ε ) πhψε(V

−
ε )− v2

∥∥
Lq(ΩT )

≤
∥∥πhψε(V −ε )− v

∥∥
L2(ΩT )

∥∥πhψε(V +
ε )
∥∥
Lβ(ΩT )

+
∥∥πhψε(V +

ε )− v
∥∥
L2(ΩT )

‖v‖Lβ(ΩT )

≤ C
(∥∥πhψε(V −ε )− v

∥∥
L2(ΩT )

+
∥∥πhψε(V +

ε )− v
∥∥
L2(ΩT )

)
. (3.3.27)

The desired results (3.3.24a)-(3.3.24c) follow from (3.3.25), (3.3.26), (3.3.27), (3.3.6d),

(3.3.6e) and (3.3.7e) on noting the embedding L2(0, T ;Ls(Ω)) ↪→ L2(ΩT ). 2

We are now in the position to prove that the functions {u, v}, generated from

Theorem 3.3.1, represent a global weak solution of problem (PM). We do this by

analysing the convergence of the approximate system (3.3.4a)-(3.3.4b). We remark

that our proof of the convergence of (3.3.4a) will require us to define πhη for a test

function η ∈ L2(0, T ;H1(Ω)). Obviously, πhη is well defined in the case d = 1 , as

H1(Ω) ↪→ C(Ω), but not necessarily for d = 2 and 3 . However, with the exception

of defining πhη and using (2.4.16) and (2.4.17) the proof only requires that η ∈

L2(0, T ;H1(Ω)) . Fortunately, we can overcome this obstacle by proving convergence

for all η ∈ L2(0, T ;W 1,d+1(Ω)) and using the denseness of L2(0, T ;W 1,d+1(Ω)) in

L2(0, T ;H1(Ω)) to conclude the convergence for any η ∈ L2(0, T ;H1(Ω)). In other

words, it will be sufficient to prove convergence for all η ∈ L2(0, T ;H1(Ω)) while

assuming the validity of the definition πhη and the estimates (2.4.16) and (2.4.17).

With this in mind, and for ease of exposition, we write the proof starting with

η ∈ L2(0, T ;H1(Ω)).
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Theorem 3.3.3 Let the assumptions of Theorem 3.3.1 hold. Then there exists

a subsequence of {Uε, Vε}h>0 , where {Uε, Vε} solves (3.3.4a)-(3.3.4b) , and non-

negative functions {u, v} satisfying (3.3.5a)-(3.3.5c). In addition, as h → 0 the

convergence results (3.3.6a)-(3.3.6g), (3.3.7a)-(3.3.7f) and (3.3.24a)-(3.3.24c) hold.

Furthermore, the functions {u, v} represent a global weak solution of the problem

(PM) in sense that∫ T

0

[〈
∂u
∂t
, η
〉

+D (∇u,∇η) + (φ(u)∇(u+ v),∇η)
]

dt

=

∫ T

0

(u− φ(u) [u+ v ] , η) dt ∀η ∈ L2(0, T ;H1(Ω)) (3.3.28a)

and∫ T

0

[〈
∂v
∂t
, η
〉
q′

+D (∇v,∇η) + ( v∇(u+ v),∇η)
]

dt

=

∫ T

0

(γ v − v [φ(u) + v ] , η) dt ∀η ∈ Lq′(0, T ;W 1,q′(Ω)) , (3.3.28b)

where q′ = 2 (d+ 1) .

Proof : The first and second parts of the theorem follow from Theorem 3.3.1 and

Lemma 3.3.2. To show that {u(x, t), v(x, t)} is a weak solution of (PM) in sense

that (3.3.28a)-(3.3.28b) are satisfied, we set χ ≡ πhη as a test function in (3.3.4a)-

(3.3.4b) and then pass to the limit ε , h , ∆t → 0 . We first show (3.3.28a) and then

we prove (3.3.28b) by following a similar argument.

For any η ∈ L2(0, T ;H1(Ω)), we set χ ≡ πhη as a test function in (3.3.4a)

yielding∫ T

0

[(
∂Uε
∂t
, πhη

)h
+D (∇U+

ε ,∇πhη) + ( Λε(U
+
ε )∇(U+

ε + V +
ε ),∇πhη)

]
dt

=

∫ T

0

(
U+
ε − U+

ε φε(U
−
ε )− φε(U+

ε )ψε(V
−
ε ), πhη

)h
dt . (3.3.29)

We shall now study the convergence of each term in (3.3.29) separately.
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For all η ∈ L2(0, T ;H1(Ω)) and for all η̃ ∈ H1(0, T ;H1(Ω)) we have that∫ T

0

(
∂Uε
∂t
, πhη

)h
dt =

∫ T

0

[(
∂Uε
∂t
, πh[η − η̃]

)h − (∂Uε
∂t
, πh[η − η̃]

)]
dt

+

∫ T

0

[(
∂Uε
∂t
, πhη̃

)h − (∂Uε
∂t
, πhη̃

)]
dt

+

∫ T

0

(
∂Uε
∂t
, (πh − I) η

)
dt

+

∫ T

0

(
∂Uε
∂t
, η
)

dt

:= I1,1 + I1,2 + I1,3 + I1,4 . (3.3.30)

Using (2.4.19), (3.1.10), (2.4.16), the Hölder’s inequality and (3.3.8a) gives that

|I1,1| ≡
∣∣∣∣∫ T

0

[(
∂Uε
∂t
, πh[η − η̃]

)h − (∂Uε
∂t
, πh[η − η̃]

)]
dt

∣∣∣∣
≤
∫ T

0

∣∣∣(∂Uε∂t , πh[η − η̃]
)h − (∂Uε

∂t
, πh[η − η̃]

)∣∣∣ dt

≤ C h

∫ T

0

∥∥∂Uε
∂t

∥∥
0

∣∣πh[η − η̃]
∣∣
1

dt

≤ C

∫ T

0

∥∥G ∂Uε
∂t

∥∥
1
‖η − η̃‖1 dt

≤ C
∥∥G ∂Uε

∂t

∥∥
L2(0,T ;H1(Ω))

‖η − η̃‖L2(0,T ;H1(Ω))

≤ C ‖η − η̃‖L2(0,T ;H1(Ω)) . (3.3.31)

It also follows from (2.4.19), (2.4.16), the Hölder’s inequality and (3.3.8a) that

|I1,2| ≡
∣∣∣∣ ∫ T

0

[ (
∂Uε
∂t
, πhη̃

)h − (∂Uε
∂t
, πhη̃

) ]
dt

∣∣∣∣
≤
∣∣∣∣ ∫ T

0

[(
Uε,

∂(πhη̃)
∂t

)h
−
(
Uε,

∂(πhη̃)
∂t

)]
dt

∣∣∣∣
+
∣∣(Uε(·, T ), πhη̃(·, T ))h − (Uε(·, T ), πhη̃(·, T ))

∣∣
+
∣∣(Uε(·, 0), πhη̃(·, 0))h − (Uε(·, 0), πhη̃(·, 0))

∣∣
≤ C h

∫ T

0

‖Uε‖0 |
∂(πhη̃)
∂t
|1 dt+ C h ‖Uε(·, T )‖0

∣∣πhη̃(·, T )
∣∣
1

+ C h ‖Uε(·, 0)‖0

∣∣πhη̃(·, 0)
∣∣
1

≤ C h ‖Uε‖L∞(0,T ;L2(Ω)) ‖η̃‖H1(0,T ;H1(Ω))

≤ C h ‖η̃‖H1(0,T ;H1(Ω)) , (3.3.32)
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where the third inequality was obtained from (2.4.16) and exploiting the continuous

embedding (see Robinson [58] page 190):

W 1,p(0, T ;X) ↪→ C([0, T ];X) 1 ≤ p ≤ ∞ ;

namely,

sup
t∈[0,T ]

‖ζ(t)‖X ≤ ‖ζ‖W 1,p(0,T ;X) for ζ ∈ W 1,p(0, T ;X) . (3.3.33)

To treat the term I1,3 , we observe using (3.1.8), the Hölder’s inequality and the fifth

bound in (3.3.8a) that

|I1,3| ≡
∣∣∣∣∫ T

0

(
∂Uε
∂t
, (πh − I) η

)
dt

∣∣∣∣
≤
∫ T

0

∣∣〈∂Uε
∂t
, (πh − I) η

〉∣∣ dt

≤
∥∥∂Uε

∂t

∥∥
L2(0,T ;(H1(Ω))′)

∥∥(πh − I) η
∥∥
L2(0,T ;H1(Ω))

≤ C
∥∥(πh − I) η

∥∥
L2(0,T ;H1(Ω))

. (3.3.34)

From (3.1.8) and the weak convergence result (3.3.6c) we have, for all η ∈ L2(0, T ;H1(Ω)) ,

that

I1,4 ≡
∫ T

0

(
∂Uε
∂t
, η
)

dt =

∫ T

0

〈
∂Uε
∂t
, η
〉

dt −→
∫ T

0

〈
∂u
∂t
, η
〉

dt as h→ 0 . (3.3.35)

Combining (3.3.30)-(3.3.32), (3.3.34), (3.3.35), the denseness of H1(0, T ;H1(Ω)) in

L2(0, T ;H1(Ω)) and (2.4.17) yields for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
∂Uε
∂t
, πhη

)h
dt −→

∫ T

0

〈
∂u
∂t
, η
〉

dt as h→ 0 . (3.3.36)

With the aid of the Hölder’s inequality, (3.3.8a) and (2.4.17) we obtain for all

η ∈ L2(0, T ;H1(Ω)) that∣∣∣∣∫ T

0

(∇U+
ε ,∇(πh − I) η) dt

∣∣∣∣ ≤ ∫ T

0

∣∣U+
ε

∣∣
1

∣∣(πh − I) η
∣∣
1

dt

≤
∥∥U+

ε

∥∥
L2(0,T ;H1(Ω))

∥∥(πh − I) η
∥∥
L2(0,T ;H1(Ω))

≤ C
∥∥(πh − I) η

∥∥
L2(0,T ;H1(Ω))

−→ 0 as h→ 0 .

(3.3.37)
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Noting (3.3.37) and (3.3.6a) yields for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(∇U+
ε ,∇πhη) dt =

∫ T

0

(∇U+
ε ,∇(πh − I) η) dt +

∫ T

0

(∇U+
ε ,∇η) dt

−→
∫ T

0

(∇u,∇η) dt as h→ 0 . (3.3.38)

We have for all η ∈ L2(0, T ;H1(Ω)) and for all η̃ ∈ L∞(0, T ;W 1,∞(Ω)) that∫ T

0

(
Λε(U

+
ε )∇(U+

ε + V +
ε ),∇πhη

)
dt

=

∫ T

0

(
Λε(U

+
ε )∇(U+

ε + V +
ε ),∇(πh − I) η

)
dt

+

∫ T

0

([
Λε(U

+
ε )− φ(u) I

]
∇(U+

ε + V +
ε ),∇(η − η̃)

)
dt

+

∫ T

0

([
Λε(U

+
ε )− φ(u) I

]
∇(U+

ε + V +
ε ),∇η̃

)
dt

+

∫ T

0

(
φ(u)∇(U+

ε + V +
ε ),∇η

)
dt

:= I2,1 + I2,2 + I2,3 + I2,4. (3.3.39)

On noting the generalized Hölder’s inequality and (3.3.8a)-(3.3.8b) we have

|I2,1| ≡
∣∣∣∣∫ T

0

(
Λε(U

+
ε )∇(U+

ε + V +
ε ),∇(πh − I) η

)
dt

∣∣∣∣
≤
∥∥Λε(U

+
ε )
∥∥
L∞(ΩT )

∥∥U+
ε + V +

ε

∥∥
L2(0,T ;H1(Ω))

∥∥(πh − I) η
∥∥
L2(0,T ;H1(Ω))

≤ C
∥∥(πh − I) η

∥∥
L2(0,T ;H1(Ω))

. (3.3.40)

Similarly to the treatment of the term I2,1, we have from the generalized Hölder’s

inequality, (3.3.8a)-(3.3.8b) and (2.2.1) that

|I2,2| ≡
∣∣∣∣∫ T

0

([
Λε(U

+
ε )− φ(u) I

]
∇(U+

ε + V +
ε ),∇(η − η̃)

)
dt

∣∣∣∣
≤
∥∥Λε(U

+
ε )− φ(u) I

∥∥
L∞(ΩT )

∥∥U+
ε + V +

ε

∥∥
L2(0,T ;H1(Ω))

‖η − η̃‖L2(0,T ;H1(Ω))

≤ C ‖η − η̃‖L2(0,T ;H1(Ω)) . (3.3.41)

We also have that

|I2,3| ≡
∣∣∣∣∫ T

0

([
Λε(U

+
ε )− φ(u) I

]
∇(U+

ε + V +
ε ),∇η̃

)
dt

∣∣∣∣
≤
∥∥Λε(U

+
ε )− φ(u) I

∥∥
L2(ΩT )

∥∥U+
ε + V +

ε

∥∥
L2(0,T ;H1(Ω))

‖∇η̃‖L∞(ΩT )

≤ C
∥∥Λε(U

+
ε )− φ(u) I

∥∥
L2(ΩT )

‖η̃‖L∞(0,T ;W 1,∞(Ω)) . (3.3.42)



3.3. Existence of a weak solution 69

As the function φ(s) is bounded, we obtain from (3.3.6a) and (3.3.7a) for all

η ∈ L2(0, T ;H1(Ω)) that

I2,4 ≡
∫ T

0

(
φ(u)∇(U+

ε + V +
ε ),∇η

)
dt →

∫ T

0

(φ(u)∇(u+ v),∇η) dt as h→ 0 .

(3.3.43)

Combining (3.3.39)-(3.3.43), (2.4.17), the denseness of the space L∞(0, T ;W 1,∞(Ω))

in L2(0, T ;H1(Ω)) and (3.3.6g) yields for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
Λε(U

+
ε )∇(U+

ε + V +
ε ),∇πhη

)
dt →

∫ T

0

(φ(u)∇(u+ v),∇η) dt as h→ 0 .

(3.3.44)

It remains to show the convergence of the reaction term in (3.3.29). We have

from (2.4.19), the Hölder’s inequality, (2.4.16) and (3.3.8a) for all η ∈ L2(0, T ;H1(Ω))

that ∣∣∣∣∫ T

0

[(
U+
ε , π

hη
)h − (U+

ε , π
hη
)]

dt

∣∣∣∣+

∣∣∣∣∫ T

0

(
U+
ε , (π

h − I) η
)

dt

∣∣∣∣
≤ C h

∫ T

0

∥∥U+
ε

∥∥
0

∣∣πhη∣∣
1

dt+

∫ T

0

∥∥U+
ε

∥∥
0

∥∥(πh − I) η
∥∥

0
dt

≤ C h

∫ T

0

∥∥U+
ε

∥∥
0
|η|1 dt

≤ C h
∥∥U+

ε

∥∥
L2(ΩT )

‖η‖L2(0,T ;H1(Ω))

≤ C h ‖η‖L2(0,T ;H1(Ω)) −→ 0 as h→ 0 . (3.3.45)

Combining (3.3.45) and (3.3.6a) yields for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
U+
ε , π

hη
)h

dt =

∫ T

0

[(
U+
ε , π

hη
)h − (U+

ε , π
hη
)]

dt

+

∫ T

0

(
U+
ε , (π

h − I) η
)

dt +

∫ T

0

(
U+
ε , η

)
dt →

∫ T

0

(u, η) dt as h→ 0 .

(3.3.46)

With the aid of Lemma 3.3.2, we now consider the convergence of the non-linear

reaction terms in (3.3.29). First, note from (2.4.3) for all η ∈ L2(0, T ;H1(Ω)) and
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for all η̃ ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T

0

(
φε(U

+
ε )ψε(V

−
ε ), πhη

)h
dt =

∫ T

0

(
πhφε(U

+
ε ) πhψε(V

−
ε ), πhη

)h
dt

=

∫ T

0

[(
πhφε(U

+
ε ) πhψε(V

−
ε ), πhη

)h − (πhφε(U+
ε ) πhψε(V

−
ε ), πhη

)]
dt

+

∫ T

0

(
πhφε(U

+
ε ) πhψε(V

−
ε )− φ(u) v, πh[η − η̃]

)
dt

+

∫ T

0

(
πhφε(U

+
ε ) πhψε(V

−
ε )− φ(u) v, πhη̃

)
dt

+

∫ T

0

(
φ(u) v, (πh − I) η

)
dt

+

∫ T

0

(φ(u) v, η) dt

:= I3,1 + I3,2 + I3,3 + I3,4 + I3,5 . (3.3.47)

It follows from (2.4.20), (2.4.14), (2.4.6), the Hölder’s inequality, (2.4.16), (3.3.8a)-

(3.3.8b) and the embedding Lβ(ΩT ) ↪→ L2(ΩT ) that

|I3,1| ≡
∣∣∣∣∫ T

0

[(
πhφε(U

+
ε ) πhψε(V

−
ε ), πhη

)h − (πhφε(U+
ε ) πhψε(V

−
ε ), πhη

)]
dt

∣∣∣∣
≤ C h2

∫ T

0

∥∥πhφε(U+
ε )
∥∥

1,∞

∥∥πhψε(V −ε )
∥∥

1

∥∥πhη∥∥
1

dt

≤ C h

∫ T

0

∥∥πhφε(U+
ε )
∥∥

0,∞

[∥∥πhψε(V −ε )
∥∥

0
+
∣∣πhψε(V −ε )

∣∣
1

] ∥∥πhη∥∥
1

dt

≤ C h
[∥∥πhψε(V −ε )

∥∥
L2(ΩT )

+
∥∥V −ε ∥∥L2(0,T ;H1(Ω))

] ∥∥πhη∥∥
L2(0,T ;H1(Ω))

≤ C h ‖η‖L2(0,T ;H1(Ω)) −→ 0 as h→ 0 . (3.3.48)

Using the Hölder’s inequality, (2.4.16), (2.2.1), (3.3.8a)-(3.3.8b) and (3.3.5b) gives

that

|I3,2| ≡
∣∣∣∣∫ T

0

(
πhφε(U

+
ε )πhψε(V

−
ε )− φ(u) v, πh[η − η̃]

)
dt

∣∣∣∣
≤
∥∥πhφε(U+

ε )πhψε(V
−
ε )− φ(u) v

∥∥
L2(ΩT )

∥∥πh[η − η̃]
∥∥
L2(ΩT )

≤ C
(∥∥πhψε(V −ε )

∥∥
L2(ΩT )

+ ‖v‖L2(ΩT )

)
‖η − η̃‖L2(0,T ;H1(Ω))

≤ C ‖η − η̃‖L2(0,T ;H1(Ω)) . (3.3.49)
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We also use the Hölder’s inequality and (2.4.16) to obtain that

|I3,3| ≡
∣∣∣∣∫ T

0

(
πhφε(U

+
ε ) πhψε(V

−
ε )− φ(u) v, πhη̃

)
dt

∣∣∣∣
≤
∥∥πhφε(U+

ε ) πhψε(V
−
ε )− φ(u) v

∥∥
Lq(ΩT )

∥∥πhη̃∥∥
Lq
′ (ΩT )

≤ C
∥∥πhφε(U+

ε ) πhψε(V
−
ε )− φ(u) v

∥∥
Lq(ΩT )

‖η̃‖Lq′ (0,T ;W 1,q′ (Ω)) . (3.3.50)

Again, on noting (2.2.1) and (3.3.5b), we use (2.4.16) to deduce that

|I3,4| ≡
∣∣∣∣∫ T

0

(
φ(u) v, (πh − I) η

)
dt

∣∣∣∣
≤M

∫ T

0

‖v‖0

∥∥(πh − I) η
∥∥

0
dt

≤ C h ‖v‖L2(ΩT ) ‖η‖L2(0,T ;H1(Ω))

≤ C h ‖η‖L2(0,T ;H1(Ω)) −→ 0 as h→ 0 . (3.3.51)

From (3.3.47)-(3.3.51), the denseness of Lq
′
(0, T ;W 1,q′(Ω)) in L2(0, T ;H1(Ω)) and

(3.3.24b) we have for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
φε(U

+
ε )ψε(V

−
ε ), πhη

)h
dt −→ I3,5 ≡

∫ T

0

(φ(u) v, η) dt as h→ 0 . (3.3.52)

By considering the convergence result (3.3.24a), one can adapt the same argu-

ment used for deriving (3.3.52) in order to show, for all η ∈ L2(0, T ;H1(Ω)), that∫ T

0

(
U+
ε φε(U

−
ε ), πhη

)h
dt −→

∫ T

0

(uφ(u), η) dt as h→ 0 . (3.3.53)

Therefore, the desired result (3.3.28a) follows by combining (3.3.29), (3.3.36), (3.3.38),

(3.3.44), (3.3.46), (3.3.52) and (3.3.53).

Similarly to the proof of (3.3.28a), we now show briefly that the solution {u, v}

satisfies (3.3.28b). For any η ∈ Lq′(0, T ;W 1,q′(Ω)), we set χ ≡ πhη as a test function

in (3.3.4a) yielding∫ T

0

[(
∂Vε
∂t
, πhη

)h
+D (∇V +

ε ,∇πhη) + ( Ξε(V
+
ε )∇(U+

ε + V +
ε ),∇πhη)

]
dt

=

∫ T

0

(
γ V +

ε − ψε(V +
ε )
[
φε(U

−
ε ) + ψε(V

−
ε )
]
, πhη

)h
dt . (3.3.54)
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For all η ∈ Lq′(0, T ;W 1,q′(Ω)) and for all η̃ ∈ W 1,q′(0, T ;W 1,∞(Ω)) we have that∫ T

0

(
∂Vε
∂t
, πhη

)h
dt =

∫ T

0

[(
∂Vε
∂t
, πh[η − η̃]

)h − (∂Vε
∂t
, πh[η − η̃]

)]
dt

+

∫ T

0

[(
∂Vε
∂t
, πhη̃

)h − (∂Vε
∂t
, πhη̃

)]
dt

+

∫ T

0

(
∂Vε
∂t
, (πh − I) η

)
dt

+

∫ T

0

(
∂Vε
∂t
, η
)

dt

:= I4,1 + I4,2 + I4,3 + I4,4 . (3.3.55)

It follows from (2.4.19),(3.1.10), (2.4.16), the Hölder’s inequality and the sixth bound

in (3.3.8b) that

|I4,1| ≡
∣∣∣∣∫ T

0

[(
∂Vε
∂t
, πh[η − η̃]

)h − (∂Vε
∂t
, πh[η − η̃]

)]
dt

∣∣∣∣
≤ C h

∫ T

0

∥∥∂Vε
∂t

∥∥
0,q

∣∣πh[η − η̃]
∣∣
1,q′

dt

≤ C

∫ T

0

∥∥Gq ∂Vε∂t ∥∥1,q
‖η − η̃‖1,q′ dt

≤ C
∥∥Gq ∂Vε∂t ∥∥Lq(0,T ;W 1,q(Ω))

‖η − η̃‖Lq′ (0,T ;W 1,q′ (Ω))

≤ C ‖η − η̃‖Lq′ (0,T ;W 1,q′ (Ω)) . (3.3.56)

From (2.4.19), (2.4.16), (3.3.33), the continuous embedding of Lq
′
(0, T ;W 1,∞(Ω))

into L1(0, T ;W 1,∞(Ω)) and (3.3.8b) we obtain that

|I4,2| ≡
∣∣∣∣ ∫ T

0

[ (
∂Vε
∂t
, πhη̃

)h − (∂Vε
∂t
, πhη̃

) ]
dt

∣∣∣∣
≤ C h

∫ T

0

‖Vε‖0,1 |
∂(πhη̃)
∂t
|1,∞ dt+ C h ‖Vε(·, T )‖0,1

∣∣πhη̃(·, T )
∣∣
1,∞

+ C h ‖Vε(·, 0)‖0,1

∣∣πhη̃(·, 0)
∣∣
1,∞

≤ C h ‖Vε‖L∞(0,T ;L1(Ω)) ‖η̃‖W 1,q′ (0,T ;W 1,∞(Ω))

≤ C h ‖η̃‖W 1,q′ (0,T ;W 1,∞(Ω)) −→ 0 as h→ 0 . (3.3.57)

On noting (3.1.5), the Hölder’s inequality and the fifth bound in (3.3.8b) we have
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that

|I4,3| ≡
∣∣∣∣∫ T

0

(
∂Vε
∂t
, (πh − I) η

)
dt

∣∣∣∣ ≤ ∫ T

0

∣∣∣〈∂Vε∂t , (πh − I) η
〉
q′

∣∣∣ dt

≤
∥∥∂Vε
∂t

∥∥
Lq(0,T ;(W 1,q′ (Ω))′)

∥∥(πh − I) η
∥∥
Lq′ (0,T ;W 1,q′ (Ω))

≤ C
∥∥(πh − I) η

∥∥
Lq′ (0,T ;W 1,q′ (Ω))

. (3.3.58)

Noting (3.3.55)-(3.3.58), the denseness ofW 1,q′(0, T ;W 1,∞(Ω)) in Lq
′
(0, T ;W 1,q′(Ω)),

(2.4.17) and the convergence in (3.3.7b) yields for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T

0

(
∂Vε
∂t
, πhη

)h
dt −→

∫ T

0

〈
∂v
∂t
, η
〉
q′

dt as h→ 0 . (3.3.59)

It follows from the Hölder’s inequality, the continuous embedding L2(0, T ;H1(Ω)) ↪→

Lq(0, T ;W 1,q(Ω)), (3.3.8b) and (2.4.17) for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∣∣∣∣∫ T

0

(∇V +
ε ,∇(πh − I) η) dt

∣∣∣∣ ≤ ∫ T

0

∣∣V +
ε

∣∣
1,q

∣∣(πh − I) η
∣∣
1,q′

dt

≤
∥∥V +

ε

∥∥
Lq(0,T ;W 1,q(Ω))

∥∥(πh − I) η
∥∥
Lq′ (0,T ;W 1,q′ (Ω))

≤ C
∥∥(πh − I) η

∥∥
Lq′ (0,T ;W 1,q′ (Ω))

−→ 0 as h→ 0 .

(3.3.60)

Thereby, we obtain from (3.3.60) and (3.3.7a) for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T

0

(∇V +
ε ,∇πhη) dt =

∫ T

0

(∇V +
ε ,∇(πh − I) η) dt +

∫ T

0

(∇V +
ε ,∇η) dt

−→
∫ T

0

(∇v,∇η) dt as h→ 0 . (3.3.61)

Similarly to (3.3.39), we have for all η ∈ Lq
′
(0, T ;W 1,q′(Ω)) and for all η̃ ∈

L∞(0, T ;W 1,q′(Ω)) that∫ T

0

(
Ξε(V

+
ε )∇(U+

ε + V +
ε ),∇πhη

)
dt

=

∫ T

0

(
Ξε(V

+
ε )∇(U+

ε + V +
ε ),∇(πh − I) η

)
dt

+

∫ T

0

([
Ξε(V

+
ε )− v I

]
∇(U+

ε + V +
ε ),∇(η − η̃)

)
dt

+

∫ T

0

([
Ξε(V

+
ε )− v I

]
∇(U+

ε + V +
ε ),∇η̃

)
dt

+

∫ T

0

(
v∇(U+

ε + V +
ε ),∇η

)
dt

:= I5,1 + I5,2 + I5,3 + I5,4. (3.3.62)
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It follows from the generalized Hölder’s inequality, (3.3.8a)-(3.3.8b), (3.3.5b) and

(2.4.17) for β = 2 (d+1)
d

that

|I5,1| ≡
∣∣∣∣∫ T

0

(
Ξε(V

+
ε )∇(U+

ε + V +
ε ),∇(πh − I) η

)
dt

∣∣∣∣
≤
∥∥Ξε(V

+
ε )
∥∥
Lβ(ΩT )

∥∥U+
ε + V +

ε

∥∥
L2(0,T ;H1(Ω))

∥∥(πh − I) η
∥∥
Lq′ (0,T ;W 1,q′ (Ω))

≤ C
∥∥(πh − I) η

∥∥
Lq
′ (0,T ;W 1,q′ (Ω))

−→ 0 as h→ 0 , (3.3.63)

and

|I5,2| ≡
∣∣∣∣∫ T

0

([
Ξε(V

+
ε )− v I

]
∇(U+

ε + V +
ε ),∇(η − η̃)

)
dt

∣∣∣∣
≤
∥∥Ξε(V

+
ε )− v I

∥∥
Lβ(ΩT )

∥∥U+
ε + V +

ε

∥∥
L2(0,T ;H1(Ω))

‖η − η̃‖Lq′ (0,T ;W 1,q′ (Ω))

≤ C ‖η − η̃‖Lq′ (0,T ;W 1,q′ (Ω)) . (3.3.64)

Once again, using the generalized Hölder’s inequality and (3.3.8a)-(3.3.8b), we have

that

|I5,3| ≡
∣∣∣∣∫ T

0

([
Ξε(V

+
ε )− v I

]
∇(U+

ε + V +
ε ),∇η̃

)
dt

∣∣∣∣
≤
∥∥Ξε(V

+
ε )− v I

∥∥
L2(0,T ;Lβ(Ω)

∥∥U+
ε + V +

ε

∥∥
L2(0,T ;H1(Ω))

‖η̃‖L∞(0,T ;W 1,q′ (Ω))

≤ C
∥∥Ξε(V

+
ε )− v I

∥∥
L2(0,T ;Lβ(Ω)

‖η̃‖L∞(0,T ;W 1,q′ (Ω)) . (3.3.65)

Combining (3.3.62)-(3.3.65), the denseness of L∞(0, T ;W 1,q′(Ω)) in Lq
′
(0, T ;W 1,q′(Ω)),

(3.3.7f) and (3.3.7a) yields, after noting that v ∈ Lβ(ΩT ), for all η ∈ Lq′(0, T ;W 1,q′(Ω))

that∫ T

0

(
Ξε(V

+
ε )∇(U+

ε + V +
ε ),∇πhη

)
dt →

∫ T

0

(v∇(u+ v),∇η) dt as h→ 0 .

(3.3.66)

It remains to show the convergence of the reaction term in (3.3.54). Similarly to

(3.3.45)-(3.3.46), we obtain from (2.4.19), the Hölder’s inequality, (2.4.16), (3.3.8b)

and (3.3.7a) for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T

0

(
V +
ε , π

hη
)h

dt =

∫ T

0

[(
V +
ε , π

hη
)h − (V +

ε , π
hη
)]

dt

+

∫ T

0

(
V +
ε , (π

h − I) η
)

dt +

∫ T

0

(
V +
ε , η

)
dt →

∫ T

0

(v, η) dt as h→ 0 .

(3.3.67)
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It follows from (2.4.20), (2.4.14), (2.4.16), (2.4.6), the generalized Hölder’s in-

equality and (3.3.8b) for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∣∣∣∣∫ T

0

[(
πhψε(V

+
ε ) πhψε(V

−
ε ), πhη

)h − (πhψε(V +
ε ) πhψε(V

−
ε ), πhη

)]
dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
πhψε(V

+
ε ) πhψε(V

−
ε ), (πh − I) η

)
dt

∣∣∣∣
≤ C h2

∫ T

0

∥∥πhψε(V +
ε )
∥∥

1,β

∥∥πhψε(V −ε )
∥∥

1

∥∥πhη∥∥
1,q′

dt

+

∫ T

0

∥∥πhψε(V +
ε )
∥∥

0,β

∥∥πhψε(V −ε )
∥∥

0

∥∥(πh − I) η
∥∥

0,q′
dt

≤ C h

∫ T

0

∥∥πhψε(V +
ε )
∥∥

0,β

[ ∥∥πhψε(V −ε )
∥∥

0
+
∣∣πhψε(V −ε )

∣∣
1

]
‖η‖1,q′ dt

+ C h

∫ T

0

∥∥πhψε(V +
ε )
∥∥

0,β

∥∥πhψε(V −ε )
∥∥

0
‖η‖1,q′ dt

≤ C h

∫ T

0

∥∥πhψε(V +
ε )
∥∥

0,β

[ ∥∥πhψε(V −ε )
∥∥

0
+
∣∣V −ε ∣∣1] ‖η‖1,q′ dt

≤ C h
∥∥πhψε(V +

ε )
∥∥
Lβ(ΩT )

[ ∥∥πhψε(V −ε )
∥∥
L2(ΩT )

+
∥∥V −ε ∥∥L2(0,T ;H1(Ω))

]
‖η‖Lq′ (0,T ;W 1,q′ (Ω))

≤ C h ‖η‖Lq′ (0,T ;W 1,q′ (Ω)) . (3.3.68)

Noting (2.4.3), (3.3.68) and (3.3.24c) yields for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T

0

(
πhψε(V

+
ε ) πhψε(V

−
ε ), πhη

)h
dt

=

∫ T

0

[(
πhψε(V

+
ε ) πhψε(V

−
ε ), πhη

)h − (πhψε(V +
ε ) πhψε(V

−
ε ), πhη

)]
dt

+

∫ T

0

(
πhψε(V

+
ε ) πhψε(V

−
ε ), (πh − I) η

)
dt +

∫ T

0

(
πhψε(V

+
ε ) πhψε(V

−
ε ), η

)
dt

−→
∫ T

0

(
v2, η

)
dt as h→ 0 . (3.3.69)

Similarly to (3.3.68) and (3.3.69), we can easily show using (3.3.24b) for all

η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T

0

(
πhψε(V

+
ε ) πhφε(U

−
ε ), πhη

)h
dt −→

∫ T

0

(v φ(u), η) dt as h→ 0 . (3.3.70)

Hence, combining (3.3.54), (3.3.59), (3.3.61), (3.3.66), (3.3.67), (3.3.69) and (3.3.70)

leads to the desired result (3.3.28b).

This completes the proof of the main theorem in this chapter. 2



3.3. Existence of a weak solution 76

Remark 3.3.1 We note from (2.3.10b), (2.3.11) and (2.3.15) that for all ε ∈

(0, e−1) :

sG′ε(s) ≥ ψε(s)G
′
ε(s) ≥ s− 1 for all s ∈ R .

Taking this into account, the results in Theorem 3.3.3 can be achieved with the reac-

tion term gM,ε(uε, vε) , in (PM,ε), and the term γ V n
ε −ψε(V n

ε ) [φε(U
n−1
ε ) + ψε(V

n−1
ε )] ,

in (Ph,∆t
M, ε ), replaced by

γ vε − vε [φε(uε) + ψε(vε)] and γ V n
ε − V n

ε

[
φε(U

n−1
ε ) + ψε(V

n−1
ε )

]
,

respectively.

Remark 3.3.2 We have from (2.3.4b), (2.3.5), (2.3.11) and (2.3.9), for sufficiently

small ε , that

ψε(s)F
′
ε(s) ≥ φε(s)F

′
ε(s) ≥ s− 1 for all s ∈ R .

Noting this, the results in Theorem 3.3.3 can be also achieved with the reaction

term fM,ε(uε, vε) , in (PM,ε), and the term Un
ε −Un

ε φε(U
n−1
ε )− φε(Un

ε )ψε(V
n−1
ε ) , in

(Ph,∆t
M, ε ), replaced by

uε − φε(uε) [ψε(uε) + ψε(vε)] and Un
ε − ψε(Un

ε )φε(U
n−1
ε )− φε(Un

ε )ψε(V
n−1
ε ) ,

respectively. Where in this case we need to note, in addition to the convergence

results stated in Theorem 3.3.3, that

πhψε(U
±
ε ) → u in L2(0, T ;Ls(Ω)) .

Remark 3.3.3 In the problem (PM) we assumed that M ≥ e , however we can

consider it for M ∈ [1, e). For such choice of M , the property (2.3.8) does not hold

and needs to be replaced by

s F ′ε(s) ≤ 5
2
Fε(s) + 1 ∀s ∈ R holds for all M ≥ 1 . (3.3.71)
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The proof of (3.3.71) for s ≤ M is exactly the same as the proof of (2.3.8). To

conclude (3.3.71) for all s ≥M , define

Jε(s) = 5
2
Fε(s)− s F ′ε(s) + 1

with

J ′ε(s) = 3
2
F ′ε(s)− s F ′′ε (s) and J ′ε(s) = 0 ⇔ s = 3M (1− lnM) .

For M ∈ [1, e
2
3 ] , we have 3M (1− lnM) ≥M and for all s ≥M

Jε(s) ≥ Jε( 3M (1− lnM) ) = −9M
4

(1− lnM)2 − 5M
4

+ 7
2
≥ 0 .

For M ∈ [e
2
3 , e) , we have 3M (1− lnM) ≤M and for all s ≥M

Jε(s) ≥ Jε(M) = 3
2
M (lnM − 1)−M + 7

2
≥ 0 .

As a result of the replacement of (2.3.8) by (3.3.71), the existence condition on

the time discretization, for the n-th step of (Ph,∆t
M, ε ), in Theorem 2.4.7 for the case

M ∈ [1, e) will be

∆tn ≤ 1
max{9/2 , 2 γ+2} .

Therefore, the restriction considered for deriving the stability bounds on the ap-

proximations, in Lemma 3.2.2, will be replaced by

∆t ≤ 1−δ
max{9/2 , 2 γ+2} , for some δ ∈ (0, 1) ,

which is more severe than the restriction that required when M ≥ e . In the exper-

iments, in Chapter 5, we spend some time discussing the influence of the choices of

the number M .



Chapter 4

The population model: Improved

results

In this chapter we attempt to obtain more regular solutions of the problem (P)

than the solutions derived by analysing the truncated problem (PM) in Theorem

3.3.3. Based on the analysis in the previous chapters, the idea is to introduce and

analyse an alternative problem to (PM) which will be equivalent to the problem

(P) in some sense. We do that briefly in three short sections with an emphasis

only on the details that leads to further improvements on the solutions. In Section

4.1 a “fully” truncated alternative problem to (P) is presented. A corresponding

regularized problem and entropy inequality is discussed. In Section 4.2 a practical

fully discrete finite element approximation is proposed. The existence theorem of the

approximate solutions is stated and a discrete analogue entropy inequality is derived.

In Section 4.3 existence of a global weak solution to the “fully” truncated problem

is established via studying the convergence of the approximate problem. Finally,

in Section 4.4, in the absence of the reaction terms further features of the “fully”

truncated problem are investigated. In particular, an L2(ΩT ) estimate between the

weak solution and the mean integral of the initial data has been obtained.

78
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4.1 A “fully” truncated alternative problem

On noting the analysis of the problem (PM), one expects to obtain more regularity

by considering the following alternative problem to (P):

(P̃M) For fixed M ≥ e, find {ũ(x, t), ṽ(x, t)} ∈ R≥0 × R≥0 such that

∂ũ

∂t
= ∇ · (D∇ũ+ φ(ũ)∇(ũ+ ṽ)) + f̃M(ũ, ṽ) in ΩT , (4.1.1a)

∂ṽ

∂t
= ∇ · (D∇ṽ + φ(ṽ)∇(ũ+ ṽ)) + g̃M(ũ, ṽ) in ΩT , (4.1.1b)

with boundary conditions

[D∇ũ+ φ(ũ)∇(ũ+ ṽ)] · ν = 0

[D∇ṽ + φ(ṽ)∇(ũ+ ṽ)] · ν = 0
on ∂Ω× (0, T ), (4.1.1c)

and initial conditions

ũ(x, 0) = u0(x) , ṽ(x, 0) = v0(x) ∀ x ∈ Ω, (4.1.1d)

where φ(s) := φM(s) is defined by (2.2.1) and

f̃M(ũ, ṽ) := ũ− ũ (φ(ũ) + φ(ṽ) ), (4.1.1e)

g̃M(ũ, ṽ) := γ ṽ − ṽ (φ(ũ) + φ(ṽ) ). (4.1.1f)

Before we go through the analysis of the problem (P̃M), we first demonstrate the

point of considering such a problem as an alternative to the model (P). In particular,

we clarify the relation between a solution of (P̃M) and a solution of (P). On noting

the system (4.1.1a)-(4.1.1b) and the system (2.2.4a)-(2.2.4b), it can be seen clearly

that the problem (P̃M) is equivalent to (PM), with v φ(u) replaced by v u in (2.2.2),

if the number M is chosen large enough such that ṽ ≤ M . Noting this and the

relation between the system (2.2.4a)-(2.2.4b) and the system (1.1.2a)-(1.1.2b), one

can deduce the equivalence between the problem (P̃M) and the problem (P) for M

sufficiently large such that ũ , ṽ ≤M . This equivalence has meaning since the values

of u and v , in (P), represent densities of two types of cell populations, which are
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expected in the biological literature to be bounded (see Painter and Sherratt [55]).

We finally mention that our analysis of the problem (P̃M) will be also restricted to

the assumption D > 0 as in the analysis of the problem (PM).

It is convenient to rewrite the system (4.1.1a)-(4.1.1f) in the following multi-

component form:

(P̃M) For fixed M ≥ e, find {u1(x, t), u2(x, t)} ∈ R≥0 × R≥0 such that, for i = 1

and 2,

∂ui
∂t

= ∇ · (D∇ui + φ(ui)∇(u1 + u2)) + fM,i(u1, u2) in ΩT , (4.1.2a)

[D∇ui + φ(ui)∇(u1 + u2)] · ν = 0 on ∂Ω× (0, T ), (4.1.2b)

ui(x, 0) = u0
i (x) ∀ x ∈ Ω, (4.1.2c)

where we set γ1 := 1 and γ2 := γ > 1 to define

fM,i(u1, u2) := γi ui − ui (φ(u1) + φ(u2) ). (4.1.2d)

The entropy inequality of the problem (P̃M) can be derived easily by testing the

i-th equation in (4.1.2a) with F ′(ui), noting the condition (4.1.2b) and summing

over i yielding for t ∈ (0, T ) that

Ẽ(t) + D
M

∫ t

0

2∑
i=1

‖∇ui‖2
0 dt ≤ Ẽ(0) +

∫ t

0

∫
Ω

2∑
i=1

fM,i(u1, u2)F ′(ui) dx dt, (4.1.3)

where

Ẽ(t) =

∫
Ω

2∑
i=1

F (ui) dx .

As in (2.3.3), the inequality (4.1.3) is only valid for positive functions ui , i =

1 , 2 . This issue can be efficiently treated by introducing the following regularized

problem to (P̃M):
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(P̃M,ε) For M ≥ e and for ε ∈ (0, e−1) find {uε,1(x, t), uε,2(x, t)} ∈ R× R such

that, for i = 1 and 2,

∂uε,i
∂t

= ∇ · (D∇uε,i + φε(uε,i)∇(uε,1 + uε,2)) + fM,i(uε,1, uε,2) in ΩT , (4.1.4a)

[D∇uε,i + φε(uε,i)∇(uε,1 + uε,2)] · ν = 0 on ∂Ω× (0, T ), (4.1.4b)

uε,i(x, 0) = u0
i (x) ∀ x ∈ Ω, (4.1.4c)

where

fM,ε,i(uε,1, uε,2) := γi uε,i − uε,i (φε(uε,1) + φε(uε,2) ). (4.1.4d)

Lemma 4.1.1 Let u0
1(x) and u0

2(x) be non-negative bounded functions. There ex-

ists a positive C(u0
1, u

0
2,M, γ) independent of ε such that any solution {uε,1, uε,2} of

(PM,ε) satisfies

sup
0<t<T

∫
Ω

2∑
i=1

Fε(uε,i) dx+ D
M

∫
ΩT

2∑
i=1

|∇uε,i|2 dx dt ≤ C . (4.1.5)

Furthermore,

sup
0<t<T

∫
Ω

2∑
i=1

(
|uε,i|2 + ε−1 |[uε,i]−|2

)
dx ≤ C. (4.1.6)

Proof : Testing the i-th equation in (4.1.4a) with F ′ε,i(uε,i) and summing over i

yields on noting (4.1.4b) and (2.3.20) that

d

dt

∫
Ω

2∑
i=1

Fε(uε,i) dx+D

∫
Ω

2∑
i=1

|∇uε,i|2

φε(uε,i)
dx+

∫
Ω

|∇uε,1 +∇uε,2|2 dx

=

∫
Ω

2∑
i=1

fM,ε,i(uε,1, uε,2)F ′ε(uε,i) dx . (4.1.7)

From (2.3.5), (2.3.8), (2.3.9), (2.1.11), the Young’s inequality and (2.3.6) we obtain,

for i = 1 and 2 , that

fM,ε,i(uε,1, uε,2)F ′ε(uε,i) ≤ γi (2Fε(uε,i) + 1) + (1− [uε,i]−) (φε(uε,1) + φε(uε,2))

≤ 2 γi Fε(uε,i) + 1
2 ε

[uε,i]
2
− + ε

2
(φε(uε,1) + φε(uε,2))2 + C(M,γi)

≤ (2 γi + 1)Fε(uε,i) + C(M,γi) . (4.1.8)
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Dropping the third term in (4.1.7) and noting (4.1.8) and (2.3.5) gives that

d

dt

∫
Ω

2∑
i=1

Fε(uε,i) dx+ D
M

∫
Ω

2∑
i=1

|∇uε,i|2 dx

≤ C(M,γi) +

∫
Ω

2∑
i=1

(2 γi + 1)Fε(uε,i) dx . (4.1.9)

Hence, the desired result (4.1.5) follows immediately from (4.1.9) after application

of the Grönwall lemma and recalling the initial condition (4.1.4c). The result (4.1.6)

follows from (4.1.9), (2.3.6) and (2.3.7). 2

4.2 A fully discrete finite element approximation

Let the assumptions (A) hold. For any ε ∈ (0, e−1), we consider the following fully

discrete finite element approximation of (P̃M,ε):

(P̃h,∆t
M,ε ) For n ≥ 1 find {Un

ε,1, U
n
ε,2} ∈ Sh × Sh such that for i = 1 and 2, and for all

χ ∈ Sh(
Unε,i−U

n−1
ε,i

∆tn
, χ

)h
+
(
D∇Un

ε,i + Λε(U
n
ε,i)∇

(
Un
ε,1 + Un

ε,2

)
,∇χ

)
=
(
γi U

n
ε,i − Un

ε,i

[
φε(U

n−1
ε,1 ) + φε(U

n−1
ε,2 )

]
, χ
)h
, (4.2.1)

where U0
ε,i ∈ Sh , for i = 1 and 2 , is an approximation of u0

i .

Theorem 4.2.1 Let the assumptions (A) hold, D > 0 , γ1 = 1 and γ2 > 1. Let

{Un−1
ε,1 , Un−1

ε,2 } ∈ Sh × Sh be a given solution to the (n − 1)-th step of (P̃h,∆t
M,ε ) for

some n = 1, · · · , N . Then for all ε ∈ (0, e−1), for all h > 0 and for all ∆tn > 0 such

that ∆tn ≤ 1
2 γ+1

, there exists a solution {Un
ε,1, U

n
ε,2} ∈ Sh × Sh to the n-th step of

(P̃h,∆t
M,ε ) satisfying

(1− (2 γ + 1) ∆tn)
2∑
i=1

(Fε(U
n
ε,i), 1)h + D

M

2∑
i=1

∆tn
∣∣Un

ε,i

∣∣2
1

≤
2∑
i=1

(Fε(U
n−1
ε,i ), 1)h + C ∆tn . (4.2.2)
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Proof : The existence proof is a simple modification of the proof of Theorem 2.4.7.

We now sketch the proof of (4.2.2). Choosing χ ≡ ∆tn π
h[F ′ε(U

n
ε,i)] as a test function

in the i-th equation in (4.2.1) and noting (2.4.22b) and (2.4.3) yields, for i = 1

and 2 , that

(
Un
ε,i − Un−1

ε,i , F ′ε(U
n
ε,i)
)h

+ ∆tn

(
D
[
Λε(U

n
ε,i)
]−1∇Un

ε,i +∇(Un
ε,1 + Un

ε,2),∇Un
ε,i

)
= ∆tn

(
γi U

n
ε,i − Un

ε,i

[
φε(U

n−1
ε,1 ) + φε(U

n−1
ε,2 )

]
, F ′ε(U

n
ε,i)
)h
, (4.2.3)

which is a discrete analogue of (4.1.7).

It follows from (2.3.5), (2.3.8), (2.3.9), (2.1.11), the Young’s inequality and (2.3.6),

for i = 1 and 2 , that

∆tn
(
γi U

n
ε,i − Un

ε,i

[
φε(U

n−1
ε,1 ) + φε(U

n−1
ε,2 )

]
, F ′ε(U

n
ε,i)
)h

≤ γi ∆tn (2Fε(U
n
ε,i) + 1, 1)h + ∆tn

(
φε(U

n−1
ε,1 ) + φε(U

n−1
ε,2 ), 1

)h
−∆tn

(
φε(U

n−1
ε,1 ) + φε(U

n−1
ε,2 ), [Un

ε,i]−
)h

≤ 2 γi∆tn (Fε(U
n
ε,i), 1)h + ∆tn

2 ε

∣∣[Un
ε,i]−

∣∣2
h

+ C(M, γi , |Ω|) ∆tn

≤ (2 γi + 1) ∆tn (Fε(U
n
ε,i), 1)h + C(M, γi , |Ω|) ∆tn . (4.2.4)

Combining (4.2.3), (4.2.4) and (2.4.58a) yields, for i = 1 and 2 , that

(1− (2 γi + 1) ∆tn) (Fε(U
n
ε,i), 1)h + ∆tn

(
D
[
Λε(U

n
ε,i)
]−1∇Un

ε,i +∇(Un
ε,1 + Un

ε,2),∇Un
ε,i

)
≤ (Fε(U

n−1
ε,i ), 1)h + C ∆tn . (4.2.5)

Thus, the result (4.2.2) follows by summing (4.2.5) over i and noting (2.4.32),

Fε(s) ≥ 0 and that γ > 1 . 2

In the following theorem we derive discrete analogues of the estimates obtained

in Lemma 4.1.1.

Theorem 4.2.2 Let the assumptions of Theorem 4.2.1 hold and let u0
i ∈ L∞(Ω)

with u0
i (x) ≥ 0 for a.e. x ∈ Ω, i = 1 , 2 . Let either U0

ε,i ≡ P hu0
i ; or U0

ε,i ≡ πhu0
i

if u0
i ∈ C(Ω) . Then for all ε ∈ (0, e−1) , for all h > 0 and for all ∆t > 0 such
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that ∆t ≤ 1−δ
2 γ+1

, for some δ ∈ (0, 1) , the problem (P̃h,∆t
M,ε ) possesses a solution

{Un
ε,1, U

n
ε,2}Nn=1 such that

max
n=1,··· ,N

2∑
i=1

[
(Fε(U

n
ε,i), 1)h + ε−1‖πh[Un

ε,i]−‖2
0 + ‖Un

ε,i‖2
0

]
+

N∑
n=1

∆tn

2∑
i=1

‖Un
ε,i‖2

1 ≤ C .

(4.2.6)

Furthermore,

N∑
n=1

∆tn

2∑
i=1

[
‖Un

ε,i‖α0,α + ‖U
n
ε,i−U

n−1
ε,i

∆tn
‖2

(H1(Ω))′ + ‖G[
Unε,i−U

n−1
ε,i

∆tn
]‖2

1

]
≤ C , (4.2.7)

where α = 2 (d+2)
d

.

Proof : It follows from (4.2.2) and the assumption on ∆t, for n = 1, · · · , N , that

2∑
i=1

(Fε(U
n
ε,i), 1)h ≤

(
1 + (2 γ+1) ∆tn

δ

) 2∑
i=1

(Fε(U
n−1
ε,i ), 1)h + C

δ
∆tn

≤ e
(2 γ+1) ∆tn

δ

2∑
i=1

(Fε(U
n−1
ε,i ), 1)h + C

δ
∆tn . (4.2.8)

The first bound in (4.2.6) follows from (4.2.8) and the assumptions on the initial

data. The second and the third bounds in (4.2.6) follow directly from the first bound

in (4.2.6) on recalling (2.4.2), (2.3.6) and (2.3.7). The last bound in (4.2.6) follows

by summing (4.2.2) over n and noting the first and the third bounds in (4.2.6).

Similarly to (3.2.15), it follows from (2.1.1) and the third bound in (4.2.6) for

i = 1 , 2 , for n = 1, · · · , N and for the stated choice of α that

‖Un
ε,i‖α0,α ≤ C ‖Un

ε,i‖α−2
0 ‖Un

ε,i‖2
1 ≤ C ‖Un

ε,i‖2
1 . (4.2.9)

We obtain from (3.1.8), (3.1.1), (4.2.1), (2.4.2), (2.3.5), (2.4.24), (2.4.25), (3.1.3)

and (4.2.6) for any η ∈ H1(Ω), for i = 1 , 2 and for n = 1, · · · , N that

〈U
n
ε,i−U

n−1
ε,i

∆tn
, η〉 =

(
Unε,i−U

n−1
ε,i

∆tn
, η

)
=

(
Unε,i−U

n−1
ε,i

∆tn
, P hη

)h
= (γi U

n
ε,i − Un

ε,i

[
φε(U

n−1
ε,1 ) + φε(U

n−1
ε,2 )

]
, P hη)h

−
(
D∇Un

ε,i + Λε(U
n
ε,i)∇(Un

ε,1 + Un
ε,2),∇P hη

)
≤ C ‖Un

ε,i‖0 ‖P hη‖0 + C
(
|Un

ε,1|1 + |Un
ε,2|1

)
|P hη|1

≤ C ‖η‖1

2∑
i=1

‖Un
ε,i‖1 ,
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which implies

‖U
n
ε,i−U

n−1
ε,i

∆tn
‖2

(H1(Ω))′ ≤ C
2∑
i=1

‖Un
ε,i‖2

1 . (4.2.10)

Combining (4.2.9), (4.2.10), (3.1.9) and the last bound in (4.2.6) provides the desired

result (4.2.7). 2

Remark 4.2.1 We note that the proof of Theorem 4.2.2 does not require non-

increasing time-step discretizations, while such a condition is essential in the proof

of Theorem 3.2.3. This is due to the nature of the discretization of the reaction term

in the approximation problem (4.2.1).

4.3 Convergence and existence results

To prove existence of a global weak solution of the system (4.1.2a)-(4.1.2d), we pass

to the limit ε , h , ∆t → 0 of the approximation system (4.2.1). For that purpose,

we first need to adapt the notation (3.3.1a)-(3.3.3a) to Uε,i , i = 1 and 2 , and restate

the problem (P̃h,∆t
M,ε ) as follows:

Find {Uε,1, Uε,2} ∈ C([0, T ];Sh) × C([0, T ];Sh) such that for i = 1 and 2 , and for

all χ ∈ L2(0, T ;Sh)∫ T

0

[(
∂Uε,i
∂t
, χ
)h

+D (∇U+
ε,i,∇χ) + ( Λε(U

+
ε,i)∇(U+

ε,1 + U+
ε,2),∇χ)

]
dt

=

∫ T

0

(
γi U

+
ε,i − U+

ε,i

[
φε(U

−
ε,1) + φε(U

−
ε,2)
]
, χ
)h

dt . (4.3.1)

Theorem 4.3.1 Let the assumptions (A) hold, D > 0 , γ1 = 1 , γ2 > 1 and

u0
i ∈ H1

≥0(Ω) ∩ L∞(Ω) , i = 1 and 2 . In addition, let
{
ε, h, {∆tn}Nn=1, U

0
ε,1, U

0
ε,2

}
be

such that

( i ) either U0
ε,i ≡ P hu0

i ; or U0
ε,i ≡ πhu0

i if either d = 1 or u0
i ∈ W 1,r(Ω) with

r > d , i = 1, 2 .

( ii ) ∆t ≤ 1−δ
2 γ+1

, for some δ ∈ (0, 1) .

(iii) ∆t , ε → 0 as h → 0 .
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Then there exists a subsequence of {Uε,1, Uε,2}h>0 , where {Uε,1, Uε,2} solves (4.3.1) ,

and functions

ui ∈ L2(0, T ;H1(Ω)) ∩ Lα(ΩT ) ∩ L∞(0, T ;L2(Ω)) ∩H1(0, T ; (H1(Ω))′) , (4.3.2a)

where α = 2 (d+2)
d

, with

ui(x, t) ≥ 0 a.e. in ΩT and ui(·, 0) = u0
i (·) in L2(Ω) i = 1 , 2 . (4.3.2b)

Moreover, it holds as h→ 0 that

Uε,i, U
±
ε,i ⇀ ui in L2(0, T ;H1(Ω)) ∩ Lα(ΩT ) , (4.3.3a)

Uε,i, U
±
ε,i ⇀

∗ ui in L∞(0, T ;L2(Ω)) , (4.3.3b)

∂Uε,i
∂t

⇀
∂ui
∂t

in L2(0, T ; (H1(Ω))′) , (4.3.3c)

Uε,i, U
±
ε,i → ui in L2(0, T ;Ls(Ω)) , (4.3.3d)

φε(U
±
ε,i)→ φ(ui) in L2(0, T ;Ls(Ω)) , (4.3.3e)

πhφε(U
±
ε,i)→ φ(ui) in L2(0, T ;Ls(Ω)) , (4.3.3f)

Λε(U
±
ε,i)→ φ(ui) I in L2(0, T ;Ls(Ω)) , (4.3.3g)

for any

s ∈


[2,∞] if d = 1 ,

[2,∞) if d = 2 ,

[2, 6) if d = 3 .

Proof : Similarly to (3.3.8a), it follows from (4.2.6), (4.2.7), (2.3.5), (2.4.24), (2.4.25)

and our assumptions on the initial data for i = 1 and 2 that

‖U (±)
ε,i ‖L2(0,T ;H1(Ω)) + ‖U (±)

ε,i ‖Lα(ΩT ) + ‖U (±)
ε,i ‖L∞(0,T ;L2(Ω))

+ ε−
1
2‖πh[U (±)

ε,i ]−‖L∞(0,T ;L2(Ω)) + ‖∂Uε,i
∂t
‖L2(0,T ;(H1(Ω))′)

+ ‖G ∂Uε,i
∂t
‖L2(0,T ;H1(Ω)) + ‖φε(U (±)

ε,i )‖L∞(ΩT )

+ ‖πhφε(U (±)
ε,i )‖L∞(ΩT ) + ‖Λε(U

(±)
ε,i )‖L∞(ΩT ) ≤ C . (4.3.4)

On noting the uniform bounds in (4.3.4), the proof of the theorem can be easily

established by following exactly the same arguments used to show the results con-

cerning U
(±)
ε and u in Theorem 3.3.1. 2
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Theorem 4.3.2 Let the assumptions of Theorem 4.3.1 hold. Then there exists a

subsequence of {Uε,1, Uε,2}h>0 , where {Uε,1, Uε,2} solves (P̃h,∆t
M,ε ) , and non-negative

functions {u1, u2} satisfying (4.3.2a)-(4.3.2b). In addition, as h→ 0 the convergence

results (4.3.3a)-(4.3.3g) hold. Furthermore, the functions {u1, u2} represent a global

weak solution of the problem (P̃M) in sense that for i = 1 , 2∫ T

0

[〈
∂ui
∂t
, η
〉

+D (∇ui,∇η) + (φ(ui)∇(u1 + u2),∇η)
]

dt

=

∫ T

0

(γi ui − ui (φ(u1) + φ(u2) ), η) dt ∀η ∈ L2(0, T ;H1(Ω)) . (4.3.5)

Proof : The first and the second parts of the theorem follow from Theorem 4.3.1.

To show that the functions {u1, u2} satisfy (4.3.5), we set χ ≡ πhη as a test function

in (4.3.1) and then we pass to the limit ε , h , ∆t → 0 . The procedure is similar to

the proof of (3.3.28a) in Theorem 3.3.3. 2

Remark 4.3.1 On recalling Remark 3.3.3, one can consider the problem (P̃M) for

M ∈ [1, e) and use (3.3.71), instead of (2.3.8), to obtain the same results achieved

for M ≥ e . In this case, the restrictions on the time-discretization parameter in

Theorem 4.2.1 and Theorem 4.2.2 are replaced by the conditions

∆tn ≤ 2
5γ+2

and ∆t ≤ 2 (1−δ)
5 γ+2

, for some δ ∈ (0, 1) ,

respectively. Clearly, for γ < 2 , these restrictions are weaker than the corresponding

restrictions mentioned in Remark 3.3.3 for the problem (PM).

The following observation is related to the reaction terms in the problem (P):

Remark 4.3.2 It is worth mentioning that one can consider more general reaction

terms in the problem (P) similar to those considered in the model studied in [21]

and [9]. Namely, we can easily adapt the analysis presented in our previous work

for studying the problem (GP) where (GP) is the same as (P) but with f(u, v)

in (1.1.2a) replaced by u ( γ1 − µ1,1 u − µ1,2 v ) and g(u, v) in (1.1.2b) replaced by

v ( γ2 − µ2,1 u − µ2,2 v ) , µi,j , γi ≥ 0 for i, j = 1 and 2 . The following section is

devoted to the discussion of some additional properties of the solutions of the model
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(P) in the absence of competition between the two types of cell population. This is

when µi,j and γi , i, j = 1 and 2 , in the problem (GP) are all equal to zero; see the

model (1.1.1a)-(1.1.1b).

4.4 The population model with no reaction terms

In this section we consider the following cross diffusion model representing the dy-

namics of two cell populations:

(P0) Find {u1(x, t), u2(x, t)} ∈ R≥0 × R≥0 such that, for i = 1 and 2,

∂ui
∂t

= ∇ · (D∇ui + ui∇(u1 + u2)) in ΩT , (4.4.1a)

[D∇ui + ui∇(u1 + u2)] · ν = 0 on ∂Ω× (0, T ), (4.4.1b)

ui(x, 0) = u0
i (x) ∀ x ∈ Ω. (4.4.1c)

Clearly, in one dimension space the above model represents the model (1.1.1a)-

(1.1.1b). Here, the constant D is also assumed to be strictly positive. As discussed

in Section 4.1, the key of the analysis of the system (4.4.1a)-(4.4.1c) is to consider

an alternative system:

(P̃0,M) For fixed M ≥ 1, find {u1(x, t), u2(x, t)} ∈ R≥0 × R≥0 such that, for i = 1

and 2,

∂ui
∂t

= ∇ · (D∇ui + φ(ui)∇(u1 + u2)) in ΩT , (4.4.2a)

[D∇ui + φ(ui)∇(u1 + u2)] · ν = 0 on ∂Ω× (0, T ), (4.4.2b)

ui(x, 0) = u0
i (x) ∀ x ∈ Ω, (4.4.2c)

where φ(ui) := φM(ui) is defined by (2.2.1).

Theorem 4.4.1 Let the assumptions (A) hold, D > 0 and u0
i ∈ H1

≥0(Ω) ∩ L∞(Ω) ,

i = 1 and 2 . Then for any T > 0 there exists a global in-time weak solution

{u1, u2} of the system (4.4.2a)-(4.4.2c) satisfying (4.3.2a)-(4.3.2b) and
∫
− ui =

∫
− u0

i

for a.e. t ∈ (0, T ) , i = 1 and 2 , such that for all η ∈ L2(0, T ;H1(Ω))∫ T

0

[〈
∂ui
∂t
, η
〉

+D (∇ui,∇η) + (φ(ui)∇(u1 + u2),∇η)
]

dt = 0 , (4.4.3)
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where the mean integral used above is defined for any integrable function ω by∫
− ω :=

1

|Ω|
(ω, 1) .

Furthermore, if

0 < l ≤ u0
i (x) ≤M in Ω i = 1 and 2 , (4.4.4)

then there exist constants C0(M , u0
1 , u

0
2) ≥ 0 and C∗(D , Cp) > 0 such that∫ T

0

2∑
i=1

‖ui −
∫
− u0

i ‖2
0 dt ≤ C0

C∗

(
1− e−C∗T

)
. (4.4.5)

Proof : The existence proof can be easily established similarly to Theorem 4.3.2

where we consider, under the assumptions (A), for any ε ∈ (0, e−1) the following

fully discrete finite element approximation of (P̃0,M):

(P̃h,∆t
0,M,ε) For n ≥ 1 find {Un

ε,1, U
n
ε,2} ∈ Sh × Sh such that for i = 1 and 2, and for all

χ ∈ Sh(
Unε,i−U

n−1
ε,i

∆tn
, χ

)h
+
(
D∇Un

ε,i + Λε(U
n
ε,i)∇

(
Un
ε,1 + Un

ε,2

)
,∇χ

)
= 0 , (4.4.6)

where U0
ε,i ∈ Sh is an appropriate approximation of u0

i .

Obviously, choosing η ≡ 1 in (4.4.3) and noting (4.4.2c) yields for a.e. t ∈ (0, T )

that ∫
− ui(t) =

∫
− ui(0) =

∫
− u0

i i = 1 and 2 . (4.4.7)

Now, we consider the result (4.4.5) which explains, in some sense, the long time

behaviour of the derived solution of (P̃0,M). Assume that (4.4.4) is satisfied. It is

convenient for our purpose to define, for i = 1 and 2 and for any ε ∈ (0, l), the

function F̃ε,i : R≥0 → R such that

F̃ε,i(s) :=



s2−ε2
2 ε

+
(
ln ε− ln

(∫
− u0

i

)
− 1
)
s+

∫
− u0

i if s ≤ ε ,(
ln s− ln

(∫
− u0

i

)
− 1
)
s+

∫
− u0

i if ε ≤ s ≤M ,

s2−M2

2M
+
(
lnM − ln

(∫
− u0

i

)
− 1
)
s+

∫
− u0

i if s ≥M .

(4.4.8a)
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Hence F̃ε,i(s) ∈ C2(R≥0) , i = 1 and 2 , with the first two derivatives of F̃ε,i(s) given,

respectively, by

F̃ ′ε,i(s) = F ′ε(s)− ln
(∫
− u0

i

)
(4.4.8b)

and F̃ ′′ε,i(s) = F ′′ε (s) . (4.4.8c)

We obtain from a Taylor expansion around
∫
− u0

i , on noting (4.4.8a)-(4.4.8c) and

(4.4.4) that for i = 1 and 2

F̃ε,i(s) = F̃ε,i(
∫
− u0

i ) +
(
s−

∫
− u0

i

)
F̃ ′ε,i(

∫
− u0

i ) + 1
2

(
s−

∫
− u0

i

)2
F ′′ε (ξi)

≥ 1
2M

(
s−

∫
− u0

i

)2
. (4.4.9)

Testing the i-th equation in (4.4.3) with η ≡ F̃ ′ε,i(ui) ∈ L2(0, T ;H1(Ω)) , as ui ∈

L2(0, T ;H1(Ω)) , and summing the resulting equations yields on noting (2.3.5) that

2∑
i=1

(
F̃ε,i(ui(T )), 1

)
+

∫ T

0

2∑
i=1

[
D (F ′′ε (ui)∇ui,∇ui) +

(
φ(ui)

φε(ui)
∇(u1 + u2),∇ui

)]
dt

=
2∑
i=1

(
F̃ε,i(u

0
i ), 1

)
. (4.4.10)

It follows from (4.4.10), (4.4.9) and (2.3.4c) that

2∑
i=1

1
2M
‖ui(T )−

∫
− u0

i ‖2
0 + D

M

∫ T

0

2∑
i=1

|ui|21 dt+

∫
ΩT

(
2∑
i=1

(
φ(ui)

φε(ui)

) 1
2

∇ui

)2

dx dt

≤
2∑
i=1

(
F̃ε,i(u

0
i ), 1

)
+

∫
ΩT

∣∣∣∣∣
(
φ(u1)

φε(u1)

) 1
2

−
(
φ(u2)

φε(u2)

) 1
2

∣∣∣∣∣
2

|∇u1| |∇u2| dx dt .

(4.4.11)

The assumption (4.4.4) allows us to set

C0 := 2M
2∑
i=1

(
F̃ε,i(u

0
i ), 1

)
= 2M

2∑
i=1

(
lnu0

i − ln
(∫
− u0

i

)
, u0

i

)
. (4.4.12)

Neglecting the third term in the left hand side of (4.4.11) and letting ε→ 0 yields,

on noting (4.4.12), that

2∑
i=1

‖ui(T )−
∫
− u0

i ‖2
0 + 2D

∫ T

0

2∑
i=1

|ui|21 dt ≤ C0 . (4.4.13)
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As ui ∈ H1(Ω) , i = 1 and 2 , we obtain from the Poincaré inequality (2.1.8) and

(4.4.7) that

‖ui −
∫
− u0

i ‖2
0 ≤ Cp |ui|21 i = 1 and 2 . (4.4.14)

Substituting (4.4.14) into (4.4.13) leads to

2∑
i=1

‖ui(T )−
∫
− u0

i ‖2
0 + 2DC−1

p

∫ T

0

2∑
i=1

‖ui −
∫
− u0

i ‖2
0 dt ≤ C0 . (4.4.15)

On setting C∗ := 2DC−1
p , the desired result (4.4.5) follows from (4.4.15) after

simple calculations. 2



Chapter 5

The population model: Numerical

experiments

This chapter is devoted to the discussion of some numerical solutions for the model

(P) in one space dimension. We introduce an iterative approach to solve our fully

discrete finite element approximation to problem (PM). We then establish and

discuss some numerical solutions for different choices of the parameters γ, D and

M . We also introduce a modified iterative scheme to obtain the numerical solutions

of problem (P̃M). Hence, we make an experimental comparison between the solutions

of (PM) and (P̃M). In addition, we obtain and discuss some other numerical results.

We use programs written in Fortran, see Appendix B.1, to generate the numerical

results and Matlab to plot the graphs.

5.1 Numerical results

We first introduce the following practical algorithm to solve the nonlinear algebraic

system arising from the approximate problem (Ph,∆t
M,ε ) at each time level:

Given {Un,0
ε , V n,0

ε } ∈ Sh × Sh, for k ≥ 1 find {Un,k
ε , V n,k

ε } ∈ Sh × Sh such that for

92
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all χ ∈ Sh(
Un,kε −Un−1

ε

∆tn
, χ
)h

+ (D∇Un,k
ε + Λε(U

n,k−1
ε )∇(Un,k

ε + V n,k
ε ),∇χ)

= (Un,k
ε − Un,k

ε φε(U
n−1
ε )− φε(Un,k−1

ε )ψε(V
n−1
ε ), χ)h , (5.1.1a)(

V n,kε −V n−1
ε

∆tn
, χ
)h

+ (D∇V n,k
ε + Ξε(V

n,k−1
ε )∇(V n,k

ε + Un,k
ε ),∇χ)

= (γ V n,k
ε − ψε(V n,k−1

ε ) [φε(U
n−1
ε ) + ψε(V

n−1
ε )] , χ)h , (5.1.1b)

where we start with U0
ε ≡ πhu0 and V 0

ε ≡ πhv0, and we set, for n ≥ 1, Un,0
ε ≡ Un−1

ε

and V n,0
ε ≡ V n−1

ε . As the system (5.1.1a)-(5.1.1b) is linear, existence of {Un,k, V n,k}

follows from uniqueness. The latter can be easily investigated on noting (2.4.32)

and (2.4.33). The standard method to solve the system (5.1.1a)-(5.1.1b) at each

iteration is by testing the equations (5.1.1a) and (5.1.1b) with ϕj, j = 0, · · · , J, to

obtain a (2 J + 2)× (2 J + 2) linear system, in terms of the nodal values of Un,k and

V n,k, which can be solved using linear programming. For our numerical results, we

set TOL = 1× 10−7 and adopt the stopping criteria

∣∣Un,k
ε − Un,k−1

ε

∣∣
0,∞ < TOL and

∣∣V n,k
ε − V n,k−1

ε

∣∣
0,∞ < TOL, (5.1.2)

i.e. for k satisfying (5.1.2) we set Un
ε ≡ Un,k

ε and V n
ε ≡ V n,k

ε . We have been unable to

prove convergence of {Un,k, V n,k}∞k=1 to {Un, V n} for n fixed. However, in practice

we found that the iterative method always converged well (only a few steps were

required to fulfill the stopping criteria at each time level).

We now present some numerical results in one space dimension. Unless otherwise

specified, in all experiments we consider a uniform partitioning of Ω = (0, 5) into

256 subintervals, (i.e. J = 256 and h = 5
256

), and choose ∆tn = ∆t = 10−3, n ≥ 1,

and ε = 10−9.

In the first part of our experiments, we considered the dynamics of two interacting

cell populations which were initially distributed symmetrically in the domain via the

initial conditions u0(x) = 1
2

+ 1
2

cos(4π
5
x) and v0(x) = 1

2
− 1

2
cos(4π

5
x). We took the

parameters D = 1 and M = 1. To illustrate how the parameter γ could reflect a

competitive advantage of the v cells over the u cells, we performed the experiment



5.1. Numerical results 94

firstly for γ = 1 and secondly for γ = 2. The numerical solutions of (Ph,∆t
M, ε ) are

plotted in Figure 5.1(a)-(b) at several times. These times are chosen carefully to

demonstrate the evolution of the interacting cells as t increases. We observed that

for sufficiently large time the solution reaches a steady state. In the case γ = 1,

the cells evolve to form a homogeneous distribution; see Figure 5.1(a). The same

behaviour is observed when γ = 2, but with a distinguished advantage of the v cells;

see Figure 5.1(b).

We repeated the above experiment for D = 100. The general behaviour was

the same, but the stationary solutions were achieved earlier for γ = 1 and later for

γ = 2; see Figure 5.2(a)-(b).

In the previous experiments the total cell density was initially constant, namely

u0(x) + v0(x) = 1, and hence each population moves down its own gradient as

claimed in [55]. Furthermore, we note that due to the large diffusivity in the case

D = 100, the movement to the direction of lower concentrations is faster than the

case when D = 1.

To show the effect of the terms ∇ · [u∇(u + v)] and ∇ · [v∇(u + v)] which are

imposed in (P) to ensure that cells move down gradients in the total density, we

chose u0(x) = −0.2x + 1 and v0(x) = 1. Here the u cells are initially seeded with

a gradient in the cell density while the v cells are seeded at a uniform density. We

took D = 1 and M = 1. The numerical solutions are plotted in Figure 5.3(a)-(b)

for γ = 1 and γ = 1.5, respectively. The cells move to the direction of lower total

density, before both cell types become homogeneously distributed. This agrees with

the biological point of view explained in the introduction of problem (P).
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Figure 5.1: Numerical solutions of (Ph,∆t
M, ε ) plotted at several times. The initial data

are u0(x) = 1
2

+ 1
2

cos(4π
5
x) and v0(x) = 1

2
− 1

2
cos(4π

5
x). The parameter values are:

D = 1, M = 1, with γ = 1 in (a) and γ = 2 in (b). The solid and dashed lines

represent u and v, respectively.
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Figure 5.2: Numerical solutions of (Ph,∆t
M, ε ) plotted at several times. The initial data

are u0(x) = 1
2

+ 1
2

cos(4π
5
x) and v0(x) = 1

2
− 1

2
cos(4π

5
x). The parameter values are:

D = 100, M = 1, with γ = 1 in (a) and γ = 2 in (b). The solid and dashed lines

represent u and v, respectively.
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Figure 5.3: Numerical solutions of (Ph,∆t
M, ε ) plotted at several times. The initial data

are u0(x) = −0.2x + 1 and v0(x) = 1. The parameter values are: D = 1, M = 1,

with γ = 1 in (a) and γ = 1.5 in (b). The solid, dashed and dotted lines represent

u, v and u+ v, respectively.
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In all our previous experiments, the computed solution for u did not exceed the

value M . Therefore, based on the discussion in Section 2.2, the established solutions

of (Ph,∆t
M, ε ) can be considered as numerical approximations of problem (P). We also

report that repeating these experiments for different values of M > 1, leads us to

obtain the same results.

We note that the steady-state solution of (P) in space and time, denoted by

{uc, vc}, is determined by the following equations

uc (1− uc − vc) = 0,

vc (γ − uc − vc) = 0.

For γ > 1, the u cells will vanish in (P) due to the advantage of the v cells; and

hence we should expect to have uc = 0 and vc = γ. For γ = 1, we clearly have either

uc = vc = 0 or uc + vc = 1. This is satisfied by all numerical steady-state solutions

in our experiments.

In the following experiments, we see how different choices of the parameter M

might lead us to obtain different solutions. For this purpose, we considered a “non-

realistic” situation where we choose the initial data u0(x) = x and v0(x) = 1,

with the parameters D = 1 and γ = 4. The solutions corresponding to the values

M = 1, 2 and 10 are plotted in Figure 5.4 at several times labeled with M values.

Since γ = 4 > 1, the same steady states are approached for the values M = 1, 2

and 10. However, this is not the case in the absence of the competitive advantage,

i.e. when γ = 1; see Figure 5.5. If we are seeking a solution to problem (P), we

should consider the one obtained using the parameter value M = 10 as in this case

the model (PM) is equivalent to (P). Numerically, repeating the experiment with

any choice M ≥ 5 would give the same results for M = 10. Again, this is because

the computed solution for u does not exceed the value 5 at any stage of evolution.
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Figure 5.4: Numerical solutions of (Ph,∆t
M, ε ), for different values of M , plotted at

several times. The initial data are u0(x) = x and v0(x) = 1. The parameters are:

D = 1, γ = 4 and M = 1, 2 and 10. The lines are labelled with M values where the

solid lines represent u and the dashed lines represent v.
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Figure 5.5: Numerical steady-state solutions of (Ph,∆t
M, ε ) plotted for M = 1, 2 and

10. The initial data are u0(x) = x and v0(x) = 1. The parameters are: D = 1 with

(a) γ = 4, (b) γ = 1. The lines are labelled with M values where the solid lines

represent u and the dashed lines represent v.

A natural question is: How to choose an appropriate value of M that leads to

a numerical solution to (P)? The practical answer is a simple matter as one can

initially start with a value M which satisfies ||U0
ε ||0,∞ ≤M and adopt the following

criterion in the solver: For fixed n and k, if ||Un,k
ε ||0,∞ > M then set M = ||Un,k

ε ||0,∞

and recompute {Un,k
ε , V n,k

ε }.

It has been observed through the theoretical analysis of problem (P) that the

assumption D > 0 is essential to obtain the stability bounds which are required

to conclude the convergence results. However, in the next experiment, we have

repeated the experiments shown in Figure 5.1 and Figure 5.3 for D = 0. This is

the case when cells respond only to the total density gradient. The solutions are

presented in Figure 5.6 and Figure 5.7 respectively. Since the total density in Figure

5.6 is constant, no movement occurs in the case γ = 1 and the cells remain in the

initial state; see Figure 5.6(a). In fact, in the absence of the diffusion and cross

diffusion terms, one easily can show that the system: Find {u(x, t), v(x, t)} such
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that

∂u

∂t
= u (1− u− v) ,

∂v

∂t
= v (1− u− v) ,

u0(x) = 1
2

+ 1
2

cos(4π
5
x),

v0(x) = 1
2
− 1

2
cos(4π

5
x),

has the solution {u0(x), v0(x)} which is independent of t. Expectedly, the presence

of the competitive advantage in Figure 5.6(b) caused movement since the initial

distribution of u develops into a sharp cell aggregation before it eventually vanishes

due to the domination of the v cells. In Figure 5.7, mixing occurs until the total

cell density becomes homogeneous. However, the individual densities may remain

inhomogeneously mixed; cf. Figure 5.7(a). This is agreed with the observations

in [55].

The rapid changes of the solutions in Figure 5.6(b) is a point of interest. As

an attempt to investigate whether such behaviour is due to the existence of a

singularity when D = 0, we have repeated the experiment in Figure 5.6(b) for

D = 0.1, 0.01, 0.001, 0.0001 and 0 with a finer mesh ( we took h = 5
1024

). The

solutions Uε(·, 2) and Vε(·, 2) are plotted in Figure 5.8(a)-(b) respectively. As D

decreases to zero, the solutions change rapidly at x = 0, 2.5 and 5. The solutions

appear to be continuous but we expect there will be limited regularity when D = 0,

i.e. u, v /∈ C0,1. We also note that the solutions behave smoothly outside the small

neighborhoods of x = 0, 2.5 and 5. It may be possible in future work to inves-

tigate the behaviour of the solution around points of rapid change by performing

small-parameter expansions ( see the techniques used in [16] ).
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Figure 5.6: Numerical solutions of (Ph,∆t
M, ε ) plotted at several times. The initial data

are u0(x) = 1
2

+ 1
2

cos(4π
5
x) and v0(x) = 1

2
− 1

2
cos(4π

5
x). The parameter values are:

D = 0, M = 10, with γ = 1 in (a) and γ = 2 in (b). The solid and dashed lines

represent u and v, respectively.
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Figure 5.7: Numerical solutions of (Ph,∆t
M, ε ) plotted at several times. The initial data

are u0(x) = −0.2x + 1 and v0(x) = 1. The parameter values are: D = 0, M = 1,

with γ = 1 in (a) and γ = 1.5 in (b). The solid, dashed and dotted lines represent

u, v and u+ v, respectively.
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Figure 5.8: Numerical solutions of (Ph,∆t
M, ε ) plotted at time t = 2. The initial data

are u0(x) = 1
2

+ 1
2

cos(4π
5
x) and v0(x) = 1

2
− 1

2
cos(4π

5
x). The solutions are plotted

for different parameter values of D, with M = 10 and γ = 2.
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Problem (P̃M):

Naturally, the iterative algorithm (5.1.1a)-(5.1.1b) can be modified to obtain nu-

merical solutions of the finite element approximation (P̃h,∆t
M,ε ). Namely, we propose

the following iterative scheme to solve the system (4.2.1) at each time level:

Given {U0
ε,1, U

0
ε,2} ∈ Sh × Sh, for k ≥ 1 find {Un,k

ε,1 , U
n,k
ε,2 } ∈ Sh × Sh such that for

i = 1 and 2, and for all χ ∈ Sh(
Un,kε,i −U

n−1
ε,i

∆tn
, χ

)h
+
(
D∇Un,k

ε,i + Λε(U
n,k−1
ε,i )∇

(
Un,k
ε,1 + Un,k

ε,2

)
,∇χ

)
=
(
γi U

n,k
ε,i − U

n,k
ε,i

[
φε(U

n−1
ε,1 ) + φε(U

n−1
ε,2 )

]
, χ
)h
. (5.1.3)

On noting the relationship between (P) and (P̃M), it is obvious that the resulting

solutions from solving the iterative system (5.1.3) can be considered as approximate

solutions of problem (P) if the number M is chosen sufficiently large such that

||Un,k
ε,i ||0,∞ ≤ M , i = 1 and 2, can be guaranteed for all n and k. This has been

experimentally verified by repeating the experiments in Figure 5.1. For γ = 1, the

solution was graphically identical to Figure 5.1(a). This is expected as both Uε,1 and

Uε,2 do not exceed M = 1. In contrast, for γ = 2, one has to increase the number

M in order to obtain the same solution as in Figure 5.1(b).

Problem (P0):

In the last part of this chapter we discuss some numerical results concerning the

theoretical aspects in Theorem 4.4.1. For the numerical solutions of problem (P0),

which is (P) with no reaction terms, we use a modified version of the iterative system

(5.1.3); (we set the right hand side in (5.1.3) to be zero). In Figure 5.9(a), numerical

solutions of (P0), with D = 1, are obtained for the initial data u0
1(x) = −0.2x + 1

and u0
2(x) = 1. Each variable converges to the mean integral of its own initial state

as t increases. This agrees with what we expect from Theorem 4.4.1. The same

behaviour was observed for the initial data u0
1(x) = −0.2x + 1 and u0

2(x) = 0.2x;

see Figure 5.9(b). When we repeated the experiment in Figure 5.9 for D = 0, we

found that the solutions behaved differently; see Figure 5.10. Finally, we note that

the results in Figure 5.10 agree with the experimental findings in [55].
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Figure 5.9: Numerical solutions of (P̃h,∆t
0,M,ε) for D = 1 and M = 10. The initial data

are: (a) u0
1(x) = −0.2x+1 and u0

2(x) = 1; (b) u0
1(x) = −0.2x+1 and u0

2(x) = 0.2x.

The solid, dashed and dotted lines represent u1, u2 and u1 + u2, respectively.
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Figure 5.10: Numerical solutions of (P̃h,∆t
0,M,ε) for D = 0 and M = 10. The initial data

are: (a) u0
1(x) = −0.2x+1 and u0

2(x) = 1; (b) u0
1(x) = −0.2x+1 and u0

2(x) = 0.2x.

The solid, dashed and dotted lines represent u1, u2 and u1 + u2, respectively.



Chapter 6

The axial segregation model:

Analysis and results

6.1 Motivation

In this chapter we present a mathematical study of the problem (Q) introduced

in Section 1.2 . At first, we mention that the system (1.2.1a)-(1.2.1d) has been

considered mathematically in a recent work by Galiano et al. [34]. Mainly, existence

of a global in-time weak solution of the system has been proved using entropy-type

inequalities and approximation arguments. The main difficulty of the analysis is due

to the cross diffusion nonlinear term ∇ · ( (1− w2)∇z ). This is treated by defining

a non-negative function Φ : (1 ,−1)→ R≥0 satisfying

∇ [Φ′(w)] =
λ∇w
1− w2

with Φ(0) = 0 ;

that is for all s ∈ (1 ,−1)

Φ(s) := λ
2

[ (1 + s) ln(1 + s) + (1− s) ln(1− s) ] . (6.1.1)

On noting (6.1.1) and that λ > 0 , it is convenient for later purposes to define the

2
λ
-Lipschitz continuous function V : [1 ,−1]→ [0 , λ−1] given by

V(s) := [Φ′′(s)]
−1

=
1− s2

λ
. (6.1.2)

108
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Testing (1.2.1a) with Φ′(w) and (1.2.1b) with z and using the boundary condition

(1.2.1c) and (6.1.2) leads us to obtaining the following entropy functional

E(t) =

∫
Ω

(
Φ(w) + 1

2
z2

)
dx ≥ 0,

with the corresponding entropy inequality

E(t) +

∫ t

0

(
ρ λ ||∇w||20 + ||z||21

)
dt ≤ E(0) + µ

∫ t

0

∫
Ω

w z dx dt . (6.1.3)

Since the values w = ±1 are possible, we note that the inequality above is not

generally valid.

In [34], as it will be in our analysis, the estimate (6.1.3) played a central role

to show the existence of a global weak solution to the system (1.2.1a)-(1.2.1d).

That was achieved using an exponential transformation with a change of variables

to overcome the singular nature at w = ±1 , and utilizing a time semi-discrete

approximation and standard compactness arguments to show the existence.

Instead of (1.2.1c), the authors in [34] solved the system (1.2.1a)-(1.2.1b) using

the following periodic boundary conditions:

w(0, ·) = w(L, ·) , ∇w(0, ·) = ∇w(L, ·)

z(0, ·) = z(L, ·) , ∇z(0, ·) = ∇z(L, ·)
in (0, T ). (6.1.4)

However, for consistency with the analysis of problem (P), we impose the Neumann-

type boundary conditions (1.2.1c). The subsequent work in this chapter is also valid

for periodic boundary conditions of the type (6.1.4); see Remark 6.6.3.

Our aim in this chapter is to study the system (1.2.1a)-(1.2.1d) using a finite

element method. Namely, we use the framework presented above, for the problem

(P), to prove existence of a weak solution of (Q). Furthermore, we discuss some

uniqueness results and obtain some error estimates.

As in Section 2.3 , we deal with the singularity at w = ±1 by using a regu-

larization procedure. Then we propose and analyse a fully discrete finite element

approximation of (Q). It will be clear that the tools and arguments provided in the

previous chapters are significantly contributed to the analysis of the current chapter.
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The layout of the rest of the chapter is as follows. In Section 6.2 a regular-

ized problem of (Q) is considered and hence a well defined entropy inequality is

established. In Section 6.3 a fully discrete finite element approximation to (Q) is

proposed. Additional notation to that presented previously is also included. Exis-

tence of fully discrete solutions is shown under an appropriate assumption on the

time discretization parameter. A discrete analogue entropy inequality is derived and

some stability bounds of the approximations are shown. Finally, the uniqueness of

the fully discrete approximations is discussed. In Section 6.4 , the convergence of

our approximation is established and hence existence of a global weak solution to

the system (1.2.1a)-(1.2.1d) is shown. In the last part of Section 6.4 , the unique-

ness of solutions in a slightly smaller class of functions is rediscovered for sufficiently

small cross diffusion parameter λ . Section 6.5 is devoted to the discussion of an

error bound between the approximations and the weak solutions of (Q). Finally, in

Section 6.6 the long time behaviour of the solutions of (Q) is discussed.

6.2 A regularized problem

In order to make the key inequality (6.1.3) well defined, we introduce an alternative

approach to the one considered in [34] that relies on a change of variables. Namely,

we adapt the regularization procedure that was employed by Elliott and Luckhaus,

in [29], to study a Cahn-Hilliard equation.

We replace the function Φ(s) by the twice continuously differentiable function

Φε : R→ R≥0, where ε ∈ (0, 1) and

Φε(s) :=



λ
2

[
(1 + s) ln(1 + s) + 1

2 ε
(1− s)2 + (1− s) ln ε− ε

2

]
if s ≥ 1− ε ,

Φ(s) := λ
2

[ (1 + s) ln(1 + s) + (1− s) ln(1− s) ] if |s| ≤ 1− ε ,

λ
2

[
(1− s) ln(1− s) + 1

2 ε
(1 + s)2 + (1 + s) ln ε− ε

2

]
if s ≤ ε− 1 ;

(6.2.1a)
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with an increasing first derivative

Φ′ε(s) :=



λ
2

[
1 + ln(1 + s)− 1

ε
(1− s)− ln ε

]
if s ≥ 1− ε ,

Φ′(s) := λ
2

[ ln(1 + s)− ln(1− s) ] if |s| ≤ 1− ε ,

λ
2

[
−1− ln(1− s) + 1

ε
(1 + s) + ln ε

]
if s ≤ ε− 1 ;

(6.2.1b)

and with a positive second derivative

Φ′′ε(s) :=



λ
2

[
1

1+s
+ 1

ε

]
if s ≥ 1− ε ,

Φ′′(s) := λ
1−s2 if |s| ≤ 1− ε ,

λ
2

[
1

1−s + 1
ε

]
if s ≤ ε− 1 .

(6.2.1c)

We also define the 2
λ
-Lipschitz continuous function Vε : R→ R>0 given by

Vε(s) := [Φ′′ε(s)]
−1 :=



2
λ

[
ε (1+s)
ε+1+s

]
if s ≥ 1− ε ,

V(s) := 1−s2
λ

if |s| ≤ 1− ε ,

2
λ

[
ε (1−s)
ε+1−s

]
if s ≤ ε− 1 .

(6.2.2)

For later use, we note that the regularized functions Φε(s) and Vε(s) have the

following easily established properties:

• For all ε ∈ (0, 1)

Φε(s) ≤ λ ln 2 ∀ |s| ≤ 1 , (6.2.3a)

Φε(s) ≥ λ
4
s2 − λ

2
∀ s ∈ R . (6.2.3b)

• For all ε ∈ (0, 1
2

] and for all r , s ∈ R

(r − s) Φ′ε(r) ≥ Φε(r)− Φε(s) + λ
2

(r − s)2

≥ Φε(r)− Φε(s) + λ
4
r2 − λ

2
s2 . (6.2.4)

• For all ε ∈ (0, 1
2

] and for all s ∈ R

ε
λ
≤ ε (2−ε)

λ
≤ Vε(s) ≤ 1

λ
. (6.2.5)
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• For all ε ∈ (0, 1) and for all |s| ≤ 1

0 ≤ Vε(s)− V(s) ≤ 2 ε
λ
. (6.2.6)

In addition, the function Φε(s) has the following key property which we will require

to show that the derived solution w belongs to [1 ,−1] .

• For all ε ∈ (0, 1) and for all s ∈ R

Φε(s) ≥ λ
4 ε

(
[s− 1]2+ + [−1− s]2+

)
− λ

4
. (6.2.7)

To see (6.2.7), we firstly note for |s| ≤ 1 that

Φε(s) ≥ Φε(0) = 0 > − λ
4
.

Secondly, for the case s ≥ 1 we have that

Φε(s) ≥ λ
2

(
1

2 ε
(1− s)2 − ε

2

)
≥ λ

4 ε

(
[s− 1]2+ + [−1− s]2+

)
− λ

4
.

Finally, similarly to the case s ≥ 1, the inequality (6.2.7) holds for all s ≤ −1 .

We now introduce for ε ∈ (0, 1
2

] the corresponding regularized version of the

problem (Q):

(Qε) Find {wε(x, t), zε(x, t)} ∈ R× R such that

∂wε
∂t

= ∇ · ( ρ∇wε − λVε(wε)∇zε ) in ΩT , (6.2.8a)

∂zε
∂t

= ∇ · (∇zε + λ∇wε ) + µwε − zε in ΩT , (6.2.8b)

with boundary conditions

[ρ∇wε − λVε(wε)∇zε] (0, ·) = [∇zε + λ∇wε] (0, ·) = 0,

[ρ∇wε − λVε(wε)∇zε] (L, ·) = [∇zε + λ∇wε] (L, ·) = 0,
in (0, T ), (6.2.8c)

and initial conditions

wε(x, 0) = w0(x) , zε(x, 0) = z0(x) ∀ x ∈ Ω . (6.2.8d)

In the following lemma we establish a well defined entropy inequality to the

system (6.2.8a)-(6.2.8d) which will play a central role in the numerical analysis that

follows.
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Lemma 6.2.1 Let ρ , λ > 0 and µ ≥ 0 and let w0, z0 ∈ L2(Ω) with |w0(·)| ≤ 1

a.e. in Ω. Then there exists a positive C(w0, z0 , ρ , λ , µ , Cp) independent of ε

such that any solution {wε, zε} of (Qε) satisfies

sup
0<t<T

∫
Ω

(
Φε(wε) + 1

2
z2
ε

)
dx +

∫ T

0

(
‖∇wε‖2

1 + ‖zε‖2
1

)
dt ≤ C . (6.2.9)

In addition,

sup
0<t<T

∫
Ω

(
[wε − 1]2+ + [−1− wε]2+

)
dx ≤ C ε. (6.2.10)

Proof : Testing (6.2.8a) with Φ′ε(wε) and (6.2.8b) with zε and summing the resulting

equations yields, after using (6.2.8c), that

d

dt

∫
Ω

(
Φε(wε) + 1

2
z2
ε

)
dx + ρ

∫
Ω

Φ′′ε(wε) |∇wε|2 dx

+

∫
Ω

(
|∇zε|2 + |zε|2

)
dx = µ

∫
Ω

wε zε dx , (6.2.11)

where we have noticed from (6.2.1c) and (6.2.2) that

Vε(wε)∇ [Φ′ε(wε)] = ∇wε . (6.2.12)

It follows immediately from (6.2.8a) and (6.2.8d) for a.e. t ∈ (0, T ) that

(wε(·, t), 1) = (wε(·, 0), 1) = (w0(·), 1) . (6.2.13)

We now obtain from the Young’s inequality, the Poincaré inequality and (6.2.13),

for positive constant µ , that

µ

∫
Ω

wε zε dx ≤ ρ λ
2Cp
‖wε‖2

0 + C ‖zε‖2
0 ≤

ρ λ
2
|wε|21 + C [ 1 + ‖zε‖2

0 ] . (6.2.14)

Combining (6.2.11), (6.2.14), (6.2.5) and noting that Φε(s) ≥ 0 leads to

d

dt

∫
Ω

(
Φε(wε) + 1

2
z2
ε

)
dx + ρ λ

2
|wε|21 + ‖zε‖2

1

≤ C

(
1 +

∫
Ω

(
Φε(wε) + 1

2
z2
ε

)
dx

)
. (6.2.15)

Hence, on noting the assumptions on the initial data and (6.2.3a), the result (6.2.9)

follows from (6.2.15) after a simple application of the Grönwall lemma. Finally, the
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result (6.2.10) follows immediately from the first bound in (6.2.9) and (6.2.7). 2

Obviously, the regularized entropy inequality (6.2.9) and the estimate (6.2.10)

can be used to pass to the limit ε → 0 in (Qε) in order to obtain existence of a

solution to (Q). In the following section we formulate and analyse a fully discrete

finite element approximation of the regularized system (6.2.8a)-(6.2.8d).

6.3 A fully discrete approximation

6.3.1 An approximation problem

Let 0 = x0 < x1 < . . . < xJ−1 < xJ = L be a partitioning of the domain Ω := (0, L)

into the open simplices κj := (xj−1, xj) , j = 1, · · · , J , with hj := xj − xj−1 and

h := max
j=1,··· ,J

hj . In addition, let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partitioning

of (0, T ) into time steps ∆tn := tn − tn−1, n = 1, · · · , N , with ∆t := max
n=1,··· ,N

∆tn .

For any ε ∈ (0, 1
2

] we define the piecewise constant function Πε : Sh → L∞(Ω) such

that for j = 1, · · · , J

Πε(χ) |κj :=



χ(xj)−χ(xj−1)

Φ′ε(χ(xj))−Φ′ε(χ(xj−1))
= 1

Φ′′ε (χ(ζ))

for some ζ ∈ κj if χ(xj) 6= χ(xj−1),

1
Φ′′ε (χ(xj))

if χ(xj) = χ(xj−1).

(6.3.1)

Clearly, the function Πε satisfies for all χ ∈ Sh and for a.e. in Ω the discrete analogue

of (6.2.12)

Πε(χ)∇πh[Φ′ε(χ)] = ∇χ . (6.3.2)

Lemma 6.3.1 For any ε ∈ (0, 1
2

], the function Πε : Sh → L∞(Ω) satisfies a.e. in Ω

that

ε
λ
≤ Πε(χ) ≤ 1

λ
∀ χ ∈ Sh. (6.3.3)
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In addition, it holds for all χ1 , χ2 ∈ Sh and for j = 1, · · · , J that

∣∣(Πε(χ1)− Πε(χ2)) |κj
∣∣

≤ 2
λ

max
s∈R

[Φ′′ε(s)] max
s∈R

[Vε(s)] [ |χ1(xj)− χ2(xj)|+ |χ1(xj−1)− χ2(xj−1)| ]

≤ 2
λ ε

[ |χ1(xj)− χ2(xj)|+ |χ1(xj−1)− χ2(xj−1)| ]

≤ 4
λ ε
‖χ1 − χ2‖0,∞ . (6.3.4)

Proof : The bound (6.3.3) follows immediately from (6.3.1), (6.2.2) and (6.2.5). The

proof of (6.3.4) is a simple modification of the proof of Lemma 2.4.4 where we recall

that Vε(s) is 2
λ
-Lipschitz continuous function. 2

Lemma 6.3.2 For any given ε ∈ (0, 1
2

] the function Πε : Sh → L∞(Ω) is such that

for j = 1, · · · , J

max
x∈κj
|Πε(χ(x))− Vε(χ(x))| ≤ 2

λ
hj |∇χ |κj | ∀ χ ∈ Sh. (6.3.5)

Proof : It follows easily from (6.3.1), (6.2.2) and the Lipschitz continuity of Vε . 2

Now, we propose the following fully discrete finite element approximation of (Qε)

for any ε ∈ (0, 1
2

] :

(Qh,∆t
ε ) For n ≥ 1 find {W n

ε , Z
n
ε } ∈ Sh × Sh such that for all χ ∈ Sh(

Wn
ε −W

n−1
ε

∆tn
, χ
)h

+ ρ (∇W n
ε ,∇χ)− λ (Πε(W

n
ε )∇Zn

ε ,∇χ) = 0 , (6.3.6a)(
Znε −Z

n−1
ε

∆tn
, χ
)h

+ (Zn
ε , χ)h + (∇Zn

ε ,∇χ) + λ (∇W n
ε ,∇χ)

= µ
(
θW n

ε + (1− θ)W n−1
ε , χ

)h
, (6.3.6b)

where θ ∈ [0, 1] , and W 0
ε ∈ Sh and Z0

ε ∈ Sh are given approximations of w0 and z0

respectively.

In addition to the operator G introduced in Section 3.1 , our analysis of the

system (6.3.6a)-(6.3.6b) will require us to use the operator G̃ : F → K given by

(∇G̃v,∇η) = 〈v, η〉 ∀ η ∈ H1(Ω), (6.3.7)
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where

F = { v ∈ (H1(Ω))′ : 〈v, 1〉 = 0 } ,

K = { η ∈ H1(Ω) : (η, 1) = 0 } .

The existence and the uniqueness of G̃v, for a given v ∈ F , follows from the Lax-

Milgram theorem, see Appendix A.1.2, and the Poincaré inequality. We now define

the following norm on the set F

‖v‖−1 := |G̃v|1 = 〈v, G̃v〉
1
2 ∀ v ∈ F . (6.3.8)

Using the definition of the dual norm, the Cauchy-Schwarz inequality and the

Poincaré inequality, one can easily obtain from (6.3.7) and (6.3.8) that

‖v‖(H1(Ω))′ ≤ ‖v‖−1 ≤ C ‖v‖(H1(Ω))′ . (6.3.9)

For all v ∈ L2(Ω) ∩ F and for all δ > 0 we have from (6.3.7) and the Young’s

inequality that

(v, η) = (∇G̃v,∇η) ≤ |G̃v|1 |η|1 ≤ δ
2
|G̃v|21 + 1

2 δ
|η|21 ∀ η ∈ H1(Ω). (6.3.10)

From (6.3.10) and (2.4.14) we have, for appropriate choice of δ, that

‖χ‖0 ≤ C h−1|G̃χ|1 ∀ χ ∈ Fh, (6.3.11)

where

Fh = {χ ∈ Sh : (χ, 1) = 0 } .

6.3.2 Existence of approximations

Theorem 6.3.3 Let ρ , λ > 0 , µ ≥ 0 and θ ∈ [0, 1] . Let {W n−1
ε , Zn−1

ε } ∈ Sh × Sh

is given for some n = 1, · · · , N . Then for all ε ∈ (0, 1
2
] , for all h > 0 and for

all ∆tn > 0 such that ∆tn < 2λ
θ µ2 if µ 6= 0 and θ 6= 0 , there exists a solution

{W n
ε , Z

n
ε } ∈ Sh × Sh to the n-th step of (Qh,∆t

ε ).
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Proof : We adapt the argument employed in Theorem 2.4.7. First we define Aw :

Sh × Sh → Sh and Az : Sh × Sh → Sh such that for all χ ∈ Sh

(Aw(W,Z), χ)h =
(
W −W n−1

ε , χ
)h

+ ρ∆tn (∇W,∇χ)− λ∆tn (Πε(W )∇Z,∇χ) ,

(6.3.12a)

(Az(W,Z), χ)h =
(
Z − Zn−1

ε , χ
)h

+ ∆tn (Z, χ)h + ∆tn (∇Z,∇χ)

+ λ∆tn (∇W,∇χ)− µ∆tn
(
θW + (1− θ)W n−1

ε , χ
)h
, (6.3.12b)

respectively. It is simple matter to show that the functions Aw and Az are well

defined. Furthermore, for any R > 0 it can be easily shown using (6.3.12a)-(6.3.12b),

(6.3.3) and (6.3.4) that the functions Aw and Az are both continuous on the convex

compact subset [Sh]2R ; see the proof of Lemma 2.4.6.

It is clear that solving the system (6.3.6a)-(6.3.6b) is equivalent to finding {W,Z} ∈

Sh × Sh such that

Aw(W,Z) = 0 and Az(W,Z) = 0 .

By contradiction, let R > 0 and assume that there does not exist {W,Z} ∈ [Sh]2R

with Aw(W,Z) = Az(W,Z) = 0 . Hence, on noting the continuity of the functions

Aw and Az on [Sh]2R , we define the continuous function B : [Sh]2R → [Sh]2R given by

B(W,Z) := (Bw(W,Z), Bz(W,Z))

where

Bw(W,Z) :=
−RAw(W,Z)

|(Aw(W,Z), Az(W,Z))|Sh×Sh
,

Bz(W,Z) :=
−RAz(W,Z)

|(Aw(W,Z), Az(W,Z))|Sh×Sh
.

(6.3.13)

We deduce from the Schauder’s theorem, see Appendix A.1.1, that there exists

{W,Z} ∈ [Sh]2R fixed point of B such that

|W |2h + |Z|2h = |Bw(W,Z)|2h + |Bz(W,Z)|2h = R2 . (6.3.14)
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To prove a contradiction for R sufficiently large, we choose χ ≡ πh[Φ′ε(W )] in

(6.3.12a) and χ ≡ Z in (6.3.12b) yielding on noting (2.4.3) and (6.3.2) that

(Aw(W,Z),Φ′ε(W ))
h

=
(
W −W n−1

ε ,Φ′ε(W )
)h − λ∆tn (∇Z,∇W )

+ ρ∆tn
(
[Πε(W )]−1∇W,∇W

)
, (6.3.15a)

(Az(W,Z), Z)h =
(
Z − Zn−1

ε , Z
)h

+ ∆tn (Z,Z)h + ∆tn (∇Z,∇Z)

+ λ∆tn (∇W,∇Z)− µ∆tn
(
θW + (1− θ)W n−1

ε , Z
)h
. (6.3.15b)

We have from (6.2.4) that

(W −W n−1
ε ,Φ′ε(W ))h ≥ (Φε(W )− Φε(W

n−1
ε ), 1)h + λ

2
|W −W n−1

ε |2h

≥ (Φε(W )− Φε(W
n−1
ε ), 1)h + λ

4
|W |2h − λ

2
|W n−1

ε |2h . (6.3.16)

Using the simple identity

2 s (s− r) = s2 − r2 + (s− r)2 ∀ r , s ∈ R ,

we obtain that (
Z − Zn−1

ε , Z
)h ≥ 1

2
|Z|2h − 1

2
|Zn−1

ε |2h . (6.3.17)

It follows from the Young’s inequality that

µ∆tn
(
θW + (1− θ)W n−1

ε , Z
)h ≤ µ2∆tn

4

(
θ |W |2h + (1− θ) |W n−1

ε |2h
)

+ ∆tn |Z|2h .

(6.3.18)

Combining (6.3.15a,b), (6.3.16)→(6.3.18), (6.2.3b), (6.3.3) and (6.3.14) and noting

the stated assumption on ∆tn yields for R sufficiently large that

(Aw(W,Z),Φ′ε(W ))
h

+ (Az(W,Z), Z)h

≥ 1
2

(
λ− θ µ2∆tn

2

)
|W |2h + 1

2
|Z|2h − C(W n−1

ε , Zn−1
ε )

≥ 1
2
R2 min{λ− θ µ2∆tn

2
, 1} − C(W n−1

ε , Zn−1
ε ) > 0 . (6.3.19)

Further, for R sufficiently large, we have from (6.3.13) and (6.3.19), since {W,Z} is

fixed point of B, that

(W,Φ′ε(W ))h + (Z,Z)h = (Bw(W,Z),Φ′ε(W ))h + (Bz(W,Z), Z)h

=
−R

[
(Aw(W,Z),Φ′ε(W ))h + (Az(W,Z), Z)h

]
|(Aw(W,Z), Az(W,Z))|Sh×Sh

< 0 . (6.3.20)
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On the other hand, we have from (6.2.4) and the non-negativity of Φε that

(W,Φ′ε(W ))h + (Z,Z)h ≥ (Φε(W )− Φε(0), 1)h + λ
2
|W |2h + |Z|2h > 0 ,

which contradicts (6.3.20). As a result, we conclude that there exists {W n
ε , Z

n
ε } ∈

Sh × Sh satisfies Aw(W n
ε , Z

n
ε ) = Az(W

n
ε , Z

n
ε ) = 0 . Thus, we have existence of a

solution to the n-th step of (Qh,∆t
ε ). 2

6.3.3 Discrete entropy inequality and stability bounds

In the following lemma we obtain a discrete analogue of the estimate (6.2.15):

Lemma 6.3.4 Let the assumptions of Theorem 6.3.3 hold and let {W n−1
ε , Zn−1

ε } ∈

Sh × Sh, n ≥ 1 . Then a solution {W n
ε , Z

n
ε } ∈ Sh × Sh to the n-th step of (Qh,∆t

ε )

satisfies

(Φε(W
n
ε ), 1)h +

(
1
2
− (µ

2

2 r
− 1)∆tn

)
|Zn

ε |2h + ρ λ
(
1− θ

2

)
∆tn |W n

ε |
2
1 + ∆tn |Zn

ε |
2
1

≤ (Φε(W
n−1
ε ), 1)h + 1

2
|Zn−1

ε |2h + r
2

(1− θ) ∆tn |W n−1
ε |2h + C ∆tn |(W 0

ε , 1)|2,

(6.3.21)

where r = ρ λ
3Cp

, Cp is the positive constant generated from applying the Poincaré

inequality (2.1.8).

Proof : Choosing χ ≡ ∆tn π
h[Φ′ε(W

n
ε )] in (6.3.6a) and χ ≡ ∆tn Z

n
ε in (6.3.6b) yields

on noting (6.3.2), (6.3.3), (6.3.16) and (6.3.17) that

(Φε(W
n
ε ), 1)h + ρ λ∆tn |W n

ε |
2
1 − λ∆tn (∇Zn

ε ,∇W n
ε ) ≤ (Φε(W

n−1
ε ), 1)h, (6.3.22a)

1
2
|Zn

ε |2h + ∆tn |Zn
ε |2h + ∆tn |Zn

ε |21 + λ∆tn (∇W n
ε ,∇Zn

ε )

≤ 1
2
|Zn−1

ε |2h + µ∆tn (θW n
ε + (1− θ)W n−1

ε , Zε)
h
. (6.3.22b)

We also note that testing (6.3.6a) with χ ≡ 1 gives

(W n
ε , 1) = (W 0

ε , 1) n = 1, · · · , N. (6.3.23)
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It follows from the Young’s inequality, (2.4.2), the Poincaré inequality, (2.1.8), and

(6.3.23) that

µ∆tn
(
θW n

ε + (1− θ)W n−1
ε , Zε

)h
≤ r θ

2
∆tn |W n

ε |2h + r
2

(1− θ) ∆tn |W n−1
ε |2h + µ2

2 r
∆tn |Zn

ε |2h

≤ 3 r θ Cp
2

∆tn |W n
ε |21 + r

2
(1− θ) ∆tn |W n−1

ε |2h + µ2

2 r
∆tn |Zn

ε |2h + C ∆tn |(W 0
ε , 1)|2.

(6.3.24)

Under the stated choice of r, we obtain the desired result (6.3.21) by adding (6.3.22a,b)

and noting (6.3.24). 2

Lemma 6.3.5 Let w0, z0 ∈ L2(Ω) with |w0(·)| ≤ 1 a.e. in Ω. Further, let either

W 0
ε ≡ P hw0 , Z0

ε ≡ P hz0; or W 0
ε ≡ πhw0 , Z0

ε ≡ πhz0 if w0 , z0 ∈ C(Ω). Then there

exists a positive C independent of h , ∆t and ε such that

‖W 0
ε ‖0 + ‖Z0

ε‖0 + (W 0
ε , 1) + (Φε(W

0
ε ), 1)h ≤ C . (6.3.25)

Moreover, it holds that

|W 0
ε | ≤ 1 in Ω. (6.3.26)

Proof : The first three bounds in (6.3.25) and (6.3.26) follow immediately from

(3.1.1), the definition of the interpolation operator πh and (3.1.2) on recalling our

assumptions on the initial data. The last bound in (6.3.25) follows from (2.4.1) and

(6.2.3a) on noting (6.3.26). 2

In the following theorem we derive a discrete entropy inequality of the system

(6.3.6a)-(6.3.6b) that is consistent with the entropy inequality obtained in Lemma

6.2.1 .

Theorem 6.3.6 Let ρ , λ > 0 , µ ≥ 0 and θ ∈ [0, 1] and let w0, z0 ∈ L2(Ω) with

|w0(·)| ≤ 1 a.e. in Ω. Let either W 0
ε ≡ P hw0 , Z0

ε ≡ P hz0; or W 0
ε ≡ πhw0 , Z0

ε ≡ πhz0

if w0 , z0 ∈ C(Ω). Further, let ε ∈ (0, 1
2
], h > 0 and ∆t > 0 be such that

( i ) ∆t < 2λ
θ µ2 if µ 6= 0 and θ 6= 0 ;

( ii )
(
µ2

2 r
− 1
)

∆t ≤ 1
2
− δ for some δ ∈ (0, 1

2
) if r < µ2

2
where r = ρ λ

3Cp
;

(iii) ∆tn ≤ ∆tn−1 ∀ n = 2, · · · , N .



6.3. A fully discrete approximation 121

Then a solution {W n
ε , Z

n
ε }Nn=1 to (Qh,∆t

ε ) is such that

max
n=1,··· ,N

[
(Φε(W

n
ε ), 1)h + ‖W n

ε ‖2
0 + ‖Zn

ε ‖2
0

]
+

N∑
n=1

∆tn
[
‖W n

ε ‖2
1 + ‖Zn

ε ‖2
1

]
≤ C .

(6.3.27)

In addition,

max
n=1,··· ,N

[
‖πh[W n

ε − 1]+‖2
0 + ‖πh[−1−W n

ε ]+‖2
0

]
≤ C ε . (6.3.28)

Furthermore,

N∑
n=1

∆tn

[
‖W

n
ε −W

n−1
ε

∆tn
‖2

(H1(Ω))′ + ‖
Znε −Z

n−1
ε

∆tn
‖2

(H1(Ω))′

]

+
N∑
n=1

∆tn

[
‖G̃[W

n
ε −W

n−1
ε

∆tn
]‖2

1 + ‖G[Z
n
ε −Z

n−1
ε

∆tn
]‖2

1

]
≤ C . (6.3.29)

Proof : We consider the case when r < µ2

2
and we comment later on the simple case

r ≥ µ2

2
. First of all, we note from (6.3.23) and (6.3.25) that

(W n
ε , 1) = (W 0

ε , 1) ≤ C n = 1, · · · , N. (6.3.30)

Using (2.4.2), (2.1.8), the stated choice r = ρ λ
3Cp

, the assumption (iii) and (6.3.30)

we obtain for n = 2, · · · , N , that

r
2

(1− θ)∆tn |W n−1
ε |2h ≤

ρ λ
2

(1− θ)∆tn−1|W n−1
ε |21 + C ∆tn−1 . (6.3.31)

Since r < µ2

2
and Φε(s) ≥ 0 , we have from (6.3.21) and (6.3.30) for n = 1, · · · , N

that(
1
2
− (µ

2

2 r
− 1) ∆tn

) [
2 (Φε(W

n
ε ), 1)h + |Zn

ε |2h
]

+ ρ λ (1− θ
2
) ∆tn |W n

ε |21 + ∆tn |Zn
ε |21

≤
(

1
2

+ (µ
2

2 r
− 1) ∆tn

) [
2 (Φε(W

n−1
ε ), 1)h + |Zn−1

ε |2h
]

+ r
2

(1− θ) ∆tn |W n−1
ε |2h + C ∆tn . (6.3.32)
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It follows from (6.3.32) and the assumption (ii) , for n = 1, · · · , N , that

2 (Φε(W
n
ε ), 1)h + |Zn

ε |2h +
ρ λ (1− θ

2
) ∆tn

1
2
−(µ

2

2 r
−1) ∆tn

|W n
ε |21

≤
(

1 + 2
δ

(µ
2

2 r
− 1) ∆tn

) [
2 (Φε(W

n−1
ε ), 1)h + |Zn−1

ε |2h
]

+
r
2

(1−θ) ∆tn
1
2
−(µ

2

2 r
−1) ∆tn

|W n−1
ε |2h + C

δ
∆tn

≤ e
2
δ

(µ
2

2 r
−1) ∆tn

[
2 (Φε(W

n−1
ε ), 1)h + |Zn−1

ε |2h +
r
2

(1−θ) ∆tn
1
2
−(µ

2

2 r
−1) ∆tn

|W n−1
ε |2h

]
+ C

δ
∆tn .

(6.3.33)

Observing (6.3.31) and the assumptions (ii) and (iii) yields for n = 2, · · · , N that

r
2

(1−θ) ∆tn
1
2
−(µ

2

2 r
−1) ∆tn

|W n−1
ε |2h ≤

ρ λ (1− θ
2

) ∆tn−1

1
2
−(µ

2

2 r
−1) ∆tn−1

|W n−1
ε |21 + C

δ
∆tn−1 . (6.3.34)

Substituting (6.3.34) into (6.3.33) and noting (2.4.2) and (6.3.25) leads to

max
n=1,··· ,N

[
(Φε(W

n
ε ), 1)h + ‖Zn

ε ‖2
0

]
≤ C e

2
δ

(µ
2

2 r
−1)T

[
T + (Φε(W

0
ε ), 1)h + ‖Z0

ε‖2
0 + ‖W 0

ε ‖2
0

]
≤ C . (6.3.35)

Therefore, the first and the third bounds in (6.3.27) follow from (6.3.35). The second

bound in (6.3.27) follows immediately from the first bound in (6.3.27) and (6.2.3b).

The last two bounds in (6.3.27) can be obtained easily by summing (6.3.21) over

n on noting (6.3.25), (6.3.30) and the third bound in (6.3.27). When r ≤ µ2

2
, the

result (6.3.27) follows directly from (6.3.21), (6.2.3b), (6.3.25) and (6.3.31).

Now, the result (6.3.28) can be easily established from the first bound in (6.3.27)

and (6.2.7) on noting the equivalence (2.4.2).

To complete the proof it is still to show (6.3.29). From (3.1.1), (6.3.6a,b), (6.3.3),

(3.1.3) and (2.4.2) we obtain for any η ∈ H1(Ω) and for n = 1, · · · , N that

〈W
n
ε −W

n−1
ε

∆tn
, η〉 =

(
Wn
ε −W

n−1
ε

∆tn
, η
)

=
(
Wn
ε −W

n−1
ε

∆tn
, P hη

)h
= λ

(
Πε(W

n
ε )∇Zn

ε ,∇P hη
)
− ρ

(
∇W n

ε ,∇P hη
)

≤ C (|W n
ε |1 + |Zn

ε |1) |P hη|1

≤ C (‖W n
ε ‖1 + ‖Zn

ε ‖1) ‖η‖1 (6.3.36a)
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and

〈Z
n
ε −Z

n−1
ε

∆tn
, η〉 =

(
Znε −Z

n−1
ε

∆tn
, η
)

=
(
Znε −Z

n−1
ε

∆tn
, P hη

)h
= µ

(
θW n

ε + (1− θ)W n−1
ε , P hη

)h − (Zn
ε , P

hη
)h

−
(
∇Zn

ε ,∇P hη
)
− λ

(
∇W n

ε ,∇P hη
)

≤ C
(
‖W n

ε ‖1 + ‖Zn
ε ‖1 + ‖W n−1

ε ‖0

)
‖η‖1 . (6.3.36b)

Hence, the desired result (6.3.29) follows from (6.3.36a,b), the assumption (iii),

(6.3.27), (6.3.25), (6.3.9), (2.1.8) and (3.1.9). 2

In the next subsection we exploit the uniform bounds derived in Theorem 6.3.6

on the approximations, independently of the parameters h, ∆t and ε , to prove

uniqueness of the approximations for sufficiently small time discretization parameter.

6.3.4 Uniqueness of the approximation

Theorem 6.3.7 Let the assumptions of Theorem 6.3.6 hold. Let {W n
ε , Z

n
ε }Nn=1 be

a solution of the problem (Qh,∆t
ε ) such that

max
n=1,··· ,N

‖Zn
ε ‖0 ≤ Cb ,

where Cb is a positive constant independent of the parameters h, ∆t and ε . Then,

for sufficiently small ∆t, the solution {W n
ε , Z

n
ε }Nn=1 is unique.

Proof : Assume there are two discrete solutions {W n
ε,1, Z

n
ε,1}Nn=1 and {W n

ε,2, Z
n
ε,2}Nn=1

to the problem (Qh,∆t
ε ) such that

max
n=1,··· ,N

{
‖Zn

ε,1‖0 , ‖Zn
ε,2‖0

}
≤ Cb . (6.3.37)

We perform the proof by induction. On noting that we have uniqueness at time

t = 0, we assume uniqueness of the approximations at the (n − 1)-time step of

(Qh,∆t
ε ) . Now, setting Wn

ε := W n
ε,1 −W n

ε,2 and Znε := Zn
ε,1 − Zn

ε,2 , and subtracting
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the fully discrete approximations yields for all χ ∈ Sh that

1
∆tn

(Wn
ε , χ)h + ρ (∇Wn

ε ,∇χ) = λ
(
Πε(W

n
ε,1)∇Zn

ε,1 − Πε(W
n
ε,2)∇Zn

ε,2 ,∇χ
)
,

(6.3.38a)

1
∆tn

(Znε , χ)h + (Znε , χ)h + (∇Znε ,∇χ) + λ (∇Wn
ε ,∇χ) = µ θ (Wn

ε , χ)h . (6.3.38b)

Choosing χ ≡ Wn
ε in (6.3.38a) and χ ≡ 1

λ
Znε in (6.3.38b) and adding the result-

ing equations yields, on using the Hölder’s inequality, (6.3.3), (6.3.4), (2.4.14) and

(6.3.37), that

1
∆tn
|Wn

ε |2h + 1
λ∆tn

|Znε |2h + 1
λ
|Znε |2h + ρ |Wn

ε |21 + 1
λ
|Znε |21

= λ
(
Πε(W

n
ε,1)∇Zn

ε,1 − Πε(W
n
ε,2)∇Zn

ε,2 ,∇Wn
ε

)
− (∇Wn

ε ,∇Znε ) + µ θ
λ

(Wn
ε ,Znε )h

= λ
( [

Πε(W
n
ε,1)− 1

λ

]
∇Znε ,∇Wn

ε

)
+ λ

( [
Πε(W

n
ε,1)− Πε(W

n
ε,2)
]
∇Zn

ε,2 ,∇Wn
ε

)
+ µ θ

λ
(Wn

ε ,Znε )h

≤ |Wn
ε |1 |Znε |1 + 4C1 Cb

ε h
‖Wn

ε ‖0,∞ |Wn
ε |1 + µ θ

λ
|Wn

ε |h |Znε |h

:= I1 + I2 + I3 , (6.3.39)

where

I1 := |Wn
ε |1 |Znε |1 ,

I2 := 4C1 Cb
ε h
‖Wn

ε ‖0,∞ |Wn
ε |1 ,

I3 := µ θ
λ
|Wn

ε |h |Znε |h ,

and C1 is the positive constant, independent of the parameters h, ∆t and ε , that is

generated from applying (2.4.14).

It follows from the Young’s inequality, (2.4.14) and (2.4.15) that

I1 ≤ ρ |Wn
ε |21 + 1

4 ρ
|Znε |21 ≤ ρ |Wn

ε |21 +
C2

1

4 ρ h2 ‖Znε ‖2
0 , (6.3.40a)

I2 ≤ 4C2
1 C2 Cb

ε h
5
2
‖Wn

ε ‖2
0 , (6.3.40b)

I3 ≤ µ2 θ2

4λ
|Wn

ε |2h + 1
λ
|Znε |2h , (6.3.40c)

where C2 is the positive constant, independent of h, ∆t and ε , generated from

applying (2.4.15). Combining (6.3.39) and (6.3.40a)-(6.3.40c) yields on noting the
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equivalence (2.4.2) that(
1

∆tn
−
[

4C2
1 C2 Cb

ε h
5
2

+ µ2 θ2

4λ

])
|Wn

ε |2h +
(

1
λ∆tn

− C2
1

4 ρ h2

)
|Znε |2h ≤ 0 . (6.3.41)

Alternatively to (6.3.40a)-(6.3.40c), we have from the Young’s inequality, (2.4.14)

and (2.4.15) that

I1 ≤ λ
4
|Wn

ε |21 + 1
λ
|Znε |21 ≤

λC2
1

4h2 ‖Wn
ε ‖2

0 + 1
λ
|Znε |21 , (6.3.42a)

I2 ≤ 4C1 C2 Cb

ε h
3
2
‖Wn

ε ‖0 |Wn
ε |1 ≤

(2C1 C2 Cb)
2

ρ ε2 h3 ‖Wn
ε ‖2

0 + ρ |Wn
ε |21 , (6.3.42b)

I3 ≤ µ2 θ2 ∆tn
4λ

|Wn
ε |2h + 1

λ∆tn
|Znε |2h . (6.3.42c)

Putting (6.3.42a)-(6.3.42c) in (6.3.39) and noting (2.4.2) gives that(
1

∆tn
−
[
λC2

1

4h2 + (2C1 C2 Cb)
2

ρ ε2 h3 + µ2 θ2 ∆tn
4λ

])
|Wn

ε |2h + 1
λ
|Znε |2h ≤ 0 . (6.3.43)

Suppose that λ < 4 ρ , we obtain from the Young’s inequality and (2.4.15) that

I1 ≤ λ
4
|Wn

ε |21 + 1
λ
|Znε |21 , (6.3.44a)

I2 ≤ 4C1 C2 Cb

ε h
3
2
‖Wn

ε ‖0 |Wn
ε |1 ≤

(4C1 C2 Cb)
2

(4 ρ−λ) ε2 h3 ‖Wn
ε ‖2

0 + 4 ρ−λ
4
|Wn

ε |21 , (6.3.44b)

I3 ≤ µ2 θ2 ∆tn
4λ

|Wn
ε |2h + 1

λ∆tn
|Znε |2h . (6.3.44c)

From (6.3.39) and (6.3.42a)-(6.3.42c) we have, when λ < 4 ρ , that(
1

∆tn
−
[

(4C1 C2 Cb)
2

(4 ρ−λ) ε2 h3 + µ2 θ2 ∆tn
4λ

])
|Wn

ε |2h + 1
λ
|Znε |2h ≤ 0 . (6.3.45)

Now, we set

τ1 := min

{(
4C2

1 C2 Cb

ε h
5
2

+ µ2 θ2

4λ

)−1

, 4 ρ h2

λC2
1

}
,

τ2 :=



(
λC2

1

4h2 + (2C1 C2 Cb)
2

ρ ε2 h3

)−1

if µ = 0 or θ = 0 ,

2λ
µ2 θ2

([(
λC2

1

4h2 + (2C1 C2 Cb)
2

ρ ε2 h3

)2

+ µ2 θ2

λ

] 1
2

−
[
λC2

1

4h2 + (2C1 C2 Cb)
2

ρ ε2 h3

])
if µ 6= 0 and θ 6= 0
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and

τ3 :=



0 if λ ≥ 4 ρ ,

(4 ρ−λ) ε2 h3

(4C1 C2 Cb)2
if λ < 4 ρ and (µ = 0 or θ = 0) ,

2λ
µ2 θ2

([(
(4C1 C2 Cb)

2

(4 ρ−λ) ε2 h3

)2

+ µ2 θ2

λ

] 1
2

− (4C1 C2 Cb)
2

(4 ρ−λ) ε2 h3

)
if λ < 4 ρ and (µ 6= 0 and θ 6= 0) .

On noting (6.3.41), (6.3.43) and (6.3.45), we obtain for any ∆t ∈ (0,max{τ1 , τ2 , τ3})

that

|Wn
ε |2h + |Znε |2h ≤ 0 n ≥ 1 .

We thus conclude W n
ε,1 ≡ W n

ε,2 and Zn
ε,1 ≡ Zn

ε,2 for all n ≥ 1 as required. 2

6.4 Existence and uniqueness of a weak solution

By extending the notation (3.3.1a)-(3.3.3a) to Wε and Zε and noting (6.3.6a,b), we

can rewrite the problem (Qh,∆t
ε ) as:

Find {Wε, Zε} ∈ C([0, T ];Sh)× C([0, T ];Sh) such that for all χ ∈ L2(0, T ;Sh)∫ T

0

[(
∂Wε

∂t
, χ
)h

+ ρ (∇W+
ε ,∇χ)

]
dt = λ

∫ T

0

( Πε(W
+
ε )∇Z+

ε ,∇χ) dt , (6.4.1a)∫ T

0

[(
∂Zε
∂t
, χ
)h

+
(
Z+
ε , χ

)h
+ (∇Z+

ε ,∇χ) + λ (∇W+
ε ,∇χ)

]
dt

= µ

∫ T

0

(
θW+

ε + (1− θ)W−
ε , χ

)h
dt . (6.4.1b)

Theorem 6.4.1 Let all the assumptions in Theorem 6.3.6 hold and let w0, z0 ∈

H1(Ω) with |w0(·)| ≤ 1 a.e. in Ω. Let W 0
ε ≡ P hw0, Z0

ε ≡ P hz0; or W 0
ε ≡ πhw0,

Z0
ε ≡ πhz0. In addition to the assumptions (i)-(iii) in Theorem 6.3.6 , let

(iv) ∆t , ε → 0 as h → 0 .

Then there exists a subsequence of {Wε, Zε}h>0 , where {Wε, Zε} solves (Qh,∆t
ε ) , and

functions

w , z ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩H1(0, T ; (H1(Ω))′) (6.4.2a)
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satisfy

w(·, 0) = w0(·) and z(·, 0) = z0(·) in L2(Ω). (6.4.2b)

In addition,

|w(x, t)| ≤ 1 a.e. in ΩT . (6.4.2c)

Furthermore, it holds as h→ 0 that

Wε, W
±
ε ⇀ w and Zε, Z

±
ε ⇀ z in L2(0, T ;H1(Ω)) , (6.4.3a)

Wε, W
±
ε ⇀∗ w and Zε, Z

±
ε ⇀∗ z in L∞(0, T ;L2(Ω)) , (6.4.3b)

∂Wε

∂t
⇀

∂w

∂t
and

∂Zε
∂t

⇀
∂z

∂t
in L2(0, T ; (H1(Ω))′) , (6.4.3c)

Wε, W
±
ε → w and Zε, Z

±
ε → z in L2(0, T ;L∞(Ω)) (6.4.3d)

and

Πε(W
+
ε )→ V(w) in L2(0, T ;L∞(Ω)) . (6.4.3e)

Proof : The proof is obtained using a sequential compactness argument, see Theo-

rem 3.3.1 where a similar argument is employed. First of all, we note from (3.1.3),

(2.4.16) and the stated assumptions on the initial data that

‖W 0
ε ‖1 + ‖Z0

ε‖1 ≤ C , (6.4.4)

and

W 0
ε → w0 and Z0

ε → z0 in L2(Ω). (6.4.5)

It follows from (6.3.27)-(6.3.29), (6.4.4), (6.2.5) and (6.3.3) that

‖W (±)
ε ‖L2(0,T ;H1(Ω)) + ‖W (±)

ε ‖L∞(0,T ;L2(Ω)) + ε−
1
2‖πh[W (±)

ε − 1]+‖L∞(0,T ;L2(Ω))

+ ε−
1
2‖πh[−1−W (±)

ε ]+‖L∞(0,T ;L2(Ω)) + ‖∂Wε

∂t
‖L2(0,T ;(H1(Ω))′)

+ ‖G̃ ∂Wε

∂t
‖L2(0,T ;H1(Ω)) + ‖Vε(W+

ε )‖L∞(ΩT ) + ‖Πε(W
+
ε )‖L∞(ΩT ) ≤ C , (6.4.6a)
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and

‖Z(±)
ε ‖L2(0,T ;H1(Ω)) + ‖Z(±)

ε ‖L∞(0,T ;L2(Ω))

+ ‖∂Zε
∂t
‖L2(0,T ;(H1(Ω))′) + ‖G ∂Zε

∂t
‖L2(0,T ;H1(Ω)) ≤ C . (6.4.6b)

Furthermore, we have from the fifth bound in (6.4.6a) and the third bound in

(6.4.6b) that

‖W±
ε −Wε‖2

L2(0,T ;(H1(Ω))′) + ‖Z±ε − Zε‖2
L2(0,T ;(H1(Ω))′)

≤ (∆t)2 ‖∂Wε

∂t
‖2
L2(0,T ;(H1(Ω))′) + (∆t)2 ‖∂Zε

∂t
‖2
L2(0,T ;(H1(Ω))′) ≤ C (∆t)2 . (6.4.7)

From (6.4.6a,b), (6.4.7), (2.1.4) and the compact embedding H1(Ω)
c
↪→ L∞(Ω),

one can obtain using sequential compactness arguments the existence of a subse-

quence of {Wε, Zε}h, still denoted {Wε, Zε}h, and functions {w, z} such that the

results (6.4.2a) and (6.4.3a)-(6.4.3d) hold, see the proof of Theorem 3.3.1 for in-

stance. As

Wε , Zε , w , z ∈
{
η : η ∈ L2(0, T ;H1(Ω)), ∂η

∂t
∈ L2(0, T ; (H1(Ω))′)

}
,

we have from Theorem 7.2 in Robinson [58] that

Wε , Zε , w , z ∈ C([0, T ];L2(Ω)) . (6.4.8)

Thus, (6.4.2b) follows from (6.4.3d), (6.4.5) and (6.4.8). The bound (6.4.2c) fol-

lows immediately from the third and the fourth bounds in (6.4.6a) and the strong

convergence (6.4.3d).

It is still to show the convergence result (6.4.3e). To do so, we first note from

(6.3.5), (2.4.15) and the first bound in (6.4.6a) that∥∥Πε(W
+
ε )− Vε(W+

ε )
∥∥
L2(0,T ;L∞(Ω))

≤ C h
1
2‖W+

ε ‖L2(0,T ;H1(Ω)) ≤ C h
1
2 → 0 as h→ 0 .

(6.4.9)

From the Lipschitz continuity of the function Vε(s) on R , (6.4.2c), (6.2.6), (6.4.3d)

and the assumption (iv) we have that∥∥Vε(W+
ε )− Vε(w)

∥∥
L2(0,T ;L∞(Ω))

+ ‖Vε(w)− V(w)‖L2(0,T ;L∞(Ω))

≤ C
(∥∥W+

ε − w
∥∥
L2(0,T ;L∞(Ω))

+ ε
)
→ 0 as h→ 0 . (6.4.10)
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Thus, (6.4.3e) follows by combining (6.4.9) and (6.4.10). 2

We now show the main theorem in this chapter which deals with the existence

and the uniqueness of a global weak solution to the system (1.2.1a)-(1.2.1d).

Theorem 6.4.2 Let the assumptions of Theorem 6.4.1 hold. Then there exists a

subsequence of {Wε, Zε}h>0 , where {Wε, Zε} solves (Qh,∆t
ε ) , and functions {w, z}

satisfying (6.4.2a)-(6.4.2c) and
∫
− w =

∫
− w0 for a.e. t ∈ (0, T ). In addition, as

h → 0 the convergence results (6.4.3a)-(6.4.3e) hold. Furthermore, the functions

{w, z} represent a global weak solution of the problem (Q) in sense that for all

η ∈ L2(0, T ;H1(Ω))∫ T

0

[〈
∂w
∂t
, η
〉

+ ρ (∇w,∇η)
]

dt =

∫ T

0

( [1− w2]∇z,∇η) dt , (6.4.11a)∫ T

0

[〈
∂z
∂t
, η
〉

+ (z, η) + (∇z,∇η) + λ (∇w,∇η)
]

dt = µ

∫ T

0

(w, η) dt . (6.4.11b)

Moreover, if λ < 4 ρ and the function z satisfies, additionally to (6.4.2a), that

‖z‖L∞(0,T ;H1(Ω)) ≤ C , (6.4.12)

then the solution {w, z} is unique.

Proof : We separate the proof into two parts. In the first part, Subsection 6.4.1,

we briefly adapt the convergence arguments used in Theorem 3.3.3 to show that the

functions {w, z} defined by Theorem 6.4.1 represent a weak solution of problem (Q).

In the second part, Subsection 6.4.2, we discuss the uniqueness of the weak solution.

6.4.1 Existence of a weak solution

For any η ∈ L2(0, T ;H1(Ω)), we set χ ≡ πhη in (6.4.1a,b) and then we analyse the

convergence of the resulting terms as h → 0 . On setting Yε ≡ Wε and Zε, respec-

tively, with GWε ≡ G̃ and GZε ≡ G, we have from (2.4.19), the Hölder’s inequality,

the continuous embedding H1(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)), (6.3.11), (3.1.10),
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(2.4.16) and (6.4.6a,b) for all η ∈ L2(0, T ;H1(Ω)) and for all η̃ ∈ H1(0, T ;H1(Ω))

that ∣∣∣∣∫ T

0

[(
∂Yε
∂t
, πhη

)h − (∂Yε
∂t
, πhη

)]
dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

[(
∂Yε
∂t
, πh[η − η̃]

)h − (∂Yε
∂t
, πh[η − η̃]

)]
dt

∣∣∣∣
+

∣∣∣∣ ∫ T

0

[(
Yε,

∂(πhη̃)
∂t

)h
−
(
Yε,

∂(πhη̃)
∂t

)]
dt

∣∣∣∣
+
∣∣(Yε(·, T ), πhη̃(·, T ))h − (Yε(·, T ), πhη̃(·, T ))

∣∣
+
∣∣(Yε(·, 0), πhη̃(·, 0))h − (Yε(·, 0), πhη̃(·, 0))

∣∣
≤ C h ‖∂Yε

∂t
‖L2(ΩT ) ‖πh[η − η̃]‖L2(0,T ;H1(Ω))

+ C h ‖Yε‖L∞(0,T ;L2(Ω)) ‖πhη̃‖H1(0,T ;H1(Ω))

≤ C ‖GYε ∂Yε∂t ‖L2(0,T ;H1(Ω)) ‖η − η̃‖L2(0,T ;H1(Ω)) + C h ‖η̃‖H1(0,T ;H1(Ω))

≤ C ‖η − η̃‖L2(0,T ;H1(Ω)) + C h ‖η̃‖H1(0,T ;H1(Ω)). (6.4.13)

We also have from the Hölder’s inequality and (6.4.6a,b) for all η ∈ L2(0, T ;H1(Ω))

that ∣∣∣∣∫ T

0

(
∂Yε
∂t
, (πh − I) η

)
dt

∣∣∣∣ ≤ ∫ T

0

∣∣〈∂Yε
∂t
, (πh − I) η

〉∣∣ dt

≤
∥∥∂Yε
∂t

∥∥
L2(0,T ;(H1(Ω))′)

∥∥(πh − I) η
∥∥
L2(0,T ;H1(Ω))

≤ C
∥∥(πh − I) η

∥∥
L2(0,T ;H1(Ω))

. (6.4.14)

Combining (6.4.13), (6.4.14), the denseness of H1(0, T ;H1(Ω)) in L2(0, T ;H1(Ω)),

(2.4.17) and (6.4.3c) yields for any η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
∂Yε
∂t
, πhη

)h
dt −→

∫ T

0

〈
∂y
∂t
, η
〉

dt as h→ 0 , (6.4.15)

where y ≡ w and z respectively.

Similarly to the derivation of (3.3.38) and (3.3.46), we can show on noting the

bounds (6.4.6a,b) and the convergence result (6.4.3a), for any η ∈ L2(0, T ;H1(Ω))

that ∫ T

0

(∇Y +
ε ,∇πhη) dt −→

∫ T

0

(∇y,∇η) dt as h→ 0 (6.4.16)
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and ∫ T

0

(Y ±ε , π
hη)h dt −→

∫ T

0

(y, η) dt as h→ 0 , (6.4.17)

where Y ±ε ≡ W±
ε and Z±ε , y ≡ w and z respectively.

It follows from the Hölder’s inequality and (6.4.6a,b) for all η ∈ L2(0, T ;H1(Ω))

that∣∣∣∣∫ T

0

(
Πε(W

+
ε )∇Z+

ε ,∇(πh − I) η
)

dt

∣∣∣∣
≤
∥∥Πε(W

+
ε )
∥∥
L∞(ΩT )

∥∥Z+
ε

∥∥
L2(0,T ;H1(Ω))

∥∥(πh − I) η
∥∥
L2(0,T ;H1(Ω))

≤ C
∥∥(πh − I) η

∥∥
L2(0,T ;H1(Ω))

. (6.4.18)

We also obtain from the Hölder’s inequality, (6.4.6a,b), (6.4.2c) and (6.1.2) for all

η ∈ L2(0, T ;H1(Ω)) and for all η̃ ∈ L∞(0, T ;H1(Ω)) that∣∣∣∣∫ T

0

( [
Πε(W

+
ε )− V(w)

]
∇Z+

ε ,∇η
)

dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

( [
Πε(W

+
ε )− V(w)

]
∇Z+

ε ,∇ [η − η̃]
)

dt

∣∣∣∣
+

∣∣∣∣∫ T

0

( [
Πε(W

+
ε )− V(w)

]
∇Z+

ε ,∇η̃
)

dt

∣∣∣∣
≤ ‖Πε(W

+
ε )− V(w)‖L∞(ΩT ) ‖Z+

ε ‖L2(0,T ;H1(Ω)) ‖η − η̃‖L2(0,T ;H1(Ω))

+ ‖Πε(W
+
ε )− V(w)‖L2(0,T ;L∞(Ω)) ‖Z+

ε ‖L2(0,T ;H1(Ω)) ‖∇η̃‖L∞(0,T ;L2(Ω))

≤ C ‖η − η̃‖L2(0,T ;H1(Ω)) + C ‖Πε(W
+
ε )− V(w)‖L2(0,T ;L∞(Ω)) ‖η̃‖L∞(0,T ;H1(Ω)).

(6.4.19)

Noting (6.4.18), (6.4.19), (2.4.17), the denseness of L∞(0, T ;H1(Ω)) in L2(0, T ;H1(Ω))

and (6.4.3e) yields for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
Πε(W

+
ε )∇Z+

ε ,∇πhη
)

dt →
∫ T

0

(V(w)∇z,∇η) dt as h→ 0 . (6.4.20)

Now, we deduce from (6.4.1a)-(6.4.1b), (6.4.15)→(6.4.17), (6.4.20) and (6.1.2) that

the functions {w, z} satisfy (6.4.11a)-(6.4.11b), as well as the results of Theorem

6.4.1. Finally, we note from the weak formulation (6.4.11a) that
∫
− w(·, t) =

∫
− w0(·)

for a.e. t ∈ (0, T ). This completes the existence proof.
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6.4.2 Uniqueness of the weak solution

We now show, under the assumption (6.4.12), the uniqueness of the weak solution

if the cross diffusion coefficient λ is not too large. Essentially, the proof is identical

to Galiano et al. [34] and is included for completeness.

Assume that there are two weak solutions {w1, z1} and {w2, z2} to the system

(1.2.1a)-(1.2.1d) that satisfy (6.4.2a)-(6.4.2c) and (6.4.11a)-(6.4.11b). Further, as-

sume that the functions z1 and z2 satisfy (6.4.12). As both solutions {w1, z1} and

{w2, z2} satisfy (6.4.2b), we have that

w1(·, 0) = w2(·, 0) = w0(·) and z1(·, 0) = z2(·, 0) = z0(·) in L2(Ω). (6.4.21)

Setting w := w1−w2 , z := z1−z2 and testing (6.4.11a) with η ≡ w ∈ L2(0, T ;H1(Ω))

and (6.4.11b) with η ≡ 1
λ

z ∈ L2(0, T ;H1(Ω)) leads to after subtracting the weak

forms

1
2
‖w(T )‖2

0 + ρ ‖∇w‖2
L2(ΩT ) = 1

2
‖w(0)‖2

0 +

∫ T

0

(∇z,∇w) dt

+

∫ T

0

(w2
2∇z2 − w2

1∇z1,∇w) dt , (6.4.22a)

1
2λ
‖z(T )‖2

0 + 1
λ
‖z‖2

L2(ΩT ) + 1
λ
‖∇z‖2

L2(ΩT ) +

∫ T

0

(∇w,∇z) dt

= 1
2λ
‖z(0)‖2

0 + µ
λ

∫ T

0

(w, z) dt . (6.4.22b)

Adding (6.4.22a,b), noting (6.4.21) and employing the Hölder’s inequality yields,

on using (6.4.2c), that

1
2

(
‖w(T )‖2

0 + 1
λ
‖z(T )‖2

0

)
+ ρ ‖∇w‖2

L2(ΩT ) + 1
λ
‖z‖2

L2(ΩT ) + 1
λ
‖∇z‖2

L2(ΩT )

= µ
λ

∫ T

0

(w, z) dt −
∫ T

0

(w2
1∇z,∇w) dt −

∫ T

0

( (w1 + w2) w∇z2,∇w) dt

≤ µ
λ

∫ T

0

‖w‖0 ‖z‖0 dt +

∫ T

0

|z|1 |w|1 dt + 2

∫ T

0

‖w‖0,∞ |z2|1 |w|1 dt .

(6.4.23)
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We easily obtain from the Young’s inequality that

µ
λ

∫ T

0

‖w‖0 ‖z‖0 dt ≤ µ2

4λ
‖w‖2

L2(ΩT ) + 1
λ
‖z‖2

L2(ΩT ) , (6.4.24)∫ T

0

|w|1 |z|1 dt ≤ λ
4
‖∇w‖2

L2(ΩT ) + 1
λ
‖∇z‖2

L2(ΩT ) . (6.4.25)

Using (6.4.12), we find that

2

∫ T

0

‖w‖0,∞ |z2|1 |w|1 dt ≤ C

∫ T

0

‖w‖0,∞ |w|1 dt . (6.4.26)

Putting (6.4.24)-(6.4.26) in (6.4.23) leads to

1
2

(
‖w(T )‖2

0 + 1
λ
‖z(T )‖2

0

)
+ (ρ− λ

4
) ‖∇w‖2

L2(ΩT )

≤ µ2

4λ
‖w‖2

L2(ΩT ) + C

∫ T

0

‖w‖0,∞ |w|1 dt . (6.4.27)

To deal with the integral in the right hand side of (6.4.27), we first note that the

Sobolev interpolation result (2.1.1), in one space dimension, gives

‖w‖0,∞ ≤ C ‖w‖
1
2
0 ‖w‖

1
2
1

≤ C ‖w‖
1
2
0

(
‖w‖2

0 + |w|21
) 1

4

≤ C
(
‖w‖0 + ‖w‖

1
2
0 |w|

1
2
1

)
. (6.4.28)

Therefore, we have from (6.4.28) and the Young’s inequality for any δ > 0 that

C

∫ T

0

‖w‖0,∞ |w|1 dt ≤ C

∫ T

0

(
‖w‖0 |w|1 + ‖w‖

1
2
0 |w|

3
2
1

)
dt

≤
∫ T

0

(
C(δ) ‖w‖2

0 + δ |w|21
)

dt

= C(δ) ‖w‖2
L2(ΩT ) + δ ‖∇w‖2

L2(ΩT ) . (6.4.29)

As λ < 4 ρ , we choose δ = ρ − λ
4

in (6.4.29) and then we combine the resulting

inequality with (6.4.27) to infer

‖w(T )‖2
0 + 1

λ
‖z(T )‖2

0 ≤ C ‖w‖2
L2(ΩT ) . (6.4.30)

Applying the integral version of the Grönwall lemma, (2.1.5), leads to

‖w(T )‖2
0 + 1

λ
‖z(T )‖2

0 ≤ 0 .

Thus, we conclude w1 ≡ w2 and z1 ≡ z2 as required. 2
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6.5 An error estimate

In this section we study the error estimate between the weak solution of (Q) and

their fully discrete approximations defined by (6.3.6a)-(6.3.6b). Additionally to the

uniqueness requirements, the derivation of an error estimate requires extra regularity

on the time derivatives of the approximate solutions. The details are given in the

following theorem.

Theorem 6.5.1 Let all the assumptions of Theorem 6.4.2 hold. If λ < 4 ρ and

‖∂Wε

∂t
‖L2(ΩT ) + ‖∂Zε

∂t
‖L2(ΩT ) + ‖Zε‖L∞(0,T ;H1(Ω)) ≤ C , (6.5.1)

then the solution {Wε, Zε} of (Qh,∆t
ε ) , h , ∆t ≤ 1, satisfies the following error

bound1:

‖w −Wε‖2
L∞(0,T ;L2(Ω)) + ‖z − Zε‖2

L∞(0,T ;L2(Ω))

≤ C
(
h+ ∆t+ ε2 + ‖∇(I − πh)w‖L2(ΩT ) + ‖∇(I − πh)z‖L2(ΩT )

)
. (6.5.2)

Furthermore, if w , z ∈ L2(0, T ;H2(Ω)) then

‖w −Wε‖2
L∞(0,T ;L2(Ω)) + ‖z − Zε‖2

L∞(0,T ;L2(Ω)) ≤ C
(
h+ ∆t+ ε2

)
. (6.5.3)

Proof : We first mention that πhw and πhz are well defined since w(·, t) , z(·, t) ∈

H1(Ω) for a.e. t ∈ (0, T ) and the Sobolev embedding result H1(Ω) ↪→ C(Ω) holds

in one space dimension. Noting this, we set

eAy := y − πhy ,

e(±)
y,ε := y − Y (±)

ε , (6.5.4)

E(±)
y,ε := πhy − Y (±)

ε ,

where y ≡ w and z , Y
(±)
ε ≡ W

(±)
ε and Z

(±)
ε , respectively.

1If (6.5.1) holds then, using classical compactness arguments, we have that ∂w
∂t , ∂z

∂t ∈ L
2(ΩT )

and z ∈ L∞(0, T ;H1(Ω)). In addition, the solution {w, z} will be unique under the assumption

λ < 4 ρ; see Theorem 6.4.2.
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On subtracting (6.4.1a,b) from (6.4.11a,b) respectively, it follows for a.e. t ∈

(0, T ) and for all χ ∈ Sh that(
∂ew,ε
∂t

, χ
)

+ ρ
(
∇e+

w,ε,∇χ
)

= λ (V(w)∇z,∇χ)− λ
(
Πε(W

+
ε )∇Z+

ε ,∇χ
)

+
{(

∂Wε

∂t
, χ
)h − (∂Wε

∂t
, χ
)}

, (6.5.5a)(
∂ez,ε
∂t
, χ
)

+
(
e+
z,ε, χ

)
+
(
∇e+

z,ε,∇χ
)

+ λ
(
∇e+

w,ε,∇χ
)

=
{(

∂Zε
∂t
, χ
)h − (∂Zε

∂t
, χ
)}

+
{(
Z+
ε , χ

)h − (Z+
ε , χ

)}
+ µ θ

(
e+
w,ε, χ

)
+ µ (1− θ)

(
e−w,ε, χ

)
+ µ θ

{(
W+
ε , χ

)
−
(
W+
ε , χ

)h}
+ µ (1− θ)

{(
W−
ε , χ

)
−
(
W−
ε , χ

)h}
.

(6.5.5b)

Hence, choosing χ ≡ E+
w,ε ∈ Sh in (6.5.5a) and χ ≡ 1

λ
E+
z,ε ∈ Sh in (6.5.5b) and

summing the resulting equations yields that

1
2

d
dt
‖ew,ε‖2

0 + 1
2λ

d
dt
‖ez,ε‖2

0 + 1
λ
‖e+

z,ε‖2
0 + ρ |e+

w,ε|21 + 1
λ
|e+
z,ε|21

=
[(

∂ew,ε
∂t

, eAw

)
+ 1

λ

(
∂ez,ε
∂t
, eAz

)]
+
[(

∂ew,ε
∂t

,W+
ε −Wε

)
+ 1

λ

(
∂ez,ε
∂t
, Z+

ε − Zε
)]

+
[
ρ
(
∇e+

w,ε,∇eAw
)

+ 1
λ

(
∇e+

z,ε,∇eAz
)

+ 1
λ

(
e+
z,ε, e

A
z

)]
+

[{(
∂Wε

∂t
, E+

w,ε

)h − (∂Wε

∂t
, E+

w,ε

)}
+ 1

λ

{(
∂Zε
∂t
, E+

z,ε

)h − (∂Zε
∂t
, E+

z,ε

)}
+ 1

λ

{(
Z+
ε , E

+
z,ε

)h − (Z+
ε , E

+
z,ε

)} ]
+
[(
∇e+

w,ε,∇eAz
)
− λ

(
V(w)∇e+

z,ε,∇eAw
)]

+
[(

[λV(w)− 1]∇e+
z,ε,∇e+

w,ε

)]
+
[
λ
([
V(w)− Πε(W

+
ε )
]
∇Z+

ε ,∇E+
w,ε

)]
+
[
µ θ
λ

(
e+
w,ε, E

+
z,ε

)
+ µ (1−θ)

λ

(
e−w,ε, E

+
z,ε

)]
+
[
µ θ
λ

{(
W+
ε , E

+
z,ε

)
−
(
W+
ε , E

+
z,ε

)h}
+ µ (1−θ)

λ

{(
W−
ε , E

+
z,ε

)
−
(
W−
ε , E

+
z,ε

)h}]
:=

9∑
i=1

[Ii] , (6.5.6)

where we have noticed from (6.5.4) that

E(±)
y,ε = e(±)

y,ε − eAy = ey,ε − eAy + (Yε − Y (±)
ε ) .
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We now bound each term on the right hand side of (6.5.6) separately.

Using the Cauchy-Schwarz inequality gives that

I1 ≤ C
(
‖∂ew,ε

∂t
‖0 ‖eAw‖0 + ‖∂ez,ε

∂t
‖0 ‖eAz ‖0

)
:= Ĩ1 , (6.5.7)

I2 ≤ C
(
‖∂ew,ε

∂t
‖0 ‖W+

ε −Wε‖0 + ‖∂ez,ε
∂t
‖0 ‖Z+

ε − Zε‖0

)
:= Ĩ2 , (6.5.8)

I3 ≤ C
(
|e+
w,ε|1 |eAw|1 + |e+

z,ε|1 |eAz |1 + ‖e+
z,ε‖0 ‖eAz ‖0

)
:= Ĩ3 . (6.5.9)

With the aid of (2.4.19), we have that

I4 ≤ C h
(
‖∂Wε

∂t
‖0 |E+

w,ε|1 + ‖∂Zε
∂t
‖0 |E+

z,ε|1 + ‖Z+
ε ‖0 |E+

z,ε|1
)

:= Ĩ4 . (6.5.10)

Noting the Cauchy-Schwarz inequality, (6.1.2) and (6.4.2c) leads to

I5 ≤ |e+
w,ε|1 |eAz |1 + |e+

z,ε|1 |eAw|1 := Ĩ5 . (6.5.11)

We also obtain from (6.4.2c), (6.1.2) and the Young’s inequality that

I6 ≤ |e+
w,ε|1 |e+

z,ε|1 ≤ λ
4
|e+
w,ε|21 + 1

λ
|e+
z,ε|21 . (6.5.12)

It follows from the Hölder’s inequality, the last bound in (6.5.1), (6.3.5), (2.4.15),

the Lipschitz continuity of Vε, (6.2.6) and (6.5.4) that

I7 ≤ λ |Z+
ε |1 ‖Πε(W

+
ε )− V(w)‖0,∞ |E+

w,ε|1

≤ C ‖Πε(W
+
ε )− V(w)‖0,∞ |E+

w,ε|1

≤ C
(
‖Πε(W

+
ε )− Vε(W+

ε )‖0,∞ + ‖Vε(W+
ε )− Vε(w)‖0,∞ + ‖Vε(w)− V(w)‖0,∞

)
|E+

w,ε|1

≤ C
(
h

1
2 |W+

ε |1 + ‖e+
w,ε‖0,∞ + ε

)
|E+

w,ε|1

≤ C
(
h

1
2 ‖W+

ε ‖1 + ‖e+
w,ε‖0,∞ + ε

) (
|e+
w,ε|1 + |eAw|1

)
:= I7,1 + I7,2 + I7,3 , (6.5.13)

where

I7,1 := C
(
h

1
2 ‖W+

ε ‖1 + ε
)
|e+
w,ε|1 ,

I7,2 := C ‖e+
w,ε‖0,∞ |e+

w,ε|1 ,

I7,3 := C
(
h

1
2 ‖W+

ε ‖1 + ‖e+
w,ε‖0,∞ + ε

)
|eAw|1 .
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But, the Young’s inequality gives, on noting the assumption λ < 4 ρ , that

I7,1 ≤ C
(
h ‖W+

ε ‖2
1 + ε2

)
+ 4 ρ−λ

8
|e+
w,ε|21 . (6.5.14)

Similarly to (6.4.28), we obtain from (2.1.1) and the Young’s inequality that

I7,2 = C ‖e+
w,ε‖0,∞ |e+

w,ε|1

≤ C ‖e+
w,ε‖

1
2
0 ‖e+

w,ε‖
1
2
1 |e+

w,ε|1

≤ C
(
‖e+

w,ε‖0 |e+
w,ε|1 + ‖e+

w,ε‖
1
2
0 |e+

w,ε|
3
2
1

)
≤ C ‖e+

w,ε‖2
0 + 4 ρ−λ

8
|e+
w,ε|21

≤ C ‖ew,ε‖2
0 + C ‖W+

ε −Wε‖2
0 + 4 ρ−λ

8
|e+
w,ε|21 . (6.5.15)

Noting the Cauchy-Schwarz inequality and the Young’s inequality leads to

I8 ≤ µ θ
λ
‖e+

w,ε‖0 ‖E+
z,ε‖0 + µ (1−θ)

λ
‖e−w,ε‖0 ‖E+

z,ε‖0

≤ C ‖e+
w,ε‖2

0 + C ‖e−w,ε‖2
0 + C ‖E+

z,ε‖2
0

≤ C ‖ew,ε‖2
0 + C ‖ez,ε‖2

0 + C
(
‖W+

ε −Wε‖2
0 + ‖W−

ε −Wε‖2
0 + ‖Z+

ε − Zε‖2
0 + ‖eAz ‖2

0

)
.

(6.5.16)

Finally, we use (2.4.19) and the Young’s inequality to obtain that

I9 ≤ C h
(
|W+

ε |1 + |W−
ε |1
)
‖E+

z,ε‖0

≤ C h
(
‖W+

ε ‖1 + ‖W−
ε ‖1

)
‖E+

z,ε‖0 := Ĩ9 . (6.5.17)

Now, combining (6.5.6)→(6.5.17) yields that

d
dt

(
‖ew,ε‖2

0 + 1
λ
‖ez,ε‖2

0

)
≤ C

(
‖ew,ε‖2

0 + 1
λ
‖ez,ε‖2

0

)
+

9∑
i=1

Ĩi , (6.5.18)

where

Ĩ6 := 0

Ĩ7 := I7,3 + C
(
h ‖W+

ε ‖2
1 + ε2 + ‖W+

ε −Wε‖2
0

)
,

Ĩ8 := C
(
‖W+

ε −Wε‖2
0 + ‖W−

ε −Wε‖2
0 + ‖Z+

ε − Zε‖2
0 + ‖eAz ‖2

0

)
.



6.5. An error estimate 138

Applying the Grönwall lemma to (6.5.18) leads to for a.e. t ∈ (0, T )

‖ew,ε(t)‖2
0 + 1

λ
‖ez,ε(t)‖2

0 ≤ eC T
(
‖ew,ε(0)‖2

0 + 1
λ
‖ez,ε(0)‖2

0

)
+ eC T

∫ T

0

9∑
i=1

Ĩi dt .

(6.5.19)

To bound the right hand side of (6.5.19), we first note from (6.4.2b), the assumption

w0 , z0 ∈ H1(Ω) (see Theorem 6.4.1), (3.1.3) and (2.4.16) that

‖ew,ε(0)‖2
0 = ‖w0 −W 0

ε ‖2
0 ≤ C h2|w0|21 ≤ C h2,

‖ez,ε(0)‖2
0 = ‖z0 − Z0

ε‖2
0 ≤ C h2|z0|21 ≤ C h2.

(6.5.20)

We also use the estimate (2.4.16) to find that

‖eAw‖2
0 = ‖(I − πh)w‖2

0 ≤ C h2|w|21 ,

‖eAz ‖2
0 = ‖(I − πh)z‖2

0 ≤ C h2|z|21 .
(6.5.21)

Similarly to (6.4.7), we have from (6.5.1) that

‖W±
ε −Wε‖2

L2(ΩT ) + ‖Z±ε − Zε‖2
L2(ΩT )

≤ (∆t)2 ‖∂Wε

∂t
‖2
L2(ΩT ) + (∆t)2 ‖∂Zε

∂t
‖2
L2(ΩT ) ≤ C (∆t)2 . (6.5.22)

On noting (6.5.4), (6.4.2a), (6.4.6a,b) and (2.4.16), we deduce that

‖E+
w,ε‖L2(0,T ;H1(Ω)) + ‖E+

z,ε‖L2(0,T ;H1(Ω))

≤ ‖e+
w,ε‖L2(0,T ;H1(Ω)) + ‖e+

z,ε‖L2(0,T ;H1(Ω)) + ‖eAw‖L2(0,T ;H1(Ω)) + ‖eAz ‖L2(0,T ;H1(Ω))

≤ C . (6.5.23)

Now, using the Hölder’s inequality, (6.4.2a), (6.4.6a,b), (6.5.1), (6.5.21), (6.5.22)

and (6.5.23), we can obtain the following estimates:∫ T

0

Ĩ1 dt ≤ C h
(
‖∂ew,ε

∂t
‖L2(ΩT ) ‖w‖L2(0,T ;H1(Ω)) + ‖∂ez,ε

∂t
‖L2(ΩT ) ‖z‖L2(0,T ;H1(Ω))

)
≤ C h . (6.5.24a)

∫ T

0

Ĩ2 dt ≤ C
(
‖∂ew,ε

∂t
‖L2(ΩT )‖W+

ε −Wε‖L2(ΩT ) + ‖∂ez,ε
∂t
‖L2(ΩT )‖Z+

ε − Zε‖L2(ΩT )

)
≤ C ∆t . (6.5.24b)
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∫ T

0

Ĩ3 dt ≤ C
(
‖e+

w,ε‖L2(0,T ;H1(Ω))‖∇eAw‖L2(ΩT ) + ‖e+
z,ε‖L2(0,T ;H1(Ω))‖∇eAz ‖L2(ΩT )

)
+ C h ‖e+

z,ε‖L2(ΩT ) ‖z‖L2(0,T ;H1(Ω))

≤ C
(
h+ ‖∇eAw‖L2(ΩT ) + ‖∇eAz ‖L2(ΩT )

)
. (6.5.24c)

∫ T

0

Ĩ4 dt ≤ C h ‖∂Wε

∂t
‖L2(ΩT )‖E+

w,ε‖L2(0,T ;H1(Ω)) + C h ‖∂Zε
∂t
‖L2(ΩT )‖E+

z,ε‖L2(0,T ;H1(Ω))

+ C h ‖Z+
ε ‖L2(ΩT )‖E+

z,ε‖L2(0,T ;H1(Ω))

≤ C h . (6.5.24d)

∫ T

0

Ĩ5 dt ≤ ‖e+
w,ε‖L2(0,T ;H1(Ω))‖∇eAz ‖L2(ΩT ) + ‖e+

z,ε‖L2(0,T ;H1(Ω))‖∇eAw‖L2(ΩT )

≤ C
(
‖∇eAz ‖L2(ΩT ) + ‖∇eAw‖L2(ΩT )

)
. (6.5.24e)

∫ T

0

Ĩ7 dt ≤ C
(
h

1
2‖W+

ε ‖L2(0,T ;H1(Ω)) + ‖e+
w,ε‖L2(0,T ;L∞(Ω)) + ε

)
‖∇eAw‖L2(ΩT )

+ C
(
h ‖W+

ε ‖2
L2(0,T ;H1(Ω)) + ε2 + ‖W+

ε −Wε‖2
L2(ΩT )

)
≤ C

(
h+ ε2 + (∆t)2 + ‖∇eAw‖L2(ΩT )

)
. (6.5.24f)

∫ T

0

Ĩ8 dt ≤ C
(
‖W+

ε −Wε‖2
L2(ΩT ) + ‖W−

ε −Wε‖2
L2(ΩT ) + ‖Z+

ε − Zε‖2
L2(ΩT )

)
+ C h2 ‖z‖2

L2(0,T ;H1(Ω))

≤ C
(

(∆t)2 + h2
)
. (6.5.24g)

∫ T

0

Ĩ9 dt ≤ C h
(
‖W+

ε ‖L2(0,T ;H1(Ω)) + ‖W−
ε ‖L2(0,T ;H1(Ω))

)
‖E+

z,ε‖L2(ΩT )

≤ C h . (6.5.24h)

Combining (6.5.19), (6.5.20) and (6.5.24a)-(6.5.24h) yields for h , ∆t ≤ 1 and for

a.e. t ∈ (0, T ) that

‖ew,ε(t)‖2
0 + ‖ez,ε(t)‖2

0 ≤ C
(
h2 + (∆t)2 + ε2 + h+ ∆t+ ‖∇eAw‖L2(ΩT ) + ‖∇eAz ‖L2(ΩT )

)
≤ C

(
h+ ∆t+ ε2 + ‖∇eAw‖L2(ΩT ) + ‖∇eAz ‖L2(ΩT )

)
.
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This gives the estimate (6.5.2) .

If w , z ∈ L2(0, T ;H2(Ω)), the result (6.5.3) follows immediately from (6.5.2) on

noting the following estimate (see Theorem 3.1.6 in Ciarlet [23]):

|(I − πh)η|1 ≤ C h |η|2 ∀η ∈ H2(Ω) .

2

At the end of the proof, we comment that some terms of
∑9

i=1 Ĩi can be treated

differently to obtain O(h2) bound instead of O(h) bound. However, this does not

give an improvement of the overall bound as the bound in (6.5.24f) will still have

the order O(h). For instance, we were unable to obtain a better bound for the term

‖Πε(W
+
ε ) − Vε(W+

ε )‖0,∞ in (6.5.13) where we have applied (6.3.5) followed by an

inverse inequality.

Remark 6.5.1 If we replace the assumption λ < 4 ρ in Theorem 6.5.1 by

λ

1− λ δ2

< 4 (ρ− δ1) ,

where δ1 and δ2 are fixed positive constants such that δ1 < ρ and δ2 <
1
λ

, then

we can repeat the argument presented in Theorem 6.5.1 to show the following error

bound:

‖w −Wε‖2
L∞(0,T ;L2(Ω)) + ‖z − Zε‖2

L∞(0,T ;L2(Ω))

+ ‖w −W+
ε ‖2

L2(0,T ;H1(Ω)) + ‖z − Z+
ε ‖2

L2(0,T ;H1(Ω))

≤ C(δ−1
1 , δ−1

2 )
(
h+ ∆t+ ε2 + ‖∇(I − πh)w‖L2(ΩT ) + ‖∇(I − πh)z‖L2(ΩT )

)
,

which is of order O(h+ ∆t+ ε2) if w , z ∈ L2(0, T ;H2(Ω)).

6.6 Long time behaviour

This section is devoted to an investigation of the long time behaviour of the solutions

of (Q). Aranson et al. [4] have shown from linear stability theory that the condition

µ > ρ is necessary to have size segregation. Thereafter, Galiano et al. [34] have
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shown that the condition µ > ρ need not to be sufficient. Namely, they showed that

for parameter values of µ , ρ and λ chosen such that µ > ρ and

ρ λ >
µ2 L4

8 (L2 + 1)
, (6.6.1)

the solutions, w and z , converge as time tends to infinity to the constant steady-state

solutions given, respectively, by

w̄ =
1

L

∫ L

0

w0(x) dx and z̄ =
µ

L

∫ L

0

w0(x) dx .

We actually believe that the analysis presented by Galiano et al. [34], is not suf-

ficient to conclude that the solutions converges to constant steady-state solutions.

In particular, we believe that the application of the Grönwall lemma that has been

used by Galiano et al. in the last step of the proof of Theorem 1.3, in their work

in [34], is wrong. We see counterexamples later on in this section.

In what follows, we revisit the results of Galiano et al. [34] (Section 4). We

modify the proof of Theorem 1.3, in [34], to obtain an estimate that in some sense

explains the long time behaviour of the solutions of (Q). Alternatively to the ap-

proach in [34], our analysis relies on similar techniques to that shown previously in

Section 4.4 where we exploit the regularization introduced in Section 6.2. We also

see that the use of an optimal Poincaré inequality results in an improved condition

to (6.6.1). At the end of this section, we comment on the wrong use of the Grönwall

lemma in [34] by provision of a counterexample.

First, we note from the Poincaré inequality that for all η ∈ H1(Ω) such that
∫
− η = 0

we have

‖η‖2
0 ≤ Cp |η|21 .

For the analysis that follows, it is important to be as precise as possible about the

constant “Cp” in the above inequality. With this in mind we note the following

lemma:
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Lemma 6.6.1 Let Ω := (0, L) ⊂ R . Then

‖u‖2
0 ≤ L2

π2 |u|21 , (6.6.2)

for all u ∈ H1(Ω) satisfying

∫ L

0

u(x) dx = 0 .

Proof : See the proof of Lemma 2.1 in Bebendorf [14] . 2

Theorem 6.6.2 Let ρ , λ > 0 and µ ≥ 0 and let w0, z0 ∈ H1(Ω) with |w0(·)| ≤ 1

a.e. in Ω . Then for any T > 0 there exists a weak solution {w, z} of (1.2.1a)-(1.2.1d)

satisfying (6.4.2a)-(6.4.2c), (6.4.11a,b) and that
∫
− w =

∫
− w0 for a.e. t ∈ (0, T ) .

Furthermore, if |w0| ≤ l in Ω for some l < 1, µ
∫
− w0 =

∫
− z0 and

ρ λ >
µ2 L4

4 π2 (L2 + π2)
, (6.6.3)

then there exist C0(w0, z0) ≥ 0 and δ1 , δ2 > 0 , depend on the parameters ρ , λ , µ

and L , such that ∫ T

0

‖w −
∫
− w0‖2

0 dt ≤ C0

λ δ1

(
1− e−δ1 T

)
,∫ T

0

‖z −
∫
− z0‖2

0 dt ≤ C0

δ2

(
1− e−δ2 T

)
.

(6.6.4)

Proof : The existence follows from Theorem 6.4.2. As µ
∫
− w0 =

∫
− z0 , we easily

obtain from (6.4.11a,b) that for a.e. t ∈ (0, T )

µ

∫
− w(t) = µ

∫
− w0 =

∫
− z0 =

∫
− z(t) . (6.6.5)

To show the result (6.6.4), we need to introduce a simple modification on the regu-

larized function Φε(s). On noting the assumption on w0, we define for ε ∈ (0, 1− l)

the twice continuously differentiable function Φ̃ε : [−1, 1]→ R given by

Φ̃ε(s) :=



λ
2

[
(1 + s) ln( 1+s

1+
∫
− w0 ) + 1

2 ε
(1− s)2 + (1− s) ln( ε

1−
∫
− w0 )− ε

2

]
if 1− ε ≤ s ≤ 1 ,

λ
2

[
(1 + s) ln( 1+s

1+
∫
− w0 ) + (1− s) ln( 1−s

1−
∫
− w0 )

]
if |s| ≤ 1− ε ,

λ
2

[
(1− s) ln( 1−s

1−
∫
− w0 ) + 1

2 ε
(1 + s)2 + (1 + s) ln( ε

1+
∫
− w0 )− ε

2

]
if − 1 ≤ s ≤ ε− 1 ;

(6.6.6a)
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with

Φ̃′ε(s) = Φ′ε(s) + λ
2

ln(
1−
∫
− w0

1+
∫
− w0 ) , (6.6.6b)

and

Φ̃′′ε(s) = Φ′′ε(s) . (6.6.6c)

It is easily established from (6.6.6a)-(6.6.6c), (6.2.2), (6.2.5) and the assumption on

w0 that for any ε ∈ (0, 1− l)

Φ̃ε(s) = Φ̃ε(
∫
− w0) + (s−

∫
− w0) Φ̃′ε(

∫
− w0) + 1

2
(s−

∫
− w0)2 Φ′′ε(ξ)

≥ λ
2

(s−
∫
− w0)2 . (6.6.7)

Now, choosing η ≡ Φ̃′ε(w) ∈ L2(0, T ;H1(Ω)) in (6.4.11a) and η ≡ z −
∫
− z0 ∈

L2(0, T ;H1(Ω)) in (6.4.11b) yields after summing the resulting equations and noting

(6.1.2) that(
Φ̃ε(w(T )), 1

)
+ 1

2
‖z(T )−

∫
− z0‖2

0 +

∫ T

0

[
ρ (Φ′′ε(w)∇w,∇w) + |z|21

]
dt

=
(

Φ̃ε(w
0), 1

)
+ 1

2
‖z0 −

∫
− z0‖2

0 + λ

∫ T

0

( [V(w) Φ′′ε(w)− 1]∇w,∇z) dt

+

∫ T

0

(
µw − z , z −

∫
− z0

)
dt . (6.6.8)

We use (6.2.5) and Lemma 6.6.1 and note (6.6.5) to obtain that

ρ (Φ′′ε(w)∇w,∇w) + |z|21 ≥ ρ λ |w|21 + |z|21

≥ π2ρ λ
L2 ‖w −

∫
− w0‖2

0 + π2

L2 ‖z −
∫
− z0‖2

0 . (6.6.9)

It also follows from (6.6.5), the Cauchy-Schwarz inequality and the Young’s inequal-

ity for any δ > 0 that

(
µw − z , z −

∫
− z0

)
= µ

(
w −

∫
− w0 , z −

∫
− z0

)
− ‖z −

∫
− z0‖2

0

≤ µ ‖w −
∫
− w0‖0 ‖z −

∫
− z0‖0 − ‖z −

∫
− z0‖2

0

≤ δ
2
‖w −

∫
− w0‖2

0 + (µ
2

2 δ
− 1) ‖z −

∫
− z0‖2

0 . (6.6.10)
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Combining (6.6.8)-(6.6.10) and noting (6.6.7) leads to

λ
2
‖w(T )−

∫
− w0‖2

0 + 1
2
‖z(T )−

∫
− z0‖2

0 ≤
(

Φ̃ε(w
0), 1

)
+ 1

2
‖z0 −

∫
− z0‖2

0

+
(
δ
2
− π2ρ λ

L2

)∫ T

0

‖w −
∫
− w0‖2

0 dt +
(
µ2

2 δ
− L2+π2

L2

)∫ T

0

‖z −
∫
− z0‖2

0 dt

+ λ

∫ T

0

‖V(w) Φ′′ε(w)− 1‖0,∞ |w|1 |z|1 dt . (6.6.11)

By letting ε→ 0 , we infer from (6.6.11) that

λ ‖w(T )−
∫
− w0‖2

0 + ‖z(T )−
∫
− z0‖2

0

≤ C0 − λ δ1

∫ T

0

‖w −
∫
− w0‖2

0 dt − δ2

∫ T

0

‖z −
∫
− z0‖2

0 dt , (6.6.12)

where

C0 = λ
(

(1 + w0) ln( 1+w0

1+
∫
− w0 ) + (1− w0) ln( 1−w0

1−
∫
− w0 ) , 1

)
+ ‖z0 −

∫
− z0‖2

0 .

and

δ1 =
2 π2ρ

L2
− δ

λ
, δ2 =

2 (L2 + π2)

L2
− µ2

δ
.

On choosing

µ2L2

2 (L2 + π2)
< δ <

2π2ρ λ

L2
,

we clearly have δ1 , δ2 > 0 . We note that the above choice of δ is possible due to

the condition (6.6.3). Now, we have from (6.6.12) that

‖w(T )−
∫
− w0‖2

0 ≤ C0

λ
− δ1

∫ T

0

‖w −
∫
− w0‖2

0 dt ,

‖z(T )−
∫
− z0‖2

0 ≤ C0 − δ2

∫ T

0

‖z −
∫
− z0‖2

0 dt .

(6.6.13)

Thus, the desired result (6.6.4) follows easily from (6.6.13). 2

Remark 6.6.1 If one were to assume that the integral form of the Grönwall lemma

(2.1.5) was applicable on the inequalities in (6.6.13), one would conclude that

‖w(T )−
∫
− w0‖2

0 ≤ C0

λ
e−δ1 T ,

‖z(T )−
∫
− z0‖2

0 ≤ C0 e
−δ2 T ,

(6.6.14)



6.6. Long time behaviour 145

which would give exponential decay of the solutions to steady-state constants as

T → ∞ . In fact, this is not accurate as the integral form of the Grönwall lemma

does not consider negative coefficient of the integral in the right hand side (see the

discussion in Emmrich [31]). Based on such a wrong use of the Grönwall lemma,

similar results to (6.6.14) has been established incorrectly by Galiano et al. in

[34]. In contrast to [34], in the following example we show that (6.6.13) does not

necessarily imply (6.6.14). In other words, we shall show that the non-negativity of

the function v(s) in (2.1.5) is crucial.

Example 6.6.1 Consider the following L∞(0, T ) function

u(t) =


e−1.1 t if 0 ≤ t ≤ r,

e−1.1 r if r ≤ t ≤ 13 r
11
,

e−t if t > 13 r
11
,

where r ≥ 1 is fixed. We calculate for a.e. t ∈ (0, T )

f(t) := u(t) +

∫ t

0

u(s) ds .

For 0 ≤ t ≤ r , we note that f ′(t) = u′(t)+u(t) = −0.1 e−1.1 t < 0 , so f in monotone

decreasing. This implies u(t) ≤ u(0) = 1 . In fact,

u(t) +

∫ t

0

u(s) ds = e−1.1 t +

∫ t

0

e−1.1 s ds

= e−1.1 t + 10
11

( 1− e−1.1 t)

= 1
11

( 10 + e−1.1 t) ≤ 1 . (6.6.15)

For r ≤ t ≤ 13 r
11

, we have that f ′(t) = e−1.1 r > 0 and f increases linearly. In fact,

u(t) +

∫ t

0

u(s) ds = e−1.1 r +

∫ r

0

e−1.1 s ds +

∫ t

r

e−1.1 r ds

= e−1.1 r + 10
11

( 1− e−1.1 r) + e−1.1 r(t− r)

≤ e−1.1 r + 10
11

( 1− e−1.1 r) + 2 r
11
e−1.1 r

= 1+2 r
11

e−1.1 r + 10
11
≤ 1 . (6.6.16)
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For t > 13 r
11

, f ′(t) = 0 and

u(t) +

∫ t

0

u(s) ds = e−t +

∫ r

0

e−1.1 s ds +

∫ 13 r
11

r

e−1.1 r ds +

∫ t

13 r
11

e−s ds

= 10
11

( 1− e−1.1 r) + 2 r
11
e−1.1 r + e

−13 r
11

< 10
11

( 1− e−1.1 r) + 2 r
11
e−1.1 r + e−1.1 r

= 1+2 r
11

e−1.1 r + 10
11
≤ 1 . (6.6.17)

Thus we conclude from (6.6.15), (6.6.16) and (6.6.17) that for a.e. t ∈ (0, T )

u(t) +

∫ t

0

u(s) ds ≤ u(0)

and yet u(t) � u(0) e−t in the range t ∈ (11 r
10
, 13 r

11
) .

Although the above example shows that (6.6.14) is not generally valid, the con-

vergence of u(t) to zero is satisfied since we have for t > 13 r
11

that

u(t) = e−t −→ 0 as t→∞ .

We also note that choosing r larger delays the exponential decay of u(t).

Further, the following example indicates that inequalities such as (6.6.13) do not

necessarily lead to the convergence of w and z to their mean integrals.

Example 6.6.2 Define u to be the L∞(0, T ) function given by

u(t) =


C for t ∈ [2n , 2n + 2−n] , n ∈ N,

0 otherwise.

We have for any t > 0 that

u(t) +

∫ t

0

u(s) ds ≤ C +

∫ ∞
0

u(s) ds = C + C

∞∑
n=1

2−n = 2C ,

which is identical to (6.6.13). But the function u(t) does not converge to 0 as t→∞.

We close the discussion on Theorem 6.6.2 by giving the following remark:
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Remark 6.6.2 We note that the stability condition (6.6.3) requires the domain L

to be sufficiently small. On the other hand, the linear stability study of the linearized

problem of (Q), presented by Aranson et al. [4], reveals that for µ > ρ long-wave

perturbations are unstable. In fact, it has been shown in [4] that perturbations of

the form eσ t+i k x, where σ ∈ R is the growth rate and k ∈ R is the wavenumber of

the perturbation, are unstable only if µ > ρ and

k2 <
µ− ρ
λ+ ρ

.

Thus, as observed in [34], for k = 2π
L

the condition becomes

L2 > 4π2 λ+ ρ

µ− ρ
. (6.6.18)

It can be easily checked that the condition (6.6.3) does not allow (6.6.18) to be

satisfied. This indicates that segregation is more likely if the length L of the domain

is large enough. In fact, it is pointed out in [3] that the segregation phenomena is

expected to occur in a long rotating drum.

For further discussion, we consider the linearized equations of (1.2.1a)-(1.2.1b)

about the origin with appropriate boundary conditions and initial data:

∂w

∂t
= ∇ · ( ρ∇w −∇z ) , (6.6.19a)

∂z

∂t
= ∇ · (∇z + λ∇w ) + µw − z . (6.6.19b)

Multiplying the equations (6.6.19a,b) by λ (w −
∫
− w0) and (z −

∫
− z0) respectively,

integrating by parts over Ω and summing the resulting equations yields that

d

dt

(
λ
2
||w −

∫
− w0||20 + 1

2
||z −

∫
− z0||20

)
+ ρ λ |w|21 + |z|21 =

(
µw − z, z −

∫
− z0

)
.

(6.6.20)

Assuming that µ
∫
− w0 =

∫
− z0 and noting the second inequality in (6.6.9) and (6.6.10)

gives, under the condition (6.6.3), that

d

dt

(
λ ||w −

∫
− w0||20 + ||z −

∫
− z0||20

)
≤ −λ δ1 ||w −

∫
− w0||20 − δ2 ||z −

∫
− z0||20

≤ −δ∗
(
λ ||w −

∫
− w0||20 + ||z −

∫
− z0||20

)
, (6.6.21)
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where δ1 and δ2 are the same parameters defined in Theorem 6.6.2 and δ∗ =

min {δ1 , δ2} > 0. Multiplying (6.6.21) by eδ∗t and integrating over (0, T ) leads

to

λ ||w(T )−
∫
− w0||20 + ||z(T )−

∫
− z0||20 ≤ C∗ e

−δ∗T , (6.6.22)

where C∗ = λ ||w0−
∫
− w0||20 + ||z0−

∫
− z0||20. Thus, under the assumption (6.6.3), we

conclude that the linearized solution {w, z} decays exponentially fast towards the

stationary solution {
∫
− w0,

∫
− z0} in L2-norm.

From the above linear stability discussion, one expects if the condition (6.6.3)

holds we will have non-growth solutions of (Q). Actually, in agreement with the

finite difference experiments in [34], our numerical simulations in the next chapter

show that under the conditions of Theorem 6.6.2 the finite element approximations

of w and z converge to the mean integrals of the initial data w0 and z0 respectively.

However, this does not contradict Example 6.6.2 as there might be alternative math-

ematical techniques that can be used to treat the proof of Theorem 6.6.2 differently

in order to conclude an explicit convergence of the solutions w and z to steady-state

constants.

The following remark is related to the boundary conditions of problem (Q):

Remark 6.6.3 Our analysis of problem (Q) also works if we consider, instead of

(1.2.1c), the periodic boundary conditions in (6.1.4). In this case, the analysis will

be exactly the same except we only need to replace the finite element space Sh by

the space Shp which is generated by the basis functions {ϕp,j}J−1
0 defined by:

ϕp,0 := ϕ0 + ϕJ and ϕp,j := ϕj for j = 1, · · · , J − 1 ,

where {ϕj}J0 is the canonical basis associated with Sh. The lumped mass matrix

and the stiffness matrix corresponding to the spaces Sh and Shp can be found in

Appendix A.2.



Chapter 7

The axial segregation model:

Numerical experiments

In this chapter we shall perform some numerical experiments for problem (Q). We

first state a practical algorithm for solving the approximate problem (Qh,∆t
ε ). Then

we establish and discuss some numerical solutions. As in Chapter 5, the programs

are written in Fortran, see Appendix B.2, and the graphs are generated in Matlab.

7.1 Numerical results

To solve the resulting system of nonlinear algebraic equations, for {W n
ε , Z

n
ε }, arising

at each time level from the approximation (6.3.6a)-(6.3.6b), we use the following

iterative approach:

Given W n,0
ε ∈ Sh, for k ≥ 1 find {W n,k

ε , Zn,k
ε } ∈ Sh × Sh such that for all χ ∈ Sh(

Wn,k
ε −Wn−1

ε

∆tn
, χ
)h

+ ρ
(
∇W n,k

ε ,∇χ
)
− λ

(
Πε(W

n,k−1
ε )∇Zn,k

ε ,∇χ
)

= 0 , (7.1.1a)(
Zn,kε −Zn−1

ε

∆tn
, χ
)h

+
(
Zn,k
ε , χ

)h
+
(
∇Zn,k

ε ,∇χ
)

+ λ
(
∇W n,k

ε ,∇χ
)

= µ
(
θW n,k

ε + (1− θ)W n−1
ε , χ

)h
. (7.1.1b)

For the iterative algorithm (7.1.1a)-(7.1.1b), we start with W 0
ε ≡ πhw0 and Z0

ε ≡

πhz0, and we set, for n ≥ 1, W n,0
ε ≡ W n−1

ε and Zn,0
ε ≡ Zn−1

ε . We also choose

149
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TOL = 1× 10−7 and adopt the stopping criteria∣∣W n,k
ε −W n,k−1

ε

∣∣
0,∞ < TOL and

∣∣Zn,k
ε − Zn,k−1

ε

∣∣
0,∞ < TOL. (7.1.2)

Hence, for k satisfying (7.1.2), we set W n
ε ≡ W n,k

ε and Zn
ε ≡ Zn,k

ε .

Algebraically, the existence of the solutions of the system (7.1.1a)-(7.1.1b) can

be easily investigated on noting the fact that for a square linear system existence is

equivalent to uniqueness. Practically, to solve the above scheme at each iteration,

we use the basis functions of the space Sh to construct a linear system that can

be solved efficiently through linear programming. Later on, in this chapter, we

perform some experiments for discrete periodic boundary conditions; that is when

we consider the space Shp , instead of Sh, in the above iterative algorithm. Although

we have no convergence proof for the iteration (7.1.1a)-(7.1.1b), good convergence

properties have been observed in practice.

Unless otherwise stated, in all simulations we consider a uniform partitioning

of Ω = (0, L), with mesh points xj = j h, j = 0, · · · , J , and uniform time steps

tn = n∆t, n = 1, · · · , N . We take J = 512 ( i.e. h = L
512

), N = 1000 ( i.e.

∆t = T
1000

) and ε = 1 × 10−9. We also consider, as in [4] and [34], the initial

conditions w0(x) = ζ cos(k x) and z0(x) = 0 for real numbers ζ and k.

For the first experiment we took the parameters λ = 2, ρ = 1, µ = 2, θ =

1, L = 5 and T = 0.5 with initial preseparated state determined by ζ = 0.85 and

k = 6π
L

. The numerical solutions are plotted in Figure 7.1(a)-(b) at several times.

Since the parameters satisfy the condition (6.6.3), one expects non-growth solutions.

In agreement with what we expect, the solutions in Figure 7.1(a)-(b) decay to zero

as t increases. The overall description of the numerical solutions, W n
ε and Zn

ε , n ≥ 1,

can be seen in Figure 7.1(c)-(d). Obviously, the granular materials do not segregate.

To see segregation behaviour, we kept all parameters the same as the previous

experiment, except L = 35 and T = 50. The solutions are plotted in Figure 7.2(a)-

(b) at several times, and fully described in Figure 7.2(c)-(d). In this experiment,

the length L of the drum was large enough to allow the grains to segregate leading

to a stable array of concentration bands; see Figure 7.2(c).
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).
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(c) Numerical approximation of w(x, t).
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(d) Numerical approximation of z(x, t).

Figure 7.1: Numerical solution of problem (Q). The parameters are: λ = 2, ρ =

1, µ = 2, θ = 1, L = 5, T = 0.5, N = 1000, ζ = 0.85 and k = 6π
L

. In (a) and

(b) the numerical solutions are given at several times. In (c) and (d) the numerical

solutions are presented in the (x, t)-plane for 0 ≤ x ≤ L and 0 ≤ t ≤ T .
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t)
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(c) Numerical approximation of w(x, t).
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(d) Numerical approximation of z(x, t).

Figure 7.2: Numerical solution of problem (Q). The parameters are: λ = 2, ρ =

1, µ = 2, θ = 1, L = 35, T = 50, N = 1000, ζ = 0.85 and k = 6π
L

. In (a) and

(b) the numerical solutions are given at several times. In (c) and (d) the numerical

solutions are presented in the (x, t)-plane.
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To see another interesting behaviour, we repeat the above experiment with the

same parameters, except k = 4π
L

, L = 20 and T = 500. The solutions are plotted

in Figure 7.3(a)-(b). It can be seen from Figure 7.3(a) that the initial perturbation

decays and after long time the separation starts to occur again obtaining well-

segregated bands.
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.3: Numerical solution of problem (Q) in the (x, t)-plane. The parameters

are: λ = 2, ρ = 1, µ = 2, θ = 1, L = 20, T = 500, N = 1000, ζ = 0.85 and k = 4π
L

.

We also solved the iteration (7.1.1a)-(7.1.1b) for the following parameters: λ =

100, ρ = 0.5, µ = 40, θ = 1, ζ = 0.95 and k = 1.8. In Figure 7.4 (a) and

(b) respectively, the solutions W n
ε and Zn

ε are plotted for L = 2 and 0 ≤ t ≤

5. The resulting convergence behaviour of the solutions, in Figure 7.4(a)-(b), is

expected from the discussion on Theorem 6.6.2. In Figure 7.5(a)-(b), we did the

same experiment but for L = 60 and 0 ≤ t ≤ 8. In this case, the initial perturbation

produces decaying standing waves which are replaced later by ten segregated bands,

see Figure 7.5(a).
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.4: Numerical solution of problem (Q) in the (x, t)-plane. The parameters

are: λ = 100, ρ = 0.5, µ = 40, θ = 1, L = 2, T = 5, N = 1000, ζ = 0.95 and

k = 1.8.
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.5: Numerical solution of problem (Q) in the (x, t)-plane. The parameters

are: λ = 100, ρ = 0.5, µ = 40, θ = 1, L = 60, T = 8, N = 1000, ζ = 0.95 and

k = 1.8.
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In Figure 7.6(a)-(b) we repeated an experiment performed in [34]. We took

λ = 2, ρ = 2, µ = 3, θ = 1, ζ = 0.8 and k = 4π
L

with L = 30, T = 4000 and

N = 10000. The same experiment, with L = 25 and T = 1000, is performed in

Figure 7.7(a)-(b). Obviously, the solutions follow different behaviour than those in

Figure 7.6(a)-(b). In fact, both the length of the drum, L, and the wavenumber of

the initial state, k, have an influence on the dynamics of the materials. For instance,

we note that increasing the length of the drum allows more bands to emerge; see

Figure 7.8(a)-(b). We also note that in the early stages of evolution the solutions

in Figure 7.9(a)-(b) have different families of standing waves than Figure 7.7(a)-(b);

but later the solutions become identical. In agreement with the linear stability anal-

ysis in [4], we found experimentally that the condition µ > ρ needs to be satisfied in

order to have size segregation. In this respect, we ran many experiments for different

choices of ρ and µ such that µ ≤ ρ and never observed segregation behaviour.
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.6: Numerical solution of problem (Q) in the (x, t)-plane. The parameters

are: λ = 2, ρ = 2, µ = 3, θ = 1, L = 30, T = 4000, N = 10000, ζ = 0.8 and

k = 4π
L

.
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.7: Numerical solution of problem (Q) in the (x, t)-plane. The parameters

are: λ = 2, ρ = 2, µ = 3, θ = 1, L = 25, T = 1000, N = 10000, ζ = 0.8 and

k = 4π
L

.

 

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.8: Numerical solution of problem (Q) in the (x, t)-plane. The parameters

are: λ = 2, ρ = 2, µ = 3, θ = 1, L = 50, T = 1000, N = 10000, ζ = 0.8 and

k = 8π
L

.
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.9: Numerical solution of problem (Q) in the (x, t)-plane. The parameters

are: λ = 2, ρ = 2, µ = 3, θ = 1, L = 25, T = 1000, N = 10000, ζ = 0.8 and

k = 8π
L

.

As mentioned in Remark 6.6.3, the analysis presented in Chapter 6 also works

for periodic boundary conditions. In order to compare the influence of the boundary

conditions on the dynamics of the granular materials, we have repeated some of the

above experiments with the consideration of discrete periodic boundary conditions.

Figure 7.10 shows the numerical solutions corresponding to Figure 7.5. The effect

of the periodic boundary conditions is obvious. Repeating the experiment in Figure

7.10 with double size domain, i.e. L = 120, we obtain periodic solutions which are

identical to the solutions in Figure 7.5 for 60 ≤ x ≤ 120. The influence of the

periodic boundary conditions can be also seen in Figure 7.11 – Figure 7.13 where

the solutions corresponding to Figure 7.7 – Figure 7.9 are plotted respectively. As

indicated in previous experiment, the solutions in Figure 7.12 for 25 ≤ x ≤ 50

behave similarly to the solutions in Figure 7.7. We also repeated the experiments

in Figure 7.2 and Figure 7.6 with periodic boundary conditions, already noting that

the Neumann boundary condition solution appears to be periodic. We found the

results are graphically identical. We indicate that our numerical results for periodic
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boundary conditions are in qualitative agreement with the numerical experimental

observations in [34].
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.10: As in Figure 7.5 but for periodic boundary conditions.
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(a) Numerical approximation of w(x, t).

 

 

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Numerical approximation of z(x, t).

Figure 7.11: As in Figure 7.7 but for periodic boundary conditions.
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.12: As in Figure 7.8 but for periodic boundary conditions.
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(a) Numerical approximation of w(x, t).
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(b) Numerical approximation of z(x, t).

Figure 7.13: As in Figure 7.9 but for periodic boundary conditions.
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Finally, as an attempt to illustrate how the parameter θ effects the behaviour

of the numerical solutions obtained from (7.1.1a)-(7.1.1b), we have repeated the

experiment in Figure 7.12 for different values of θ. We remark that the numerical

solutions behave differently in the early stages of evolution and in the first stages

of the appearance of the stationary bands; see Figure 7.14. As no exact solution to

(Q) is known, we can not decide which value of the parameter θ is better.
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(a) Numerical approximation of w(x, t).
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(c) Numerical approximation of w(x, t).
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Figure 7.14: The behaviour of w in the (x, t)-plane. The same experiment as in

Figure 7.12(a); except (a) θ = 0, (b) θ = 0.25, (c) θ = 0.50 and (d) θ = 0.75 .



Chapter 8

Conclusions

We studied two strongly coupled cross diffusion systems using a finite element

method. The first system, (P), is a population model which represents the move-

ment of two interacting cell populations in d ≤ 3 space dimensions. The second

system, (Q), is proposed in one space dimension to model the axial segregation of

two kinds of granular materials. In the first chapter of the thesis we introduced the

models (P) and (Q) and defined the research objectives. Our study of the model

(P) was executed in four chapters, Chapter 2, 3, 4 and 5, and the rest of the thesis

was devoted to the study of the model (Q).

It was shown using finite element techniques that there exists a global weak so-

lution of the population system (P). A technical replacement was the key to our

study of the system where we considered a truncated alternative problem to (P).

The singular nature of (P) in R≤0 has been treated by employing an appropriate

regularization procedure. A well defined entropy inequality of the regularized prob-

lem has been derived. A fully discrete finite element approximation to (P) has been

introduced. The existence of the fully discrete solutions has been shown for suffi-

ciently small time discretization parameter. An analogous discrete inequality has

been obtained and some stability bounds on the approximations have been estab-

lished. By using sequential compactness arguments, the convergence of the finite

element approximate problem has been studied and existence of a non-negative weak
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solution for (P) was concluded. Further regularity results have been shown for a

“fully” truncated alternative problem to (P). In the absence of the reaction terms,

some other mathematical results for the model (P) have been discussed. At the end

of our study of the population model (P), we successfully performed some numerical

experiments in one space dimension that support the established theoretical results.

The mathematical analysis used in proving the existence results for (P) has

been briefly adapted to show that there exists a global weak solution of the axial

segregation model (Q). Some uniqueness results have been discussed. An error

bound between the fully discrete and weak solutions of (Q) has been proved. The

long time behaviour of the solutions of (Q) has been investigated. In this respect,

a major hole in the work of others has been uncoverd and discussed. Finally, the

established theoretical results for the model (Q) have been illustrated by performing

some numerical experiments.

Although the axial segregation model (Q) is intrinsically one-dimensional in

space, our mathematical analysis of the model can be naturally extended for d = 2

and 3. However, as the continuous embedding H1(Ω) ↪→ L∞(Ω) holds only for d = 1,

our uniqueness and error bound analysis of (Q) is not valid for multi-dimensional

spaces; see (6.4.28) and (6.5.15).

Additional regularity, more than we have been able to prove, was required to

complete the uniqueness proof and error bound analysis for problem (Q). Unfortu-

nately, we have been unable to prove the regularity requirement which was essential

to establish these results. However, it might be possible and this is left open for

future investigation. With regard to the problem (P), a considerable idea for ob-

taining uniqueness results is by mimicking the uniqueness study presented for the

model (Q). In this direction, and due to the structure of the model (P), the analysis

will be faced in addition to the regularity requirement by other technical obstacles.

This is also left as an open problem for future work.

Numerically, there are remaining issues that can be investigated but because we

have limited time we leave them for future study. For example, one could try to
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perform numerical experiments for the population model in higher space dimensions.

We were unable to numerically verify the fully discrete error bound for (Q) because

no exact solution is known. However, experimental work that can be done in this

direction is comparing the computed solution on a coarse mesh with that on a fine

mesh. We also might be able to improve the error estimate by adapting the ideas

in Barrett and Blowey [8]. We leave this for future investigation.

In Section 6.6, a note on the use of the Grönwall lemma in [34] was reported. One

of the authors of [34] with others have published another paper for studying the long

time behaviour of solutions of the viscous quantum hydrodynamic equations, see [37].

The analysis in that paper was mainly based on using the Grönwall lemma, similarly

to the wrong application discussed in Section 6.6, to conclude the exponential decay

of the solutions. It would be of interest to investigate the consequences of this

analytical mistake.

The mathematical work in this thesis can be used to analyse other cross diffusion

systems. For example, following similar arguments of replacement to that for (P),

one can improve the analysis presented in [21] and [9]. One could also try to adapt

the techniques employed in this thesis to study the cross diffusion models in [45]

and [39].
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Appendix A

Basic and auxiliary results

A.1 Basic results

Theorem A.1.1 (Schauder’s theorem) Let B be a normed space and let K be

a non-empty convex compact set of B. If f : K → K is a continuous function then

f has at least one fixed point (see [6] page 215).

Theorem A.1.2 (Lax-Milgram) LetH be a Hilbert space and a(·, ·) : H×H → R

be a continuous bilinear form which is coercive, i.e., there exists α > 0 such that

a(v, v) ≥ α ||v||2H ∀v ∈ H.

Then for every F ∈ H ′ there exists a unique u ∈ H such that

a(u, v) = F (v) ∀v ∈ H.

Furthermore, the a priori estimate

||u||H ≤
1

α
||F ||H′

holds (see, e.g., [59] page 20 and [32] page 83).

Theorem A.1.3 (generalized Lax-Milgram) Let V and W be reflexive Banach
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spaces. Further let a(·, ·) : V ×W → R be a continuous bilinear form such that

sup
v∈V

a(v, w) > 0 ∀ 0 6= w ∈ W,

inf
0 6=v∈V

sup
06=w∈W

a(v, w)

||v||V ||w||W
≥ α,

where α is a positive constant. Then for every F ∈ W ′ there exists a unique u ∈ V

such that

a(u,w) = F (w) ∀w ∈ W.

Furthermore, the following a priori estimate holds:

||u||V ≤
1

α
||F ||W ′ .

For a proof and applications of the theorem, see for example [59] and [32].

Theorem A.1.4 (Gilfand Triple) Let W be a Banach space continuously and

densely embedded in the Hilbert space H. Then

W ↪→ H ≡ H ′ ↪→ W ′, H ′ is dense in W ′

and we can write

〈f, w〉W ′×W = (f, w)H ∀ f ∈ H , w ∈ W.

( See [47], page 103–105).

Definition A.1.5 (Strong convergence) Let X be a normed vector space. Then

xn → x strongly in X if and only if

||xn − x||X → 0 as n→∞ .

Note that we use “→ ” to denote strong convergence.

Definition A.1.6 (Weak convergence) Let X be a Banach space. Then xn ⇀ x

weakly in X if and only if

〈f, xn〉 → 〈f, x〉 as n→∞ for every f ∈ X ′,

where 〈·, ·〉 is the duality pairing between X and X ′. Note that we use “ ⇀ ” to

denote weak convergence.
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Definition A.1.7 (Weak-star convergence) Let X be a Banach space. Then

fn ⇀
∗ f weakly-star in X ′ if and only if

〈fn, x〉 → 〈f, x〉 as n→∞ for every x ∈ X,

where 〈·, ·〉 is the duality pairing between X and X ′. Note that we use “ ⇀∗ ” to

denote weak-star convergence.

Theorem A.1.8 (Weak and weak-star convergence properties) Let X be a

Banach space. The following statements hold:

( i ) If xn → x in X then xn ⇀ x in X.

( ii ) Weak limits are unique, and weakly convergent sequences are bounded.

(iii) Weak-star limits are unique, and weakly-star convergent sequences are bounded.

(iv) If xn ⇀ x in X then ||x||X ≤ lim inf
n→∞

||xn||X .

The proof of the above results can be found, for example, in [58] page 102–105.

Theorem A.1.9 (Weak compactness) Let X be a reflexive Banach space, {xn}

a bounded sequence in X. Then it is possible to extract from {xn} a subsequence

which converges weakly in X ( see [26], page 289).

Theorem A.1.10 (Weak-star compactness) Let X be a separable Banach space

and X ′ its dual. Then from every bounded sequence in X ′, it is possible to extract

a subsequence which is weakly-star convergent in X ′ ( see [26], page 291).

Theorem A.1.11 (Convergence) If a sequence un → u in Lp(Ω), (1 ≤ p < ∞),

then there is a subsequence that converges pointwise to u almost everywhere in Ω,

(see, e.g., [58] page 27).

Theorem A.1.12 (Sobolev spaces results) Let m be a non-negative integer and

let 1 ≤ p ≤ ∞. The Sobolev spaces Wm,p(Ω) equipped with the associated norms

satisfy the following:

( i ) Wm,p(Ω) is a Banach space ( see [57], page 206).

(ii) Wm,p(Ω) is separable if p <∞ ( see [57], page 206).

(iii) Wm,p(Ω) is reflexive if 1 < p <∞ ( see [1], page 47).
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Theorem A.1.13 (Sobolev embedding results) Suppose that Ω is a bounded

domain. For non-negative integers m and k such that m ≥ k , we have

Wm,q(Ω) ↪→ W k,p(Ω)

whenever 1 ≤ p ≤ q ≤ ∞ ( see, e.g., [17] page 32).

If the domain Ω has a Lipschitz boundary, there are more subtle relations among

the Sobolev spaces. For instance, there are cases when k < m and p > q and the

above embedding is satisfied. In this direction, we refer to the Sobolev embedding

theorems in [1], [23] and [6].

Theorem A.1.14 (Time-Dependent spaces results) Let X be a Banach space

and let 1 ≤ p ≤ ∞. The Sobolev spaces Lp(0, T ;X) satisfy the following:

( i ) Lp(0, T ;X) is a Banach space ( see [46], page 114–116).

(ii) Lp(0, T ;X), (p <∞), is separable ⇔ X is separable ( see [46], page 118).

(iii) Lp(0, T ;X), (1 < p <∞), is reflexive ⇔ X is reflexive ( see [46], page 125).

Theorem A.1.15 (Time-Dependent spaces: embedding results) Let X, Y

be Banach spaces with X continuously embedded in Y . Then

Lq(0, T ;X) ↪→ Lp(0, T ;Y ), 1 ≤ p ≤ q ≤ ∞ .

( See, for example, [47] page 132).

Theorem A.1.16 (Density results)

( i ) Let Ω be an open bounded domain in Rd with a Lipschitz boundary ∂Ω. Let m

be a non-negative integer and 1 ≤ p <∞. Then C∞(Ω) is dense in Wm,p(Ω), (see,

e.g., [59] page 346).

(ii) Let X be a Banach space and 1 ≤ p < ∞. Then C∞([0, T ];X) is dense in

Lp(0, T ;X), (see [46], page 118).



A.2. Matrices 175

A.2 Matrices

Consider a uniform partitioning of Ω = (0, L) with mesh points xj = j h, j =

0, · · · , J . It can be easily seen that:

( i ) The lumped mass matrix, M̂ , and the stiffness matrix, K, corresponding to the

finite element space Sh are of order J + 1 and given by

M̂ = h



1
2

0 0 . . . 0

0 1 0
...

0
. . . . . . . . . 0

... 0 1 0

0 . . . 0 0 1
2


, K = 1

h



1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1


.

Therefore,

M̂−1K = 1
h2



2 −2 0 . . . 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 . . . 0 −2 2


.

(ii) The lumped mass matrix, M̂ , and the stiffness matrix, K, corresponding to the

finite element space Shp are of order J and given by

M̂ = h


1 0 . . . 0

0 1
. . .

...

...
. . . . . . 0

0 . . . 0 1


, K = 1

h



2 −1 0 . . . 0 −1

−1 2 −1
. . . 0

0
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0
. . . −1 2 −1

−1 0 . . . 0 −1 2


.

Therefore, M̂−1K = 1
h
K.
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Fortran programs

B.1 Solver for the population model

C One dimensional solver for the iteration scheme of problem (P_M)

C ---------------------------------------------------------------

PROGRAM POPULATION

implicit none

integer nmax,l_d_a

parameter (l_d_a=10,nmax=257)

integer i,n,k5,m,count,nloops,n_tot,p_loop,loop,

. i_max,info,nL,nR,j,k,i1,i2,even_odd,index,lda,

. ml,mu,nsub,msub,ipvt(2*nmax),job,i_count,fix

double precision u(1:nmax,1:2),unm(1:nmax,1:2),un(1:nmax,1:2),

. a(1:2*nmax,1:2*nmax),B(1:2*nmax),abd(l_d_a,1:2*nmax),

. mue(1:2,1:2),gamma(1:2),h,h2,time,len,t,tol,eps,epse,

. mb,me,dd,tau,diff,c,dF,d2F,Cross,v_L,v_R,mult,pi

character*30 datafile1,datafile2

character*1 number1

character*2 number2

character*3 lettert1,lettert2,number3

character*4 number4

C

C Declare the values of some characters (for printing results)

C

lettert1=’t1_’

lettert2=’t2_’

C

C Input some important variables from population.dat

C

C len = length of $Omega$

176
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C m = number of space steps

C t = final time

C n = number of time steps

C tol = tolerance level for iterative loop

C k5 = number of prints

C

open(1,status=’old’,file=’population.dat’)

read(1,*) len

read(1,*) m

read(1,*) t

read(1,*) n

read(1,*) tol

read(1,*) k5

close(1)

C

if (mod(n,k5).ne.0) then

print *, ’Enter k5 - must be a factor of n’

read(5,*) k5

end if

C

C Define some variables

C

C tau = time step

C h = space step

C count = current time step

C time = time level (time = 0, tau, 2tau, ... , t)

C nloops = number of iterations for each time step

C n_tot = total number of iterations for all time steps combined

C eps = the regularization parameter

C mb = the constant ’M’ in the truncated problem

C

tau=t/real(n)

print *,m,n,tol

h=len/real(m)

h2=h**2

count=0

time = 0.0D0

nloops=0

n_tot=0

pi=3.1415926535897932385

eps=1.0D-9

epse=1.0D+00/eps

mb=1.0D+00

C me=epse

C Choose the parameters of the model
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dd=1.0D+00

mue(1,1)=1.0D+00

mue(1,2)=1.0D+00

mue(2,1)=1.0D+00

mue(2,2)=1.0D+00

gamma(1)=1.0D+00

gamma(2)=1.0D+00

C Define and print the initial functions

nL=0

nR=m

open(10,status=’new’,file=’t1_0.dat’)

open(20,status=’new’,file=’t2_0.dat’)

do 10 i=1,nR-nL+1

u(i,1)=-0.2D+00*(real(i-1)*h)+1

u(i,2)=1.0D+00

write(10,*) u(i,1)

write(20,*) u(i,2)

10 continue

close(10)

close(20)

C

C For a band matrix, we define:

C ml = number of diagonals below the main diagonal

C mu = number of diagonals above the main diagonal

C

ml=3

mu=3

lda=2*ml+mu+1

C

C Set U^{1,0} = U^{0} , V^{1,0} = V^{0}

C un(.,1) = U^{n,k}, unm(.,1) = U^{n,k-1}

C un(.,2) = V^{n,k}, unm(.,2) = V^{n,k-1}

C

do 80 i=1,nR-nL+1

unm(i,1)=u(i,1)

unm(i,2)=u(i,2)

un(i,1)=u(i,1)

un(i,2)=u(i,2)

80 continue

C

C We start the print loop to print the results every n/k5 time steps

C

do 700 p_loop=1,k5

C

C We define the solve loop for each print
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C

do 800 loop=1,n/k5

C

C This is the beginning of the iterative loop

C Given U^{n-1}, V^{n-1}, U^{n,k-1} and V^{n,k-1} find U^{n,k} and V^{n,k}

C

200 nloops=nloops+1

job=0

C We now construct the matrix of the linear system

do 103 i=1,2*(nR-nL+1)

B(i)=0.0

do 102 j=1,2*(nR-nL+1)

A(i,j)=0.0

102 continue

do 104 j=1,l_d_a

abd(j,i) = 0.0

104 continue

103 continue

do 100 i=1,2*(nR-nL+1)

if (i.le.(nR-nL+1)) then

j=2

k=1

me=mb

else

j=1

k=2

me=epse

end if

i1=mod(i-1,nR-nL+1)+1

if (i.le.nR-nL+1) then

even_odd=1

else

even_odd=0

end if

if (i.gt.(nR-nL+1)) then

fix=-2

else

fix=0

end if

index=2*i1-even_odd

C

C We define the first equation of the iterative algorithm in terms of the

C nodal values

C
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if (i.le.(nR-nL+1)) then

C The row corresponding to the first nodal value of U^{n,k}

if (i1.eq.1) then

mult=2.0D+00

v_L=0.0D+00

v_R=mult*C(un(i1,k),un(i1+1,k),eps,me,dd)*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)-(tau*gamma(k))

. +(tau*mue(k,k)*(1.0D+00/d2F(unm(i1,k),eps,me)))

A(index,index+2)=A(index,index+2)-v_R

v_R=mult*(tau/h2)*Cross(un(i1,k),un(i1+1,k),eps,me)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k)-tau*(mue(k,j)

. *(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,j),eps,epse))))

else

C The row corresponding to the last nodal value of U^{n,k}

if (i1.eq.nR-nL+1) then

mult=2.0D+00

v_R=0.0D+00

v_L=mult*C(un(i1-1,k),un(i1,k),eps,me,dd)*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)-(tau*gamma(k))

. +(tau*mue(k,k)*(1.0D+00/d2F(unm(i1,k),eps,me)))

A(index,index-2)=A(index,index-2)-v_L

v_L=mult*(tau/h2)*Cross(un(i1-1,k),un(i1,k),eps,me)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

B(index)=(unm(i1,k)-tau*(mue(k,j)

. *(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,j),eps,epse))))

else

C The rows corresponding to the rest of the nodal values of U^{n,k}

v_L=C(un(i1-1,k),un(i1,k),eps,me,dd)*(tau/h2)

v_R=C(un(i1,k),un(i1+1,k),eps,me,dd)*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)-(tau*gamma(k))

. +(tau*mue(k,k)*(1.0D+00/d2F(unm(i1,k),eps,me)))

A(index,index-2)=A(index,index-2)-v_L

A(index,index+2)=A(index,index+2)-v_R



B.1. Solver for the population model 181

v_L=(tau/h2)*Cross(un(i1-1,k),un(i1,k),eps,me)

v_R=(tau/h2)*Cross(un(i1,k),un(i1+1,k),eps,me)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k)-tau*(mue(k,j)

. *(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,j),eps,epse))))

end if

end if

C

C We define the second equation of the iterative algorithm in terms of the

C nodal values

C

else

C The row corresponding to the first nodal value of V^{n,k}

if (i1.eq.1) then

mult=2.0D+00

v_L=0.0D+00

v_R=mult*C(un(i1,k),un(i1+1,k),eps,me,dd)*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)-(tau*gamma(k))

A(index,index+2)=A(index,index+2)-v_R

v_R=mult*(tau/h2)*Cross(un(i1,k),un(i1+1,k),eps,me)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k)-tau*(mue(k,k)

. *(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,k),eps,me))

. +mue(k,j)*(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,j),eps,mb))))

else

C The row corresponding to the last nodal value of V^{n,k}

if (i1.eq.nR-nL+1) then

mult=2.0D+00

v_R=0.0D+00

v_L=mult*C(un(i1-1,k),un(i1,k),eps,me,dd)*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)-(tau*gamma(k))

A(index,index-2)=A(index,index-2)-v_L
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v_L=mult*(tau/h2)*Cross(un(i1-1,k),un(i1,k),eps,me)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

B(index)=(unm(i1,k)-tau*(mue(k,k)

. *(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,k),eps,me))

. +mue(k,j)*(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,j),eps,mb))))

else

C The rows corresponding to the rest of the nodal values of V^{n,k}

v_L=C(un(i1-1,k),un(i1,k),eps,me,dd)*(tau/h2)

v_R=C(un(i1,k),un(i1+1,k),eps,me,dd)*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)-(tau*gamma(k))

A(index,index-2)=A(index,index-2)-v_L

A(index,index+2)=A(index,index+2)-v_R

v_L=(tau/h2)*Cross(un(i1-1,k),un(i1,k),eps,me)

v_R=(tau/h2)*Cross(un(i1,k),un(i1+1,k),eps,me)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k)-tau*(mue(k,k)

. *(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,k),eps,me))

. +mue(k,j)*(1.0D+00/d2F(un(i1,k),eps,me))

. *(1.0D+00/d2F(unm(i1,j),eps,mb))))

end if

end if

end if

100 continue

C

C We define the matrix abd which contains the matrix A in band storage

C

nsub=2*(nR-nL+1)

msub = ml + mu + 1

do 201 j = 1, nsub

i1 = max0(1, j-mu)

i2 = min0(nsub, j+ml)

do 101 i = i1, i2

k = i - j + msub

abd(k,j) = A(i,j)
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101 continue

201 continue

C

C We now call the subroutine DGBFA to factor the band matrix A using Gaussian

C elimination. Then we call the subroutine DGBSL to solve the band system

C A*X=B using the factors computed by DGBFA. The subroutines DGBFA and DGBSL

C can be found in reference [27].

C

CALL DGBFA(abd,lda,nsub,ml,mu,ipvt,info)

CALL DGBSL(abd,lda,nsub,ml,mu,ipvt,b,job)

C

C Check if diff = max {\|U^{n,k}-U^{n,k-1}\|, \|V^{n,k}-V^{n,k-1}\|} < tol

C Reset unm(.,1) = U^{n,k} and unm(.,2) = V^{n,k} for the next time level

C

diff=0.0D0

i_max=0

do 260 i=1,2*(nR-nL+1)

if (mod(i-1,2).eq.0) then

i_count=(i-1)/2+1

if (diff.lt.dabs(un(i_count,1)-B(i))) then

diff=dabs(un(i_count,1)-B(i))

i_max=i

end if

un(i_count,1)=B(i)

else

i_count=i/2

if (diff.lt.dabs(un(i_count,2)-B(i))) then

diff=dabs(un(i_count,2)-B(i))

i_max=i

end if

un(i_count,2)=B(i)

end if

B(i)=0.0

260 continue

C and if diff > tol then repeat iterative loop

if (mod(nloops,10).eq.0) print *,nloops,diff,i_max

write(21,*) diff

if (diff.gt.tol) goto 200

C

C This is the end of the iterative loop

C

if (mod(loop-1,10).eq.0) then

print *,p_loop, loop, nloops, diff

end if

C
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C Set U^{n-1}=U^{n,k} and V^{n-1}=V^{n,k}

C

do 270 i=1,nR-nL+1

unm(i,1)=un(i,1)

unm(i,2)=un(i,2)

270 continue

C

C Store total number of iterations in n_tot

C

n_tot=n_tot+nloops

nloops=0

if (mod(loop,1000).eq.0) print *,n_tot

time=time+tau

count=count+1

800 continue

C

C Printing the results:

C We first identify a location for the output according to the size of p_loop

C

if (p_loop.le.9) then

write(number1,910) p_loop

datafile1 =lettert1//number1//’.dat’

datafile2 =lettert2//number1//’.dat’

else

if (p_loop.le.99) then

write(number2,920) p_loop

datafile1 =lettert1//number2//’.dat’

datafile2 =lettert2//number2//’.dat’

else

if (p_loop.le.999) then

write(number3,930) p_loop

datafile1 =lettert1//number3//’.dat’

datafile2 =lettert2//number3//’.dat’

else

write(number4,940) p_loop

datafile1 =lettert1//number4//’.dat’

datafile2 =lettert2//number4//’.dat’

end if

end if

endif

C

C We store the solutions in the appropriate files (U^{p_loop} and V^{p_loop}

C will be stored in the data files t1_(p_loop) and t2_(p_loop) respectively)

C

open(1,status=’new’,file=datafile1)



B.1. Solver for the population model 185

open(2,status=’new’,file=datafile2)

do 640 i=1,nR-nL+1

if (mod(i-1,1).eq.0) then

write(1,*) un(i,1)

write(2,*) un(i,2)

end if

640 continue

close(1)

close(2)

700 continue

C print *, n_tot

910 format(i1)

920 format(i2)

930 format(i3)

940 format(i4)

stop

end

C

C ---------------------------------------------------

C

C This function calculates the diffusion coefficient

C

DOUBLE PRECISION FUNCTION C(uL,uR,eps,me,dd)

implicit none

double precision uL,uR,eps,me,dd,dF,d2F

if (abs(uR-uL).lt.1D-12) then

c=dd+1.0D+00/d2F(uR,eps,me)

else

c=dd+(uR-uL)/(dF(uR,eps,me)-dF(uL,eps,me))

endif

end

C

C This function calculates the cross diffusion coefficient

C

DOUBLE PRECISION FUNCTION Cross(u1L,u1R,eps,me)

implicit none

double precision u1L,u1R,eps,me,dF,d2F

if (abs(u1R-u1L).lt.1D-12) then

Cross=1.0D+00/(d2F(u1R,eps,me))

else

Cross=(u1R-u1L)/(dF(u1R,eps,me)-dF(u1L,eps,me))

endif

end



B.1. Solver for the population model 186

C

C The first derivative of the function F ( or G )

C

DOUBLE PRECISION FUNCTION dF(s,eps,me)

implicit none

double precision s,eps,me

if (s.lt.eps) then

dF=dlog(eps)+(s-eps)/eps

else

if (s.ge.me) then

dF=dlog(me)+(s-me)/me

else

dF=dlog(s)

end if

end if

end

C

C The second derivative of the function F ( or G )

C

DOUBLE PRECISION FUNCTION d2F(s,eps,me)

implicit none

double precision s,eps,me

if (s.lt.eps) then

d2F=1.0D+00/eps

else

if (s.ge.me) then

d2F=1.0D+00/me

else

d2F=1.0D+00/s

end if

end if

end

C ---------------------------------------------------

C ---------------------------------------------------
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B.2 Solver for the axial segregation model

B.2.1 With Neumann boundary conditions

C Program to solve the iteration scheme of problem (Q)

C with Neumann boundary conditions

C ---------------------------------------------------

PROGRAM AXIAL

implicit none

integer nmax,l_d_a

parameter (l_d_a=10,nmax=513)

integer i,n,k5,m,count,nloops,n_tot,p_loop,loop,

. i_max,info,nL,nR,j,k,i1,i2,even_odd,index,lda,

. ml,mu,nsub,msub,ipvt(2*nmax),job,i_count,fix

double precision u(1:nmax,1:2),unm(1:nmax,1:2),un(1:nmax,1:2),

. a(1:2*nmax,1:2*nmax),B(1:2*nmax),abd(l_d_a,1:2*nmax),len,t,

. tol,eps,lambda,mue,theta,tau,h,h2,time,pi,diff,dP,d2P,rho,

. Cross,v_L,v_R,mult

character*30 datafile1,datafile2

character*1 number1

character*2 number2

character*3 lettert1,lettert2,number3

character*4 number4

C

C Declare the values of some characters (for printing results)

C

lettert1=’t1_’

lettert2=’t2_’

C

C Input some important variables from population.dat

C

C len = length of $Omega$

C m = number of space steps

C t = final time

C n = number of time steps

C tol = tolerance level for iterative loop

C k5 = number of prints

C

open(1,status=’old’,file=’axial.dat’)

read(1,*) len

read(1,*) m

read(1,*) t

read(1,*) n

read(1,*) tol

read(1,*) k5
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close(1)

C

if (mod(n,k5).ne.0) then

print *, ’Enter k5 - must be a factor of n’

read(5,*) k5

end if

C

C Define some variables

C

C tau = time step

C h = space step

C count = current time step

C time = time level (time = 0, tau, 2tau, ... , t)

C nloops = number of iterations for each time step

C n_tot = total number of iterations for all time steps combined

C eps = the regularization parameter

C

tau=t/real(n)

print *,m,n,tol

h=len/real(m)

h2=h**2

count=0

time = 0.0D0

nloops=0

n_tot=0

pi=3.1415926535897932385

eps=1.0D-9

C Choose the parameters of the model

lambda=2.0D+00

rho=2.0D+00

mue=3.0D+00

theta=1.0D+00

C Define and print the initial functions

nL=0

nR=m

open(10,status=’new’,file=’t1_0.dat’)

open(20,status=’new’,file=’t2_0.dat’)

do 10 i=1,nR-nL+1

u(i,1)=0.80D+00*cos(4.0D+00*real(i-1)*h*pi/len)

u(i,2)=0.0D+00

write(10,*) u(i,1)

write(20,*) u(i,2)

10 continue

close(10)
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close(20)

C

C For a band matrix, we define:

C ml = number of diagonals below the main diagonal

C mu = number of diagonals above the main diagonal

C

ml=3

mu=3

lda=2*ml+mu+1

C

C Set W^{1,0} = W^{0} , Z^{1,0} = Z^{0}

C un(.,1) = W^{n,k}, unm(.,1) = W^{n,k-1}

C un(.,2) = Z^{n,k}, unm(.,2) = Z^{n,k-1}

C

do 80 i=1,nR-nL+1

unm(i,1)=u(i,1)

unm(i,2)=u(i,2)

un(i,1)=u(i,1)

un(i,2)=u(i,2)

80 continue

C

C We start the print loop to print the results every n/k5 time steps

C

do 700 p_loop=1,k5

C

C We define the solve loop for each print

C

do 800 loop=1,n/k5

C

C This is the beginning of the iterative loop

C Given W^{n-1}, Z^{n-1} and W^{n,k-1} find W^{n,k} and Z^{n,k}

C

200 nloops=nloops+1

job=0

C We now construct the matrix of the linear system

do 103 i=1,2*(nR-nL+1)

B(i)=0.0

do 102 j=1,2*(nR-nL+1)

A(i,j)=0.0

102 continue

do 104 j=1,l_d_a

abd(j,i) = 0.0

104 continue

103 continue

do 100 i=1,2*(nR-nL+1)
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if (i.le.(nR-nL+1)) then

j=2

k=1

else

j=1

k=2

end if

i1=mod(i-1,nR-nL+1)+1

if (i.le.nR-nL+1) then

even_odd=1

else

even_odd=0

end if

if (i.gt.(nR-nL+1)) then

fix=-2

else

fix=0

end if

index=2*i1-even_odd

C

C We define the first equation of the iterative algorithm in terms of the

C nodal values

C

if (i.le.(nR-nL+1)) then

C The row corresponding to the first nodal value of W^{n,k}

if (i1.eq.1) then

mult=2.0D+00

v_L=0.0D+00

v_R=mult*rho*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)

A(index,index+2)=A(index,index+2)-v_R

v_R=mult*(-lambda)*(tau/h2)

. *Cross(un(i1,k),un(i1+1,k),eps,lambda)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k))

else

C The row corresponding to the last nodal value of W^{n,k}

if (i1.eq.nR-nL+1) then

mult=2.0D+00

v_R=0.0D+00

v_L=mult*rho*(tau/h2)
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A(index,index)=1.0D+00+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

v_L=mult*(-lambda)*(tau/h2)

. *Cross(un(i1-1,k),un(i1,k),eps,lambda)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

B(index)=(unm(i1,k))

else

C The rows corresponding to the rest of the nodal values of W^{n,k}

v_L=rho*(tau/h2)

v_R=rho*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

A(index,index+2)=A(index,index+2)-v_R

v_L=(tau/h2)*(-lambda)*Cross(un(i1-1,k),un(i1,k),eps,lambda)

v_R=(tau/h2)*(-lambda)*Cross(un(i1,k),un(i1+1,k),eps,lambda)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k))

end if

end if

C

C We define the second equation of the iterative algorithm in terms of the

C nodal values

C

else

C The row corresponding to the first nodal value of Z^{n,k}

if (i1.eq.1) then

mult=2.0D+00

v_L=0.0D+00

v_R=mult*(tau/h2)

A(index,index)=1.0D+00+tau+(v_L+v_R)

A(index,index+2)=A(index,index+2)-v_R

v_R=mult*(tau/h2)*lambda

A(index,index+1+fix)=A(index,index+1+fix)

. +(v_L+v_R-tau*mue*theta)

A(index,index+3+fix)=A(index,index+3+fix)-v_R
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B(index)=(unm(i1,k)+tau*mue*(1.0D+00-theta)*unm(i1,j))

else

C The row corresponding to the last nodal value of Z^{n,k}

if (i1.eq.nR-nL+1) then

mult=2.0D+00

v_R=0.0D+00

v_L=mult*(tau/h2)

A(index,index)=1.0D+00+tau+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

v_L=mult*(tau/h2)*lambda

A(index,index+1+fix)=A(index,index+1+fix)

. +(v_L+v_R-tau*mue*theta)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

B(index)=(unm(i1,k)+tau*mue*(1.0D+00-theta)*unm(i1,j))

else

C The rows corresponding to the rest of the nodal values of Z^{n,k}

v_L=tau/h2

v_R=tau/h2

A(index,index)=1.0D+00+tau+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

A(index,index+2)=A(index,index+2)-v_R

v_L=(tau/h2)*lambda

v_R=(tau/h2)*lambda

A(index,index+1+fix)=A(index,index+1+fix)

. +(v_L+v_R-tau*mue*theta)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k)+tau*mue*(1.0D+00-theta)*unm(i1,j))

end if

end if

end if

100 continue

C

C We define the matrix abd which contains the matrix A in band storage

C

nsub=2*(nR-nL+1)

msub = ml + mu + 1

do 201 j = 1, nsub
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i1 = max0(1, j-mu)

i2 = min0(nsub, j+ml)

do 101 i = i1, i2

k = i - j + msub

abd(k,j) = A(i,j)

101 continue

201 continue

C

C We now call the subroutine DGBFA to factor the band matrix A using Gaussian

C elimination. Then we call the subroutine DGBSL to solve the band system

C A*X=B using the factors computed by DGBFA. The subroutines DGBFA and DGBSL

C can be found in reference [27].

C

CALL DGBFA(abd,lda,nsub,ml,mu,ipvt,info)

CALL DGBSL(abd,lda,nsub,ml,mu,ipvt,b,job)

C

C Check if diff = max {\|W^{n,k}-W^{n,k-1}\|, \|Z^{n,k}-Z^{n,k-1}\|} < tol

C Reset unm(.,1) = W^{n,k} and unm(.,2) = Z^{n,k} for the next time level

C

diff=0.0D0

i_max=0

do 260 i=1,2*(nR-nL+1)

if (mod(i-1,2).eq.0) then

i_count=(i-1)/2+1

if (diff.lt.dabs(un(i_count,1)-B(i))) then

diff=dabs(un(i_count,1)-B(i))

i_max=i

end if

un(i_count,1)=B(i)

else

i_count=i/2

if (diff.lt.dabs(un(i_count,2)-B(i))) then

diff=dabs(un(i_count,2)-B(i))

i_max=i

end if

un(i_count,2)=B(i)

end if

B(i)=0.0

260 continue

C and if diff > tol then repeat iterative loop

if (mod(nloops,10).eq.0) print *,nloops,diff,i_max

write(21,*) diff

if (diff.gt.tol) goto 200

C

C This is the end of the iterative loop
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C

if (mod(loop-1,10).eq.0) then

print *,p_loop, loop, nloops, diff

end if

C

C Set W^{n-1}=W^{n,k} and Z^{n-1}=Z^{n,k}

C

do 270 i=1,nR-nL+1

unm(i,1)=un(i,1)

unm(i,2)=un(i,2)

270 continue

C

C Store total number of iterations in n_tot

C

n_tot=n_tot+nloops

nloops=0

if (mod(loop,1000).eq.0) print *,n_tot

time=time+tau

count=count+1

800 continue

C

C Printing the results:

C We first identify a location for the output according to the size of p_loop

C

if (p_loop.le.9) then

write(number1,910) p_loop

datafile1 =lettert1//number1//’.dat’

datafile2 =lettert2//number1//’.dat’

else

if (p_loop.le.99) then

write(number2,920) p_loop

datafile1 =lettert1//number2//’.dat’

datafile2 =lettert2//number2//’.dat’

else

if (p_loop.le.999) then

write(number3,930) p_loop

datafile1 =lettert1//number3//’.dat’

datafile2 =lettert2//number3//’.dat’

else

write(number4,940) p_loop

datafile1 =lettert1//number4//’.dat’

datafile2 =lettert2//number4//’.dat’

end if

end if

endif
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C

C We store the solutions in the appropriate files (W^{p_loop} and Z^{p_loop}

C will be stored in the data files t1_(p_loop) and t2_(p_loop) respectively)

C

open(1,status=’new’,file=datafile1)

open(2,status=’new’,file=datafile2)

do 640 i=1,nR-nL+1

if (mod(i-1,1).eq.0) then

write(1,*) un(i,1)

write(2,*) un(i,2)

end if

640 continue

close(1)

close(2)

700 continue

C print *, n_tot

910 format(i1)

920 format(i2)

930 format(i3)

940 format(i4)

stop

end

C

C ---------------------------------------------------

C

C This function calculates the cross diffusion coefficient

C

DOUBLE PRECISION FUNCTION Cross(u1L,u1R,eps,lambda)

implicit none

double precision u1L,u1R,eps,lambda,dP,d2P

if (abs(u1R-u1L).lt.1D-12) then

Cross=1.0D+00/(d2P(u1R,eps,lambda))

else

Cross=(u1R-u1L)/(dP(u1R,eps,lambda)-dP(u1L,eps,lambda))

endif

end

C

C The first derivative of the function Phi

C

DOUBLE PRECISION FUNCTION dP(s,eps,lambda)

implicit none

double precision s,eps,lambda

if (s.ge.(1.0D+00-eps)) then
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dP=(lambda/2.0D+00)*(1.0D+00+dlog(1.0D+00+s)

. -(1.0D+00/eps)*(1.0D+00-s)-dlog(eps))

else

if (s.lt.(eps-1.0D+00)) then

dP=(lambda/2.0D+00)*(dlog(eps)+(1.0D+00/eps)*(1.0D+00+s)

. -dlog(1.0D+00-s)-1.0D+00)

else

dP=(lambda/2.0D+00)*(dlog(1.0D+00+s)-dlog(1.0D+00-s))

end if

end if

end

C

C The second derivative of the function Phi

C

DOUBLE PRECISION FUNCTION d2P(s,eps,lambda)

implicit none

double precision s,eps,lambda

if (s.ge.(1.0D+00-eps)) then

d2P=(lambda/2.0D+00)*(1.0D+00/(1.0D+00+s)+1.0D+00/eps)

else

if (s.lt.(eps-1.0D+00)) then

d2P=(lambda/2.0D+00)*(1.0D+00/(1.0D+00-s)+1.0D+00/eps)

else

d2P=lambda/(1.0D+00-(s**2))

end if

end if

end

C ---------------------------------------------------

C ---------------------------------------------------

B.2.2 With periodic boundary conditions

C Program to solve the iteration scheme of problem (Q)

C with periodic boundary conditions

C ---------------------------------------------------

PROGRAM AXIAL

implicit none

integer nmax

parameter (nmax=512)

integer i,n,k5,m,count,nloops,n_tot,p_loop,loop,

. i_max,info,nL,nR,j,k,i1,i2,even_odd,index,lda,

. ml,mu,ipvt(2*nmax),job,i_count,fix

double precision u(1:nmax,1:2),unm(1:nmax,1:2),un(1:nmax,1:2),

. a(2*nmax,1:2*nmax),B(1:2*nmax),len,t,tol,eps,lambda,mue,

. theta,tau,h,h2,time,pi,diff,dP,d2P,rho,Cross,v_L,v_R
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character*30 datafile1,datafile2

character*1 number1

character*2 number2

character*3 lettert1,lettert2,number3

character*4 number4

C

C Declare the values of some characters (for printing results)

C

lettert1=’t1_’

lettert2=’t2_’

C

C Input some important variables from population.dat

C

C len = length of $Omega$

C m = number of space steps

C t = final time

C n = number of time steps

C tol = tolerance level for iterative loop

C k5 = number of prints

C

open(1,status=’old’,file=’axial.dat’)

read(1,*) len

read(1,*) m

read(1,*) t

read(1,*) n

read(1,*) tol

read(1,*) k5

close(1)

C

if (mod(n,k5).ne.0) then

print *, ’Enter k5 - must be a factor of n’

read(5,*) k5

end if

C

C Define some variables

C

C tau = time step

C h = space step

C count = current time step

C time = time level (time = 0, tau, 2tau, ... , t)

C nloops = number of iterations for each time step

C n_tot = total number of iterations for all time steps combined

C eps = the regularization parameter

C
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tau=t/real(n)

print *,m,n,tol

h=len/real(m)

h2=h**2

count=0

time = 0.0D0

nloops=0

n_tot=0

pi=3.1415926535897932385

eps=1.0D-9

C Choose the parameters of the model

lambda=2.0D+00

rho=2.0D+00

mue=3.0D+00

theta=1.0D+00

C Define and print the initial functions

nL=0

nR=m-1

open(10,status=’new’,file=’t1_0.dat’)

open(20,status=’new’,file=’t2_0.dat’)

do 10 i=1,nR-nL+1

u(i,1)=0.80D+00*cos(4.0D+00*real(i-1)*h*pi/len)

u(i,2)=0.0D+00

write(10,*) u(i,1)

write(20,*) u(i,2)

10 continue

C the following two lines are added to pint w(L,.):=w(0,.) and z(L,.):=z(0,.)

write(10,*) u(1,1)

write(20,*) u(1,2)

close(10)

close(20)

C Define the dimension of the matrix of the linear system

lda=2*(nR-nL+1)

print *, nL,nR,nR-nL+1,lda

C

C Set W^{1,0} = W^{0} , Z^{1,0} = Z^{0}

C un(.,1) = W^{n,k}, unm(.,1) = W^{n,k-1}

C un(.,2) = Z^{n,k}, unm(.,2) = Z^{n,k-1}

C

do 80 i=1,nR-nL+1

unm(i,1)=u(i,1)

unm(i,2)=u(i,2)

un(i,1)=u(i,1)

un(i,2)=u(i,2)

80 continue
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C

C We start the print loop to print the results every n/k5 time steps

C

do 700 p_loop=1,k5

C

C We define the solve loop for each print

C

do 800 loop=1,n/k5

C

C This is the beginning of the iterative loop

C Given W^{n-1}, Z^{n-1} and W^{n,k-1} find W^{n,k} and Z^{n,k}

C

200 nloops=nloops+1

job=0

C We now construct the matrix of the linear system

do 103 i=1,2*(nR-nL+1)

B(i)=0.0

do 102 j=1,2*(nR-nL+1)

A(i,j)=0.0

102 continue

103 continue

do 100 i=1,2*(nR-nL+1)

if (i.le.(nR-nL+1)) then

j=2

k=1

else

j=1

k=2

end if

i1=mod(i-1,nR-nL+1)+1

if (i.le.nR-nL+1) then

even_odd=1

else

even_odd=0

end if

if (i.gt.(nR-nL+1)) then

fix=-2

else

fix=0

end if

index=2*i1-even_odd

C

C We define the first equation of the iterative algorithm in terms of the

C nodal values
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C

if (i.le.(nR-nL+1)) then

C The row corresponding to the first nodal value of W^{n,k}

if (i1.eq.1) then

v_L=rho*(tau/h2)

v_R=rho*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)

A(index,index+2)=A(index,index+2)-v_L

A(index,m+m-1)=A(index,m+m-1)-v_R

v_L=(-lambda)*(tau/h2)

. *Cross(un(i1,k),un(i1+1,k),eps,lambda)

v_R=(-lambda)*(tau/h2)

. *Cross(un(m,k),un(i1,k),eps,lambda)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index+3+fix)=A(index,index+3+fix)-v_L

A(index,m+m)=A(index,m+m)-v_R

B(index)=(unm(i1,k))

else

C The row corresponding to the "pre-last" nodal value of W^{n,k}

if (i1.eq.nR-nL+1) then

v_R=rho*(tau/h2)

v_L=rho*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

A(index,1)=A(index,1)-v_R

v_L=(-lambda)*(tau/h2)

. *Cross(un(i1-1,k),un(i1,k),eps,lambda)

v_R=(-lambda)*(tau/h2)

. *Cross(un(i1,k),un(1,k),eps,lambda)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,2)=A(index,2)-v_R

B(index)=(unm(i1,k))

else

C The rows corresponding to the rest of the nodal values of W^{n,k}

v_L=rho*(tau/h2)

v_R=rho*(tau/h2)

A(index,index)=1.0D+00+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

A(index,index+2)=A(index,index+2)-v_R
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v_L=(tau/h2)*(-lambda)*Cross(un(i1-1,k),un(i1,k),eps,lambda)

v_R=(tau/h2)*(-lambda)*Cross(un(i1,k),un(i1+1,k),eps,lambda)

A(index,index+1+fix)=A(index,index+1+fix)+(v_L+v_R)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k))

end if

end if

C

C We define the second equation of the iterative algorithm in terms of the

C nodal values

C

else

C The row corresponding to the first nodal value of Z^{n,k}

if (i1.eq.1) then

v_L=tau/h2

v_R=tau/h2

A(index,index)=1.0D+00+tau+(v_L+v_R)

A(index,index+2)=A(index,index+2)-v_L

A(index,m+m)=A(index,m+m)-v_R

v_L=(tau/h2)*lambda

v_R=(tau/h2)*lambda

A(index,index+1+fix)=A(index,index+1+fix)

. +(v_L+v_R-tau*mue*theta)

A(index,index+3+fix)=A(index,index+3+fix)-v_L

A(index,m+m-1)=A(index,m+m-1)-v_R

B(index)=(unm(i1,k)+tau*mue*(1.0D+00-theta)*unm(i1,j))

else

C The row corresponding to the "pre-last" nodal value of Z^{n,k}

if (i1.eq.nR-nL+1) then

v_R=(tau/h2)

v_L=(tau/h2)

A(index,index)=1.0D+00+tau+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

A(index,2)=A(index,2)-v_R

v_L=(tau/h2)*lambda

v_R=(tau/h2)*lambda

A(index,index+1+fix)=A(index,index+1+fix)

. +(v_L+v_R-tau*mue*theta)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,1)=A(index,1)-v_R
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B(index)=(unm(i1,k)+tau*mue*(1.0D+00-theta)*unm(i1,j))

C The rows corresponding to the rest of the nodal values of Z^{n,k}

else

v_L=tau/h2

v_R=tau/h2

A(index,index)=1.0D+00+tau+(v_L+v_R)

A(index,index-2)=A(index,index-2)-v_L

A(index,index+2)=A(index,index+2)-v_R

v_L=(tau/h2)*lambda

v_R=(tau/h2)*lambda

A(index,index+1+fix)=A(index,index+1+fix)

. +(v_L+v_R-tau*mue*theta)

A(index,index-1+fix)=A(index,index-1+fix)-v_L

A(index,index+3+fix)=A(index,index+3+fix)-v_R

B(index)=(unm(i1,k)+tau*mue*(1.0D+00-theta)*unm(i1,j))

end if

end if

end if

100 continue

C

C We now call the subroutine DGEFA to factor the matrix A using Gaussian

C elimination. Then we call the subroutine DGESL to solve the system A*X=B

C using the factors computed by DGEFA. The subroutines DGBFA and DGBSL can

C be found in reference [27].

C

CALL DGEFA(A,lda,lda,ipvt,info)

CALL DGESL(A,lda,lda,ipvt,b,job)

C

C Check if diff = max {\|W^{n,k}-W^{n,k-1}\|, \|Z^{n,k}-Z^{n,k-1}\|} < tol

C Reset unm(.,1) = W^{n,k} and unm(.,2) = Z^{n,k} for the next time level

C

diff=0.0D0

i_max=0

do 260 i=1,2*(nR-nL+1)

if (mod(i-1,2).eq.0) then

i_count=(i-1)/2+1

if (diff.lt.dabs(un(i_count,1)-B(i))) then

diff=dabs(un(i_count,1)-B(i))

i_max=i

end if

un(i_count,1)=B(i)

else
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i_count=i/2

if (diff.lt.dabs(un(i_count,2)-B(i))) then

diff=dabs(un(i_count,2)-B(i))

i_max=i

end if

un(i_count,2)=B(i)

end if

B(i)=0.0

260 continue

C and if diff > tol then repeat iterative loop

if (mod(nloops,10).eq.0) print *,nloops,diff,i_max

write(21,*) diff

if (diff.gt.tol) goto 200

C

C This is the end of the iterative loop

C

if (mod(loop-1,10).eq.0) then

print *,p_loop, loop, nloops, diff

end if

C

C Set W^{n-1}=W^{n,k} and Z^{n-1}=Z^{n,k}

C

do 270 i=1,nR-nL+1

unm(i,1)=un(i,1)

unm(i,2)=un(i,2)

270 continue

C

C Store total number of iterations in n_tot

C

n_tot=n_tot+nloops

nloops=0

if (mod(loop,1000).eq.0) print *,n_tot

time=time+tau

count=count+1

800 continue

C

C Printing the results:

C We first identify a location for the output according to the size of p_loop

C

if (p_loop.le.9) then

write(number1,910) p_loop

datafile1 =lettert1//number1//’.dat’

datafile2 =lettert2//number1//’.dat’

else

if (p_loop.le.99) then
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write(number2,920) p_loop

datafile1 =lettert1//number2//’.dat’

datafile2 =lettert2//number2//’.dat’

else

if (p_loop.le.999) then

write(number3,930) p_loop

datafile1 =lettert1//number3//’.dat’

datafile2 =lettert2//number3//’.dat’

else

write(number4,940) p_loop

datafile1 =lettert1//number4//’.dat’

datafile2 =lettert2//number4//’.dat’

end if

end if

endif

C

C We store the solutions in the appropriate files (W^{p_loop} and Z^{p_loop}

C will be stored in the data files t1_(p_loop) and t2_(p_loop) respectively)

C

open(1,status=’new’,file=datafile1)

open(2,status=’new’,file=datafile2)

do 640 i=1,nR-nL+1

if (mod(i-1,1).eq.0) then

write(1,*) un(i,1)

write(2,*) un(i,2)

end if

640 continue

C the following two lines are added to pint w(L,.):=w(0,1) and z(L,.):=z(0,.)

write(1,*) un(1,1)

write(2,*) un(1,2)

close(1)

close(2)

700 continue

910 format(i1)

920 format(i2)

930 format(i3)

940 format(i4)

stop

end

C ---------------------------------------------------

C ---------------------------------------------------


