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Abstract

We examine some generic features of surfaces in the Euclidean 3-space R3 related to

the Gauss map on the surface. We consider these features on smooth surfaces and

on singular surfaces with a cross-cap singularity.

We study some symmetries between two classical pairs of foliations defined on

smooth surfaces in R3: the asymptotic curves and the characteristic curves (called

harmonic mean curvature lines in [41]). The asymptotic curves exist in hyperbolic

regions of surfaces and have been well studied. The characteristic curves are in

certain ways the analogy of the asymptotic curves in elliptic regions. In this thesis

we extend this analogy. . We use We produce results on the characteristic curves

mirroring those of Uribe-Vargas ([71]) on the asymptotic curves. By considering

cross-ratios of Legendrian lines in the manifold of contact elements to the surface

we show that certain properties of the characteristic curves are invariant under

projective transformations, and examine their behaviour at cusps of Gauss.

We establish an analogy of the Beltrami-Enepper Theorem, which allows us to

distinguish between the two characteristic foliations in a natural geometric way. We

show that the local properties of characteristic curves may be used to prove certain

global results concerning the elliptic regions of smooth surfaces.

Motivated by the study of the asymptotic, principal and characteristic curves

on surfaces in R3, we construct a natural one-to-one correspondence between the

set of non-degenerate binary differential equations (BDEs) and linear involutions on

the real projective line. We show that one may construct pairs of BDEs that have
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various symmetric properties using a single involution on RP 1. We study the folded

singularities of BDEs, and associate an affine invariant to such points. We show

that one may associate a complex parameter to folded singularities that determines

the relative positions of various curves of interest.

We show that the BDEs asymptotic, characteristic, and principal curves are

related to other quadratic forms on surfaces. These include the BDE that defines

the lines of arithmetic mean curvature which are studied in [39], and the third

fundamental form of the surface. We define a new pair of foliations of a surface

which we label the minimal orthogonal spherical image (MOSI) curves which are the

integral curves of those tangent directions to a surface that have orthogonal images

under the Gauss map, and are inclined at an extremal angle. We establish the

configurations of the MOSI curves in a neighbourhood of umbilic points, parabolic

points and cusps of Gauss.

We construct natural 1-parameter families of BDEs that interpolate between the

BDEs we have studied, and establish relationships between these families.

We exhibit the existence of a curve of points of zero torsion of the characteristic

curves, and a curve of points where the tangent plane to the surface is the osculating

plane of a characteristic curve. We determine the behaviour of these curves near

cusps of Gauss and umbilic points.

We study BDEs with coefficients that vanish simultaneously at an isolated point

and with discriminant having an A2-singularity at that point. We show that such

BDEs can be grouped into three distinct types, and study the differences between

these types in terms of their codimension and the linear parts of their coefficients.

We establish the topological configurations of the solution curves in each case with

codimension ≤ 4.

We study the asymptotic and characteristic curves in the neighbourhood of a

parabolic cross-cap, that is, on a singular surface with a cross-cap singularity with

a parabolic set having a cusp singularity at the singular point. We obtain the

topological configurations of these foliations both in the domain of a parametrisation

of such a surface, and on the surface itself. We construct a natural one-parameter

family of surfaces with cross-cap singularities in which the parabolic cross-cap is
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the transition from a hyperbolic cross-cap to an elliptic cross-cap. We study the

bifurcations of the asymptotic and characteristic curves in this family.
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Prologue

Geometry is one of the oldest branches of science: the first axiomatic study was

carried out by Euclid in the third century BC. It is remarkable, therefore, that is

still at the forefront of mathematical research today. Indeed, one could argue that

all of mathematics stems from geometry, that is, from a need to understand the

world around us.

It is even more remarkable that Euclidean geometry, that is, geometry based on

Euclid’s axioms, is still very much alive as an area of research. Two major develop-

ments in mathematics since Euclid’s time have given the subject new impetus. The

first was the invention of calculus by Newton and Leibniz in the seventeenth century.

This gave mathematicians the tool they needed to understand curved objects. The

second, over the last seventy years, was the development of singularity theory, a

descendent of Newton’s calculus.

Singularity theory is the framework within which to study generic geometric

properties, that is, those properties that a curved object might typically have. Its

study has led to a number of very classical objects in differential geometry being

revisited and studied from a new angle. It has also made geometry more applicable

to other scientific fields, for example, computer vision.

This thesis is a continuation of that process: an investigation of some generic

properties of regular and singular surfaces in Euclidean space.

The aims of the thesis

In general a smooth surface in the Euclidean space R3 has open (possibly empty)

hyperbolic and elliptic regions, where the Gaussian curvature K is respectively neg-

ative and positive, and a smooth curve where K = 0, known as the parabolic set.

1
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Our interest is centred around two families of curves on smooth surfaces: the

asymptotic curves and the characteristic curves. The asymptotic curves exist in the

closure of the hyperbolic regions of surfaces, the characteristic curves exist in the

closure of the elliptic regions of surfaces.

The asymptotic curves have been well studied, the characteristic curves less so,

however a number of properties of the characteristic curves, discussed in Chapter 2,

show them to be the analogue of the asymptotic curves in the elliptic region.

Much of the generic geometry of the non-elliptic regions of surfaces (discussed

in Chapter 2) is related to the asymptotic curves. The similarities between the

asymptotic curves and the characteristic curves suggest that the geometry of the

elliptic region may be better understood by studying the characteristic curves.

The asymptotic and characteristic curves are given, in the domain of a parametri-

sation of a smooth surface, by certain binary differential equations (BDEs). These

are implicit differential equations that may be written in the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0,

where a, b, c are smooth functions. These equations have wide ranging applications

in areas of mathematics including differential geometry, partial differential equations

and control theory, and have been much studied. For a survey of work on BDEs see

[68].

Whitney showed in [75] that a surface can have a stable singularity under smooth

changes of coordinates in the source and target, that is, an isolated point at which

is surface is not smooth. The singularity is known as a cross-cap. A model of a

surface with a cross-cap singularity is shown in Figure 1.

As cross-cap points are the only stable singularities of immersed surfaces in

R3, it is natural to seek to understand the differential geometry of surfaces in the

neighbourhood of such points.

The aims of this Thesis are as follows:

1. to strengthen the case for the characteristic curves being justifiable objects of

study, draw further parallels with asymptotic curve, and use them to under-

stand the geometry of the elliptic region;
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Figure 1: A wire model of a cross-cap in the Science Museum in London.

2. to understand further the geometry of the cross-cap connected to the asymp-

totic and characteristic curves;

3. to understand the types of differential equation that define the asymptotic and

characteristic curves, and the relationships between them.

Our approach to the problems

Many of the generic features of surfaces in R3 that we consider can be defined and

studied using two different approaches. The first is to use singularity theory directly

by defining functions on such surfaces and classifying their singularities (see [46] for

a survey of this use of singularity theory).

The alternative approach is to study foliations of smooth surfaces and related

features by studying the differential equations that define these foliations. Many of

the generic features of surfaces that we encounter may be alternatively characterised

in terms of BDEs. For example, consider the contact of the surface with planes.

The singularity theory approach involves considering the family of height functions
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on the surface (see Section 1.2). Generally the height function is a submersion,

however if the plane in question is the tangent plane to the surface the height

function is singular. The singularity is generally an A1-singularity (see Section 1.1),

more specifically, and A+
1 -singularity if the point is elliptic and an A−1 -singularity

if the point is hyperbolic. There are generally smooth curves of points on the

surface where the tangent plane to the surface has more degenerate contact with the

surface, namely the parabolic set, a height function having an A2-singularity at such

points. At isolated points on the parabolic set a height function may have an A3-

singularity, and the surface has even more degenerate contact with its tangent plane.

These points are called cusps of Gauss. Alternatively these features of surfaces may

also identified by studying the BDE of the asymptotic curves, which is given in

Section 2.2. Hyperbolic (respectively elliptic) points are those points at which the

asymptotic BDE has two (respectively zero) solution directions. The parabolic set

and the cusps of Gauss are the discriminant and folded singularities (see Section

1.3) of the asymptotic BDE respectively.

It is often the case that more geometric information can be obtained using the

differential equations approach. The cusps of Gauss are a good example. The height

function approach shows that are two types of cusp of Gauss distinguished according

to whether the singularity of the height function is of type A+
3 or A−3 . On the other

hand, there are three generically occurring topological models of folded singularities

of BDEs known as well-folded saddles, nodes and foci (see Section 1.3). As all three

models can occur in the case of the asymptotic BDE at a cusp of Gauss, we obtain

a finer classification of such points using the differential equations method.

The characteristic directions may be seen as an extreme example of this phe-

nomenon. They have not yet been defined in terms of contact with any model-

submanifold, and so all the information currently known about these curves stems

from the study of the defining BDE.

In this thesis, therefore, we generally favour the differential equation approach,

although we will occasionally revert to the classical methods.
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An outline of the thesis

In Chapter 1 we review the methods and definitions required in the thesis. These

include aspects of singularity theory, a rigorous definition of genericity, and tech-

niques for the qualitative study of implicit differential equations. In Chapter 2 with

give precise definitions of the curves of interest and the BDEs that define them, and

review relevant existing results. We include a new interpretation of the notion of

conjugacy.

In Chapter 3 we study the characteristic curves at cusps of Gauss, that is, at the

folded singularities of the BDE (2.6). This work draws analogies with Uribe-Vargas’

work on the asymptotic curves in [71]. We show that despite the characteristic

curves themselves being invariant only under Euclidean transformations of the am-

bient space, certain associated features in the neighbourhood of a cusp of Gauss are

preserved by projective transformations. We associate a projective invariant param-

eter to cusps of Gauss. We establish the configurations of various curves of interest

at cusps of Gauss. We consider the Legendre transform of the characteristic BDE

at these points. We provide a natural, geometric way to distinguish between the

two characteristic curves through a non-umbilic elliptic point, and produce a result

on the characteristic curves analogous to the Beltrami-Enepper Theorem for the

asymptotic curves. We conclude the chapter with some results concerning elliptic

discs on surfaces, an example of how the (local) study of the characteristic curves

may be used to prove global results about elliptic regions of surface.

An alternative construction of the asymptotic and characteristic BDEs uses cer-

tain involutions on the real projective line. In Chapter 4 we generalise this idea,

and some of our results from Chapter 3. This work lays the foundations for Chapter

5 where we show, by considering BDEs as points of the projective plane, that the

asymptotic, principal and characteristic BDEs are connected to a number of other

BDEs forms on the surface, which we study. We construct new 1-parameter families

of BDEs on surfaces and show how they are related to each other.

In Chapter 6 we treat the characteristic curves as space curves in the ambient

space R3 and consider their torsion. We exhibit the existence of smooth curves on

the surface where the torsion of a characteristic curve vanishes, and further curves
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where the tangent plane to the surface is the osculating plane of a characteristic

curve.

The final three chapters concern the geometry of the cross-cap. The asymptotic

BDE on a parabolic cross-cap has coefficients that all vanish simultaneously and

a discriminant that has a cusp (A2) singularity. Such BDEs have been studied

previously, however, those encountered on the cross-cap are of a more degenerate

type. We consider these BDEs in their own right in Chapter 7 and give a complete

topological classification of cusp BDEs with codimension ≤ 4. In Chapter 8 we study

the asymptotic and characteristic curves on a parabolic cross-cap and in Chapter 9

we study their bifurcation in a 1-parameter family of cross-caps.



Chapter 1

Methods

1.1 Singularity theory

We review the definitions and results from singularity theory that will be needed in

the thesis.

1.1.1 Basic notions

Throughout the thesis smooth will always mean C∞, that is, a map will be said

to be smooth if it has continuous partial derivatives of all orders. We denote by

C∞(Rn,Rm) the set of smooth maps Rn → Rm.

Jets, germs and the Whitney Topology

Definition 1.1.1 The k-jet space Jk(n,m) is the vector space of all polynomial

maps of degree k from Rn to Rm.

We generally abbreviate Jk(n, 1) to Jk(n).

Definition 1.1.2 Let f ∈ C∞(Rn,Rm). The k-jet, jkpf of f at a point p ∈ Rn is

the Taylor expansion of f about the point p truncated at degree k.

Definition 1.1.3 Let U , V be open subsets of Rn with U ∩ V 6= ∅, let

f : U → Rm

g : V → Rm

7
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be smooth, and let p ∈ U∩V . We define an equivalence relation ∼ on C∞(U∩V,Rm)

by letting f ∼ g if and only if there is an open subset W ⊂ U ∩ V with p ∈ W such

that f = g on W . The ∼-equivalence class of f is called the germ at p of f , and is

denoted by

f : R, p→ R.

All properties of germs will be checked on representatives so we will generally

use the same notation for a germ and its representative.

In Definition 1.1.4 we consider the k-jet of a smooth function to be a point in a

Euclidean space.

Definition 1.1.4 Let ε > 0 and let f : Rm → Rn be smooth. Let

Bk
ε (f) := {g : Rn → Rm||jkpf − jkpg| < ε, ∀p ∈ Rn}.

The Whitney C∞-topology is the topology on C∞(Rn,Rm) with base

{Bk
ε (f)|∀k ∈ N,∀ ε > 0,∀f ∈ C∞(Rm,Rn)}.

Remarks 1.1.5 1. For any open subset U ⊂ Rn the Whitney topology induces

a topology on C∞(U,Rm), the set of smooth maps U → Rm. In particular at

any points p ∈ Rn and q ∈ Rm we have a topology on the set of germs at p of

smooth maps Rn, p→ Rm, q.

2. The Whitney topology extends to smooth maps between manifolds, as locally a

manifold is parametrised by an open subset of Rn.

The implicit function Theorem

We will make use of the following (standard) technical Theorem, so we include a

statement for reference. A proof is given in, for example [6].

Theorem 1.1.6 Let U ⊂ Rn × Rm be open, and let (0, 0) ∈ U . Let f : U → R be

a smooth function such that f(0, 0) = 0 and ∂f/∂xi 6= 0 for each i = n+ 1..n+m.

Then there exist open sets W1 ⊂ Rn and W2 ⊂ Rm with W1×W2 ⊂ U , and a unique

smooth map g : W2 → Rm such that f(x, g(x)) = 0 for all x ∈ W1.
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Singular map germs

Definition 1.1.7 A map f : Rm → Rn has a singularity at a point p if its differen-

tial at p has less than maximal rank.

For a basic reference on singular points of smooth maps we use [3].

Definition 1.1.8 Two map-germs,

f, g : Rm, 0→ Rn, 0

are said to be R-equivalent (respectively L-equivalent, A-equivalent) if there exists

germs of diffeomorphisms

φ : Rm, 0→ Rm, 0

and

ψ : Rn, 0→ Rm, 0

which preserve the origin and are such that f ◦ φ = g (respectively f = ψ ◦ g,

f ◦ φ = ψ ◦ φ).

We give normal forms for the simplest singularities for reference in this thesis.

Example 1.1.1 Let f : R2, 0 → R be a function germ. Then f has an A±k -

singularity if it is R-equivalent to

±x2 ± yk+1

(k ≥ 1), and that f has a D±k -singularity if it is R-equivalent to

x2y ± yk−1

(k ≥ 4).

Note that A+
k - and A−k -singularities are equivalent when k is even, as is the case with

D+
k - and D−k -singularities. We shall refer to A1-singularities as Morse singularities,

A2-singularities as cusp-singularities and A3-singularities as swallowtail singularities.
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Definition 1.1.9 Let f : Rm, 0 → Rn, 0 be a singular map germ. An r-parameter

unfolding of f is a smooth map

F : Rm, 0× Rr, 0 → Rn × Rr, 0

(x, u) 7→ (f(x, u), u)

where x ∈ Rm and u ∈ Rr, such that f(x, 0) = f(x), ∀x ∈ Rm. The family of maps

f(x, u) is then referred to as an r-parameter deformation of f .

Definition 1.1.10 If

F : Rm, 0× Rr, 0→ R× Rr, 0

is an unfolding of a function germ f : Rm, 0→ R, then the singular set of F is

Σ = {(x, u) ∈ Rm × Rr|∂F
∂x

(x, u) = 0},

the image of the critical set, D = F (Σ), is the discriminant set of F and the bifur-

cation set of F is

B = {u ∈ Rr|∃x ∈ Rm s.t.
∂F

∂x
(x, u) =

∂2F

∂x2
(x, u) = 0}.

Transversality

Let X and Y between smooth manifolds and let g : X → Y be a smooth map. Then

at each point x ∈ X we have the tangent map

Tg(x) : TxX → Tg(x)P

u 7→ Dg(u).

Definition 1.1.11 If X, P are smooth manifolds, Y is a smooth submanifold of P ,

and g : X → Y is a smooth mapping, and if

im(Tg(x)) + Tg(x)Y = Tg(x)P

for all x ∈ f−1(Y ), or if im(g) ∩ Y = ∅, then g is said to be transverse to Y .

Recall that a residual subset of a topological space is one whose compliment is

nowhere dense, or equivalently one that is the countable intersection of open and

dense subsets.
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Theorem 1.1.12 Let Q be a smooth submanifold of the jet space Jk(n,m). Then

the set of all smooth mappings f : Rn → Rm for which jkf is transverse to Q is

residual in C∞(Rn,Rm).

1.2 Generic geometry

For a basic reference on generic geometry see [15, 43, 47, 73].

Genericity

Definition 1.2.1 A property is generic for C∞(Rn,Rm) if it defines a residual sub-

set of C∞(Rn,Rm).

Theorem 1.1.12 (Thom’s transversality Theorem) shows that the property that

a map is transverse to any submanifold of a jet-space is generic. Equipped with

this fact, Lemma 1.2.2 provides a powerful tool for studying generic properties of

submanifolds.

Lemma 1.2.2 Let R, P be smooth manifolds, and let φ : R→ P be a smooth map.

If Q is a smooth submanifold of P with φ(R) transverse to Q, then φ−1(Q) is a

smooth submanifold of R with the same codimension as Q, or is empty.

This thesis is concerned with smooth surfaces in the Euclidean space R3, and in

particular their local geometry. As we will identify new geometric features of such

surfaces, we require a method for establishing that they are generic. We follow the

approach of Bruce in [9].

Given a smooth orientable surface S ⊂ R3, we may write S locally about some

point p in Monge form

(x, y, f(x, y)).

If we are concerned with purely local properties, we may consider f to be the germ

at p of a function and work in a single open neighbourhood U of p. Local geometric

information about the surface is then given by the Monge function f ∈ C∞(U,R)

and its derivatives at p, so we work in the jet-space Jk(2) for some k. Of course,

there is the problem that the choice of coordinates is not unique.
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We give S an orientation and let n(p) be the (positive) unit normal to S at

the point p, X(p) be any smooth vector field on S, and choose a vector field Y(p)

such that {X(p),Y(p),n(p)} is a right-handed orthonormal basis for R3 at each

point p ∈ S. At any point p let the coordinate axes x, y, z lie along the tan-

gents to X(p),Y(p),n(p) respectively, and parametrise the surface in Monge form

(x, y, fp(x, y)) at p, where fp is a smooth function and f0 = f . Note that fp and its

first derivatives vanish at p. We define the k-jet-extension map (or Monge-Taylor

map)

φ : S → Jk(2)

p 7→ jkfp.

It is clear that φ depends on the choice of vector field X. The possible choices of

(x, y)-axes at any point, however, are related by an SO(2) change of coordinates,

that is, by a rotation of TpS about n(p), which leaves TpS invariant. The group

SO(2) acts on Jk(2) via the coefficients of the elements of Jk(2). It follows that the

transversality of φ at p to an SO(2)-invariant submanifold V ⊂ Jk(2) is independent

of the choice of vector field X. For any q ∈ Jk(2), the tangent space at q to the

SO(2)-orbit of q is R.{xqy − yqx}.

The method, then, is as follows. We parametrise a surface in Monge form with

the origin at the point under consideration. We establish conditions on the k-jet of

the Monge function for that point to have a particular geometric property, and use

these conditions to define smooth submanifolds of the k-jet space. We establish the

(open) conditions for the jet-extension map to be transverse to these submanifolds,

and then apply Lemma 1.2.2 to establish the codimension of the set of points with

such a property on the surface.

In order to carry out this process, we need to be able to calculate the image of

the tangent map of the jet-extension map. Lemma 1.2.3 appears in [9] although the

proof is not provided there.

Lemma 1.2.3 ([9]) If φ : S → Jk(2) is the k-jet extension map, then imTφ(0) is

spanned by

vx = jk(−fxx(0, 0)x− fxy(0, 0)y + fx(x, y)

−fx(x, y)f(x, y)fxx(0, 0)− fy(x, y)f(x, y)fxy(0, 0)),
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and

vy = jk(−fxy(0, 0)x− fyy(0, 0)y + fy(x, y)

−fx(x, y)f(x, y)fxy(0, 0)− fy(x, y)f(x, y)fyy(0, 0)).

Proof : Let (x, y, z) be a coordinate system at the origin with the z-axis normal to

the surface. The surface is parametrised in Monge form at the origin by

(x, y, f(x, y))

where f(0, 0) = fx(0, 0) = fy(0, 0) = 0.

Let p = (x0, y0, z0) be point on the surface (that is, z0 = f(x0, y0)). Let (X, Y, Z)

be a right-handed co-ordinate system with origin at p. The surface is given in Monge

form at p by (X, Y, fp(X, Y )).

In what follows all partial derivatives of f are evaluated at (x0, y0).

The tangent space to the surface at p is spanned by (1, 0, fx) and (0, 1, fy), and

the normal to the surface at p is parallel to (−fx,−fy, 1). We choose the Z-axis to

be normal to the surface at p, the X-axis to be parallel to (1, 0, fx), and the Y axis

to be orthogonal to the X-and Z-axes such that they form a right handed system.

The co-ordinates at p are related to those at the origin by
x

y

z

 =


1 −fxfy −fx
0 1 + f 2

x −fy
fx fy 1




X + x0

Y + y0

Z + z0

 . (1.1)

From the first row of (1.1) we have that

x = (X + x0)− fxfy(Y + y0)− fx(Z + z0).

Setting x = x0, differentiating this expression with respect to x0 and y0, and evalu-

ating at (x0, y0) = (0, 0) (observing that Z(0, 0) = 0) we have that(
∂X

∂x0

)
=

(
∂X

∂y0

)
= 0

at (x0, y0) = (0, 0). Similarly, from the second row of (1.1) we have that

y = (1 + f 2
x)(Y + y0)− fy(Z + z0).
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Setting y = y0, differentiating this expression with respect to x0 and y0 and evalu-

ating at the origin we have that(
∂Y

∂x0

)
=

(
∂Y

∂y0

)
= 0.

at (x0, y0) = (0, 0).

From the third row of (1.1) we have

Z = z − z0 − (X + x0)fx − (Y + y0)fy. (1.2)

On the surface, however, we have that z = f(x, y), that is,

z = f(X + x0 − (Y + y0)fxfy − (Z + z0)fx, (y + y0)(1 + f 2
x)− (Z + z0)fy),

and z0 = f(x0, y0). Substituting these into (1.2) we have that

Z = f(X + x0 − (Y + y0)fxfy − (Z + f(x0, y0))fx,

(y + y0)(1 + f 2
x)− (Z + f(x0, y0))fy)

−f(x0, y0)− (X + x0)fx − (Y + y0)fy.

(1.3)

Observe now that since Z = fp(X, Y ), imTφ(0) is spanned by

jk
(
∂Z

∂x0

)
, jk
(
∂Z

∂y0

)
,

evaluated at (x0, y0) = (0, 0). These may be found by differentiating (1.3) with re-

spect to x0 and y0 and setting (x0, y0) = (0, 0), and they are equal to the expressions

given in the statement. 2

The singularity theory approach

The study the generic differential geometry of smooth submanifolds using singularity

theory involves considering the contact of these submanifolds with model submani-

folds such as lines, planes, circles and spheres. This is achieved by defining families

of functions or maps on the submanifolds of interest and classifying their critical

points.

More visually, the discriminant and bifurcation sets of these families of functions

may be viewed as geometric objects in their own right, whose singularities correspond

to points where the contact with the test submanifold is more degenerate.
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Although in this thesis we will largely use a different approach, as outlined in

Section 1.3 below, it will be helpful to recall an example of this method that is

important in the study of smooth surfaces.

Definition 1.2.4 Let S ⊂ R3 be a smooth surface and let S2 be the unit sphere in

R3. The family of height functions on S is the family

h : S × S2 → R,

(p, u) 7→ p · u

where · denotes the usual inner product on R3.

We write hu for the height function with u fixed. This is the projection of the

surface to the line determined by u. The function hu is used to measure the contact

of the surface S with planes whose normal is u. The family defined by

H : S × S2 → R× S2,

(p, u) 7→ (h(p, u), u)

is an unfolding of any member of the family of height functions. It is trivial to show

that hu is singular if and only if u is normal to the surface, that is, the singular set

of H consists of pairs (p,np) where np is a unit normal to the surface at p. The

discriminant of H is the dual surface of S (the set of tangent planes to S).

Other examples of families of functions on surfaces include the distance-squared

functions which measure the contact of the surface S with spheres (see, for example,

[18, 59]). The bifurcation set of the family of distance squared functions is the focal

surface. There is also the family of orthogonal projections of the surface to planes,

which measures the contact of the surface with lines (see, for example, [9, 17, 19]).

1.3 Qualitative study of implicit differential equa-

tions

A first order implicit differential equation (IDE) is an equation of the form

F (x, y, p) = 0 (1.4)
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where F is a smooth function of (x, y, p) ∈ R3 with p = dy/dx.

At points where Fp 6= 0 the equation can be locally reduced to the form

dy

dx
= g(x, y).

It thus defines just one direction in the plane, and can be studied using the theory

of ordinary differential equations. If Fp = 0 then the equation may define locally

more than one direction in the plane.

Suppose that at a given point F = Fp = 0 and Fpp 6= 0. In this case the equation

may be written in some open neighbourhood of the point in the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0, (1.5)

where the coefficients a, b, c are smooth functions of (x, y) ∈ R2 that do not vanish

simultaneously at any point in the neighbourhood. We extend this class of equation

by including equations where the coefficients do all vanish simultaneously at a point.

Equations of the form (1.5) are called binary differential equations (BDEs).

Let δ = b2 − ac. A BDE defines two distinct directions at points in the plane

where δ > 0, no directions at points when δ < 0. The set

∆ = {(x, y) ∈ U |δ(x, y) = 0}

is called the discriminant of the BDE, and is generally a smooth curve. If the

coefficients of the equation do not all vanish simultaneously at a given point we may

assume locally that a 6= 0 and express the equation as a quadratic in p = dy/dx. In

this case, the BDE defines a single direction at points on ∆ (note that this is the case

regardless of whether ∆ is smooth). If all of the coefficients vanish simultaneously

at a point then ∆ is necessarily singular at that point and all directions in the plane

are solutions at that point.

Away from its discriminant, a BDE determines either a pair of transverse folia-

tions, Fi, i = 1, 2, or no folitions. Hence all of the interesting features of the solution

curves occur on the discriminant. If ∆ is a smooth curve, then the solution curves

form a family of cusps along this curve, except at points at which the unique solution

direction is tangent to ∆. The configuration of the solutions of equation (1.5) refers

to the triple {∆,F1,F2}.
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Although the solution curves are singular at all points of the discriminant, we

define a singularity of a BDE to be a point of the discriminant at which the unique

solution is tangent to ∆ (known as folded singularities), or a point at which the

discriminant itself is singular. We are concerned only with isolated singularities,

which we always assume, without loss of generality, to be at the origin.

We are interested in the local configurations of the integral curves, so we consider

a, b, c in (1.5) as germs of smooth functions. Properties of germs are checked on

representatives, and we use the same notation for a germ and its representative. We

shall denote the germ of a BDE (1.5) by ω = (a, b, c).

Implicit differential equations on surfaces may be studied locally by parametris-

ing the surface by an open subset of the plane and studying the BDE in that plane.

1.3.1 Classification

In this thesis we will classify BDEs up to topological equivalence. We consider two

(germs of) BDEs, ω and τ to be topologically equivalent if there is a germ of a

homeomorphism

R2, 0→ R2, 0

that takes the integral curves of ω to those of τ .

We shall also occasionally consider smooth models for BDEs. Two (germs of)

BDEs, ω and τ are said to be smoothly equivalent if there exist germs of a diffeo-

morphism

H : R2, 0→ R2, 0

and a function not vanishing at zero

r : R2, 0→ R, 0

such that

ω = rH∗τ.

The cases distinguished according to whether the coefficients do or do not vanish

simultaneously (often labelled type 1 and type 2 BDEs respectively) have crucial
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differences, and must be treated separately. In particular, BDEs where the coeffi-

cients do not vanish simultaneously may have finite codimension in the set of all

IDEs, and can be deformed in that set. Those BDEs with vanishing coefficients

are of infinite codimension in the set of all IDEs, and are deformed in the set of all

BDEs.

To a germ of a BDE ω(x, y) = (a, b, c), we associate the jet-extension map

Φ : R2, 0 → Jk(2, 3)

(x, y) 7→ jkω|(x,y).

where

jkω|(x,y) = (jka(x, y), jkb(x, y), jkc(x, y)).

Let Gk be the group of (k+1)-jets of diffeomorphisms in (x, y) and multiplication

by non-zero functions in (x, y). A singularity of a BDE with vanishing coefficients

(respectively an IDE) is of codimension m if the conditions that define it yield a

semi-algebraic set, V , of codimension m + 2 (respectively m + 3) in Jk(2, 3) for all

k ≥ k0 for some k0. The set V is supposed to be invariant under the natural action

of the group Gk.

1.3.2 The lifted field

An elegant, geometric approach to the study of IDEs (1.4) is given in [69] (see also

[1]).

Consider PT ∗R2 = R2 × RP , the manifold of contact elements to the plane

(the projectivised cotangent bundle to R2). We take an affine chart p = dy/dx for

RP , so the manifold of contact elements is R3 endowed with the canonical contact

structure determined by the 1-form dy − pdx. The projection associated to the

contact structure is

π : R3 → R2

(x, y, p) 7→ (x, y).

If the coefficients of a BDE (1.5) do not vanish simultaneously we may assume

a 6= 0 and write (1.5) as F = 0 where

F (x, y, p) = a(x, y)p2 + 2b(x, y)p+ c(x, y),
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and p = dy/dx. The set of directions defined by (1.5) form a surface

M = F−1(0) ⊂ R3.

In general M is smooth, and the image of π|M is a two-fold covering of regions where

b2 − ac > 0. The critical set of π|M given by F = Fp = 0 is called the criminant.

There is an involution σ on M that interchanges points with the same image under

π.

The bivalued direction field given by (1.5) lifts to a single valued field ξ on M

obtained by intersecting the contact planes with the tangent planes to M .

Lemma 1.3.1 ([8]) A suitable lifted field is given by

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
.

Proof : Suppose that

ξ = A
∂

∂x
+B

∂

∂y
+ C

∂

∂p
,

for some smooth functions A,B,C. We require that (dy − pdx)(ξ) = 0. It follows

that B = pA.

The normal to the surface M is given by (Fx, Fy, Fp). Since ξ is tangent to M

we have that

(A, pA,C) · (Fx, Fy, Fp) = 0,

that is, CFp = −A(Fx + pFy). The result follows. 2

The configuration of the solution curves of (1.5) at a point on the discriminant

are determined by the pair (ξ, σ).

If the contact plane at a point is tangent to M then the lifted field vanishes,

that is, has a singularity. This happens generically at isolated points, including at

the lift of folded singularities. The projection of such points are called well-folded

singularities if ξ has an elementary zero with separatrices transverse to the criminant

and tangents not projecting to zero.

If the vector field ξ is regular then a smooth model (in the neighbourhood of a

regular point on the discriminant) is given by

dy2 − xdx2 = 0
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(see [26]). The integral curves are a family of cusps. A smooth model of in a

neighbourhood of a well-folded singularities is given by

dy2 − (y − λx2)dx2 = 0

(see [27, 30]). We refer to the smooth modulus λ as the index modulus of the

singularity.

There are three stable topological models: well-folded saddles (λ < 0), nodes

(0 < λ < 1/16) and foci (λ > 1/16), occurring when the lifted field ξ has a saddle,

node or focus respectively. These are illustrated in Figure 1.1. The index of the

lifted field at the singular point is given by sign(λ).1.

Figure 1.1: A well-folded saddle (left), well-folded node (centre) and well-folded

focus (right).

The lifted field field method is illustrated in Figure 1.2.

The lifted field method may be extended to BDEs with vanishing coefficients

(see for example [20]). In this case we consider the surface

M̃ = {(x, y, [α : β]) ∈ R2, 0× RP 1|aα2 + 2bαβ + cβ2 = 0}.

Observe that all directions are solutions where the coefficients vanish. We will

consider BDEs for which this occurs at an isolated point which we we will always

take to be the origin. The set π−1(0) = {0} × RP 1 is called the exceptional fibre.

We use the term criminant for the closure of the set π−1(∆) \ ({0} × RP 1).

Consider the affine chart for RP 1 p = β/α (we also consider the chart q = α/β)

and set

F (x, y, p) = a(x, y)p2 + 2b(x, y)p+ c(x, y).

The bi-valued direction field defined by the BDE in the plane lifts to the single

field ξ on M̃ given in Lemma 1.3.1. The vector field ξ extends smoothly to the

exceptional fibre, which is an integral curve of ξ.
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M

π

M

π

Figure 1.2: The lifted field method: the criminant (top left), a well-folded saddle

(top right), a well-folded node (bottom left) and a well-folded focus (bottom right).

From Lemma 1.3.1 we have that zeros of ξ are given by

F = Fp = Fx + pFy = 0. (1.6)

When the BDE has an isolated singularity we may restrict attention to zeros of ξ

on the exceptional fibre. Observe that F (0, 0, p) = Fp(0, 0, p) = 0. It follows that

the zeros of ξ on the exceptional fibre are given by the roots of the cubic

φ(p) = (Fx + pFy)(0, 0, p).

It shown in [20] that the surface M̃ is smooth if and only if δ has a Morse

singularity. Furthermore, it is shown in [11] that if δ has an Ak-singularity then the
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surface M̃ has an isolated Ak−1-singularity on the exceptional fibre and is smooth

elsewhere. Thus, in the case of BDEs with discriminant having a cusp singularity,

the surface M̃ has a Morse singularity. As the entire exceptional fibre {0} × RP 1

lies on the surface M̃ it follows that M̃ has an A−1 (cone) singularity.

The term separatrix is used ambiguously in the study of IDEs; we make the

following definition to avoid confusion.

Definition 1.3.2 The images under the projection π of the stable, unstable and

centre curves of a zero of the lifted field ξ are called the separatrices of the singularity.

In the case of a folded saddle or node, the stable or unstable curves are the only

integral curves passing through the singularity. They are smooth and transverse

to each other and to the criminant. It follows (see Lemma 2.6 in [23]) that the

separatrices are the only smooth curves passing through a folded singularity and

that they are tangent to the discriminant. In the case of a saddle-node there is

one stable or unstable manifold and a centre manifold tangent to the eigenvector

associated to the zero eigenvalue.

Remark 1.3.3 The ambiguity of the term separatrix arises from the fact that sep-

aratrices (in the sense of Definition 1.3.2) do not always separate distinct sectors.

For example, in the case of a folded node, the projections of the weak separatrices of

the node do not separate distinct sectors. Conversely, in certain cases (for example,

cusp type 2 BDEs as defined in Chapter 7) there are curves that do separate distinct

sectors that are not separatrices.

1.3.3 Duality

Consider the conditions (1.6) for a zero of the lifted field ξ on the surface M . The

condition F = 0 simply states that the zero lies on the surface, and the condition

Fp = 0 states that the zero is on the criminant. The condition Fx + pFy = 0 states

that the zero is on the locus of inflections of the integral curves of the BDE. This

may be seen by differentiating the expression F (x, y, p) = 0 with respect to x:

Fx +
dy

dx
Fy +

dp

dx
Fp = 0
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The condition for an inflection is

d2y

dx2
= 0,

but since p = dy/dx this implies dp/dx = 0, that is, inflections occur when

Fx + pFy = 0.

The Legendre transformation in R3 is given by

x = P, y = XP − Y, p = X.

The Legendre transformation of an IDE (1.4) is another IDE

G(X, Y, P ) = F (P,XP − Y,X) = 0

(although the Legendre transformation of a BDE is not in general another BDE).

The Legendre transformation of BDEs are studied in [8, 23, 65].

The integral curves of the Legendre transformation of an IDE are dual to those

of the original IDE (see, for example, [1]). That is, if the plane is thought of as being

part of the projective plane RP 2, then the curve representing all the tangent lines to

a solution of an IDE F = 0 is a solution curve of the Legendre transformation G = 0,

and conversely. This fact is a result of the fact that the Legendre transformation of

the 1-form dy − pdx is (minus) the 1-form dY − PdX, so the Legendre transform

preserves the contact structure on R3 used in the method of study described in

Section 1.3.2.

It is shown in [23] that the dual of a well-folded singularity is another well-folded

singularity, that is, such points are self-dual. Recall that the dual of an inflection is

a cusp. Since we know that folded singularities lie on the discriminant, that is, the

cusp set of the solution curves, and that this set is a smooth curve, it follows that

there is a smooth curve of inflection points tangent to the cusp set (the discriminant

curve) at a well-folded singularity.

Recall that the property that a curve has an inflection is preserved by affine

changes of coordinates. The Legendre transform of an IDE is preserved up to affine

equivalence by an affine change of coordinates. Therefore, when considering the

Legendre transform, it is normal to consider affine normal forms for IDEs.
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In [23] folded singularities are classified in terms of the relative positions of the

discriminant (cusp set), the locus of inflections and any separatrix. It is shown that

these curves are generically parabolae. It is shown that the two-jet of an IDE (1.4)

may be transformed, by affine changes of coordinates, to the form

p2 + uxp+ y +
v

4
x2 + w1xy + w2y

2 = 0. (1.7)

The index modulus is given by

λ =
v − u(u+ 1)

4
.

The following codimension 1 phenomena are taken into account in the classification:

(a) the lifted field has a non-elementary singularity;

(b) the discriminant, locus of inflections or a separatrix has an inflection at the

singularity;

(c) some pair of the discriminant, locus of inflections or separatrices have > 2-point

contact.

It is shown that there are 18 different cases: 8 saddles, 7 nodes and 3 foci, distin-

guished by the values of u, v. The exceptional sets are:

1. v = 0: separatrices inflectional or singular and also inflection curve inflectional;

2. v = u2: cusp set inflectional;

3. v = u2 − 1: inflection curve inflectional;

4. u+ 1 = 0: inflection curve singular;

5. v = u(u+1): saddle / node change and also inflection curve and cusp set have

> 2-point contact;

6. v = u(u+ 1) + 1
4

: focus / saddle node change;

7. v = −2(u + 1) : the union of this set and 1 and 5 corresponds to inflection

curve / separatrices having > 2-point contact.
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In general no qualitative change occurs as we cross the line u + 1 = 0 although

this set is exceptional in the sense that the inflection set is not a smooth curve. The

exceptional sets and the configurations of the curves of interest are illustrated in

Figure 1.3.
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Figure 1.3: Partition of the (u, v)-plane.

It is also shown that the configurations at a well-folded singularity of an IDE

with 2-jet affine equivalent to (1.7) and its dual are related by the involution

(u, v) 7→ (−u− 1, v).

Remark 1.3.4 Although the methods discussed here may be used to study BDEs

on surfaces as well as in the plane, there is no reason why the Legendre transform

or the locus of inflections should be of any significance, since the map from the

parametrising plane to the surface is a diffeomorphism (that is, it does not preserve
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inflections). Curves on surfaces, however, have geodesic inflections, which are the

natural analogue of inflections. These are points where the curve crosses the plane

spanned by its tangent line and the normal to the plane. It is shown in [23] that

there is a curve of geodesic inflections at a folded singularity of a BDE on a surface,

and that the two-jet of this curve coincides with that of the inflection curve in the

parametrising plane. In other words, the same 18 cases occur.

1.3.4 The blowing-up technique

Consider the case when the coefficients of the BDE all vanish simultaneously. The

method of lifting the bi-valued direction field in the plane determined by a BDE

to a single direction field on a surface M̃ may be used to establish the topological

configurations of the integral curves of the BDE as long as the surface M̃ is smooth.

The involution σ on M̃ \ ({0}×RP ) which interchanges points with the same image

under π is shown in [20, 66] to extend smoothly to M̃ when the coefficients a, b, c

are smooth functions and the surface M̃ is smooth.

This method breaks down when M̃ is not smooth, as one needs to show that the

involution σ extends smoothly to the whole of M̃ and this is not trivial.

An alternative method involves blowing-up the singularity, that is, making a

coordinate change that replaces the singularity by a projective line (in practice, one

simplifies calculations by considering charts for the projective line, leading to so-

called directional blowing-up). The coordinate change is a diffeomorphism except

at the origin. A explanation of the use of blowing-up methods in the study of vector

fields (or BDEs) is given in [33].

Gúıñez ([44]) used the blowing-up technique to study positive quadratic forms,

that is, BDEs whose discriminant is an isolated point. The technique is extended

by Tari in [64, 66] to cases where the discriminant is not an isolated point.

The BDE (1.5) may be written as the product of two 1-forms. Since we do not

distinguish between non-zero multiples of BDEs, we may take these two 1-forms to

be

ady + (b±
√
b2 − ac)dx.

The kernels of these 1-forms at each point of the plane determine the solution di-
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rections, which are hence tangent to the vector fields

a
∂

∂x
+ (−b+ (−1)i

√
b2 − ac) ∂

∂y
, i = 1, 2.

Following Gúıñez’s notation we denote by Fi(ω), i = 1, 2 the two foliations by

associated to the BDE (1.5). If ψ is a diffeomorphism and λ(x, y) is a non vanishing

real-valued function, then (see [44]) for k = 1, 2, we have that:

1. ψ(Fk(w)) = Fk(ψ∗(ω)), if ψ is orientation preserving;

2. ψ(Fk(w)) = F3−k(ψ
∗(ω)), if ψ is orientation reversing;

3. Fk(λw) = Fk(ω), if λ(x, y) is positive;

4. Fk(λw) = F3−k(ω), if λ(x, y) is negative.

Example 1.3.1 The most simple blowing-up is the standard polar blowing-up. We

set

(x, y) = (r cos θ, r sin θ).

In practice we use the x-direction blowing-up

x = u, y = uv

and the y-direction blowing-up

x = ũṽ, y = ṽ.

These are obtained by the changes of coordinates

(r, θ) 7→ (u, v) = (r cos θ, tan θ)

for θ 6= π/2, 3π/2, and

(r, θ) 7→ (ũ, ṽ) = (cot θ, r sin θ)

for θ 6= 0, π respectively. In the case of the y-direction blowing-up we consider only

singularities at the origin, as all others will be detected by the x-direction blowing-up.

The x-direction (respectively y-direction) blowing-up is orientation preserving

when u > 0 (respectively ṽ > 0), and reversing when u < 0 (respectively ṽ < 0).

If a point (u0, v0) in the (u, v)-plane corresponds to a point with polar coordinates

(r0, θ0), then the point (−u0, v0) corresponds to the point (r0, θ0 + π). Similarly if

a point (ũ1, ṽ1) corresponds to a point with polar coordinates (r1, θ1) then the point

(ũ1,−ṽ1), corresponds to a point (r1, θ1 + π).
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This method, while computational and less attractive than the contact geomet-

rical approach described in Section 1.3.2, is effective when the BDEs have a discrim-

inant having a worse-than-Morse singularity. We shall make use of it in Chapter 7,

Chapter 8, and Chapter 9.

1.3.5 BDEs as points of the projective plane

We present now a way of considering BDEs that is used in [24]. Our aim is to under-

stand the relationships between BDEs defined on surfaces that will be introduced

in Chapter 2. Given a point v ∈ R3, where v = (v1, v2, v3), we denote by [v] ∈ RP 2

the projectivisation [v1 : v2 : v3] of v.

Consider the set of BDEs with coefficients not all vanishing simultaneously. Such

BDEs may be thought of as binary quadratic forms. As we do not distinguish be-

tween non-zero multiples of such forms, the set of BDEs with non-vanishing coeffi-

cients may be identified with the real projective plane RP 2, where the BDE

ω = ady2 + 2bdxdy + cdx2 = 0,

thought of as the form

ap2 + 2bpq + cq2

corresponds to the point [a : b : c].

A conic Γ in RP 2 is determined by a non-degenerate symmetric bilinear form G

on R3:

Γ = {[v] ∈ RP 2|G(v, v) = 0}.

Given any point [v] ∈ RP 2, the polar of [v] with respect to Γ is the set

{[u] ∈ RP 2|G(u, v) = 0}.

As G is bilinear, the polar of any point [v] ∈ RP 2 forms a line. Conversely, given

any line in RP 2, the polars of each point of the line intersect at a single point, which

is called the polar of the line with respect to Γ.

The projective plane RP 2 contains the conic ∆ of singular forms given by b2−ac.

We will consider pairs of forms and the pencils determined by them, which may be
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thought of as lines in RP 2. Any line in RP 2 will have 0, 1 or 2 points on the conic

of singular forms.

Three points in RP 2 are said to form a self-polar triangle if the polar of any one

of them is the line through the other two.

The following series of results follow from directly from the elementary geometry

of the projective plane.

Proposition 1.3.1 ([24])

(a) Let ω be a binary quadratic form with distinct real roots, determining a point

in the projective plane RP 2. The polar line of ω with respect to the conic

of singular forms ∆ consists of the line through the two forms which are the

squares of the factors of ω. In other words, the tangents to the conic at these

two points pass through ω. We refer to this intersection point as the polar

form of the pencil. Conversely, given any pencil meeting the conic ∆, the

corresponding polar form is the binary form whose factors are the repeated

factors at the two singular members of the pencil.

(b) This polar form of the pencil is given by the classical Jacobian of any two of

the forms in the pencil, that is, the 2× 2 determinant of the matrix of partial

derivatives of the forms with respect to p and q. The Jacobian is non-zero

provided we have a genuine pencil, and is a square if and only if the forms

have a factor in common.

(c) Fixing two forms

ω = ap2 + bpq + cq2

Ω = Ap2 +Bpq + Cq2

we write D(α : β) for the discriminant of αω + βΩ; this is another binary

quadratic form. We can write it as

D(ω)α2 + E(ω,Ω)αβ +D(Ω)β2,

where D(ω) = b2−4ac, D(Ω) = B2−4AC, and E(ω,Ω) = 2(bB−2aC−2Ac).
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The associated polar point of the pencil, the Jacobian, determined by ω,Ω is

Jac(ω,Ω) =

∣∣∣∣∣∣ ∂ω/∂p ∂ω/∂q

∂Ω/∂p ∂Ω/∂q

∣∣∣∣∣∣ = (aB−Ab)p2 + 2(aC−Ac)pq+ (bC−Bc)q2.

(d) Pairs of forms with the term E(ω,Ω) above zero are said to be apolar. This

is equivalent to the condition that the corresponding four roots harmonically

separate each other, or that the forms lie on each others polars with respect to

the conic ∆, that is, are conjugate. The Jacobian of any two forms is apolar

with respect to all the elements of the pencil determined by them.

(e) Three forms determine a self-polar triangle with respect to the conic ∆ if and

only if each is the Jacobian of the other two. There are a variety of ways of

obtaining self-polar triples. Any form ω determines a polar line. Choose an

arbitrary form say Ω on the line; this has a polar line which passes through ω.

Consider the intersection point of these two polar lines; this gives a third form

µ, with

{ω, Ω, µ}

self-polar. Any self-polar triple arises in this way. Also if ω,Ω are conjugate,

then the triple

{ω, Ω, Jac(ω,Ω)}

is self-polar. Finally, if the vertices of a quadrangle lie on ∆, then the diago-

nal triangle (the triangle whose vertices are intersections of the lines joining

distinct pairs of distinct points) is self-polar.

(f) The discriminants, the invariant E, and the Jacobian of a pair of forms ω,Ω

are related as follows:

Jac2(ω,Ω)− 4D(Ω)ω2 − 4D(ω)Ω2 + 4E(ω,Ω)ωΩ = 0.



Chapter 2

Geometrical background

In this chapter we define the geometric objects with which this thesis is concerned.

2.1 Elementary geometry of smooth surfaces

Given an oriented surface S ⊂ R3 with unit normal n(p) at each point p ∈ S we

have the Gauss map

N : S → S2

p 7→ n(p).

The Weingarten map (also known as the shape operator)

Wp = −dN(p) : TpS → TN(p)S
2

is a self-adjoint operator, and can be thought of as an automorphism of TpS.

The Gaussian curvature K is given by K = det(Wp) and the arithmetic mean

curvature H is given by H = tr(Wp)/2. The eigenvalues of Wp are the principal

curvatures at p and are denoted κ1 and κ2, and the corresponding eigenvectors are

the principal directions. Points where the principal curvatures are equal (and hence

every direction is a principal direction) are called umbilic points.

The first and second fundamental forms of the surface are the quadratic forms

on the tangent plane given by I(u, v) = u · v and II(u, v) = u ·Wp(v) respectively.

If S is parametrised by r(x, y), with (x, y) ∈ U , where U is an open subset of

R2, then the coefficients of the first (respectively second) fundamental form E,F,G

31
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(respectively l,m, n,) are given by

E = rx · rx, F = rx · ry, G = ry · ry,

l = Wp(rx) · rx = rxx · n, m = Wp(rx) · ry = rxy · n, n = Wp(ry) · ry = ryy · n.

In terms of the coefficients of the first and second fundamental form the Gaussian

and mean curvatures of the surface are given by

K =
ln−m2

EG− F 2
, H =

Gl + En− 2Fm

2(EG− F 2)
.

The sectional curvature kn at p ∈ S in a direction v ∈ TpS is the curvature

of the plane curve that is the intersection of S and the plane spanned by n(p)

and v. The sectional curvature in a direction v ∈ TpS is given by the formula

kn = II(v, v)/I(v, v), that is, if (cos θ, sin θ) is a direction on a surface with respect

to some choice of x and y-axes, then we have

kn =
l cos2 θ + 2m cos θ sin θ + n sin2 θ

E cos2 θ + 2F cos θ sin θ +G sin2 θ
. (2.1)

The geodesic torsion τg at p ∈ S in a direction v ∈ TpS is the torsion of the

geodesic passing through p in the direction v. The geodesic torsion in a direction

v ∈ TpS is given by the formula τg = II(v, v⊥)/I(v, v) where v⊥ denotes a direction

perpendicular to v, that is, if (cos θ, sin θ) is a direction on a surface with respect to

some choice of x and y-axes, then we have

τg =
l cos θ sin θ −m(cos2 θ − sin2 θ)− n sin θ cos θ

E cos2 θ + 2F cos θ sin θ +G sin2 θ
. (2.2)

A principal coordinate system is one where the x- and y-axes are always the

principal directions. In a principal coordinate system we have

F = 0, m = 0, l = Eκ1, n = Gκ2.

We may also choose E = G = 1 at any given point. Then, at this point, we have

kn = κ1 cos2 θ + κ2 sin2 θ, τg = (κ1 − κ2) sin θ cos θ, K = κ1κ2, H =
κ1 + κ2

2
.
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2.1.1 Generic properties of surfaces in R3

The flat geometry (that is, geometrical properties that may be defined in terms

of contact with lines and / or planes) of smooth surfaces in R3 is considered in,

for example, [9, 16, 17, 19, 58]. Such properties are preserved by affine changes of

coordinates.

In general S has open hyperbolic and elliptic regions, where the Gaussian curva-

ture K is respectively negative and positive, separated a smooth curve where K = 0,

known as the parabolic set.

The hyperbolic (respectively elliptic) region is alternatively characterised as the

set of points at which the height function in the direction of the unit normal to

the surface has an A−1 - (respectively A+
1 -) singularity. The parabolic set is the set

of points at which the height function in the direction of the unit normal has an

A2-singularity. The height function in the normal direction generally has an A3-

singularity at isolated points on the parabolic set. These special points are known

as cusps of Gauss, and they have many alternative characterisations; see [5]. The

parabolic set corresponds to a cuspidal edge on the dual surface, and the cusps of

Gauss correspond to swallowtail points on the dual surface.

The height function also has multi-local singularities. In particular, along smooth

curves the tangent plane to the surface is also tangent to the surface at another point

(such tangent planes are known as bitangent planes). The closure of the locus of

points of contact with bitangent planes is known as the conodal curve (see, for

example, [61]). The conodal curve is the locus of points where the height function

has an A2
1-singularity, and corresponds to a curve of transverse self-intersection

points on the dual surface. The conodal curve is tangent to the parabolic set at a

cusp of Gauss.

The geometry of smooth surfaces that is connected to contact with circles and

spheres has been much studied, see for example [18, 49, 59]. In particular, umbilic

points occur generically at isolated points in the elliptic region.

Throughout the thesis S will denote a smooth surface in R3. We will generally

parametrise S in Monge form

(x, y, f(x, y))
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and choose a principal coordinate system (that is, we choose the coordinate axes to

be tangent to the lines of curvature at the origin). We will write

j4f(x, y) =
1

2
(κ1x

2 + κ2y
2) +

1

6
(a30x

3 + 3a31x
2y + 3a32xy

2 + a33y
3)

+
1

24
(a40x

4 + 4a41x
3y + 6a42x

2y2 + 4a43xy
3 + a44y

4),
(2.3)

where κ1, κ2 are the principal curvatures at the origin. Calculating the coefficients

E,F,G, l,m, n of the first and second fundamental forms we have that

j2E = 1 + κ1x
2,

j2F = κ1κ2xy,

j2G = 1 + κ2y
2,

j2l = κ1 + a30x+ a31y + (
1

2
a40 − κ3

1)x2 + a41xy + (
1

2
a42 − κ1κ

2
2)y2,

j2m = a31x+ a32y +
1

2
a41x

2 + a42xy +
1

2
a43y

2,

j2n = κ2 + a32x+ a33y + (
1

2
a42 − κ2κ

2
1)x2 + a43xy + (

1

2
a44 − κ3

2)y2.

Should the origin be a parabolic point, we will set κ1 = 0, and should it be a

cusp of Gauss we will set κ1 = a30 = 0.

At umbilic points following Bruce ([18]) will write

j3f(x, y) =
κ

2
(x2 + y2) + Re(z3 + βz2z)

where z = x+ iy and β is a complex number.

2.1.2 Conjugate directions

Definition 2.1.1 Two directions v, v̄ ∈ TpS are conjugate if IIp (v, v̄) = 0, where

IIp(u, v) = Wp(u) · v.

If p ∈ S is a non-umbilic point then any direction v ∈ TpS has a unique conjugate

direction v̄.

Geometrically, one interprets conjugacy as follows. Given an (affine) conic sec-

tion and a direction, then the lines parallel to the direction intersect the conic in

either 0 or 2 points, or a single repeated point. When there are two distinct points

of intersection, their midpoints are colinear, and determine the conjugate direction.

For the ellipse x2/a2 + y2/b2 = 1 (respectively the hyperbola x2/a2 − y2/b2 = 1)
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the directions parallel to the lines y = ux, y = vx are conjugate if and only if

uv = −b2/a2 (respectively uv = b2/a2).

At any point on a surface, the Dupin indicatrix is the conic approximation of

the intersection of the surface with a small translation of the tangent plane in the

normal direction. Note that at an elliptic point this translation needs to be in the

right direction, at a hyperbolic point one may choose the direction arbitrarily, and

at a parabolic point the Dupin indicatrix is the degenerate conic consisting of a pair

of parallel lines. Two directions on a surface are conjugate in the sense of Definition

2.1.1 if and only if they are conjugate with respect to the Dupin indicatrix. The

following remarks appear in [24].

Remarks 2.1.2 1. The notion of conjugacy is invariant under affine and inver-

sive transformations.

2. If v and v̄ are conjugate directions then Wp(v) and v̄ are orthogonal.

3. The angle between conjugate directions v, v̄ at a point p and Wp(v), Wp(v̄)

is equal (respectively supplementary) if p is a hyperbolic (respectively elliptic)

point.

4. For any v ∈ TpS (excluding asymptotic directions at a parabolic point), the

signed angle between v and v̄ is α where

sinα =
Wp(v) · v
|Wp(v)||v|

.

5. The sum of the radii of curvature in conjugate (non-asymptotic) directions is

constant.

Further properties of conjugate directions are given in, for example, [24].

The alternative definition of conjugacy in the plane given in Proposition 2.1.1

does not appear to have been identified before.

Proposition 2.1.1 Consider the plane R2 with the origin fixed, together with a

fixed line at infinity. The origin is the polar of the line at infinity with respect to

any hyperbola with asymptotes intersecting at the origin, or any ellipse with the

origin as its centre.
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Given such a conic section, let l be a line through the origin. If l intersects

the line at infinity at a point p then the polar line of p is parallel to the conjugate

direction to l.

Proof : Consider a hyperbola with asymptotes intersecting at the origin. By a

rotation of the coordinate axes we may take this to be the hyperbola

x2

a2
− y2

b2
= 1.

We include a line at infinity by choosing homogeneous coordinates [x : y : z], the

line at infinity being z = 0. The hyperbola is then given by

b2x2 − a2y2 = a2b2z2.

Hence the hyperbola is the conic given by the set of points that are self-orthogonal

with respect to the symmetric bilinear form that has matrix
−b2 0 0

0 a2 0

0 0 (ab)2

 .

The origin, in the homogeneous coordinates, is [0 : 0 : 1]. The polar of the origin is

the set of points [α : β : γ] where

(
α β γ

)
−b2 0 0

0 a2 0

0 0 (ab)2




0

0

1

 = 0,

that is, those points of the form [1 : t : 0] for all t ∈ R. This is the line at infinity,

which establishes the first assertion.

Consider a direction in the plane. Suppose that the line through the origin in this

direction is given by y = ux. In homogeneous coordinates this is the line [x : ux : 1],

that is, for x 6= 0, the line [1 : u : 1/x], which meets the line at infinity at the point

[1 : u : 0]. The polar of this point with respect to the conic is the set of points

[α̃ : β̃ : γ̃] where

(
α̃ β̃ γ̃

)
−b2 0 0

0 a2 0

0 0 (ab)2




1

u

0

 = 0,
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that is, those points of the form [ua2 : b2 : sb2] where s ∈ R. This is the line through

the origin given by y = b2x/ua2. This direction is conjugate to that parallel to the

line y = ux, which establishes the second assertion.

The case that the conic is an ellipse centred at the origin follows by similar

reasoning. 2

Remark 2.1.3 This definition breaks down when the conic is a parabola, as the

polar of the line at infinity lies on the line at infinity. This is not a problem, however,

when we are concerned with conjugate directions on a smooth surface, as the Dupin

indicatrix is never a parabola.

2.2 Foliations of smooth surfaces

There are three intimately related pairs of foliations on an embedded surface in the

Euclidean space R3: the lines of curvature, the asymptotic curves and the charac-

teristic curves (see for example [24]). It is this triple of pairs of foliations that the

thesis is primarily concerned with. We give definitions of these pairs of foliations in

this Section.

In all illustrations, following Porteous (see [59]), we shall distinguish between the

two foliations in any given pair by drawing one in red curves and the other in blue

curves.

2.2.1 The asymptotic curves, the characteristic curves and

the lines of curvature

Lines of curvature

The lines of curvature are the integral curves of the principal directions, which were

defined above as the eigenvectors of the Weingarten map. These directions may also

be defined via conjugacy.

Definition 2.2.1 The principal directions at a point are the unique pair of orthog-

onal conjugate directions.
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At any non-umbilic point there are two principal directions. At umbilic points

all directions are principal.

Remarks 2.2.2 1. The principal directions may be alternatively characterised as

those directions in which the sectional curvature is extremal or those directions

in which the geodesic torsion is zero.

2. Principal directions may also be defined via contact with circles, see [49].

Proposition 2.2.1 The lines of curvature are the integral curves of the BDE

(Gm− Fn)dy2 + (Gl − En)dxdy + (Fl − Em)dx2 = 0. (2.4)

The discriminant of (2.4) is the umbilic points of the surface.

The lines of curvature are defined everywhere away from umbilics and form an

orthogonal net.

The configurations of the lines of curvature at umbilic points were first drawn

by Darboux, and rigorous studies were carried out in [12, 62]. The coefficients of

the principal BDE (2.4) all vanish at umbilic points, and the discriminant of (2.4)

has an A+
1 -singularity (that is, a Morse isolated point singularity). There are three

stable topological models of the integral curves of BDEs with discriminants of this

type: star, monstar and lemon (see [20]). These are illustrated in Figure 2.1.

Figure 2.1: Integral curves of a BDE with vanishing coefficients and discriminant

having an A1-singularity: lemon (left), monstar (centre) and star (right).

If a surface is parametrised at an umbilic point in the form given in Section

2.1, then the singularity of the principal BDE (2.4) is of type star if the complex

number β lies inside the circle |β| = 3, of type lemon if β is outside the hypercycloid

β = −3(2eiθ + e2iθ), and of type monstar if β lies in the remaining regions of the

complex plane. This partition of the complex plane is shown in Figure 2.2 (right).
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Asymptotic curves

Definition 2.2.3 An asymptotic direction is a self-conjugate direction. The asymp-

totic curves on a surface are the integral curves of the asymptotic directions.

There are two real asymptotic directions at hyperbolic points, one repeated asymp-

totic direction at parabolic points, and no real asymptotic directions at elliptic

points.

Remarks 2.2.4 There are many alternative characterisations of the asymptotic di-

rections; we adopt Definition 2.2.3 as it is most appropriate to the subsequent work

in the thesis. The asymptotic directions may also be defined to be:

1. those directions in which the surface has zero sectional curvature.

2. those directions in which the geodesic torsion is equal to
√
−K.

3. those directions with tangent line having at least 3-point contact with the sur-

face.

4. those directions in which the orthogonal projection of the surface to a plane

has a cusp singularity (that is, it is A-equivalent to (x, x3 + xy) ([58])).

Proposition 2.2.2 The asymptotic curves are the integral curves of the BDE

ndy2 + 2mdydx+ ldx2 = 0. (2.5)

The discriminant of (2.5) is the parabolic set, and (2.5) has folded singularities

at cusps of Gauss.

The asymptotic curves form a pair of transverse foliations in the hyperbolic

region and a family of cusps at the parabolic set, except at the cusps of Gauss,

where the unique asymptotic direction is tangent to the parabolic set.

The geometry of the surface connected to contact with lines is studied in, for

example, [9, 17, 19]. In particular, there are various other geometric features of

the surface that are related to the asymptotic curves. As we have seen, one may

characterise the hyperbolic region as the set of points at which two distinct asymp-

totic directions exist, the parabolic set as the set of points at which one repeated
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asymptotic directions exists, and the elliptic region as the set of points at which no

real asymptotic directions exist. Furthermore, the cusps of Gauss may be charac-

terised as those isolated parabolic points at which the unique asymptotic direction

is tangent to the parabolic set.

There is generically a smooth curve of points at which a line in an asymptotic

tangent direction has at least 4-point contact with the surface. This is the flecnodal

curve. This may be alternatively characterised as the locus of geodesic inflections

of the asymptotic curves. Furthermore, it is shown in [23] that the pull-back to any

parametrising plane of this curve is the inflection curve of the asymptotic BDE in

that plane.

The flecnodal curve is tangent to the parabolic set at a cusp of Gauss. There are

isolated points on the flecnodal curves called biflecnodes at which the asymptotic

tangent line has 5-point contact with the surface. There are also isolated points in

the hyperbolic region known as hyperbonodes where the flecnodal curve intersects

itself, or alternatively, the surface has 4-point contact with a line in both asymptotic

tangent directions (see, for example, [71]).

Remark 2.2.5 The asymptotic curves are defined in terms of contact between the

surface and lines, that is, flat test-submanifolds. Consequently they are a projective

property of the surface, that is, they may be defined on a surface in a projective

3-space and are invariant under projective transformations. The same is true of all

related features (the parabolic set, the flecnodal curves, the cusps of Gauss, biflecn-

odes and hyperbonodes). The conodal curve also has this property, as it is defined

in terms of contact with planes.

Characteristic curves

The asymptotic curves and the lines of curvature have been much studied. At

non-umbilic elliptic points there is a well-defined pair directions known as the char-

acteristic directions, that are in many ways analogous to the asymptotic curves, that

have been much less studied. These curves are defined in [34, 51, 60], and studied

more recently in [14, 24, 41, 42].
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Definition 2.2.6 The characteristic directions at a point are the unique pair of

conjugate directions with extremal included angle.

There are two real characteristic directions at non-umbilic elliptic points, one

repeated characteristic direction at parabolic points, and no real characteristic di-

rections at hyperbolic points. At umbilic points, all directions are characteristic.

Like the asymptotic curves, the characteristic directions may be alternatively

defined via sectional curvature: they are those directions in which the sectional

curvature is equal to H/K, the harmonic mean curvature of the surface (indeed,

they are called harmonic mean curvature lines in [41]). There is not yet, however, a

definition of the characteristic curves analogous to that of the asymptotic curves as

those directions in which the surface has ≥ 3-point with its tangent line, that is, a

direction defined via contact with a model-submanifold.

Proposition 2.2.3 The BDE which gives the characteristic directions is

(2m(Gm− Fn)− n(Gl − En))dy2+

2(m(Gl + En)− 2Fln)dydx+

(l(Gl − En)− 2m(Fl − Em))dx2 = 0.

(2.6)

The discriminant of (2.6) is the parabolic set and umbilic points, and the singu-

larities of (2.6) are the cusps of Gauss and umbilic points.

The local behaviour of the characteristic curves at umbilic points is studied in [24],

and global properties are considered in [41]

There are a number of properties of the characteristic curves that show that they

are the analogue in the elliptic region of the asymptotic curves in the hyperbolic

region.

Remarks 2.2.7 Some elementary similarities between the asymptotic and charac-

teristic curves include the following.

1. If (away from umbilic points) we choose a principal coordinate system, then

the asymptotic BDE (2.5) becomes

Gκ2dy
2 + Eκ1dx

2 = 0
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and the characteristic BDE (2.6) becomes

Gκ2dy
2 − Eκ1dx

2 = 0,

that is, any any given point the asymptotic directions (respectively character-

istic directions) are inclined at an angle of ± tan−1(
√
−κ1/κ2) (respectively

± tan−1(
√
κ1/κ2)) to a principal direction.

2. At parabolic points the single asymptotic and characteristic directions coincide

and is a principal direction.

3. At a cusp of Gauss the value of the index moduli λ (see Section 1.3) of the

asymptotic and characteristic BDEs (2.5) and (2.6) have opposite sign but

equal absolute value ([24]). In particular if the asymptotic curves have a well-

folded saddle then the characteristic curves have a well-folded node or focus,

and vice-versa.

The similarities between the asymptotic curves and the characteristic curves may

be understood by considering their BDEs as points in the projective plane RP 2.

At any point the BDEs of the asymptotic and characteristic curves are apolar with

respect to the pencil connecting them, and the polar of this pencil is the principal

BDE, that is, these three BDEs form a self-polar triangle.

An important difference between the asymptotic curves and the characteristic

curves is that the latter are not projectively invariant.

At umbilic points the coefficients of the characteristic BDE (2.6) vanish. The

discriminant of (2.6) has an A+
1 -singularity. The configurations of the characteristic

curves at umbilic points are established in [24].

If a surface is parametrised at an umbilic point in the form given in Section 2.1,

then the singularity of the characteristic BDE (2.6) is of type star if the complex

number β lies inside the circle |β| = 3, of type lemon if β is outside the hypercycloid

β = 3(2eiθ + e−2iθ), and of type monstar if β lies in the remaining regions of the

complex plane. This partition of the complex plane is shown in Figure 2.2 (left).
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Figure 2.2: Partition of the β-plane: the characteristic BDE (left) and the principal

BDE P (right).

2.2.2 The conjugate and reflected curve congruences

Further evidence that the characteristic curves are significant geometric objects wor-

thy of further investigation is provided by two natural 1-parameter families of BDEs

on surfaces, which are defined in [24, 36].

Observe that the notion of conjugacy gives rise to an involution C , the projec-

tivised tangent plane to the surface at the point p ∈ S, v 7→ v̄. There is another

involution on PTpS, which we denote R, which is simply reflection in (either of)

the principal directions. The convolution of C and R is another involution and

C ◦R = R◦C ([24]). The asymptotic, principal and characteristic directions at each

point p are the fixed points of the involutions C, R and C ◦R respectively.

The conjugate curve congruence, Cα, is first defined in [36]. It consists of a

natural 1-parameter family of BDEs that interpolates between asymptotic BDE

and the principal BDE.

Definition 2.2.8 ([36]) Let PTS denote the projective tangent bundle to S, and

define Θ : PTS → [−π
2
, π

2
] by Θ(p, v) = α where α denotes the oriented angle

between a direction v and the corresponding conjugate direction v̄ = C(v). Note that

Θ is not well defined at points corresponding to asymptotic directions at parabolic

points. The conjugate congruence, for a fixed α, is defined to be Θ−1(α) which we

denote Cα.

If we consider BDEs as points in the projective plane RP 2, the conjugate curve
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congruence is a natural parametrisation of the pencil joining the asymptotic and

principal BDEs. Observe that C0 is the set of all asymptotic directions and C±π
2
.

Proposition 2.2.4 ([36]) The conjugate curve congruence Cα of a parametrised sur-

face is given by the BDE

(sinα(Gm− Fn)− n cosα
√
EG− F 2)dy2+

(sinα(Gl − En)− 2m cosα
√
EG− F 2)dydx+

(sinα(Fl − Em)− l cosα
√
EG− F 2)dx2 = 0.

(2.7)

The discriminant of Cα, which we denote ∆α
C, is given by

H2(x, y) sin2 α−K(x, y) = 0,

where H is the mean curvature and K is the Gaussian curvature.

Away from umbilics the BDE Cα can be written, with respect to a coordinate

system given by the lines of curvature, by

Gκ2 cosαdy2 +
√
EG(κ2 − κ1) sinαdydx+ Eκ1 cosαdx2 = 0.

In [24] the congruence replacing C with R ◦ C is considered. This is a natural 1-

parameter family of BDEs that interpolates between characteristic BDE and the

principal BDE, that is, a natural parametrisation of the pencil in RP 2 that joins

the principal and characteristic BDEs.

Definition 2.2.9 ([24]) Let Φ : PTS → [−π
2
, π

2
] by Φ(p, v) = α where α denotes

the oriented angle between a direction v and R(v̄)(= R ◦ C(v)). Note that Φ is not

well defined at umbilics. Then the reflected conjugate curve congruence, for a fixed

α, is defined to be Φ−1(α) which we denote Rα.

If we consider BDEs as points in the projective plane RP 2, the conjugate curve

congruence is a natural parametrisation of the pencil joining the asymptotic and

principal BDEs. Observe that R0 is the set of all characteristic directions and R±π
2
.

Proposition 2.2.5 ([24]) The BDE of the reflected conjugate curve congruence on
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a parametrised surface is

((2m(Gm− Fn)− n(Gl − En)) cosα− (Gm− Fn)
2Fm−Gl − En√

EG− F 2
sinα)dy2+

(2(m(Gl + En)− 2Fln) cosα− (Gl − En)
2Fm−Gl − En√

EG− F 2
sinα)dydx+

((l(Gl − En)− 2m(Fl − Em)) cosα− (Fl − Em)
2Fm−Gl − En√

EG− F 2
sinα)dx2 = 0.

(2.8)

The discriminant consists umbilic points together with the set of

H2(x, y) sin2 α +K(x, y) cos2 α = 0,

which we denote by ∆α
R.

Away from umbilics the equation for Rα is given, in the principal co-ordinate

system, by

Gκ2 cosαdy2 −
√
EG(κ2 + κ1) sinαdydx− Eκ1 cosαdx2 = 0.

When we consider BDEs as points in the projective plane RP 2 these families

correspond to natural parametrisations of the pencils of forms that join the asymp-

totic and principal BDEs (in the case of Cα) and characteristic and principal BDEs

(in the case of Rα. There are symmetries between these families of BDEs and their

integral curves, discussed in [24], which stem from the construction in RP 2.

Properties of these two families of BDEs give further insight into the intimate

relationship between the asymptotic curves, characteristic curves and the lines of

curvature. Some of these are given in Remarks 2.2.10. Further properties are given

in [24]. The singularities of these BDEs are studied in [14].

Remarks 2.2.10 1. The discriminant curves ∆α
C (respectively ∆α

R) occur in the

non-hyperbolic (respectively non-elliptic) region of the surface, and foliate this

region. Furthermore ∆0
C and ∆0

R are the parabolic set, ∆
±π

2
C is the umbilic

points, and ∆
±π

2
R is the curve H = 0, that is the set of points where the arith-

metic mean curvature of the surface vanishes.

2. In general Cα 6= C−αand Rα 6= R−α, however ∆α
C = ∆−αC and ∆α

R = ∆−αR .

3. On ∆α
C (respectively ∆α

R) the single direction defined by Cα (respectively Rα)

is one of the characteristic (respectively asymptotic) directions. The other
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characteristic (respectively asymptotic) direction at those points is the single

direction defined by C−α (respectively R−α).



Chapter 3

The characteristic curves on

smooth surfaces

The folded singularities of the characteristic BDE are the cusps of Gauss. These

isolated points on the parabolic set where the unique asymptotic direction is tangent

to the parabolic set are aspects of the flat differential geometry of the surface. In this

chapter we examine the behaviour of the characteristic curves in a neighbourhood

of a cusp of Gauss. We show that certain properties of the characteristic curves

in such a neighbourhood are invariant under projective transformations of R3, and

associate a projective invariant to these points following Uribe-Vargas in [71].

3.1 Projective properties of cusps of Gauss

The asymptotic BDE (2.5) and characteristic BDE (2.6) give rise to three curves

of interest on S at a cusp of Gauss: the parabolic set (which is the discriminant

of equation (2.5) and part of the discriminant of equation (2.6)), and the mapping

to S of the loci of inflections of the solution curves to the two BDEs (the flecnodal

curve in the case of (2.5)).

A further curve of interest at a cusp of Gauss is the conodal curve, that is, the

closure of the locus of points of contact of S with its bitangent planes (see Section

2.1).

We parametrise S in Monge form (x, y, f(x, y)) where f is as in (2.3), and choose

47
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κ1 = 0, κ2 6= 0 at parabolic points, and a30 = 0 at a cusp of Gauss.

Proposition 3.1.1 Suppose that the origin is a cusp of Gauss. Then:

(a) the parabolic set is given by

y =
2a2

31 − a40κ2

2a31κ2

x2 + h.o.t.;

(b) the characteristic inflection curve is given by

y =
(4a2

31 − a40κ2)(5a2
31 − 2a40κ2)

2a3
31κ2

x2 + h.o.t.;

(c) the flecnodal curve is given by

y =
a40(3a2

31 − 2a40κ2)

18a3
31

x2 + h.o.t.;

(d) the conodal curve is given by

y = − a40

6a31

x2 + h.o.t..

Proof : As the origin is a cusp of Gauss, we can set κ1 = 0 (the origin is a

parabolic point) and a30 = 0 (the asymptotic direction at the origin is tangent to

the parabolic set). We also assume a31 6= 0 and κ2 6= 0, that is, the parabolic set is

smooth and the origin is not a flat umbilic.

We set p = dy/dx and write the characteristic BDE (2.6) as Ω(x, y, p) = 0 and

the asymptotic BDE (2.5) as Ψ(x, y, p) = 0. We have

j2Ω = κ2
2p

2 + 2a31κ2xp+ 2a32κ2yp− a31κ2y −
1

2
(a40κ2 − 4a2

31)x2

+(3a31a32 − a41κ2)yx+ (2a2
32 −

1

2
a42κ2 + a2

31 − a31a33)y2.

Differentiating with respect to p we have

j1Ωp = 2κ2a31x+ 2κ2
2p+ 2a32yκ2.

Differentiating with respect to x and with respect to y we have

j1(Ωx + pΩy) = (−a40κ2 + 4a2
31)x+ a31κ2p+ (−a41κ2 + 3a31a32)y.
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The criminant is given by Ω = Ωp = 0. Eliminating p from these equations

establishes (a).

Parts (b) and (c) follow in the same way, using the equations Ω = Ωx + pΩy = 0

and Ψ = Ψx + pΩy = 0 respectively.

To prove (d) we choose two distinct points on S

η = (x, y, f(x, y))

η̃ = (x̃, ỹ, f(x̃, ỹ)).

The tangent planes TηS and Tη̃S to the surface at these points have normals

(−fx(x, y),−fy(x, y), 1) and (−fx(x̃, ỹ),−fy(x̃, ỹ), 1) respectively. Observe that TηS

and Tη̃S are parallel if and only if

fx(x1, y1) = fx(x̃, ỹ)

fy(x1, y1) = fy(x̃, ỹ).

If in addition η̃ ∈ TηS then TηS is a bitangent plane. This is the case if

f(x, y) = f(x̃, ỹ) + (x− x̃)fx(x, y) + (y − ỹ)fy(x, y).

Eliminating x̃, ỹ from these equations completes the proof. 2

Recall the method of studying BDEs described in Section 1.3.2.

Given a curve γ on S, the Legendrian lift of γ to the manifold of contact elements

to S (that is, the projectivised cotangent bundle PT ∗S which we identify with R3,

endowed with the contact structure given by the canonical form dy − pdx) consists

of the contact elements to S tangent to γ. This is the unique curve in PT ∗S that

projects to γ under π and is tangent to the contact plane at every point.

In the parametrising plane the parabolic set, the locus of inflections of the char-

acteristic BDE, the flecnodal and conodal curves are mutually tangent parabolae.

Following Uribe-Vargas ([71]) we write their 2-jets as y = cPx
2, y = cχx

2, y = cζx
2,

and y = cDx
2 respectively. We denote their Legendrian lifts by LP , Lχ, Lζ and LD,

and the tangents at the origin to their Legendrian lifts by lP , lχ, lζ and lD. We

denote by lg the contact element to the cusp of Gauss (the Legendrian lift of the

origin, that is, the vertical line in the contact plane at that point). Observe that LP

is simply the criminant.
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Remark 3.1.1 It follows from Proposition 3.1.1 that lP , lζ , lχ, lD are generally all

distinct. If κ2a40 = 3a31 then they all coincide. This case is studied in [71], but is

non-generic; it is the collapse of two cusps of Gauss with opposite indices.

Recall that the cross-ratio of four concurrent coplanar lines li, i = 1..4 with

respective gradients ci, i = 1..4 is given by

(l1, l2; l3, l4) =
c3 − c1

c3 − c2

· c4 − c2

c4 − c1

.

Observe, for example, that if l2 has infinite gradient, then

(l1, l2; l3, l4) =
c3 − c1

c4 − c1

.

Theorem 3.1.2 At a generic cusp of Gauss the cross-ratio of the Legendrian lines

lP , lg, lχ and lζ satisfies

(lP , lg; lχ, lζ) = −9.

Proof : The Legendrian lift of a curve in R2 given by y = cx2 + h.o.t. is tangent

to the contact plane at the origin, and the gradient of its tangent line at the origin

is 2c.

Using Proposition 3.1.1 we have

(lP , lg; lχ, lζ) =

2a2
31 − a40κ2

2a31κ2

− 20a4
31 − 13a2

31a40κ2 + 2a2
40κ

2
2

2a3
31κ2

2a2
31 − a40κ2

2a31κ2

− a40(3a2
31 − 2a40κ2)

18a3
31

= −9.

2

Recall that the parabolic set, the cusps of Gauss, and the flecnodal curve, being

defined in terms of contact with flat model-submanifolds, are projectively invariant

properties of the surface, but that the characteristic curves are not.

Remark 3.1.3 Although there is no reason that inflections of the characteristic

curves in the domain of a parametrisation should correspond to points of any sig-

nificance on S, a curve with the same 2-jet as the locus of such points at a cusp

of Gauss does have some meaning: as a consequence of Theorem 3.1.2 this 2-jet is

projectively invariant, and is determined by the 2-jets of the flecnodal and parabolic

curves.
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Definition 3.1.4 We define the characteristic cross ratio invariant (ccr-invariant)

of a cusp of Gauss by

ρc = (lχ, lP ; lD, lg).

It follows from Theorem 3.1.2 that the ccr-invariant is a projective invariant and

related to the cr-invariant ρ defined in [71] by the linear relation ρc = 10 − 9ρ.

We have chosen this particular cross-ratio (among the six possible choices for these

lines) to make the subsequent calculations simpler.

Proposition 3.1.2 The ccr-invariant is given by ρc = 10− 3κ2a40

a2
31

.

Proof : Using Proposition 3.1.1 we have

ρc = (lχ, lP ; lD, lg) =

− a40

6a31

− 20a4
31 − 13a2

31a40κ2 + 2a2
40κ

2
2

2a3
31κ2

− a40

6a31

− (2a2
31 − a40κ2)

2a31κ2

= 10− 3κ2a40

a2
31

.

2

Remark 3.1.5 In the degenerate case when κ2a40 = 3a31 the cross-ratios in Theo-

rem 3.1.2 and Definition 3.1.4 are not well defined. As the limit of ρc of both cusps

of Gauss at the collapse is equal to 1, we define ρc = 1 in this case. At any cusp of

Gauss with ccr-invariant ρc we have that

lim
ρc→1

(lP , lg; lχ, lζ) = −9.

We now proceed to classify cusps of Gauss in terms of type of singularity of the

characteristic BDE and the relative positions of special curves of interest. These

results compliment those in [23, 71] on the asymptotic curves and the flecnodal

curve.

Lemma 3.1.6 The topological type of the singularity of the characteristic BDE is

determined by the projective invariant ρc.

Proof : The topological type of the singularity of the characteristic BDE is given

by the type of singularity of the lifted field ξ. Using the expressions for j1Ωp and

j1Ωx + pΩy given in the proof of Proposition 3.1.1, the linear part of ξ is

2(κ2
2p+ a31κ2x)

∂

∂x
− (a31κ2p− (a40κ2 − 4a2

31)x)
∂

∂p
.
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By a linear change of coordinates in the (x, p)-plane and multiplication by a non-zero

scalar this may be transformed to

2(p− 2x)
∂

∂x
+ (p− (5− 2a40κ2/a

2
31)

(3− a40κ2/a2
31)

x)
∂

∂p
.

It is clear that the type of singularity depends only on the value of a40κ2/a
2
31, that

is, on the value of the projective invariant ρc. 2

Lemma 3.1.7 At a cusp of Gauss, we may make projective transformations and

parametrise the surface by (x, y, f(x, y)) where

j4f(x, y) =
y2

2
− x2y +

(10− ρc)x4

18
.

Proof : Platanova ([58]) showed that j4f(x, y) is projectively equivalent to

y2

2
− x2y + λx4.

It is immediate from Proposition 3.1.2 that ρc = 10− 18λ. 2

Theorem 3.1.8 At a cusp of Gauss with ccr-invariant ρc, the characteristic curves

have a well-folded singularity if ρc, 6= 1, 11/8. The singularity is a well-folded saddle

if ρc < 1, a well-folded node if 1 < ρc < 11/8 and a well-folded focus if ρc > 11/8.

Proof : We parametrise the surface in Monge form and use the projective normal

form given in Lemma 3.1.7. We calculate the coefficients E,F,G, l,m, n of the first

and second fundamental forms. We have that

j2E = 1, j2l = −2y +
20− 2ρc

3
x2,

j2F = 0, j2m = −2x,

j2G = 1 + y2, j2n = 1− y2.

We calculate the coefficients of the characteristic BDE (2.6). We set p = dy/dx and

write (2.6) as Ω(x, y, p) = 0, then we have

j2Ω(x, y, p) = p2 − 4xp+ 2y + 4y2 +
2(2 + ρc)

3
x2.

The linear part of the projection to the (x, p)-plane of the lifted field ξ associated

to the characteristic BDE is

2(p− 2x)
∂

∂x
+ 2(p− 2(2 + ρc)

3
x)

∂

∂p
.
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We calculate the eigenvalues of this linear vector field at the origin. They are

found to be

−1±
√

11− 8ρc√
3

,

which are distinct and non-zero provided that ρc 6= 1, 11/8. The singularity of ξ is

a saddle (real eigenvalues of opposite sign) when ρc < 1, a node (real eigenvalues

of the same sign) when 1 < ρc < 11/8 and a focus (complex conjugate eigenvalues)

when ρc > 11/8. 2

Remark 3.1.9 Combining Theorem 3.1.8 with Theorem 5 in [71] (see also Propo-

sition 2.5 in [24]), we have in Figure 3.1, the four generic combinations of the

(topological) type of singularity of the asymptotic curves and characteristic curves

at a cusp of Gauss.

Asymptotic
Curves

Characteristic
Curves

Parabolic 
Curve

ρc <
5

8

5

8
< ρc < 1 1 < ρc <

11

8
ρc >

11

8

Figure 3.1: The asymptotic and characteristic curves at a cusp of Gauss.

Theorem 3.1.10 There are seven possible configurations of the parabolic set, con-

odal curve, and the inflection curve of the characteristic BDE at a cusp of Gauss,

distinguished by the value of ρc. These are illustrated in Figure 3.2.

Proof : We adopt the projective normal form given in Lemma 3.1.7 and write

the characteristic BDE (2.6) as Ω(x, y, p) = 0 where p = dy/dy. Using Proposition

3.1.1 the parabolic set is given by

y =
(4− ρc)

3
x2 + h.o.t.,

the inflection curve of the characteristic BDE is given by

y =
(2 + ρc)(5− 2ρc)

9
x2 + h.o.t.,
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ρc < −2 −2 < ρc < 0 0 < ρc < 1

1 < ρc <
5

2

5

2
< ρc < 4 4 < ρc < 10 ρc > 10

Figure 3.2: The parabolic set (thick), inflection curve of the characteristic BDE

(dotted), and conodal curve (dot-dashed) at a cusp of Gauss.

and the conodal curve is given by

y =
10− ρc

9
x2 + h.o.t..

The inflection curve is always regular as the tangent to the curve in R3 given by

Ω = Ωx + pΩy = 0 is transverse to the line y = x = 0 for all values of ρc.

These expressions show that when ρc = 1, all the curves of interest have greater

than 2-point contact when considered pairwise. The conodal curve and locus of

inflections also have greater than 2-point contact when ρc = 0.

The parabolic set is inflectional if ρc = 4, the locus of inflections is inflectional if

ρc = 5/2 or ρc = −2, and the conodal curve is inflectional if ρc = 10.

The proof is completed by considering the 2-jets of the curves of interest when

ρc takes a value of in each of the open intervals bounded by the given exceptional

values. 2

Further curves of interest at a cusp of Gauss are the separatrices of the singularity.

Recall Definition 1.3.2.

Lemma 3.1.11 The relative positions of the parabolic set and the separatrices and

inflection curve of the characteristic BDE at a cusp of Gauss are invariant under
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projective transformations.

Proof : The relative positions of the curves of interest at a cusp of Gauss are given

by the ratios of their 2-jets at that point. To second order the separatrices are

parabolae tangent to the parabolic set, so they may be written in the form

y = cσx
2 + h.o.t..

Substituting this into the equation Ω(x, y, p) = 0 we find that

cσ =
−3±

√
(8κ2a40 − 23a2

31)

8κ2

.

We label these two values cσ+ and cσ−. The proof is completed by using Proposition

3.1.1 to show that the ratio of any two elements of the set {cP , cχ, cσ+, cσ−} depends

only on the value of κ2a40/a
2
31, that is, on the value of ρc. 2

Proposition 3.1.3 There are six possible configurations of the parabolic set, locus

of inflections and separatrices associated to the characteristic BDE at a cusp of

Gauss. These are are invariant under affine transformations of R3 and distinguished

by the value of ρc as illustrated in Figure 3.3.

Proof : We adopt the projective normal form given in Lemma 3.1.7. The sepa-

ratrices are given by

y =
3

4
±
√

33− 24ρc
12

x2 + h.o.t.

Recall that the parabolic set is given by

y =
(4− ρc)

3
x2 + h.o.t.,

and the inflection curve of the characteristic BDE is given by

y =
(2 + ρc)(5− 2ρc)

9
x2 + h.o.t.

Using these expression we have that the following exceptional values of ρc corre-

spond to the given codimension 1 phenomena:

1. The separatrices are inflectional or singular when ρc = −2.

2. The parabolic set is inflectional if ρc = 4.
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Figure 3.3: Configurations of the parabolic curve (thick curves), locus of inflections

(broken curves) and separatrices (thin curves) at a cusp of Gauss. The label given

to each configuration refers to the labels given to the 18 configurations established

in [23], see Section 1.3.3.

3. The locus of inflections is inflectional if ρc = −2, 5/2.

4. The singularity of the lifted field changes from a saddle to a node at ρc = 1.

5. The parabolic and locus of inflection curves have greater than two-point con-

tact if ρc = 1.

6. The type of singularity changes from a node to a focus at ρc = 11/8.

7. The locus of inflections and separatrices have greater than two-point contact

if ρc = 1 or ρc = −2.

The proposition is established by choosing a value of ρc in each of the open intervals

bounded by these exceptional values and calculating the 2-jet of the parabolic set,

inflection curve and any separatrices. 2
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3.2 The Legendre transformation of the charac-

teristic BDE

We have seen that the inflections of the characteristic curves are of some geometric

interest, at least in the neighbourhood of a cusp of Gauss. It follows that the

Legendre transform of the characteristic BDE (2.6) is also of interest.

The property that a curve has an inflection is affine invariant, however we have

seen that the relative positions of the curves of interest (cusp set, inflection set and

separatrices) are invariant under projective changes of coordinates. We may thus

use the normal form given in Lemma 3.1.7.

Proposition 3.2.1 There are six possible configurations of the cusp set, locus of

inflections and separatrices associated to the dual curves of the integral curves of the

characteristic BDE at a cusp of Gauss. These are distinguished by the value of ρc

as illustrated in Figure 3.4.

Proof : We consider the characteristic BDE (2.6) at a cusp of Gauss parametrised

in the projective normal form given in Lemma 3.1.7. We write this equation as

F (x, y, p) = 0 where p = dy/dx and apply the Legendre transformation as given in

Section 1.3.3. The Proposition is then established by calculating the appropriate

2-jets in a manner similar to the proof of Proposition 3.1.1 and arguing as in the

proof of Proposition 3.1.3. 2

It is a well known in singularity theory that projections from the plane to the

plane generally have fold singularities along smooth curves and cusp singularities,

known as Whitney-pleats, at isolated points where two fold curves meet (see for

example [47]).

When we consider the surface M associated to the asymptotic or characteris-

tic BDE the fold curves of the natural projection π are the Legendrian lift of the

parabolic set. For smooth surfaces the parabolic set is generally a smooth curve so

we do not expect Whitney-pleat singularities in general. The Legendre transform of

these BDEs, however, may have such points.

When we consider the Legendre transformation of the characteristic BDE at a
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Figure 3.4: Configurations of the discriminant (thick curves), locus of inflections

(broken curves) and separatrices (thin curves) of the Legendre transform of the

characteristic BDE at a cusp of Gauss. The label given to each configuration refers

to the labels given to the 18 configurations established in [23], see Section 1.3.3.

cusp of Gauss, the projection π has a Whitney-pleat (that is, a cusp) singularity

at the origin when ρc = −2, that is, when the inflection set is inflectional. This

is symmetric with a result on the asymptotic curves identified by Uribe-Vargas in

[72]: the Legendre transformation of the asymptotic BDE at a cusp of Gauss has

a Whitney-pleat when the flecnodal curve is inflectional. Furthermore, hyperbolic

points where the Legendre transform of the asymptotic BDE has a Whitney-pleat

are shown to be biflecnodes, that is, points where the tangent line in the asymptotic

direction has 5-point contact with the surface. Such points are generic features

of surfaces (cusps of Gauss with an inflectional flecnodal curve are not, they have

codimension 1 so occur in 1-parameter families of surfaces).

It follows from our results that elliptic points where the Legendre transformation
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of the characteristic BDE has a Whitney-pleat may also be of interest. We label such

points characteristic bi-inflections. It follows that a codimension 1 cusp of Gauss

with ρc = −2 may be thought of as the superposition of a generic cusp of Gauss and

a characteristic bi-inflection.

3.3 Left and right characteristic curves

The rate of turning, per unit length of arc as we move along any curve on S, of the

tangent plane to S is n′, where ′ denotes differentiation with respect to arc length

along the curve. This is given by −κnt + τg(t∧n), where κn and τg are respectively

the sectional curvature and geodesic torsion, and t is the unit tangent to the curve

(see for example [34]).

The Beltrami-Enepper Theorem states that the respective torsions (as space

curves) of the two asymptotic curves through a hyperbolic point are ±
√
−K, or

equivalently τ 2 = −K (see, for example, [70]). For an asymptotic curve the torsion

and geodesic torsion are equal and the sectional curvature is zero. Therefore, one

can re-write the Beltrami-Enepper formula in the form

κ2
n + τ 2

g = −K.

This reformation shows that the Theorem 3.3.1 is the analogous result for the char-

acteristic curves.

Theorem 3.3.1 Let κn and τg be the sectional curvature and geodesic torsion in a

particular direction on a surface. The direction is a characteristic direction if and

only if

κ2
n + τ 2

g = K.

Proof : Let κ2, κ1 be the principal curvatures at a point on a surface. At an elliptic

point we may assume, without loss of generality, that κ1 > 0 and κ2 > 0. A curve

tangent to a direction making an angle φ with the principal direction with sectional

curvature κ1 at a point has sectional curvature given by

κn = κ1 cos2 φ+ κ2 sin2 φ
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and geodesic torsion given by

τg = cosφ sinφ(κ2 − κ1).

The characteristic directions φ satisfy

cosφ = ±
√

κ2

κ2 + κ1

,

sinφ =

√
κ1

κ2 + κ1

.

The result follows. 2

Corollary 3.3.2 The magnitude of the rate of turning of the tangent plane along a

characteristic (respectively asymptotic) curve is equal to
√
K (respectively

√
−K).

Definition 3.3.3 A curve on a surface is said to be a left (respectively right) curve

if its geodesic torsion is negative (respectively positive).

Definition 3.3.3 is consistent with the terminology in [71] as torsion and geodesic

torsion are equal for the asymptotic curves.

A corollary of Theorem 3.3.1 is that at any elliptic point one characteristic curve

is a left curve and the other is a right curve (the geodesic torsion of the characteristic

curves through an elliptic point must have opposite sign as they are separated by a

principal direction). The left (respectively right) characteristic curves at the origin

have slope
√
κ1/κ2 (respectively −

√
κ1/κ2).

Definition 3.3.4 The left (respectively right) branch of the inflection curve is the

set of points corresponding to an inflection of a left (respectively right) characteristic

curve.

A change from the left branch to the right branch occurs as the inflection curve

passes through a generic cusp of Gauss, and as the Legendrian curve Lχ is transverse

to the criminant at a well-folded singularity. Similar to that in [71] for the flecnodal

curve, there is a natural way to locate the left and right branches at a cusp of Gauss.

Proposition 3.3.1 At a cusp of Gauss choose an orthonormal right-handed coordi-

nate system with the x-axis tangent to the parabolic set and the elliptic region locally
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in the region z > 0, y > 0. Then left and right branches of the inflection curve of the

characteristic BDE correspond locally to the negative and positive x-axis respectively

if and only if the singularity of the characteristic curves has positive index. The

opposite correspondence holds when the singularity has negative index.

Proof : We choose a principal coordinate system at a non-umbilic elliptic point.

Let (x, yi(x)) be the parametrisation in the plane of a solution to the characteristic

BDE (2.6) with slope (−1)i
√
κ1/κ2 at the origin (that is, j1yi = (−1)i

√
κ1/κ2x).

Let pi = dyi/dx, i = 1, 2. Observe that in a neighbourhood of the origin p2 > p1.

Since cP > cχ, the slope of the Legendrian line lP at the origin in the (x, p)-plane

is always greater than that of lχ. Hence locally the half space x > 0 (respectively

x < 0) contains the left (respectively right) branch of the inflection curve.

From Proposition 3.1.1 the elliptic domain lies in y > 0 when ρc < 1, which

from Theorem 3.1.10 is when the index of the lifted field of the characteristic BDE

is equal to −1.

When ρc > 1 we make the coordinate change (x, y, z) 7→ (−x,−y, z) to obtain

the required coordinate system, after which the half space x < 0 (respectively x > 0)

contains the left (respectively right) branch of the inflection curve. In this case the

index of the lifted field of the characteristic BDE is equal to +1. 2

Remark 3.3.5 Combining Proposition 3.3.1 with Theorem 8 in [71] we have in

Figure 3.5 the two possible configurations of the flecnodal curve and the inflection

curve of the characteristic BDE at a cusp of Gauss.

3.4 Elliptic discs of smooth surfaces

Definition 3.4.1 An elliptic disc is an elliptic region of a smooth surface bounded

by a smooth simple closed parabolic curve.

Hyperbolic discs (hyperbolic regions bounded by smooth simple closed parabolic

curves) are considered by Uribe-Vargas in [71], where the asymptotic curves are used

to prove global results concerning the number and type of cusps of Gauss on the

parabolic curve bounding the disc. The local properties of the characteristic curves
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Figure 3.5: The left (blue) and right (red) branches of the flecnodal curve and the

inflection curve of the characteristic BDE at a cusp of Gauss with ρc < 1 (left) and

ρc > 1 (right).

we have established allow us to prove similar results concerning elliptic discs on

smooth surfaces. A key fact used in [71] is that the singularities of the asymptotic

BDE (2.5) all lie on the parabolic set. The characteristic BDE (2.6), however, may

have singularities in the elliptic region, namely at umbilic points. This presents

problems when adapting the results in [71], so we restrict ourselves here to the

study of elliptic discs containing no umbilic points.

Proposition 3.4.1 The sum of the indices of the singularities of the characteristic

curves at the cusps of Gauss on a parabolic curve bounding an elliptic disc with no

umbilic points is equal to +1.

Proof : We write the characteristic BDE (2.6) as

Ω(x, y, p) = 0

where p = dy/dx. As there are no umbilic points and the elliptic region is a disc,

the surface M ⊂ R3 given by Ω = 0 is smoothly equivalent to a sphere.

Consider the vector field ξ on M . As M is a compact surface without boundary

of genus 0, the sum of the indices of all singular points of ξ is 2 by the Poincaré-Hopf

Theorem, so the sum of the indices of the folded singularities is 1. 2

Corollary 3.4.2 The parabolic curve bounding an elliptic disc that contains no um-

bilic points has a positive even number of cusps of Gauss.
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The following partially answers a problem set in [71].

Corollary 3.4.3 If an elliptic disc contains no umbilic points and the characteristic

curves have nodes or foci at all cusps of Gauss on the parabolic curve bounding the

disc, then there are only two cusps of Gauss.

Remarks 3.4.4 1. The case that the parabolic set is an isolated point (that is,

the discriminant of the asymptotic BDE (2.5) has an A+
1 singularity) has codi-

mension 1. If a surface with such a parabolic set is perturbed within a generic

1-parameter family of surfaces, a simple, closed parabolic curve appears in the

bifurcation. Thus although closed parabolic curves are generic (that is, stable)

features of surfaces, a natural context in which to study elliptic and hyperbolic

discs is within 1-parameter families of surfaces.

2. It is clear that the number and type of cusps of Gauss on the parabolic set

bounding an elliptic disc is partly governed by the number and type of the um-

bilic points on the disc, and that information on the nature of this governance

may be obtained by studying the characteristic curves. Observe that the set

Ω = 0 is then a surface in R2 × RP 1 that is smooth if all umbilic points are

generic, but is not generally orientable.



Chapter 4

Linear involutions on the real

projective line

In this Chapter we temporarily leave the geometry of surfaces in R3 and consider

binary differential equations on surfaces in their own right.

Our motivation is two-fold. We begin by considering the relationship between

linear involutions on RP 1 and families of BDEs on surfaces, using the method of

considering BDEs as points in RP 2. The asymptotic (2.5), characteristic (2.6) and

principal (2.4) BDEs and the related families Cα (2.7) and Rα (2.8) may be con-

structed using such involutions (see [24]). We seek to generalise this method to

general linear involutions on RP 1. This work lays the foundation for Chapter 5,

where we exhibit BDEs on surfaces that do not appear to have been considered

previously

Secondly we aim to generalise the results of Chapter 3, and show that we may

assign an affine invariant to well-folded singularities of BDEs in the plane. The

affine properties of such points are completely determined by this invariant and the

index modulus λ.

We begin by recalling some simple facts concerning the geometry of the projective

plane RP 2.

Let Γ ⊂ RP 2 be a conic associated to a symmetric bilinear form G on R3. The

polar line of a point P ∈ RP 2 with respect to Γ is denoted by P̂ (conversely, given

any projective line Q̂ ∈ RP 2, we denote its polar point by Q).

64
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We denote by RP 2
Γ+ (respectively RP 2

Γ−) those points [v] ∈ RP 2 with G(v, v) > 0

(respectively G(v, v) < 0). Clearly {RP 2
Γ+ ,RP 2

Γ− ,Γ} forms a partition of RP 2.

The set of all projective lines in RP 2 (that is, the Grassmannian G2(R3)) may

be similarly partitioned into three disjoint sets using Γ: those lines that intersect Γ

at two distinct points, those that are tangent to Γ and those that do not intersect

Γ. We define

G2(R3)Γ+ = {P̂ ∈ G2(R3)||P̂ ∩ Γ| = 2}

G2(R3)Γ0 = {P̂ ∈ G2(R3)||P̂ ∩ Γ| = 1}

G2(R3)Γ− = {P̂ ∈ G2(R3)|P̂ ∩ Γ| = 0}.

Lemma 4.0.5 follows trivially from the definition of polarity with respect to a

given conic.

Lemma 4.0.5 (a) P ∈ RP 2
Γ+ if and only if P̂ ∈ G2(R3)Γ+,

(b) P ∈ RP 2
Γ− if and only if P̂ ∈ G2(R3)Γ−,

(c) P̂ ∈ G2(R3)Γ0 if and only if P ∈ P̂ ∩ Γ.

Consider a projective line P̂ ∈ G2(R3)Γ+ ∪ G2(R3)Γ− . Given any point [v] ∈ P̂ ,

there is a unique point σPΓ([v]) ∈ P̂ such that [v] and σPΓ([v]) are apolar with

respect to Γ, that is, the set {[v], σPΓ([v]), P} forms a self-polar triangle. It is clear

that the map

σP : P̂ → P̂

[v] 7→ σPΓ([v])

defines an involution on P̂ .

Lemma 4.0.6 Let P̂ ∈ G2(R3)Γ+ and let [v] ∈ P̂ . If [v] ∈ RP 2
Γ+ then σPΓ([v]) ∈

RP 2
Γ−, if [v] ∈ RP 2

Γ− then σPΓ([v]) ∈ RP 2
Γ+, and if [v] ∈ Γ then σPΓ([v]) = [v].

Proof : Observe that σPΓ([v]) is the polar of the pencil joining [v] and P with

respect to the conic Γ. We denote this pencil by ̂σPΓ([v]).

As P̂ ∈ G2(R3)Γ+ , it follows from Lemma 4.0.5 (a) that P ∈ RP 2
Γ+ . If [v] ∈

RP 2
Γ− then ̂σPΓ([v]) ∈ G2(R3)Γ+ . Then by Lemma 4.0.5 (a) again we have that

σPΓ([v]) ∈ RP 2
Γ+ .

The other assertions follow by similar reasoning. 2
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Recall also that polarity with respect to any conic is preserved by projective

transformations.

In what follows we shall adopt the notation P̂ for the polar of a point P ∈ RP 2

with respect to the conic ∆.

4.1 Quadratic forms constructed from involutions

4.1.1 Linear involutions on RP 1

A linear involution on the real projective line RP 1 is a projective linear map

σ : RP 1 → RP 1

such that (σ ◦ σ)([v]) = [v] for all [v] ∈ RP 1. The set of all linear involutions on

the real projective line is a subset of the projective general linear group PGL(2,R):

it is the induced action on RP 1 of the subset so the general linear group GL(2,R)

whose elements are linear transformations T : R2 → R2 such that T 2 = µI for

some constant µ 6= 0. We denote by Id the identity involution given by [v] 7→ [v]

for all [v] ∈ RP 1. This involution corresponds to linear transformations that are

themselves multiples of the identity. We denote the compliment of Id in the set of

all linear involutions on RP 1 by PLI(2,R).

Remark 4.1.1 The composition of two linear involutions is not necessarily another

involution, hence PLI(2,R) does not form a group under composition of involutions.

A linear transformation T : R2 → R2 that is not a multiple of the identity but

is such that T 2 is a multiple of the identity if and only it is given by a matrix of the

form  a b

c −a


where a2 + bc 6= 0. Two matrices of this form define the same involution if and only

if one is a non-zero multiple of the other. It follows that we may identify PLI(2,R)

with the compliment of the conic a2 + bc = 0 in the real projective plane RP 2, by

considering the above matrix to be the point [a : b : c]. We denote by ∆̃ the conic

in RP 2 given by a2 + bc = 0.
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Given a linear involution

σ : RP 1 → RP 1

[α : β] 7→ [aα + bβ : cα− aβ]

we denote by Σ the matrix  a b

c −a


of the associated linear transformation.

The set PLI(2,R) has two simply connected components. We define

PLI+(2,R) := {σ ∈ PLI(2,R)|detΣ > 0}

PLI−(2,R) := {σ ∈ PLI(2,R)|detΣ < 0}.

Given a direction [v] ∈ RP 1, we denote by [v∗] ∈ RP 1∗ the projectivised one-

form that is associated to [v] (that is, if [v] = [v1 : v2], [v∗] = v1p − v2q. Let

σ ∈ PLI(2,R), and let ω([v]) = [v∗].σ([v])∗. As the product of two 1-forms, ω([v])

is a binary quadratic form which we may consider to be a point in RP 2. We shall

consider the locus of this point as the direction [v] varies. We need the following

result from elementary geometry.

Lemma 4.1.2 Let a, b, c be real numbers with a2 + bc 6= 0. The set

{(cos θ(a cos θ + b sin θ),−(b sin2 θ + c cos2 θ), sin θ(c cos θ − a sin θ)) ⊂ R3|θ ∈ [0, π]}

is an ellipse in a plane through the origin. The ellipse encloses the origin if and

only if a2 + bc < 0.

Proof : We set

v(θ) =


cos θ(a cos θ + b sin θ)

−(b sin2 θ + c cos2 θ)

sin θ(c cos θ − a sin θ)


Observe that

v(θ) =
1

2


a+ a cos 2θ + b sin 2θ

(b− c) cos 2θ − b− c

a cos 2θ + c sin 2θ − a

 .
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We apply the rotation about a line through the origin that is given by the matrix

1√
a2 + b2

√
a2 + b2 + c2


a2 + b2 −ca cb

c
√
a2 + b2 a

√
a2 + b2 −b

√
a2 + b2

0 b
√
a2 + b2 + c2 a

√
a2 + b2 + c2

 ,

followed by a dilation centred on the origin with scale factor

2
√
a2 + b2.

The image of v under these transformations is
√
a2 + b2 + c2a

0

−a2 − b2 − bc

+ cos 2θ


a
√
a2 + b2 + c2

0

b2 − bc+ a2

+ sin 2θ


b
√
a2 + b2 + c2

0

ac

 .

This is an ellipse in a plane containing the origin, which we denote by ṽ(θ). As

the transformation we used was linear and preserved the origin, v(θ) is also an ellipse

in a plane containing the origin.

The curve ṽ encloses the origin if and only if there are no values of θ such that

ṽ and ṽ′ are linearly dependent. Differentiating we have that

ṽ × ṽ′ =
√
a2 + b2 + c2(a2 + b2)


0

(c+ b) cos 2θ − 2a sin 2θ + c− b

0

 .

The equation

(c+ b) cos 2θ − 2a sin 2θ + c− b = 0

is satisfied by some real θ if and only if a2 + bc > 0. 2

Let T be the projective transformation

T : RP 2 → RP 2

[a : b : c] 7→ [b : 2a : −c].

Theorem 4.1.3 (a) Let σ ∈ PLI+(2,R). Then the set {ω([v])|[v] ∈ RP 1} form

a line L̂ ∈ G2(R3)∆− when quadratic forms are considered as points in the

projective plane.



4.1. Quadratic forms constructed from involutions 69

(b) Let σ ∈ PLI−(2,R). Then there exists a line L̂ ∈ G2(R3)∆+ such that set

{ω([v])|[v] ∈ RP 1} = L̂ ∩ (RP 2
∆+ ∪ ∆), when quadratic forms are considered

as points in the projective plane.

(c) The polar of the pencil L̂ with respect to the conic ∆ is T (σ).

Proof : Let

Σ =

 a b

c −a


where a2 + bc 6= 0. Observe that σ ∈ PLI−(2,R) (respectively σ ∈ PLI+(2,R)) if

a2 + b > 0 (respectively a2 + b < 0). Let [v] = [cos θ : sin θ] (we choose θ ∈ [0, π]) so

v =

 cos θ

sin θ

 .

It follows that [v∗] = cos θp− sin θq. We have that

Σv =

 a cos θ + b sin θ

c cos θ − a sin θ

 .

It follows that σ([v])∗ = (a cos θ + b sin θ)p+ (a sin θ − c cos θ)q.

The quadratic form ω([v]) is given by

ω([v]) = (cos θp− sin θq)((a cos θ + b sin θ)p+ (a sin θ − c cos θ)q)

= Ap2 +Bpq + Cq2,

where

A = cos θ(a cos θ + b sin θ)

B = −(c cos2 θ + b sin2 θ)

C = sin θ(c cos θ − a sin θ),

that is, {ω([v])|[v] ∈ RP 1} = [A : B : C].

Suppose that σ ∈ PLI+(2,R). By Lemma 4.1.2 the set (A,B,C)(θ) is a closed,

convex, planar curve in a plane including the origin, and encloses the origin. It

follows that [A : B : C] is a line L̂ ∈ G2(R3)∆− . This establishes part (a).

Suppose now that σ ∈ PLI−(2,R). By Lemma 4.1.2 the set (A,B,C)(θ) is an

ellipse in a plane including the origin, but does not enclose the origin. It follows
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that [A : B : C] is a segment of a line L̂ ∈ G2(R3)∆+ . By construction [A : B : C]

for any fixed θ is a quadratic form defining two real directions, so

[A : B : C] ⊂ L̂ ∩ (RP 2
∆+ ∪∆).

Finally observe that ω([v]) ∈ ∆ if and only if [v] = σ([v]), that is, if and only if θ

satisfies p/q = tan θ and p/q = (c− a tan θ)/(a+ b tan θ). It follows that θ satisfies

b tan2 θ + 2a tan θ − c = 0.

Since a2 + bc > 0 this equation has two distinct real solutions for tan θ.

As [A : B : C] is connected, it follows that [A : B : C] = L̂ ∩ (RP 2
∆+ ∪∆). This

establishes part (b).

To calculate the polar of L̂ with respect to the conic ∆ of degenerate forms we

choose two distinct points on ω([v]). We set v0 = (1, 0), v1 = (0, 1). Then

ω(v0) = ap2 − cpq,

ω(v1) = −bpq − aq2

(note that when a = 0 these points coincide and we must make a different choice of

v0, v1). The polar of the line of which ω([v]) forms part is given by the determinant∣∣∣∣∣∣∣
∂(ω(v0))

∂p

∂(ω(v0))

∂q
∂(ω(v1))

∂p

∂(ω(v1))

∂q

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ 2ap− cq −cp

−bq −bp− 2aq

∣∣∣∣∣∣ = −2a(bp2 + 2aqp− cq2).

This establishes part (c). 2

Corollary 4.1.4 (a) T (PLI−(2,R2)) = RP 2
∆− ,

(b) T (PLI+(2,R2)) = RP 2
∆+

(c) T (∆̃) = ∆.

Proof : This follows directly from Theorem 4.1.3 and Lemma 4.0.5. 2

It follows that when σ ∈ PLI−(2,R) (respectively σ ∈ PLI+(2,R)) the binary

quadratic form T (σ) defines no (respectively two) real directions.

Proposition 4.1.1 Let σ ∈ PLI(2,R) be a linear involution. Then
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(a) σ has two distinct fixed points (respectively no fixed points) if σ ∈ PLI−(2,R)

(respectively σ ∈ PLI+(2,R)),

(b) when σ ∈ PLI−(2,R) the binary quadratic form T (σ) is the product of a pair

of forms associated to the fixed points of σ.

Proof : Part (a) is trivial: fixed points of an involution σ are given by eigenvec-

tors of the associated matrix Σ. Since trΣ = 0, the eigenvalues t of Σ are given by

the equation

t2 = −detΣ.

If detΣ < 0 then Σ has two distinct eigenvalues and hence two linearly indepen-

dent eigenvectors. If detΣ > 0 then Σ has no real eigenvalues and hence no real

eigenvectors.

Following the notation of the proof of Theorem 4.1.3, the quadratic form

bp2 − 2aqp− cq2

is the product of the two 1-forms associated to the vectors w1 and w2 where

wi = (b,−a+ (−1)i
√
a2 + bc).

Applying the involution we have that

σ(w1) = [ab− ba− b
√
a2 + bc : bc+ a2 − a

√
a2 + bc] = [b : −a−

√
a2 + bc] = w1.

Similarly w2 = σ(w2). 2

As we are considering involutions on the projective line, it is natural to consider

the effect of projective transformations of this line on such involutions.

Lemma 4.1.5 Projective changes of coordinates in RP 1 induce projective transfor-

mations of PLI(2,R) that preserves the sets PLI+(2,R), PLI−(2,R) and ∆̃ when

PLI(2,R) is identified with RP 2.

Proof : We let σ be the linear involution with associated matrix

Σ =

 a b

c −a

 .
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A projective change of coordinates in RP 1 is the induced action on RP 1 of a

non-degenerate linear transformation on R2. Let H be the matrix of such a linear

transformation. Then if Σ is the matrix of a linear transformation associated to some

σ ∈ PLI(2,R) with respect to some chart. The matrix of a linear transformation

associated σ ∈ PLI(2,R) with respect to the transformed chart is H−1ΣH.

We set

H =

 α β

γ δ

 .

We calculate H−1ΣH. Identifying σ with the point [a : b : c] ∈ RP 2 we have

that the induced transformation is given by

[a : b : c] 7→ [(βγ + αδ)a+ δγb− βαc : 2βδa+ δ2b− β2c : −2αγa− γ2b+ α2c],

that is, a projective transformation of RP 2.

Observe finally that

((βγ+αδ)a+δγb−βαc)2+(2βδa+δ2b−β2c)(−2αγa−γ2b+α2c) = (αδ−βγ)2(a2+bc).

It follows that the induced projective transformation preserves the sets PLI+(2,R),

PLI−(2,R) and ∆̃. 2

Allowing such changes of coordinates allows us to construct normal forms for

elements of PLI(2,R).

Lemma 4.1.6 Let σ ∈ PLI+(2,R) (respectively PLI−(2,R)). Then σ is equivalent

to [x : y] 7→ [y : x] (respectively [x : y] 7→ [y : −x]) under projective changes of

coordinates in RP 1.

Proof : We let σ be the linear involution with associated matrix

Σ =

 a b

c −a

 .

We make a projective change of of coordinates in RP 1 associated to a linear

transformation with matrix H.

If σ ∈ PLI− we set

H =

 a2 + bc a
√
a2 + bc+ b

√
a2 + bc c

√
a2 + bc− a

 .
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We then have

H−1ΣH =
√
a2 + bc

 0 1

1 0

 .

If σ ∈ PLI+ we set

H =


c
√
−a2 − cb− 2a

c
√
−a2 − cb

cb− 2a2 + ac
√
−a2 − cb

(a2 + cb)c
1√

−a2 − cb
c
√
−a2 − cb− a
a2 + cb

 .

We then have

H−1ΣH =
√
−a2 − bc

 0 1

−1 0

 .

The results follow. 2

4.1.2 Pairs of involutions

As remarked (4.1.1), PLI(2,R) is not closed under composition. In fact the com-

position of two involutions σ1 and σ2 is another involution if and only if the two

involutions commute:

(σ1 ◦ σ2) ◦ (σ1 ◦ σ2) = Id⇔ (σ2 ◦ σ1) ◦ (σ1 ◦ σ2) ◦ (σ1 ◦ σ2) = σ2 ◦ σ1

⇔ (σ1 ◦ σ2) ◦ σ1 ◦ (σ2 ◦ σ2) ◦ σ1 = σ2 ◦ σ1

⇔ (σ1 ◦ σ2) ◦ σ1 ◦ Id ◦ σ1 = σ2 ◦ σ1

⇔ (σ1 ◦ σ2) ◦ (σ1 ◦ σ1) = σ2 ◦ σ1

⇔ (σ1 ◦ σ2) ◦ Id = σ2 ◦ σ1.

⇔ (σ1 ◦ σ2) = σ2 ◦ σ1.

Proposition 4.1.2 Given a linear involution σ ∈ PLI(2,R) the set of involutions

that commute with σ is the polar line of σ with respect to the conic ∆̃ when PLI(2,R)

is identified with RP 2.

Proof : Let

Σ =

 a b

c −a


be the matrix of an associated linear transformation to σ. Let suppose that

Σ̃ =

 ã b̃

c̃ −ã
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is a matrix associated to an involution that commutes with σ. It follows that ΣΣ̃

also gives rise to an involution. Calculating we have that

ΣΣ̃ =

 aã+ bc̃ ab̃− ãb

cã− c̃a cb̃+ aã

 .

This matrix gives rise to an involution if and only if aã + bc̃ = −(cb̃ + aã), that is,

if and only if 2aã + bc̃ + cb̃ = 0. The set of points [ã : b̃ : c̃] ∈ RP 2 satisfying this

(linear) condition form a line.

The conic ∆̃ is given by the bilinear form that has matrix
1 0 0

0 0 1/2

0 1/2 0

 .

The result follows by observing that

(
ã b̃ c̃

)
1 0 0

0 0 1/2

0 1/2 0




a

b

c

 = 0

if and only if 2aã+ bc̃+ cb̃ = 0. 2

Corollary 4.1.7 Let σ1, σ2 ∈ PLI(2,R) be distinct linear involutions such that

σ1 ◦ σ2 = σ2 ◦ σ1. Then σ1, σ2 and σ1 ◦ σ2 form a self-polar triangle with respect to

the conic ∆̃.

Proof : This follows directly from Proposition 4.1.2 and Lemma 4.0.6. 2

Remarks 4.1.8 1. As T (∆̃) = ∆ the three quadratic forms corresponding to the

fixed points of σ1, σ2, σ1 ◦ σ2 form a self-polar triangle with respect to ∆, since

projective transformations preserve polarity with respect to conics.

2. The set {Id, σ1, σ2, σ1 ◦ σ2} forms a group under composition which is trivially

isomorphic to the Klein 4-group.

Recall the involution σPΓ on any line P̂ ⊂ RP 2 induced by a conic Γ.
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Proposition 4.1.3 Let σ1, σ2 be involutions and let P̂ ⊂ RP 2 be the line joining

σ1 and σ2. Then

(a) σ1 ◦ σ2 ◦ σ1 is a further involution;

(b) σ1 ◦ σ2 ◦ σ1 ∈ P̂ ;

(c) σ1 ◦ σ2 ◦ σ1 is the projective harmonic conjugate of σ2 with respect to σ1 and

σL∆̃(σ1).

Proof : Assertion (a) is trivial:

(σ1 ◦ σ2 ◦ σ1) ◦ (σ1 ◦ σ2 ◦ σ1) = (σ1 ◦ σ2) ◦ (σ1 ◦ σ1) ◦ (σ2 ◦ σ1)

= (σ1 ◦ σ2) ◦ (σ2 ◦ σ1)

= σ1 ◦ (σ2 ◦ σ2) ◦ σ1

= σ1 ◦ σ1

= Id.

We may, by Lemma 4.1.6, choose σ1 to be given by [x : y] 7→ [y : ±x]. Let σ2 be

the involution given by [x : y] 7→ [ax + by : cx − ay]. It follows that the involution

σ1 ◦ σ2 ◦ σ1 is

[x : y] 7→ [∓ax+ cy : bx± ay].

It is clear that [0 : 1 : ±1], [a : b : c], [∓a : c : b] (that is, the points in RP 2

corresponding to σ1, σ2 and σ1 ◦ σ2 ◦ σ1) are colinear, which establishes (b).

A calculation shows that σP ∆̃(σ1) is the involution

[x : y] 7→ [2ax+ (b∓ c)y : x(b∓ c)− 2ay].

As a point in RP 2 this is [2a : b∓ c : b∓ c].

The cross-ratio of four colinear points in the real projective plane RP 2 written

in the form [X : Y : Z] is equal to the cross ratio of the corresponding complex

numbers X/Y + iZ/Y.

Calculating the cross-ratio of [0 : 1 : ±1], [a : b : c], [∓a : c : b] and [2a : b∓c : b∓c]

we have(
a/b+ ic/b∓ i

a/b+ ic/b− 2a/(b∓ c)− i

)(
−2a/(b∓ c)− i∓ a/c+ ib/c

∓a/c+ ib/c∓ i

)
= −1.

This establishes (c). 2
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4.2 Self polar triples of binary differential equa-

tions on surfaces

If, in the construction of binary quadratic forms from linear involutions on RP 1

described in Section 4.1.1, we replace the direction [v] ∈ RP 1 with a smooth direction

field on a surface S ⊂ R3, we may construct a BDE on the surface using involutions

on each projectivised tangent plane varying smoothly with the surface.

The first fundamental form of S (which we will refer to as the metric) on the

surface is of course a binary quadratic form on the surface in its own right,

Eq2 + 2Fpq +Gp2. (4.1)

It may therefore be considered to be a point in RP 2 which we will denote by L.

Since the first fundamental form is positive definite, L ∈ RP 2
∆+ at all points of the

surface. It follows from Lemma 4.0.5 that L̂ ∈ G2(R3)Γ+ and hence the quadratic

form corresponding to each point of L̂ defines two real directions. These directions

are orthogonal (with respect to the metric L).

As it is a binary quadratic form, the metric is determined by an involution.

Applying the projective transformation T −1 to L we find that the corresponding

involution is given by

[x : y] 7→ [Fx+Gy : −Ex− Fy].

This is the involution that maps each direction to that which is orthogonal to it

(with respect to the metric. We denote this involution by O. It is clear that

O ∈ PLI+(2,R).

As an involution varies on the surface, there may be points where it becomes de-

generate (in the notation of the previous section, a2 +bc = 0). The set of such points

is the discriminant of the corresponding BDE. As the projective transformation T

extends across such points, we may extend the BDE to these points.

Let σ ∈ PLI(2,R) with σ 6= O. Then the polars of σ and O with respect to the

conic ∆̃ intersect at a single point. We denote the linear involution corresponding

to this point by Rσ. By Proposition 4.1.2 we have that σ,Rσ commute and that
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σ ◦ Rσ ∈ PLI(2,R). Finally by Corollary 4.1.7 we have that T ({σ,Rσ, σ ◦ Rσ}) is

a self-polar triangle of BDEs.

Proposition 4.2.1 Amongst pairs of directions ([v], σ([v])), the solutions of the

form T (Rσ ◦ σ) are those that have extremal included angle.

Proof : Without loss of generality, we may assume that at any given point the

solutions of T (Rσ) are the coordinate directions, that is, T (Rσ) is the form pq, and

that the metric is the form p2 + q2. The involution Rσ is given by

Rσ : RP 1 → RP 1

[x : y] 7→ [x : −y]

As a point in RP 2 then, the involution Rσ is the point [1 : 0 : −1]. As σ lies in the

polar of Rσ, we have that

σ : RP 1 → RP 1

[x : y] 7→ [by : cx]

for some b, c ∈ R. The involution Rσ ◦ σ is therefore

Rσ ◦ σ : RP 1 → RP 1

[x : y] 7→ [by : −cx].

The BDE T (Rσ ◦ σ) is therefore

bdy2 + cdx2.

Consider a direction

[cos θ : sin θ] ∈ RP 1.

If α denotes the angle between [cos θ : sin θ] and σ([cos θ : sin θ]) then α satisfies

cos2 α =
(b+ c) sin θ cos θ

b2 sin2 θ + c2 cos2 θ
.

We differentiate with respect to θ and equate dα/dθ to zero, and find that α is

extremal if and only if θ satisfies

b cos2 θ + c sin2 θ = 0,

that is, if [cos θ : sin θ] is a solution of T (Rσ ◦ σ). 2
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The asymptotic, characteristic and principal curves on a smooth surface may,

away from umbilic points, be constructed in this way using a single involution,

namely conjugation: the involution C ∈ PLI(2,R) that maps a direction to its

conjugate direction. Umbilic points are isolated points where the involution (con-

jugation) coincides with the involution O. At hyperbolic points C ∈ PLI+(2,R)

and at elliptic points C ∈ PLI−(2,R). The asymptotic BDE is given by T (C), the

principal BDE by T (RC) and the characteristic BDE by T (C ◦RC).

Remark 4.2.1 The constructions discussed in this section have used only the met-

ric L and a smoothly varying involution on each projectivised tangent plane. Our

results may thus be generalised to any Riemmannian manifold endowed with such

an involution.

4.2.1 Configurations of solution curves

Many of the symmetries between the asymptotic and characteristic curves are shared

between pairs of BDEs T (σ) and T (Rσ ◦ σ) constructed as in the previous section.

Our aim is to exploit these in order to generalise some of the results from Chapter

3. We require the following Lemma.

Lemma 4.2.2 Let ω1 and ω2 be BDEs with the same discriminant ∆. Suppose that

∆ is a smooth curve, that on ∆ the BDEs define the same single direction, and that

in a neighbourhood of ∆ the solution curves exist on opposite sides of ∆. If ω1 has

a well-folded singularity at a point on ∆, then ω2 has a well-folded singularity with

opposite index at the same point.

Proof : Suppose that ω1 has a well-folded singularity at a point on ∆. We as-

sume that the point under consideration is the origin. We make smooth changes of

coordinates and write ω1 as

dy2 − (y − λ1x
2)dx2 = 0 (4.2)

for some constant λ1 6= 0, 1/16 ([30]). Consider the affine chart p = dy/dx. The

discriminant of (4.2) is the curve y = λ1x
2.
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Observe that the condition that the BDEs define the same direction on ∆ is

equivalent to the BDEs having the same criminant projecting to ∆. The criminant

of (4.2) is the curve

(0, λ1x
2, 0).

We write ω2 as

a(x, y)p2 + 2b(x, y)p+ c(x, y) = 0. (4.3)

The criminant of (4.3) lies on the surface ap + b = 0. Hence if ω2 has the same

criminant as ω1 then b = 0 on ∆. We may then write

b = (y − λ1x
2)b̃(x, y)

where b̃(x, y) is a smooth function which is non-zero in a neighbourhood of ∆.

We may write

c(x, y) = (y − λ1x
2)c̃(x, y)

for some smooth function c̃ which is non-zero in a neighbourhood of the discriminant.

Furthermore the discriminant of (4.3) is the curve y = λ1x
2, so a(x, y) 6= 0 in a

neighbourhood of the discriminant. We may then assume a = 1.

We thus have that ω2 may be written as

p2 + (y − λ1x
2)(2pb̃+ c̃) = 0, (4.4)

which has a well-folded singularity at the origin.

The discriminant of (4.4) is

((y − λ1x
2)b̃2 − c̃)(y − λ1x

2).

In a neighbourhood of the discriminant we have

c̃ > (y − λ1x
2)b̃2

since the solution curves exist on opposite sides of the discriminant to those of ω1.

Hence c̃(0, 0) > 0.

The index modulus of (4.4) is

λ2 = − λ1

c̃(0, 0)
.
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This clearly has opposite sign to λ1. 2

Let ω be a BDE determined by an involution σ ∈ PLI(2,R), that is, let

ω = T (σ).

Let ωp = T (Rσ) and let ω̃ = T (Rσ ◦ σ).

Proposition 4.2.2 (a) The BDE ω has a solution direction in common with ω⊥ if

and only if ω ∈ ∆.

(b) If ω ∈ ∆ then ω̃ = ω.

(c) The BDE ω⊥ has solutions at all points of the surface. At points where ω has

two (respectively no) solutions the BDE ω̃ has no (respectively two) solutions.

Proof : As L ∈ RP 2
∆− and ω⊥ ∈ L̂ we have that ω⊥ ∈ RP 2

∆+ by Lemma 4.0.5.

The set of forms with solution directions in common with ω⊥ comprises the two

lines in G2(R3)∆0 = that intersect at ω⊥. The points of tangency of these lines with

∆ lie on ω̂⊥. By construction ω ∈ ω̂⊥, so ω has a direction in common with ω⊥ if

and only if ω ∈ ∆.

Since ω̃ = σω⊥(ω) parts (b) and (c) follows directly from Lemma 4.0.6. 2

Corollary 4.2.3 The well-folded singularities of the BDEs ω and ω̃ coincide and

have opposite index.

Proof : This is a combination of Lemma 4.2.2 and Proposition 4.2.2 (b). 2

Remark 4.2.4 If ω lies on the polar of the metric L then the directions defined by

ω are a rotation through π/4 of those defined by ω⊥, and ω̃ = L.

Proposition 4.2.3 If the BDE ω has a folded singularity at the origin and has 2-jet

affine equivalent to

p2 + uxp+ y +
v

4
x2 + w1xy + w2y

2. (4.5)

then the BDE ω̃ has 2-jet affine-equivalent to

p2 − uxp+ y + (
u2

2
− v

4
)x2 + w1xy + (w2 − 1)y2. (4.6)
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Proof : We first construct the BDE ω⊥. We may write the metric L as

p2 + 2l2(x, y)pq + (1 + l3(x, y))q2,

where l2 and l3 are smooth functions with j2l2 = j3l3 = 0. We write the BDE ω as

p2 + (ux+ s2(x, y))pq + (y +
v

4
x2 + w1xy + w2y

2 + s3(x, y))q2

where s2 and s3 are smooth functions with j1s2 = j2s3 = 0. The BDE ω⊥ is the

polar of the pencil connecting L and ω. It follows that

ω⊥ =

∣∣∣∣∣∣ 2p+ 2l2q 2l2p+ 2(1 + l3)q

2p+ (ux+ s2)q (ux+ s2)p+ 2(y +
v

4
x2 + w1xy + w2y

2 + s3)q

∣∣∣∣∣∣ .
We write the BDE ω⊥ as

(2l2 − ux− s2)dy2 + 2(1− y + l3 −
v

4
x2 − w1xy − w2y

2 − s3)dxdy

+((1 + l3)(ux+ s2)− 2l2(y +
v

4
x2 − w1xy − w2y

2 + s3))dx2 = 0.

The BDE ω̃ is the polar of the pencil joining the BDE ω⊥ and the BDE ω. It

follows that

ω̃ = Jac(ω, ω⊥).

We calculate this determinant. The BDE ω̃ is

ady2 + 2bdydx+ cdx2

where

a = −8l2ux− 8l2s2 + 4u2x2 + 8uxs2 + 4s2
2 + 8− 8y + 8l3 − 2vx2 − 8s3,

b = 4s3ux+ 4yux+ vx3u− 4l2vx
2 + vx2s2 + 4l3ux+ 4ys2

+4l3s2 + 4s3s2 − 16l2y − 16l2s3 + 4ux+ 4s2

+8l2w1xy − 4w1ux
2y − 4w1s2xy − 4w2uxy

2 + 8w2l2y
2 − 4w2s2y

2,

c = −8y − 2vx2 − 8s3 + 8y2 + 4yvx2 + 16ys3 − 8l3y − 2l3vx
2 − 8l3s3

+
1

2
v2x4 + 4vx2s3 + 8s2

3 + 4u2x2 + 8uxs2 + 4s2
2

+4l3u
2x2 + 8l3uxs2 + 4l3s

2
2 − 8l2yux− 8l2ys2 − 2l2vx

3u

−2l2vx
2s2 − 8l2s3ux− 8l2s3s2

−8w1xy
2 + 8l3w1xy − 2vw1x

3y − 8w1s3xy + 8w1xy

−2w2vx
2y2 − 8w2y

3 − 8w2s3y
2 + 8w2y

2 + 8w2l3y
2.
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Since a(0, 0) 6= 0 we may set p = dy/dx and write the BDE ω̃ as

F̃ (x, y, p) = 0

where

j2F̃ (x, y, p) = −8p2 − 8uxp+ 8y + 8w1xy + (8w2 − 8)y2 + (2v − 4u2)x2.

We make the linear change of coordinates

(x, y) 7→ (x,−y)

and divide by −8 to complete the proof. 2

4.2.2 The ocr-invariant

The affine properties of a well-folded singularity of a BDE ω that are used in the

classification in [23] are determined by the values of u and v in the 2-jet of ω at

the singularity. The corresponding parameters for the BDE ω̃ are, by Proposition

4.2.3, −u and 2u2− v. The map (u, v) 7→ (−u, 2u2− v) defines an involution on the

(u, v)-plane which preserves the sets

v = u2

(the discriminant is inflectional) and

v = u(u+ 1)

(saddle-node change and inflection set / discriminant having > 2-point contact).

We now associate an invariant to a folded singularity of a BDE using the contact

elements to the discriminant and inflectional curves, following the approach used to

define the ccr-invariant in Chapter 3.

Definition 4.2.5 The ocr-invariant ρ of a well-folded singularity of a BDE ω is

defined to be the cross-ratio of the the tangents to the contact elements to the dis-

criminant of ω, the loci of inflections of the solution curves of ω and ω̃ and the fibre

of the projection π over the singularity.
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Unlike the ccr-invariant defined in Chapter 3, the ocr-invariant ρ is not a pro-

jective invariant of the surface, merely an affine invariant.

Proposition 4.2.4 (a) The ocr-invariant ρ of a well-folded singularity of a BDE

ω with 2-jet affine-equivalent to

p2 + uxp+ y +
v

4
x2 + w1xy + w2y

2

is given by

ρ = −(u− 1)2

(u+ 1)2
.

(b) Suppose that a well-folded singularity of the BDE ω has index modulus λ and

ocr-invariant ρ. Then the well-folded singularity of the BDE ω̃ has index

modulus −λ and ocr-invariant 1/ρ.

Proof : We set

j2F (x, y, p) = p2 + uxp+ y +
v

4
x2 + w1xy + w2y

2.

Then the surface Fp(x, y, p) = 0 is given by p = −ux/2. Substituting this into the

equation F = 0 we have that the discriminant curve is given by

y =
(u2 − v)

2
x2 + h.o.t.

The surface Fx + pFy = 0 is given by

(u+ 1)p = −v
2
x+ h.o.t.

Substituting this into the equation F = 0 we have that the inflection curve associated

to the BDE ω is

y =
v(−v + u2 − 1)

4(u+ 1)2
x2 + h.o.t.

Using the involution (u, v) 7→ (−u, 2u2 − v) we have that the inflection curve

associated to the BDE ω̃ is

y =
(2u2 − v)(u2 + 1− v)

4(u− 1)2
x2 + h.o.t.

We use these 2-jets to calculate the required cross-ratio and establish part (a).
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The well-folded singularity at the origin of the BDE

p2 + uxp+ y +
v

4
x2 + w1xy + w2y

2 = 0

has index modulus

λ = (v − u(u+ 1))/4

and ocr-invariant

ρ = −(u− 1)2/(u+ 1)2.

Applying the involution (u, v) 7→ (−u, 2u2 − v) we have

(v − u(u+ 1))

4
7→ (−v + u(u+ 1))

4
.

Similarly we have
−(u− 1)2

(u+ 1)2
7→ −(u+ 1)2

(u− 1)2
.

This establishes part (b). 2

As explained in Section 1.3, the configurations of the cusp and inflection sets

of a BDE at a folded singularity are determined by the values of u and v in the

2-jet of the equation. We establish now the relationship between the ocr-invariant

and these configurations. Recall that the cusp and inflection sets are generically

parabolae meeting tangentially at the singularity. We are interested in how these

parabolae nest.

The ocr-invariant is not defined on the sets u = −1 where the inflection set of

the BDE ω is singular, and u = 1 where the inflection set of the BDE ω̃ is singular.

We refer to the region u ∈ (−1, 1) (respectively the region u ∈ (∞,−1)∪ (1,∞)) as

region 1 (respectively region 2). The map restriction of the map

R → R

u 7→ ρ(u)

is a bijection on each of region 1 and region 2. Observe also that each of these

regions is closed under the action of the involution (u, v) 7→ (−u, 2u2 − v)

To any well-folded singularity of a BDE we associate the complex number

z =
√
−ρe2i arctan(16λ)
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(we choose arctan(16λ) ∈ (−π/2, π/2) and the positive square root). Consider the

complex valued function

f : R2 → C

(u, v) 7→ z.

Observe that f(1, v) = 0 and f(−1, v) has infinite modulus. The closure of the

restriction of f to either region 1 or region 2 is the entire complex plane which may

be compactified by adding a point at infinity, and that such a restriction of f defines

a smooth bijection.

Proposition 4.2.5 (a) The configurations of the solution curves and relative po-

sitions of the cusp and inflection sets of a BDE ω at a well-folded singularity

are given by the complex parameter z associated to the singularity.

(b) Let arg(z) = θ and |z| = r. Codimension 1 phenomena are given by the follow-

ing exceptional sets in the complex plane:

Region 1 Region 2

saddle/node θ = 0 θ = π

node/focus θ = π/2 θ = π/2

focus/saddle θ = ±π θ = ±π

cusp set

inflectional
(r + 1) tan θ

2
= 4(r − 1) (r − 1) tan θ

2
= 4(r + 1)

inflection set

inflectional

tan θ
2
(r + 1) = −8

tan θ
2
(1 + r)2 = 8(r − 1)

tan θ
2
(r − 1) = 8

tan θ
2
(1− r)2 = −8(1 + r)

cusp set

singular
θ = ±π r = 1

inflection set

singular

r =∞ r = 1

r =∞

The relative positions of the cusp and inflection curves are constant in the

open regions of the complex plane bounded by these curves. This partition of

the complex plane and the corresponding configurations of the curves of interest

are shown in Figure 4.1.
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(c) The corresponding configurations at the singularity of the BDE ω̃ are given by

the complex number 1/z.

Proof : Part (a) is trivial: the parameters u and v determine both z and the relative

positions of the cusp and inflection curves.

When u ∈ (−1, 1) we have that

r =
1− u
1 + u

and

θ = 2 arctan(4(v − u(u+ 1)).

It follows that

u =
1− r
1 + r

and

v =
tan θ

2

4
+ 2

1− r
(1 + r)2

.

It is clear that a saddle / node change (λ = 0) occurs when θ = 0, a node / focus

change (λ = 1/16) occurs when θ = π/2, and that at θ = ±π there is a change in

the sign of λ through infinity.

We use the expressions for the 2-jets of the cusp and inflection curves obtained in

the proof of Proposition 4.2.4. The cusp set is inflectional when v = u2. Substituting

the expressions for u and v in terms of r and θ we have that the cusp set is inflectional

when

(r − 1) tan θ = 4(r + 1).

Similarly the inflection set is inflectional when v = 0 or v = u2 − 1, that is, when

tan
θ

2
(1 + r)2 = 8(r − 1)

or

tan
θ

2
(r + 1) = −8.

The cusp set is singular only on the line at infinity in the (u, v)-plane. It is clear

that v =∞ corresponds to the set θ ± π. The inflection set is singular on this line,

and also at u = 1, that is, when r =∞.
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When u ∈ (∞,−1) ∪ (1,∞) we have that

r =
u− 1

1 + u

and

θ = 2 arctan(4(v − u(u+ 1)).

Similar calculations to those above establish the exceptional sets.

Part (b) is then established by choosing values of r and θ in each of the open

regions bounded by the exceptional sets and calculating the required 2-jets.

Part (c) follows immediately from Proposition 4.2.4 (b). 2

Remarks 4.2.6 1. Each complex number z (that does not lie in an exceptional

set) corresponds to two smoothly equivalent well-folded singularities, that is, a

complex number z does not uniquely determine a configuration.

2. A finer classification of folded singularities may be obtained by including the

separatrices of the singularities in our study.
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s2

f2

f1 n1

n2
n3

n2

s1

s3

s2

2
πθ=

(r+1)=-8θtan
2

(r+1)=8(r-1)θtan
2

2

(r+1)=4(r-1)θtan
2

θ=0πθ=

s3/n3/f3s1/n1/f1 s2/n2/f2

f2 f1
n1

n2

s1

s2

s3

s2

f1

s2

f3 n3

s3

2
πθ =

(r-1)=8θtan
2

(1-r)=-8(r+1)θ
2

tan
2

(r-1)=4(r+1)θtan
2

πθ= θ=0
r=1

Figure 4.1: Partitions of the z-plane: region 1 (left) and region 2 (right), and

configurations of the cusp set (thick curves) and inflection set (broken curves).



Chapter 5

Polarity and pencils of quadratic

forms

In this chapter we show that, in addition to the asymptotic (2.5), characteristic

(2.6) and principal (2.4) BDEs, certain other BDEs on surfaces are objects worthy

of further investigation. We gain further insight into the intimate connections be-

tween the asymptotic, characteristic and principal BDEs. Drawing upon the work

in Chapter 4 concerning involutions of the real projective line, we prove that the

asymptotic, characteristic and principal BDEs are related to another well-studied

BDE on the surface, namely that of the arithmetic mean curvature lines, and also

to a new BDE that we define in Section 5.1.3.

We also consider the pencils of forms that connect the BDEs of interest, and

show that there are natural parametrisations of these pencils which are related to

one another in a particularly nice way.

The geometric concepts of asymptotic curves, lines of curvature and character-

istic curves on surfaces in R3 are all derived from the first fundamental form (that

is, the metric) and the shape operator (the Weingarten map), which is a self-adjoint

operator on the tangent space. The new BDEs defined in this chapter are also all

derived from the metric and the shape operator. It follows that one may define

these BDEs on any Riemmannian manifold endowed with a self-adjoint operator,

although their meaning in that more general context may be different.

We will use the labels shown in Table 5.1 for the binary quadratic forms on

89
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surfaces in which we are interested (these will be defined during the course of the

chapter).

Metric (4.1) L

Asymptotic BDE (2.5) A

Characteristic BDE (2.6) Ch

Principal BDE (2.4) P

BDE of the lines of arithmetic mean curvature (5.1) Me

Third fundamental form (5.3) B

BDE of the MOSI curves (5.4) T

Table 5.1: Binary quadratic forms on surfaces.

As in Chapter 4, we shall use the symbol Q̂ to denote the polar line of a point

Q ∈ RP 2.

5.1 Quadratic forms on surfaces

5.1.1 Arithmetic mean curvature lines

The lines of arithmetic mean curvature (the integral curves of those directions on a

surface in which the sectional curvature is equal to H, the arithmetic mean curvature

of the surface) are studied in [39, 42].

Proposition 5.1.1 (a) ([39]) The BDE of the lines of arithmetic mean curvature

is

(nEG− 2nF 2 −G2l + 2GFm)dy2

+2(2mEG− FGl − FEn)dxdy

+(lEG− 2lF 2 − E2n+ 2EFm)dx2 = 0.

(5.1)

(b) The discriminant of (5.1) consists of umbilic points.

(c) Away from umbilic points the BDE may be written, with respect to a principal

coordinate system as

Gdy2 − Edx2 = 0.
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(d) The geodesic torsion in the direction of the lines of arithmetic mean curvature

is equal to

±(κ1 − κ2)

2
.

Proof : The first assertion is established in [39] by setting

II([dx : dy], [dx : dy])

I([dx : dy], [dx : dy])
= H,

where I (respectively II) denotes the first (respectively second) fundamental form,

and where H is the expression for the arithmetic mean curvature in terms of the

coefficients of the first and second fundamental forms given in Section 2.1.

A simple calculation shows that the discriminant of the the BDE (5.1) is

4(EG− F 2)(n2E2 + 4Em2G− 2EnGl − 4EmnF + l2G2 − 4mFlG+ 4F 2ln),

which vanishes only at umbilic points.

To obtain the BDE (5.1) with respect to a principal coordinate system we set

F = m = 0, l = Eκ1 and n = Gκ2.

The final assertion follows from the formulae in Section 2.1. 2

We denote the BDE of the lines of arithmetic mean curvature by Me. Away from

umbilic points, the lines of arithmetic mean curvature form an orthogonal net, and

are inclined at an angle of ±π/4 to the principal directions. It is clear, therefore, that

the BDEs defining the lines of arithmetic mean curvature and the lines of curvature

are related.

Proposition 5.1.2 Considered as a point in the projective plane RP 2, the BDE

Me is the polar of the pencil joining the metric L and the principal BDE P , that is,

these three forms constitute a self-polar triangle.

Proof : Consider the quadratic forms corresponding to the principal BDE P and

the metric L. We calculate Jac(L, P ), which is given by∣∣∣∣∣∣ 2Eq + 2Fp 2Fq + 2Gp

2(Fl − Em)q + (Gl − En)p (Gl − En)q + (Gm− Fn)p

∣∣∣∣∣∣ .
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This is equal to

2(nEG− 2nF 2 −G2l + 2GFm)p2

+4(2mEG− FGl − FEn)pq

+2(lEG− 2lF 2 − E2n+ 2EFm)q2 = 0,

which corresponds to the same point in the projective plane RP 2 as the BDE Me.

2

Remark 5.1.1 Given that the lines of arithmetic mean curvature form an orthog-

onal net, Proposition 5.1.2 follows immediately from Proposition 1.3.1 (d).

Consider the projective space PTpS of all tangent directions through a point p

on S which is neither an umbilic nor parabolic point. Clearly this is simply the real

projective line RP 1. Recall the projective transformation

T : RP 2 → RP 2

[a : b : c] 7→ [b : 2a : −c].

defined in Chapter 4 that relates linear involutions of the real projective line to

binary differential equations on surfaces.

Recall also the linear involution R on PTpS that reflects in (either of) the prin-

cipal directions, and the linear involution O that rotates each direction through

π/2.

Corollary 5.1.2 (a) The BDE P of the lines of curvature is given by T (R).

(b) The BDE Me of the lines of arithmetic mean curvature is given by T (R ◦O).

Proof : The principal directions are clearly the fixed points of the linear involu-

tion R, so assertion (a) follows from Theorem 4.1.3. By construction (see Section

4.2), the metric L is given by T (O). Assertion (b) then follows from Proposition

5.1.2 and Corollary 4.1.7. 2

5.1.2 The third fundamental form

The third fundamental form is a quadratic form on a surface that has not been much

studied, as it is determined by the first and second fundamental forms. Our results in
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Chapter 4 gives further insight into the relationship between these quadratic forms,

and show that the third fundamental form is related to the characteristic curves.

Definition 5.1.3 The third fundamental form at a point p of a surface S is the

quadratic form on TpS given by III(u, v) = Wp(u)·Wp(v) where Wp is the Weingarten

map.

The third fundamental form of a surface is the metric on the spherical image

(the image of the surface under the Gauss map). It follows that the corresponding

linear involution is C ◦O ◦C (recall from Proposition 4.1.3 part (a) that, given any

two linear involutions σ1, σ2 on the real projective line, σ1 ◦ σ2 ◦ σ1 is also a linear

involution).

Proposition 5.1.3 Given a parametrisation

r : U → S,

the third fundamental form is represented with respect to the coordinate system

{rx, ry} by the matrix

1

EG− F 2

 (2Fml − Em2 −Gl2) (Fln+ Fm2 −Gml − Emn)

(Fln+ Fm2 −Gml − Emn) (2Fnm−Gm2 − En2)

 .

Away from umbilic points, if we choose a principal coordinate then this matrix is Eκ2
1 0

0 Gκ2
2

 .

Proof : The first fundamental form is represented by the symmetric matrix

MI =

 E F

F G

 .

The second fundamental form is represented by the symmetric matrix

MII =

 l m

m n

 .

The third fundamental form is represented by the matrix MIII where

MIII =MIIM−1
I MII. (5.2)
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(see [45]). We obtain the matrix of the third fundamental form by the appropriate

multiplication of matrices.

Away from umbilic points, we substitute

F = m = 0, l = Eκ1, n = Gκ2

to obtain the third fundamental form in a principal coordinate system. 2

When considered as a point in RP 2 we do not distinguish between non-zero

multiples of forms. The third fundamental form and the quadratic form B given by

(2Fml−Em2−Gl2)q2 + 2(Fln+Fm2−Gml−Emn)pq+ (2Fnm−Gm2−En2)p2

(5.3)

are represented by the same point in RP 2.

In the principal coordinate system this reduces to

Eκ2
1q

2 +Gκ2
2p

2.

Remark 5.1.4 The matrices of the first, second and third fundamental forms on a

surface are also related, away from umbilic points, by the equation

MIII = 2HMII −KMI.

This is obtained by applying the Cayley-Hamilton Theorem to the Weingarten map.

5.1.3 The minimal orthogonal spherical image curves

As the matrix of the third fundamental form is a linear combination of those of the

first and second fundamental forms, the quadratic form B, considered as a point in

RP 2, lies on the pencil joining the asymptotic BDE A and the metric L. As this

pencil is the polar of the principal BDE P the third fundamental form B and P

are apolar on the pencil that joins them. It follows that there is a further BDE

T = Jac(P,B), making (P,B, T ) a self-polar triple.

The results in Chapter 4 explain the geometric significance of this BDE. By

Theorem 4.1.3, the polar B̂, of the third fundamental form B is the set of BDEs with
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solution directions [u], [v] satisfying B(u, v) = 0 or alternatively (C ◦O ◦C)(u) = v.

The images of such directions under the Gauss map are orthogonal directions on the

spherical image.

Definition 5.1.5 The minimal orthogonal spherical image directions (MOSI direc-

tions) are the unique pair of tangent directions to S that have orthogonal images

under the Weingarten map and that are inclined at a minimal angle at each point

of S. The MOSI curves are the integral curves of the MOSI directions.

It follows from Proposition 4.2.1 that the MOSI curves (as defined in Definition

5.1.5) are indeed given by the BDE completing a self-polar triple with the principal

BDE and the third fundamental form (that is, T = Jac(P,B)), and satisfy

(R ◦ C ◦O ◦ C)(v) = v.

Remark 5.1.6 The BDE P lies at the intersection of those pencils corresponding to

BDEs with orthogonal solutions and BDEs with solutions having orthogonal spheri-

cal images. We thus have the following alternative characterisation of the principal

directions on a smooth surface in R3: they are the only pair of orthogonal tangent di-

rections to the surface that map to orthogonal directions on S2 under the Weingarten

map.

Proposition 5.1.4 (a) The BDE T of the MOSI curves is

aTdy
2 + 2bTdxdy + cTdx

2 = 0 (5.4)

where

aT = 3Gm2En− 2FnmGl − 2FGm3 +G2m2l − 4Fn2mE

+2F 2n2l + 2m2F 2n− En2Gl + E2n3

bT = 2Gm3E +G2ml2 − 3Gm2Fl − 3Fnm2E

−FnGl2 + 4F 2nml − Fn2lE + E2n2m

cT = 3lGEm2 + l3G2 − 4l2GmF + E2nm2 − EnGl2

−2EnmFl + 2F 2l2n+ 2F 2lm2 − 2Em3F.

(b) The discriminant of T consists of the parabolic set and umbilic points.
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(c) Away from umbilic points the BDE T can be written with respect to a principal

coordinate system as

Gκ2
2dy

2 − Eκ2
1dx

2 = 0. (5.5)

Proof : The quadratic form T is the Jacobian of the principal BDE and the third

fundamental form B. We establish the BDE T by calculating the appropriate de-

terminant.

Calculating b2
T − aT cT , we have that the discriminant of T is

(ln−m2)2(EG−F 2)(n2E2 +4EGm2−2EGnl−4EnmF + l2G2−4lmFG+4lnF 2),

which vanishes at parabolic and umbilic points.

In a principal coordinate system we have F = m = 0 and l = Eκ1, n = Gκ2.

The simplified form follows. 2

The following Theorem provides further evidence that the characteristic curves

and the MOSI curves are significant geometric objects.

Theorem 5.1.7 (a) The third fundamental form B is the projective harmonic con-

jugate of the metric L with respect to the asymptotic BDE A and the charac-

teristic BDE Ch.

(b) The BDE T of the MOSI curves is the projective harmonic conjugate of the

BDE of the lines of arithmetic mean curvature Me with respect to A and Ch.

Proof : We use the projective transformation T on the set of linear involutions

of the projective line identified with RP 2. The asymptotic BDE A is given by T (C),

the characteristic BDE Ch is given by T (R ◦ C), the metric is given by T (O) and

the third fundamental form is given by T (C ◦O ◦ C).

By Theorem 4.1.3 (c), the involution C ◦O ◦C, considered as a point in RP 2 is

the projective harmonic conjugate of O with respect to C and C ◦R, and assertion

(a) follows since projective transformations preserve the cross-ratio of 4 colinear

points.

Assertion (b) follows by the same method, with R ◦ O replacing O, since by

Corollary 5.1.2 the BDE Me of the lines of arithmetic mean curvature is given by

T (R ◦O). 2
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In conclusion then, we have six colinear forms, namely Me,A,Ch, T,B and L,

the common line being the polar of the principal BDE, comprising three pairs of

apolar points (and thus three self-polar triangles involving the principal BDE). This

is illustrated in Figure 5.1 (in this picture the point in question is a hyperbolic

point).

Ch
L

B

AP

T

Me

Figure 5.1: Self-polar triples of BDEs: {P,L,Me} (red), {P,A,Ch} (black), and

{P,B, T} (blue).

5.2 Configurations of the MOSI curves

The MOSI curves defined by BDE T (5.4) do not appear to have been considered

before. Some elementary geometric properties of the MOSI curves are given in

Proposition 5.2.1.

Proposition 5.2.1 (a) The sectional curvature in MOSI directions is

KH

2H2 −K
.

(b) The geodesic torsion in the MOSI directions is

±K
√
H2 −K

2(2H2 −K)
.
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Proof : We choose a principal coordinate system. The solutions make an angle

±θ with the coordinate axes where

cos θ =
κ2√
κ2

2 + κ2
1

, sin θ =
κ1√
κ2

2 + κ2
1

.

The results follow by using the formulae for the sectional curvature (2.1) and geodesic

torsion (2.2). 2

Remark 5.2.1 The MOSI curves are an example of a mean curvature foliation as

defined by Garcia and Sotomayor in [42], that is, the sectional curvature is given

by a smooth function k̃n(H,K) satisfying (k̃n − H)2 ≤ (H2 − K) on the region

H2 ≥ K ≥ 0, and k̃n(tH, t2K) = tk̃n(H,K) for each t ≥ 0.

Away from its discriminant, the BDE (5.4) defines a pair of transverse foliations.

We examine here its behaviour near points on the discriminant, that is, near umbilic

points and the parabolic set.

5.2.1 Configurations at umbilic points

The BDEs of the lines of curvature lines of curvature (2.4), characteristic curves

(2.6), the MOSI curves (5.4) and the lines of arithmetic mean curvature (5.1) are

all singular at umbilic points. The configuration of the lines of arithmetic mean

curvature was established in [39].

In each case the discriminant has a Morse (A+
1 )-singularity. Recall the three

stable topological models of the integral curves of BDEs with discriminants of this

type: star, monstar and lemon, which are illustrated in Figure 2.1. Each of the

three generic topological configurations can occur in the cases of the BDEs of the

arithmetic mean curvature lines, the lines of curvature and the characteristic curves.

In fact, the configurations of the lines of arithmetic mean curvature at an umbilic

point are topologically equivalent to those of the characteristic curves.

We consider here the configurations of the MOSI curves at an umbilic point. We

parametrise S at an umbilic point in the way given in Section 2.1, that is, in the

form (x, y, f(x, y)) where

j3f(x, y) =
κ

2
(x2 + y2) + Re(z3 + βz2z)
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where z = x+ iy and β is a complex number.

Proposition 5.2.2 At an umbilic point the coefficients of the BDE T of the MOSI

curves all vanish and the discriminant generally has a Morse (A+
1 ) singularity. The

umbilic of type star if β is inside the circle |β| = 3, of type lemon if β is outside the

hypercycloid β = 3(2eiθ + 2e−iθ) and of type monstar in the remaining regions of the

complex plane; see Figure 5.2.

S

L

M L

L

M

M

The BDE T of the MOSI curves.

S L

M
L

L

M

M

Principal BDE P.

Figure 5.2: Partition of the β-plane: the BDE T of the MOSI curves (left) and the

principal BDE P (right).

Proof : At an umbilic point we have that m2 6= ln, so the discriminant of the

BDE T (5.4) is given by

∆T = n2E2 − 2EGnl + 4EGm2 − 4EnFm+ l2G2 − 4lmFG+ 4lnF 2.

We write β = a+ ib where a, b ∈ R. We calculate the coefficients of the first and

second fundamental forms. We have that

j2∆ = −16κ2((b2 + 9 + a2 + 6a)x2 + 12bxy + (−6a+ a2 + 9 + b2)y2).

This has a Morse singularity provided that

(b2 + a2 − 9)2 6= 0,

that is, provided that β does not lie on the circle |β| = 3.

We use the lifted field method described in Section 1.3.2. It is shown in, for

example, [20], that the topological type depends only on the number and type of



5.2. Configurations of the MOSI curves 100

the singularities of the lifted field ξ. Hence we must identify the exceptional sets in

the β-plane where these change.

We consider the affine chart p = dy/dy (we also consider the affine chart q =

dx/dy). We write the BDE (5.4) as F (x, y, p) = 0. Consider the cubic

φ = (Fx + pFy)(0, 0, p).

We have that

φ(p) = 4κ2(a+ 3)− 4bκ2p+ 4κ2(a− 9)p2.

This has only simple roots provided that φ and φ′(p) have no common roots. This

occurs if and only if

2b2a2 + 72b2a+ 162b2 + a4 − 24a3 + 162a2 − 2187 + b4 6= 0

(this condition is obtained by calculating the resultant of φ(p) and φ′(p)). We

substitute a = r cos θ, b = r sin θ into this expression and find that φ has only simple

roots provided β does not lie on the hypercycloid β = 3(2eiθ + 2e−iθ).

Finally, observe that one eigenvalue of the lifted field ξ at a singular point is

given by −φ′(p), and we have seen that this is non-zero at the roots of φ provided

that β does not lie on the given hypercycloid. The other eigenvalue is given by the

quadratic

α1(p) = −8κ2(bp2 + 6p+ b)

(see for example [20]). It follows that the lifted field ξ has no zero eigenvalues

provided α1 and φ have no common roots. This is the case provided that |β| 6= 3

(this is established by calculating res{φ(p), α1)}).

The exceptional sets where the topological type changes are thus the given circle

and hypercycloid. The topological type of each BDE is established by choosing a

value of β in each of the open regions bounded by the exceptional sets and calculating

the types of the zeros of ξ. 2

Remark 5.2.2 The MOSI curves at umbilic points are topologically equivalent to

the lines of arithmetic mean curvature and to the characteristic curves at umbilic

points.
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5.2.2 Configurations at the parabolic set

Proposition 5.2.3 (a) The unique MOSI direction at parabolic points coincides

with the unique asymptotic direction, and is thus tangent to the parabolic set

only at cusps of Gauss.

(b) The discriminant of the BDE T of the MOSI curves is singular at all parabolic

points.

Proof : We adopt the usual Monge form parametrisation (x, y, f(x, y)) and set

κ1 = 0 at a parabolic point. We calculate the coefficients of the first and second

fundamental forms. Writing the BDE T as F (x, y, p) = 0 we have that

j2F = κ3
2p

2 + (−2a31a30κ2 + 2a32a31κ2)yx+ 2κ2
2a31px+ (a2

31κ2 − a2
30κ2)x2

+(a2
32κ2 − a2

31κ2)y2 + 2κ2
2a32yp.

It is clear that at x = y = 0 the BDE reduces to p2 = 0, that is, the solution

direction is given by the y-axis, which is the unique asymptotic direction at the

origin.

We calculate the discriminant ∆T = b2
T − atcT . We have that

j2∆T = κ4
2(a30x+ a31y)2,

so clearly
∂∆T

∂x
=
∂∆T

∂y
= 0

at parabolic points. 2

Remark 5.2.3 Proposition 5.2.3 (a) in fact follows directly from the relationship

between the BDEs T , P and A identified in Theorem 5.1.7.

As the BDE T has a non-isolated singularity it is of infinite codimension in the

set of IDEs (and the set of BDEs), and so our previous methods of study do not

work.

Lemma 5.2.4 A BDE with coefficients that do not vanish, and discriminant the

square of a smooth function is smoothly equivalent to

dy2 − (g(x, y))2dx2 = 0 (5.6)
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for some smooth function g. The solution curves are a pair of smooth foliations that

are transverse at points where g 6= 0 and mutually tangent at points where g = 0.

Proof : We may suppose that a ≡ 1 and that b2 − c = (h(x, y))2 some smooth

function h. We make changes of coordinates of the form

x = X, y = φ(X, Y )

for some function φ where φY 6= 0 in a neighbourhood of the origin. We have that

dx = dX, dy = φXdX + φY dY . We write b(X,φ) = B and c(X,φ) = C. The BDE

becomes

φ2
Y dY

2 + 2(φXφY +BφY )dXdY + (φ2
X + 2BφX + C)dX2 = 0.

Since φY 6= 0 it is enough to solve the partial differential equation φX = −B. For

each fixed Y this is an ODE in X. If we demand φ(0, Y ) = Y then this ODE has a

unique smooth solution that depends smoothly on the initial value Y .

The original BDE then becomes

φ2
Y dY

2 + (−B2 + C)dX2 = 0.

Observe that C −B2 = (h(X,φ))2. We set g(X, Y ) = (h(X,φ)/φY )2 and divide the

equation by φ2
Y to complete the proof. 2

Proposition 5.2.4 The MOSI curves extend smoothly across the parabolic set. The

two foliations are tangent to one another at parabolic points.

Proof : Since at parabolic points we have that

EG− F 2 6= 0

and

n2E2 + 4EGm2 − 2EGnl − 4EnmF + l2G2 − 4lmFG+ 4lnF 2 6= 0,

it follows that the integral curves of the BDE T in a neighbourhood parabolic set

are the same as those of the BDE T̃ obtained by multiplying the BDE T (5.4) by

the smooth function√
(EG− F 2)(n2E2 + 4EGm2 − 2EGnl − 4EnmF + l2G2 − 4lmFG+ 4lnF 2).
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The discriminant of the BDE T̃ is (ln−m2)2.

We apply Lemma 5.2.4. Equations of the form (5.6) are the product of two

1-forms

dy ± gdx,

giving rise to two smooth foliations that are tangent to one another on the discrim-

inant curve g(x, y) = 0. 2

Pairs of foliations of the plane are studied in, for example, [52]. We use Theo-

rem 5.2.5, established there, to draw the configurations of the MOSI curves at the

parabolic set. Given a pair of foliations associated to a pair of 1-forms, (α, β), in

the plane, we use the term discriminant for the locus of points where β is a multiple

of α.

Theorem 5.2.5 ([52]) Let (α, β) be a pair of germs, at the origin, of regular 1-

forms in the plane. If the discriminant ∆ of the pair (α, β) is a regular curve then

(α, β) is topologically equivalent to

(a) (dy, d(y − x2)), if the contact of ∆ with the leaf of α (and β) at the origin is

odd;

(b) (dy, d(y+ xy− x3)), if the contact of ∆ with the leaf of α (and β) at the origin

is even.

It turns out that the topological configuration of the integral curves of T at a cusp of

Gauss depends only on the index of characteristic (or asymptotic) folded singularity

at the cusp of Gauss.

Proposition 5.2.5 (a) Away from cusps of Gauss the MOSI curves have 2-point

contact with each other and 1-point contact with the parabolic set. A topological

model is given by the pair of one-forms

(dy, d(y − x2)).

The integral curves are as shown in Figure 5.3.
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Figure 5.3: The MOSI curves at the parabolic set.

(b) At cusps of Gauss both MOSI curves generically have 2-point with the parabolic

set. A topological model is given the pair of 1-forms

(dy, d(y + xy − x3)).

There are two possibilities distinguished according to the value of ρc. The

integral curves are as shown in Figure 5.4.

Elliptic region

Hyperbolic region

Figure 5.4: The MOSI curves a cusp of Gauss: ρc < 1 (left) and ρc > 1 (right).

Proof : We adopt the usual Monge form parametrisation at a parabolic point.

The parabolic set is smooth, and tangent to the line

a30x+ a31y = 0.

By Proposition 5.2.4, the integral curves of (5.4) through the origin are smooth.

They are tangent to the y-axis, so we may write them (in the parametrising plane)

in the form y = yi(x) for i = 1, 2, where

j3yi = αi1x
2 + αi2x

3.
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We substitute these expressions into (5.4) (setting dx = 1, dy = dyi/dx). Equating

second order terms to zero we find that

αi1 = −a31 + (−1)ia30

2κ2

.

Thus we see that when a30 6= 0 the two curves have 2-point contact with each

other and 1-point contact with the discriminant (the parabolic set). We apply

Theorem 5.2.5 (a) to establish assertion (a).

When the origin is a cusp of Gauss we have a30 = 0, and so α11 = α21 = −a31/2κ2.

We return to the equation. The third order terms vanish identically, hence we equate

fourth order terms and solve for αi2. We find that

αi2 = −(−1)ia40κ2 − 3(−1)ia2
31 − 3a32a31 + a41κ2

6κ2
2

.

It follows that the two curves have 3-point contact with each other and 2-point

contact with the discriminant. We apply Theorem 5.2.5 (b) to establish the topo-

logical configurations at a cusp of Gauss.

From Proposition 3.1.1 we know that at a cusp of Gauss the parabolic set is

given by

y =
2a2

31 − a40κ2

2a31κ2

x2 + h.o.t.

It follows that the solution curves of T that pass through the cusp of Gauss have

> 2-point contact with the parabolic set at a cusp of Gauss if

2a2
31 − a40κ2

2a31κ2

= − a31

2κ2

,

that is, if ρc = 1. We complete the proof by adopting the projective normal form for

the surface given in Proposition 3.1.7, choosing a value of ρc in each of the intervals

separated by the exceptional value 1 and establishing whether the integral curves of

T through the origin lie locally in the elliptic or hyperbolic region. 2

Remark 5.2.6 The relative positions of the MOSI curves through a cusp of Gauss

and the parabolic set is invariant under projective transformations. When the surface

is sent, via projective transformations, to the normal form given in Proposition 3.1.7,

the 2-jet of the parametrisation of the MOSI curves through the cusp of Gauss is

simply

y = x2.
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This coincides with the separating 2-jet as defined in [71]. This is a curve of signifi-

cance on the dual surface, suggesting that the MOSI curves may be defined in terms

of the flat geometry of the surface.

5.3 Pencils of BDEs

We now use the linear involutions C, R and O to define families of BDEs that

parametrise the pencils joining P to T , Me and B, following the ideas in [24, 36]

that are used to define the families Cα and Rα described in Chapter 2.

To simplify the notation, we label the coefficients of the BDE of the lines of cur-

vature (2.4) aP , bP , cP , and the coefficients of the third fundamental form aB, 2bB, cB

respectively. Explicitly, we set

aP = Gm− Fn, aB = n(2Fm− En)−Gm2,

bP = Gl − En, bB = F (ln+m2)−m(Gl + En),

cP = Fl − Em, cB = l(2Fm−Gl)− Em2.

Recall also the formulae for the Gaussian and arithmetic mean curvatures given

in Section 2.1:

K =
ln−m2

EG− F 2
, H =

Gl + En− 2Fm

2(EG− F 2)
.

The coefficients of the characteristic BDE (2.6) (respectively the BDE of the lines

of arithmetic mean curvature (5.1)) are similarly labelled aCh, 2bCh, cCh (respectively

aMe, 2bMe, cMe). Observe that, as the characteristic BDE (respectively the BDE of

the lines of arithmetic mean curvature) is the polar of the pencil connecting the

asymptotic and principal BDEs (respectively the principal BDE and the metric),

that is Ch = Jac(P,A) (respectively Me = Jac(P,L) we have that

aCh = 2maP − nbP , bCh = 2(ncP − laP ), cCh = lbP − 2mcP , (5.7)

aMe = 2FaP −GbP , bMe = EaP −GcP , cMe = EbP − 2FcP . (5.8)

Similarly, observe that

aT = 2aP bB − aBbP , bT = (aP cB − aBcP ), cT = bP cB − 2bBcP . (5.9)
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The pencil of BDEs with orthogonal solution directions is the polar of the metric.

The corresponding involution is O. A natural parametrisation of this pencil is

obtained by considering those directions v that make an oriented angle α with

(O ◦R)(v) for each fixed α ∈ [−π
2
, π

2
].

Definition 5.3.1 Let PTS denote the projectivised tangent bundle to S, and define

Ξ : PTS → [−π
2
, π

2
]

(p, v) 7→ α

where α denotes the signed angle between v and (O ◦ R)(v). The orthogonal curve

congruence, denoted Oα, for a fixed α, is defined to be Ξ−1(α).

We use the projective transformation T to establish the BDE of the orthogonal

curve congruence.

Theorem 5.3.2 (a) The orthogonal curve congruence Oα is given by the BDE

(aM sinα− 2
√
EG− F 2aP cosα)dy2

+2(bM sinα−
√
EG− F 2bP cosα)dxdy

+(cM sinα− 2
√
EG− F 2cP cosα)dx2 = 0.

(5.10)

(b) The set of all principal directions is O0 and the the set of all arithmetic mean

curvature directions is O±π
2
, so Oα joins the principal BDE P to the BDE of

the lines of arithmetic mean curvature Me.

(c) Away from umbilic points the BDE Oα can be written with respect to a principal

coordinate system as

G cosαdy2 + 2
√
GE sinαdxdy − E cosαdx2 = 0. (5.11)

(d) The discriminant of Oα consists of the umbilic points.

Proof : The involution O is given by T −1(L) where L is the point

[E : 2F : G] ∈ RP 2

which represents the metric (see Section 4.2).
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As the principal directions are the fixed points of the involution R, it follows

from Theorem 4.1.3 that the involution R is given by T −1(P ) where P is the point

[Gm− Fn : Gl − En : Fl − Em] ∈ RP 2 which represents principal BDE.

Calculating, it follows that O is given by

O : RP 1 → RP 1

[x : y] 7→ [Fx+Gy : −Ex− Fy],

and the involution R is given by

R : RP 1 → RP 1

[x : y] 7→ [(Gl − En)x+ 2(Fl − Em)y : 2(Fn−Gm)x+ (En−Gl)y].

Composing we have that the involution O ◦R is given by

O ◦R : RP 1 → RP 1

[x : y] 7→ [(2mEG−GFl − FEn)x+ (nEG− 2nF 2 −G2l + 2GFm)y :

(2lF 2 − lEG+ E2n− 2FEm)x− (2mEG−GFl − FEn)y].

This involution is associated to the linear transformation of R2 that has matrix

M1 =

 2mEG−GFl − FEn nEG− 2nF 2 −G2l + 2GFm

2lF 2 − lEG+ E2n− 2FEm −2mEG+GFl + FEn

 .

Consider a direction [v] ∈ PTpS tangent to the surface S at a point p. We apply

the involution O ◦R. If α denotes the signed angle between [v] and O ◦R([v]) then

we have

cosα =
I(v,M1v)√

I(v, v)I(M1v,M1v)
. (5.12)

The involution O is associated to the linear transformation of R2 that has matrix

M2 =

 −F −G

E F

 .

Observe that since cos(π
2
−α) = sin(α) and O([v]) is orthogonal to [v], the angle

α satisfies

sinα =
I(M1v,M2v)√

I(M1v,M1v)I(M2v,M2v)
. (5.13)

Eliminating I(M1v,M1v) from equation (5.12) and equation (5.13) we have that

I(v,M1v)
√

I(M2v,M2v) sinα− I(M1v,M2v)
√

I(v, v) cosα = 0. (5.14)
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Now for any vectors u1, u2 ∈ TpS, we have that

I(u1, u2) = uT1MIu2

whereMI is the matrix of the first fundamental form used in the proof of Proposition

5.1.3. We set

v =

 dx

dy

 .

We then have that

I(v,M1v) = 2(EG− F 2)((Em− Fl)dx2

+(En−Gl)dydx+ (Fn−Gm)dy2),

I(M1v,M2v) = (EG− F 2)((2lF 2 − lEG+ E2n− 2FEm)dx2

+2(EnF − 2mEG+GFl)dydx

+(2nF 2 +G2l − nEG− 2GFm))dy2,

I(M2v,M2v) = (EG− F 2)(Edx2 + 2Fdydx+Gdy2,

I(v, v) = Edx2 + 2Fdydx+Gdy2.

We substitute these expressions into equation (5.14) to complete the proof of

part (a).

Part (b) is trivial. One obtains the equation in a principal coordinate system

by setting m = F = 0, l = Ek1 and n = Gk2, which establishes part (c).

The discriminant of (5.10) is

∆α
M = (EG− F 2)(n2E2 − 2EGln+ 4EGm2 − 4EnFm+ l2G2 − 4lFmG+ 4lF 2n).

The second factor is equal to 4(H2−K2)(EF−F 2)2 (see Section 2.1) which vanishes

only at umbilic points. This establishes part (d). 2

The pencil B̂ that joins the BDEs P and T comprises, by Theorem 4.1.3, those

BDEs with solutions that have orthogonal spherical images.

Definition 5.3.3 Let PTS denote the projectivised tangent bundle to S, and define

Υ : PTS → [−π
2
, π

2
]

(p, v) 7→ α

where α denotes the signed angle between v and (R ◦C ◦O ◦C)(v). The orthogonal

spherical image congruence, denoted Tα, for a fixed α, is defined to be Υ−1(α).
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Theorem 5.3.4 (a) The orthogonal spherical image congruence Tα is given by the

BDE

(2K(EG− F 2)
3
2aP cosα + aT sinα)dy2

+2(K(EG− F 2)
3
2 bP cosα + bT sinα)dxdy

+(2K(EG− F 2)
3
2 cP cosα + cT sinα)dx2 = 0,

(5.15)

(b) The set of all principal directions is T0 and the the set of all MOSI directions

is T±π
2
, so Tα joins the principal BDE P to the BDE of the MOSI curves T .

(c) Away from umbilic points the BDE Tα can be written with respect to a principal

coordinate system as

G sinακ2
2dy

2 − 2κ1κ2

√
EG cosαdxdy − sinακ2

1Edx
2 = 0. (5.16)

(d) The discriminant of Tα consists of the parabolic set and umbilic points.

Proof : This proof is similar to that of Theorem 5.3.2 and is omitted. 2

Of course, the pencils joining the BDE P to the BDEs Me and T may be

parametrised in other ways, leading to different 1-parameter families. Theorem

5.3.5 shows that, amongst possible parametrisations, we have made a very natural

choice.

Theorem 5.3.5 (a) For any given (fixed) α ∈ (−π
2
, π

2
), the BDE Tα is the polar of

the pencil connecting the BDEs Cα and Rα.

(b) For any given (fixed) α ∈ (−π
2
, π

2
), the BDE Oα is the polar of the pencil

connecting the BDEs Cα and R−α.

Proof : We fix α and calculate the Jacobian of the BDEs Cα (2.7) and Rα (2.8),

which we now write as

(aP sinα− n cosα
√
EG− F 2)dy2+

(bP sinα− 2m cosα
√
EG− F 2)dydx+

(cP sinα− l cosα
√
EG− F 2)dx2 = 0

(5.17)

and

(aCh cosα + 2aPH
√
EG− F 2 sinα)dy2+

2(bCh cosα + bPH
√
EG− F 2 sinα)dydx+

(cCh cosα + 2cChH
√
EG− F 2 sinα)dx2 = 0.

(5.18)
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respectively. We find that this is equal to 4 cosαTα, where Tα is the BDE (5.15).

Thus when cosα 6= 0 the BDE Tα is the polar of the pencil connecting the BDEs Cα
and Rα. This establishes assertion (a).

Assertion (b) follows by a similar calculation. 2

Remarks 5.3.6 1. The BDEs Cα and Rα (respectively Cα and R−α) are not in

general apolar on the pencils that connect them, that is, {Cα,Rα, Tα} (respec-

tively {Cα,R−α,Oα}) is not in general a self-polar triangle.

2. When α = π/2 the BDEs Cα, Rα and Oα coincide and are the principal

BDE (2.4). It follows that there is no pencil joining them, and Jac(Cα,Rα) =

Jac(Cα,R−α) = 0. Observe, from the proof of Theorem 5.3.5, however, that

lim
α→±π/2

Jac(Cα,Rα)

cosα
= Tπ

2
= T

and

lim
α→±π/2

Jac(Cα,R−α)

cosα
= Oπ

2
= Me.

We thus have that B̂ = {Tα|α ∈ [−π
2
, π

2
]} is the closure of the set

{Jac(Cα,Rα)|(α ∈ (−π
2
,
π

2
)},

and L̂ = {Oα|α ∈ [−π
2
, π

2
]} is the closure of the set

{Jac(Cα,R−α)|(α ∈ (−π
2
,
π

2
)}.

One may also consider M̂ and T̂ , the polar lines of the BDEs M and T respec-

tively. These are the pencils joining the principal BDE P to the metric L, and the

principal BDE P to the third fundamental form B.

The solutions to BDEs in the pencil connecting the third fundamental form and

the principal BDE are orthogonal to their images under the Weingarten map.

Definition 5.3.7 Let PTS denote the projectivised tangent bundle to S, and define

Γ : PTS → [−π
2
, π

2
]

(p, v) 7→ α

where α denotes the signed angle between v and (C ◦ O ◦ C)(v). The orthogonal

conjugate curve congruence, denoted Bα, for a fixed α, is defined to be Γ−1(α).
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Theorem 5.3.8 (a) The BDE Bα is

(aB cosα−H
√
EG− F 2aP sinα)dy2

+(2bB cosα−H
√
EG− F 2bP sinα)dxdy

+(cB cosα−H
√
EG− F 2cP sinα)dx2 = 0.

(5.19)

(b) The set of all principal directions is B±π
2

and B0 = B, so Bα joins the principal

BDE P to the third fundamental form B.

(c) Away from umbilic points the BDE Bα can be written with respect to a principal

coordinate system as

Gκ2
2 cosαdy2 +

√
EG(κ2

1 − κ2
2) sinαdxdy + Eκ2

1 cosαdx2 = 0. (5.20)

(d) The discriminant of Bα consists of the sets given by

K cosα±H
√
H2 −K sinα = 0

which we denote by ∆α
B±.

Proof : This proof is similar to that of Theorem 5.3.2 and is omitted. 2

Remarks 5.3.9 1. While it is clear from the equation (5.19) that, in general,

Bα 6= B−α, these two BDEs do have the same discriminant, since ∆α
B+ = ∆−αB−.

2. The sets ∆0
B± are the parabolic set, the sets ∆

π
2
B± consist of the umbilic points

together with the curve given by H = 0.

3. The discriminant curves ∆α
B± foliate the surface.

It is less obvious what the parametrisation of the pencil connecting the metric and

the principal BDE (that is, M̂ , the polar line of the BDE of the lines of arithmetic

mean curvature) should be. We show that one possibility, obtained demanding that

if θ is the angle that the solution directions makes with a (particular) principal

direction be proportional to H
√
H2 −K/K, turns out to be particularly natural.

If θ is the angle between the solution direction and a choice of principal direction,

we set

sin 2θ = tanα
H
√
H2 −K
K

.
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Observe that this gives rise to a real value of θ if any only if

tanα ∈ [− K

H
√
H2 −K

,
K

H
√
H2 −K

],

and that tanα = ±K/H
√
H2 −K if and only if θ = π/4, that is, if the solution

direction is an arithmetic mean curvature direction.

Definition 5.3.10 Let PTS denote the projectivised tangent bundle to S, and de-

fine

Λ : PTS → [−π
2
, π

2
]

(p, v) 7→ α

with α given by sin 2θ = tanαH
√
H2 −K/K where θ is the angle between v and

the principal direction associated to the principal curvature κ1. We define Lα, for a

fixed α, to be Λ−1(α).

Theorem 5.3.11 (a) The BDE Lα is

(HaP sinα +GK
√
EG− F 2 cosα)dy2

+(HbP sinα + 2FK
√
EG− F 2 cosα)dxdy

+HcP sinα + EK
√
EG− F 2 cosα)dx2 = 0.

(5.21)

(b) The set of all principal directions is L±π
2

and L0 = L, so Bα joins the principal

BDE P to the metric L.

(c) Away from umbilic points the BDE Lα can be written with respect to a principal

coordinate system as

κ1κ2G cosαdy2 + (κ2
2 − κ2

1)

√
GE

2
sinαdxdy + κ1κ2E cosαdx2 = 0. (5.22)

(d) The discriminant of Lα consists of the sets ∆α
B±.

Proof : This proof is similar to that of Theorem 5.3.2 and is omitted. 2

Recall the involution σPΓ on any line P̂ ⊂ RP 2 induced by a conic Γ, that was

defined a the start of Chapter 4. Recall also Lemma 4.0.6.

Considering the involution on the lines Â and Ĉh induced by the conic ∆ allows

us to prove a result analogous to Theorem 5.3.5.
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Theorem 5.3.12 (a) For any given (fixed) α, the BDE Lα is the polar of the pencil

containing the BDEs σCh(Cα) and σA(Rα).

(b) For any given (fixed) α, the BDE Bα is the polar of the pencil containing the

BDEs σCh(Cα) and σA(R−α).

Proof : The polar of the pencil R is the asymptotic BDE A. Given some fixed

α, we therefore have that σA(Rα) is the Jacobian of the BDEs Rα and A. We find

that this is the BDE

(aChH
√
EG− F 2 cosα− 2KaP sinα)dy2

+2(bChH
√
EG− F 2 cosα−KbP sinα)dxdy

+(cChH
√
EG− F 2 cosα− 2KcP sinα)dx2 = 0.

(5.23)

A calculation of the Jacobian of the BDEs Cα (5.17) and σA(Rα) (5.23) shows that

the polar of the pencil connecting these two BDEs is the BDE Bα.

The second assertion follows by similar calculations. 2

Remark 5.3.13 When α = π/2 the BDEs σC(Cα), σR(Rα) and σR(R−α) coincide

and are the principal BDE (2.4). For similar reasons to those used in Remarks 5.3.6

2. we have that M̂e = {Lα|α ∈ [−π
2
, π

2
]} is the closure of the set

{Jac(σC(Cα), σR(Rα))|(α ∈ (−π
2
,
π

2
)},

and T̂ = {Bα|α ∈ [−π
2
, π

2
]} is the closure of the set

{Jac(σC(Cα), σR(R−α))|(α ∈ (−π
2
,
π

2
)}.

We conclude the chapter will an observation concerning special points of surfaces.

Remark 5.3.14 We have seen that the curve H = 0 is significant: it forms part of

the discriminant of the BDEs R±π
2
,B±π

2
, and L±π

2
. On this the asymptotic directions

are orthogonal to one another (in fact they coincide with the arithmetic mean cur-

vature directions), and one cannot canonically order the principal directions. Since

at such points the asymptotic BDE A, the BDE of the lines of arithmetic mean

curvature Me and the BDE of the MOSI curves T coincide, all pairs of orthogo-

nal directions on the surface are mapped to orthogonal directions on the spherical
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image, and the characterisation of the principal directions given in Remark 5.1.6

breaks down.

This set in some ways plays a role in the hyperbolic region similar to that played

by the umbilic points in the elliptic region. For example, an umbilic point my be

seen as a point at which the shape operator is a multiple of the identity operator,

that is, A and L coincide in the projective plane, whereas at points where H = 0

it is the characteristic BDE Ch that coincides with L (so that, as we have seen, A

coincides with Me). This similarity may be further understood by considering the

alternative definition of conjugacy given in Proposition 2.1.1. An umbilic point the

Dupin indicatrix is a circle; at a point where H = 0 the Dupin indicatrix is a rect-

angular hyperbola, however, a circle centred at the origin is a rectangular hyperbola

when viewed from (any) point on the line at infinity.



Chapter 6

The characteristic curves as space

curves in R3

In this chapter we consider the characteristic curves on a smooth surface as space

curves in R3. In Chapter 3 we were able to produce a result on the characteristic

curves analogous to the Beltrami-Enepper Theorem on the asymptotic curves. The

key observation was that the torsion of the two asymptotic curves through each

hyperbolic point is equal to their geodesic torsion. This is not the case for the

two characteristic curves through an elliptic point. We consider the torsion of the

characteristic curves in this chapter.

6.1 The torsion of the characteristic curves

The torsion τ of a smooth parametrised curve γ in R3 is given by

τ =
(γ′ ∧ γ′′) · γ′′′

|γ′′ ∧ γ′|2
(6.1)

where (′) denotes differentiation with respect to the parameter.

We parametrise S in Monge form (x, y, f(x, y)) with f as in (2.3). We write the

BDE of the characteristic curves on S (2.6) as Ω(x, y, p) = 0 where p = dy/dx.

Assume that the origin is a non-umbilic elliptic point. Without loss of generality

we assume κ2 > κ1 ≥ 0. We calculate expressions for the coefficients of the first

116
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and second fundamental form at the origin. The integral curves of the characteristic

BDE through the origin are smooth, so we may set

yi(x) = (−1)i(

√
κ1

κ2

)x+ αix
2 + βix

3 + h.o.t.,

for some αi, βi, i = 1, 2. Let Ωi = Ω(x, y, dyi/dx). We calculate j2Ωi(x). By setting

first (respectively second) order terms to zero, we find αi (respectively βi), i = 1, 2.

Considered as space curves in R3, the characteristic curves are parametrised as:

γi(x) = (x, yi(x), f(x, yi(x))), i = 1, 2.

We find (using Maple) that the torsion at the origin of the characteristic curve γi is

given by

τi =

√
KA+ (−1)iK3B√
KΓ + (−1)iΛ

, i = 1, 2,

where

A = 32κ4
1κ

4
2(κ1 − κ2)

+κ1((17κ2
1 + 22κ1κ2 + 9κ2

2)κ2
2a

2
31

+2(5κ2
1 − 14κ1κ2 − 7κ2

2)κ1κ2a31a33 − 7(κ1 − κ2)2κ2
1a

2
33)

−κ2((17κ2
1 + 22κ1κ2 + 9κ2

2)κ2
2a

2
32

+2(5κ2
1 − 14κ1κ2 − 7κ2

2)κ1κ2a32a30 − 7(κ1 − κ2)2κ2
2a

2
30)

+4κ1κ2(κ2
1(κ1 − κ2)2a44 + 4κ1κ2(κ2

1 − κ2
2)a42 − κ2

2(κ1 − κ2)2a40),

B = 16(2a30a31 − 2a32a33 − a41(κ1 − κ2)− a43(κ1 − κ2)),

Γ = 2(κ2a30(κ1 − κ2) + κ1a32(κ1 + 3κ2))(κ2a31(κ2 + 3κ1)− κ1a33(κ1 − κ2)),

Λ = 16κ3
1κ

3
2(κ1 + κ2)(κ1 − κ2)2 + κ2(κ2a30(κ1 − κ2) + κ1a32(κ1 + 3κ2))2

+κ1(κ2a31(κ2 + 3κ1)− κ1a33(κ1 − κ2))2.

It is clear that τ1τ2 depends on the value of the coefficients of j4f and can be

positive, negative or zero, that is, the respective torsions of the two characteristic

curves through a point may have the same or different signs, and may also vanish.

The results in this chapter are proved using the transversality method given in

[9] (see also [73]) outlined in Section 1.2.2, and we include here only the key facts.

Detailed calculations, carried out using Maple, are generally omitted.
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At any point p we parametrise the surface in Monge form (x, y, fp(x, y)) at p,

where fp is a smooth function and f0 = f . We define the jet-extension map

φ : S → J4(2)

p 7→ j4fp.
(6.2)

The differential map to φ is denoted by Tpφ : TpS → Tφ(p)J
4(2). Recall the basis

{vx, vy} for im(T0φ) given in Lemma 1.2.3.

Let L = J4(2)/SO(2). A polynomial q ∈ J4(2), where

q(x, y) =
1

2

2∑
i=0

 2

i

 a2iy
ix2−i +

1

6

3∑
i=0

 3

i

 a3iy
ix3−i +

1

24

4∑
i=0

 4

i

 a4iy
ix4−i,

is SO(2)-equivalent to a polynomial r with a21 = 0, that is, we may identify L with

the hyperplane a21 = 0.

We define a function

h : L → R

r 7→ (A2 −K5B2)K

KΓ2 − Λ2

(6.3)

where K = a20a22 and A,B,Γ,Λ are evaluated with κ1 = a20 and κ2 = a22. Let

V ⊂ L be the set given by h−1(0), and let V ⊂ J4(2) be the SO(2)-orbit of V . It is

clear that V is an SO(2)-invariant set with codimension 1 in J4(2).

Let ∇ denote the gradient vector field on smooth hypersurfaces in J4(2) (which

is identified with R12 via the coordinates aji). The tangent space to V at a point

r ∈ V is given by R.{xry − yrx} ⊕ TV , where TV is the tangent space to V , that is,

the orthogonal compliment of ∇h in J4(2).

We define a regular stratification S = {SH , SE, SP , SG, SU} of J4(2), where

q(x, y) ∈ J4(2) is in SH (respectively SE, SP , SG, SU) if the point (0, 0, 0) is a

hyperbolic point (respectively parabolic point not a cusp of Gauss, non-umbilic

elliptic point, cusp of Gauss, umbilic point) of the smooth surface parametrised

by (x, y, q(x, y)). The codimensions of SH , SE, SP , SG, SU in J4(2) are respectively

0, 0, 1, 2 and 2, and SP , SG, SU are in the closure of SE. The intersection of V with

SH , SE, SU and SP are denoted by VH , VE, VU and VP as appropriate, and form a

regular stratification of V into smooth submanifolds.
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Proposition 6.1.1 The torsion of a characteristic curve approaches zero as the

curve approaches a generic parabolic point. Near such points the characteristic

curves have torsion of opposite sign.

Proof : The set SP may be taken to be the SO(2)-orbit of the subset of L given

by a20 = 0, a30 6= 0. It is clear that SP ⊂ V , that is, VP = SP . Calculations

show that R.{xfy − yfx} does not generally lie in R.{vx, vy} when a20 = 0, and

∇a20 ·vx = a30/2, which does not vanish in SP , hence φ is transverse to VP . The first

assertion follows since the function h (6.3) is smooth at points in a neighbourhood

of SP . The second assertion is proved by observing that ∂h/∂a20 < 0 in SP . 2

Proposition 6.1.2 The torsion of the characteristic curves does not vanish in a

neighbourhood of a generic umbilic point.

Proof : The set SU is given by a21 = 0, a20 = a22. Consider the function h (6.3).

Calculations show that ∇h · vx and ∇h · vy do not in general vanish simultaneously

and that R.{xfy − yfx} does not lie in R.{vx, vy} when a20 = a22, that is, VU is

generally transverse to φ. The function h does not vanish identically on SU , hence

VU has codimension 3, so φ−1(VU) is generally empty. As h is smooth at points in SU ,

there is a neighbourhood Q of any generic point of SU in which h does not vanish.

In φ−1(Q), a neighbourhood of a generic umbilic, the torsion of the characteristic

curves does not vanish. 2

At an umbilic point we may write

j3f(x, y) =
κ

2
(x2 + y2) + Re(z3 + βz2z)

where z = x+ iy and β is a complex number ([18]).

Proposition 6.1.3 The two characteristic curves passing through any point in a

neighbourhood of an umbilic point have torsion of the same (respectively opposite)

sign if β lies in a region labelled + (respectively −) in Figure 6.1. These regions are

bounded by the lines

arg(3β − β̄ − 6) = ±π
4

and

arg(5β − β̄ + 14) = ±π
4
,
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shown in solid lines.

-

+

-

+

+

+

+

+

-

-

-

4
πarg(3β−β−6)=

4
πarg(3β−β−6)=−

arg(5β−β+14)=

4
πarg(5β−β+14)=−

4
π

Figure 6.1: Partitions of the β plane into regions where the torsion of the two

characteristic curves through each point in a neighbourhood of an umbilic point

with complex parameter β have the same (+) or different (-) sign. The regions are

divided by the solid lines.

Proof : The sign of the torsion at points in a neighbourhood of SU are given by

that of the function h (6.3) at points in SU as h is smooth on SU . A calculation

shows that

h = −9K2 Re(3β − β̄ − 6)2)

Re(5β − β̄ + 14)2)
.

The exceptional sets in the complex plane where h changes sign are thus those where

(3β − β̄ − 6) or 5β − β̄ + 14 have an argument of ±π/4. The proof is completed by

calculating the sign of h for a value of β in each of the open regions defined by these

lines. 2

Remark 6.1.1 As described in Section 2.2, there are three generic topological con-

figurations of the characteristic curves at an umbilic point, distinguished by the po-

sition of β with respect to the circle |β| = 3 and the hypercycloid β = 2(2eiθ+2e−2iθ)

([24]). These sets are shown in dashed lines in Figure 6.1.

We now consider the set of points where the torsion of a characteristic curve vanishes.
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Theorem 6.1.2 There are generically smooth or empty curves in the elliptic region

on which the curves of one characteristic foliation have zero torsion and isolated

points in the elliptic region where the curves of both foliations have zero torsion.

Proof : The set of points at which a characteristic curve vanishes is φ−1(VE). The

set VE is the SO(2)-orbit of the subset of the hyperplane a21 = 0 given by

A2 −K5B2 = 0.

As R.{xfy − yfx} does not generally lie in R.{vx, vy} and ∇(A2 − K5B2) · vx and

∇(A2−K5B2) · vy do not in general vanish simultaneously, φ is generally transverse

to V . The codimension of VE in J4(2) is 1, hence by Lemma 1.2.2 φ−1(VE ∩ im(φ))

is a smooth curve or is empty.

The set of points where the torsion of both characteristic curves vanishes is given

by φ−1(W ∩ im(φ)) where W ⊂ J4(2) is the SO(2)-orbit of the subset of L given by

A = B = 0. Calculations show that ∇A and ∇B are generally linearly independent,

so the codimension of W in J4(2) is 2, and that ∇A ·vx, ∇A ·vy, ∇B ·vx and ∇B ·vy
do not in general vanish simultaneously, that is φ is generally transverse to W . By

Lemma 1.2.2 φ−1(W ∩ im(φ)) is a smooth submanifold of S of codimension 2 (an

isolated point), or is empty. 2

Definition 6.1.3 The characteristic zero torsion curve is the closure of the locus

of points where a characteristic curve has zero torsion. The left (respectively right)

branch of the characteristic zero torsion curve consists of the points of zero torsion

of the left (respectively right) characteristic curves.

It is immediate from Proposition 6.1.2 that the characteristic zero torsion curve

does not pass through umbilic points. We now consider its behaviour near parabolic

points.

Proposition 6.1.4 The characteristic zero torsion curve meets the parabolic set at

a cusp of Gauss with ccr-invariant ρc if ρc < 13/4. At such points the left and

right branches of the characteristic zero torsion curve are C2 curves tangent to the

parabolic set and divide a neighbourhood of a cusp of Gauss as shown in Figure 6.2
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(right). In a neighbourhood of a cusp of Gauss with ρc > 13/4 the torsion of the

characteristic curves have opposite sign.

τ > 01

2τ < 0
τ > 02

1τ < 0
τ > 02

1τ < 0

τ > 02

1τ > 0
τ > 02

1τ > 0

τ > 02

1τ < 0

Figure 6.2: The left (solid curve) and right (broken curve) branches of the charac-

teristic zero torsion curve at a cusp of Gauss, ρc < 13/4 (left) and ρc > 13/4 (right).

The thick line is the parabolic set.

Proof : The set SG may be taken to be the SO(2)-orbit of the set given by

a20 = a21 = a30 = 0. The characteristic zero torsion curve is given by φ−1(VE)

where VE is the closure of VE. The set VE is given by

A2 −K5B2 = 0.

A calculation shows that

A2 −K5B2 = −49a10
22a

4
30

16

when a20 = 0, hence in general SG ⊂ VE.

Observe that the expressions A ± K5/2 are C2 functions of a20 and a30. In

SE the varieties corresponding to left and right branches of the characteristic zero

torsion curve are given by A − K5/2B = 0 and A + K5/2B = 0 respectively. In a

neighbourhood of SG these equations can be written as

a4
22(4a40a22 − 9a2

31)a20 = 7a5
22a

2
30 +O(a3

20),

that is, the varieties are tangent to SP ∪ SG, and lie locally in SE (respectively

SH) when 4ρc − 13 is negative (respectively positive), using Proposition 3.1.2. It

follows that the branches of the characteristic zero torsion curve are tangent to the

parabolic set at cusps of Gauss with ρc > 13/4.

The relative positions of the two branches are established by considering higher

order terms in a20, a30 in A ±K5/2B. As SG ⊂ SP the final assertion follows from

Proposition 6.1.1. 2
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6.2 Osculating planes of the characteristic curves

Let θ be the angle between the principal normal to a curve on a surface parametrised

by arc length s and n, the unit normal to the surface. Then at any point of the

curve we have Bonnet’s formula:

τg = τ − dθ

ds
,

where τ and τg are respectively the torsion and geodesic torsion of the curve. It

follows that the osculating plane of a curve on the surface is equal to the tangent

plane of the surface if and only if the torsion and geodesic torsion of the curve are

the same.

The Beltrami-Enepper Theorem is a consequence, therefore, of the fact that the

osculating plane of the asymptotic curves is the tangent plane to the surface.

Recall that the geodesic torsions of the characteristic curves through an elliptic

point are

±
√
κ1κ2(κ2 − κ1)

(κ2 + κ1)
.

Points at which the osculating plane of a characteristic curve are equal to the tangent

plane to the surface are located by equating these expressions to those for the torsion

of the characteristic curves given in Section 6.1, that is, by setting

±
√
κ1κ2(κ2 − κ1)

(κ2 + κ1)
=

√
KA±K3B√
KΓ +±Λ

.

Let the geodesic torsion of a the characteristic curve with torsion τi be τgi,

where i = 1, 2. The difference between the torsion and the geodesic torsion of a

characteristic curve at a non-umbilic elliptic point is given by

τi − τgi =

√
KA+ (−1)iK3B√
KΓ + (−1)iΛ

−
√
K

(κ1 − κ2)

(κ1 + κ2)
, i = 1, 2.

We consider (τ1 − τg1)(τ2 − τg2). As in Section 6.1 we define a function

h̃ : L → R

q̃ 7→ h+ 2K
(a22 − a20)(K3BΓ− ΛA)

(a22 + a20)(KΓ2 − Λ2)
−K (a22 − a20)2

(a22 + a20)2
.

(6.4)

where K = a20a22 and A,B,Γ,Λ are evaluated with κ1 = a20 and κ2 = a22.
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Let Ṽ ⊂ L be the set given by h̃−1(0), and let Ṽ ⊂ J4(2) be the SO(2)-orbit

of Ṽ . The intersection of Ṽ with SE, SG and SP are denoted by ṼE, ṼG and ṼP

respectively.

The proofs of the remaining results in this section use the same methods as the

corresponding results in Section 6.1, so details are omitted.

Theorem 6.2.1 There are generically smooth or empty curves in the elliptic region

along which the osculating plane of a characteristic curve is the tangent plane of the

surface. There are isolated points in the elliptic region at which the tangent plane

to the surface is the osculating plane of both the characteristic curves.

Proof : The result follows using the method of Theorem 6.1.2 with h̃ (6.4)

replacing the function h (6.3). 2

Definition 6.2.2 The characteristic geodesic torsion curve is the locus of points

at which the tangent plane to the surface is the osculating plane of a characteristic

curve. The left (respectively right) branch of the characteristic geodesic torsion curve

consists of the points at which the tangent plane to the surface is the osculating plane

of a left (respectively right) characteristic curve.

Proposition 6.2.1 There is a neighbourhood of a generic umbilic point in which

the torsion and geodesic torsion of the characteristic curves through each point are

not in general equal.

Proof : Observe that the geodesic torsion of the characteristic curves through a

point approaches zero as the point approaches an umbilic. The result follows using

the same method as Proposition 6.1.2. 2

It follows immediately from Proposition 6.2.1 that the characteristic geodesic

torsion curve does not pass through umbilic points in general.

It is clear that the torsion and geodesic torsion of a characteristic curve ap-

proaches zero as the curve approaches parabolic points. We examine now the be-

haviour of the characteristic geodesic torsion curve near the parabolic set.
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Proposition 6.2.2 (a) There are two characteristic geodesic torsion curves (a left

branch and a right branch) which are of class C1 and tangent to the parabolic

set at a cusp of Gauss with ccr-invariant ρc if ρc < 33/8.

(b) The relative positions of the characteristic geodesic torsion curve and the char-

acteristic zero torsion curve at a cusp of Gauss are as shown in Figure 6.3.

(c) When ρc = −2 the characteristic geodesic torsion curve and the characteristic

zero torsion curve have degenerate contact. When ρc = 4 the left and right

branches of the characteristic geodesic torsion curve have degenerate contact.

No change in the relative positions of these curves occurs at these values of ρc.

Figure 6.3: Relative positions of the characteristic geodesic torsion curves (blue)

and characteristic zero torsion curves (red) at a cusp of Gauss with ccr-invariant

ρc ∈ (−∞,−2) ∪ (−2, 13
4

) (left), ρc ∈ (13
4
, 33

8
) \ {4} (centre), and ρc >

33
8

(right). In

each case the left branch is shown in solid curves and the right branch is shown in

broken curves. The thick black line is the parabolic set.

Proof : Recall that the set SG may be taken to be the SO(2)-orbit of the set

given by a20 = a21 = a30 = 0. The characteristic geodesic torsion curve is given by

φ−1(ṼE) where ṼE is the closure of ṼE and φ is the jet-extension map (6.2). The set

ṼE is given by

(A2 −K5B2)(a22 + a20)2 + (2(a2
22 − a2

20))(K3BΓ− ΛA)− (a22 − a20)2(KΓ2 − Λ2).

A calculation shows that when a20 = 0 the set ṼE is given by −9a12
22a

4
30 = 0 hence

in general SG ⊂ VE.

We consider the varieties in L that correspond to the left and right branches of

the characteristic geodesic torsion curve (these form a partition of ṼE). These are

given respectively by

τi − τgi =

√
KA+ (−1)iK3B√
KΓ + (−1)iΛ

−
√
K

(a20 − a21)

(a20 + a21)
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i = 1, 2. Using the expressions for A,B,Γ,Λ given in Section 6.1 we have that these

varieties are given by

(−4a2
31 + 2a2

22a40)a20 −
√
a3

22a31
√
a20a30 − 3a2

22a
2
30 + h.o.t. = 0,

−(−4a2
31 + 2a2

22a40)a20 −
√
a3

22a31
√
a20a30 + 3a2

22a
2
30 + h.o.t. = 0,

in a neighbourhood of SG.

We make the substitution a20 = b2 and restrict our attention to the region b ≥ 0.

The sets of interest are then given by

(−4a2
31 + 2a2

22a40)b2 −
√
a3

22a31ba30 − 3a2
22a

2
30 +O(b2, a3

30) = 0,

−(−4a2
31 + 2a2

22a40)a20 −
√
a3

22a31
√
a20a30 + 3a2

22a
2
30 +O(b2, a3

30). = 0.
(6.5)

These sets have Morse singularities at the origin: an A+
1 - (respectively A−1 -)

singularity when −47a2
31 + 24a22a40 > 0 respectively −47a2

31 + 24a22a40 > 0). By

Proposition 3.1.2 we have that −47a2
31 + 24a22a40 > 0 if and only if ρc < 33/8.

When the singularity is A−1 we decompose the quadratic expressions in b and

a30 (6.5) into linear factors. By the implicit function Theorem 1.1.6, the varieties

corresponding to the characteristic geodesic torsion curve are then expressible in the

form

b = ua30 + h.o.t

for some ui(a22, a31, a40) i = 1, 2. Observe that if we substitute b =
√
κ2 these

varieties are given by
√
κ1 = uia30 + h.o.t, that is, they are of class C1 and tangent

to the set SP ∪ SG. Assertion (a) then follows as the jet-extension map φ is a

diffeomorphism.

Recall from the proof of Proposition 6.1.4 that the varieties corresponding to the

zero torsion curves in a neighbourhood SG are both given by

(4a40a22 − 9a2
31)a20 = 7a22a

2
30 +O(a3

20).

We substitute a20 = b2 into this expression to obtain

(4a40a22 − 9a2
31)b2 = 7a22a

2
30 +O(a3

20). (6.6)

Observe that this set now has a Morse singularity at the origin: an A+
1 - (respec-

tively A−1 -) singularity when −9a2
31 +4a22a40 > 0 (respectively −9a2

31 +4a22a40 > 0).

We decompose the quadratic expression (6.6) into linear factors.
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Assertions (b) and (c) are established by comparing these linear factors and

those obtained from the expressions (6.5). Codimension one phenomena occur when

any pair of these linear factors coincide or when the singularities of the relevant

varieties are worse than Morse. Calculations show that instances of these phenomena

are given by the value of a40a22/a
2
31, that is, on the value of the ccr-invariant ρc.

The exceptional values are ρc = −2 (a pair of linear factors corresponding to the

characteristic geodesic torsion curves coincide), ρc = 4 (a linear factor corresponding

to a characteristic geodesic torsion curve coincides with a linear factor corresponding

to the characteristic zero torsion curve), ρc = 13/4 (the variety corresponding to the

characteristic zero torsion curves has a worse than Morse singularity) and ρc = 33/8

(the variety corresponding to the characteristic geodesic torsion curves has a worse

than Morse singularity).

The proof is completed by choosing a value of ρc in each of the open intervals

bounded by the exceptional values, and calculating expressions for the varieties in

L corresponding to each curve. 2



Chapter 7

BDEs with discriminant having a

cusp singularity

In this chapter we again leave the differential geometry of surfaces and study binary

differential equations in their own right, in preparation for the study of pairs of

foliations on singular surfaces in Chapter 8 and Chapter 9.

We consider BDEs (1.5) with coefficients all vanishing at an isolated point where

the discriminant has an A2- (cusp) singularity. We refer to such equations as cusp

BDEs.

We show that cusp BDEs are generally of one of three types. A normal form

for the 1-jet of BDEs of each is established. We also show that there are certain

degenerate cusp BDEs that are not of any of the three types. We give a complete

topological classification of cusp BDEs with codimension ≤ 4. The results are

summarised in Theorem 7.0.3.

Theorem 7.0.3 A BDE with discriminant having a local A2-singularity with van-

ishing coefficients at the singular point and with codimension ≤ 4 is locally topolog-

ically equivalent to one of the normal forms in Table 7.1.

Remark 7.0.4 There are no topologically stable singularities of BDEs with vanish-

ing coefficients: the discriminant is necessarily singular, and a generic deformation

in the set of all BDEs removes this singularity. It follows that generic deformations

must be born in mind when considering topological equivalence (indeed a topological

128
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Cusp Type Codimension Topological Normal Forms Figure

2 (y,−x+ y, y2); (y, x+ 2y, y2) Figure 7.1

1 (y, x+ y, y2)

3 (y, x+
√

2y, y2) Figure 7.2

(x,−2y, x2); (x,−y, x2)

2 3 (x,−2y/3, x2); (x,−y/4, x2) Figure 7.4

(x, y, x2)

4 (x,−3y/2 + x2, x2); (x,−3y/4, x2) Figure 7.10

3 4 (x+ y,−y/2, x2) Figure 7.15

Table 7.1: Cusp BDEs with codimension ≤ 4.

classification of cusp BDEs would be of little interest otherwise, since the discrim-

inant itself is homeomorphic to a straight line). Consequently, although certain

BDEs with different normal forms in Table 7.1 are topologically equivalent (see Sec-

tion 7.2), we consider them to be distinct as their deformations in generic families

may not be equivalent. Furthermore, there are certain geometric differences between

the solution curves, which we highlight in Section 7.3.

We also study in this chapter certain BDEs with discriminant having a Y 1
1,2-

singularity, as such BDEs arise in the study of the characteristic curves on a parabolic

cross-cap in Chapter 6.

Remark 7.0.5 A BDE with coefficients that do not vanish simultaneously may also

have a discriminant with an A2-singularity. These are studied in [63].

7.1 The three types of cusp BDE

We will always assume that the point under consideration is the origin.

We use the method of lifting the bi-valued direction field defined by the BDE in

the plane to a single vector field on a surface that is described in Section1.3. We

consider the surface

M̃ = {(x, y, [α : β]) ∈ R2, 0× RP 1|aα2 + 2bαβ + cβ2 = 0}
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associated to the BDE (1.5). When the discriminant has an A2-singularity the

surface M̃ has a Morse singularity at a point on the exceptional fibre ([11]).

Consider the affine chart for RP 1, p = β/α (we also consider the chart q = α/β)

and write equation (1.5) as

F (x, y, p) = a(x, y)p2 + 2b(x, y)p+ c(x, y) = 0. (7.1)

Recall that a suitable lifted field on the smooth part of M̃ is

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
.

The lifted field ξ extends smoothly to the regular part of the exceptional fibre,

and the exceptional fibre is an integral curve of ξ. We consider the zeros of ξ on the

exceptional fibre, which are the roots of the cubic

φ(p) = (Fx + pFy)(0, 0, p) = 0. (7.2)

At a singular point of M̃ , Fx = Fy = 0, so φ has a root at such a point.

Definition 7.1.1 A BDE with discriminant having an A2-singularity at the origin

is said to be of cusp type 1, 2 or 3 according to whether the root of φ at the singular

point of the surface M̃ is simple, double or triple.

Remark 7.1.2 There exist cusp BDEs for which the lifted field ξ (and hence the

cubic φ) vanishes along the whole of the exceptional fibre. We refer to these as

degenerate cusp BDEs, and study the cases of lowest codimension in Section 7.4.

Proposition 7.1.1 For a cusp BDE the singularity of the surface M̃ lies on the

criminant if and only if the BDE is not of cusp type 1.

Proof : Consider the affine chart for RP 1, p = dy/dx and write equation (1.5)

in the form (7.1). As the surface M̃ has a Morse singularity ([11]), the Hessian of

F is non-degenerate. Since Fpp = 0 on the exceptional fibre, we have that

(Fxp, Fyp) 6= (0, 0).

We assume (by making a linear change of coordinates if necessary) without loss of

generality that Fyp 6= 0 in a neighbourhood of the intersection of the criminant and
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the exceptional fibre (observe that a liner change of coordinates will not alter the

fact that Fpp = 0 since the coefficients of the BDE all vanish at the origin).

Suppose that the criminant is parametrised by (x(t), y(t), p(t)). Then

(x′, y′, p′) · (Fpx, Fpy, Fpp) = 0

since the criminant lies in the surface Fp = 0. Since Fpp = 0 on the exceptional fibre

and p = y′/x′ it follows that the intersection of the criminant and the exceptional

fibre satisfies (Fxp + pFyp)(0, 0, p) = 0.

Consider the cubic φ. Differentiating we have

φ′(p) = Fxp(0, 0, p) + Fy(0, 0, p) + pFyp(0, 0, p),

so the intersection of the criminant and the exceptional fibre is a root of φ′(p) = 0 if

and only if it is a root of Fy(0, 0, p) = 0. Hence the intersection of the criminant and

the exceptional fibre is a root of φ(p) = 0 of order ≥ 2 if and only if it is a common

root of Fy(0, 0, p) = 0 and Fx(0, 0, p) = 0, that is, if it occurs at the singular point

of the surface M̃ . 2

Proposition 7.1.2 A BDE of cusp type m has codimension at least (m+ 1).

Proof : We work in Jk(2, 3) where k ≥ 2. Let Ṽ be the variety of BDEs with

discriminant having a worse-than-Morse singularity, which is given by

a(0, 0) = b(0, 0) = c(0, 0) = (δ2
xy − δxxδyy)(0, 0) = 0.

If the discriminant δ has an A2-singularity then the second derivatives of δ with

respect to x and y do not all vanish at the origin. Since cusp BDEs lie in Ṽ it

follows that (δxx, δyy) 6= 0. By making a linear change of coordinates if necessary, we

assume without loss of generality δyy 6= 0.

We complete the construction of the semi-algebraic set V of cusp BDEs by

observing the discriminant now has a genuine A2-singularity provide that δxxx+δxyy

is not a factor of the cubic terms in the 3-jet at the origin of δ. This is the case

provided

δyyyδ
3
xy − 3δxyyδ

2
xyδyy + 3δxyyδxyδ

2
yy − δxxxδ3

yy 6= 0.
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Consider the affine chart for RP 1, p = dy/dx (we also consider the affine chart

q = dx/dy), and write equation (1.5) in the form (7.1). Recall the cubic φ (7.2).

Observe that

φ(p) = ay(0, 0)p3 + (ax + 2by)(0, 0)p2 + (bx + 2cy)(0, 0)p+ cx(0, 0).

Let Vm ⊂ V be the set defining BDEs of cusp type m, where m = 1, 2, 3.

The limiting tangent direction to the cusp is (−δyy, δxy), that is, the criminant

intersects the exceptional fibre at p = −δxy/δyy. By applying Proposition 7.1.1 we

have that V1 consists of those BDEs in V with

φ

(
−δxy
δyy

)
6= 0.

The set V2 consists of those BDEs in V with

φ

(
−δxy
δyy

)
= 0, φ′′

(
−δxy
δyy

)
6= 0.

The set V3 consists of those BDEs in V with

φ

(
−δxy
δyy

)
= φ′′

(
−δxy
δyy

)
= 0, φ′′′

(
−δxy
δyy

)
6= 0.

The set V \ (V1 ∪ V2 ∪ V3) consists of degenerate cusp BDEs.

The hyperplanes in Jk(2, 3) defined by each of the conditions

a(0, 0) = 0, b(0, 0) = 0 c(0, 0) = 0

clearly intersect transversely, hence their intersection is a plane of codimension 3.

Observe that these conditions on the constant terms in the k-jets at the origin of

a, b, c, whereas

(δ2
xy − δxxδyy)(0, 0) = 0

is a condition on the first order terms in the k-jets of a, b, c. It follows that the variety

defined by this condition is transverse to the plane a(0, 0) = b(0, 0) = c(0, 0) = 0,

and hence that V is a semi-algebraic set of codimension 4.

Let ∇ denote the gradient vector field on Jk(2, 3). By calculating

∇
(
φ

(
−δxy
δyy

))
and∇

(
φ′′
(
−δxy
δyy

))
= 0
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it may be shown that the varieties defined by the conditions

φ

(
−δxy
δyy

)
= 0 and φ′′

(
−δxy
δyy

)
= 0

are transverse to V and to each other. It then follows that Vm, m = 1, 2, 3 is a

semi-algebraic set of codimension m+3 as required. Details of this (lengthy, though

straightforward) calculation are omitted. 2

Proposition 7.1.3 The 1-jet of the coefficients of a cusp BDE is linearly equivalent

to one of the following normal forms.

(i) (y, εx+ b11y, 0) (cusp type 1) where ε = ±1,

(ii) (x, b11y, 0) (cusp type 2) where b11 6= 0,−1/2,

(iii) (x+ y,−y/2, 0) (cusp type 3),

(iv) (x,−y/2, 0) (degenerate cusp BDEs).

Proof : The reduction of the 1-jets of BDEs to normal forms is carried out in

[22]. We include here only the key facts. We write

j2a = a10x+ a11y + a20x
2 + a21xy + a22y

2

j2b = b10x+ b11y + b20x
2 + b21xy + b22y

2

j2c = c10x+ c11y + c20x
2 + c21xy + c22y

2.

If the discriminant has a worse-than-Morse singularity then (by linear changes

of coordinates if necessary) we may assume

c10 = c11 = 0.

We also have

b10a11 − b11a10 6= 0

(otherwise the singularity of the discriminant is worse than A2).

Consider the affine chart for RP 1, p = dy/dx (we also consider the affine chart

q = dx/dy). The surface M̃ is singular at x = y = p = 0 and regular elsewhere in a

neighbourhood of the exceptional fibre x = y = 0.

The cubic φ(p) is given by

φ(p) = (Fx + pFy)(0, 0, p) = 2b10p+ (2b11 + a10)p2 + a11p
3.
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Differentiating we have φ′(0) = 2b10 and φ′′(0) = 2(2b11 + a10).

If b10 6= 0 we have a cusp type 1 BDE. Since b10a11−b11a10 6= 0 we may make fur-

ther linear changes of coordinates to set a10 = 0, a11 = 1, b10 = ±1. The discriminant

has an A2-singularity if c22 6= 0.

If b10 = 0 we have a cusp type 2 BDE provided 2b11 + a10 6= 0. Since we have

that b10a11 − b11a10 6= 0, we have b11a10 6= 0. We make further linear changes of

coordinates to set a11 = 0 and a10 = 1 (we then have that b11 6= −1/2). The

discriminant has an A2-singularity if c20 6= 0.

If b10 = 2b11 + a10 = 0 we have a cusp type 3 BDE provided a11 6= 0. We make

further linear changes of coordinates to set a10 = a11 = 1. We then have b11 = −1/2.

The discriminant has an A2-singularity if c20 6= 0.

If b10 = 2b11+a10 = a11 = 0 the lifted field vanishes everywhere on the exceptional

fibre. The discriminant has an A2-singularity if b11a10c20 6= 0. We make further

linear changes of coordinates to set a11 = 1, hence b11 = −1/2. 2

7.2 Topological normal forms

The smooth normal forms for the 1-jets of cusp BDEs established in Proposition

7.1.3 contain moduli which may not be removed by smooth changes of coordinates.

It follows that there are no discrete local models under smooth equivalence. We

classify cusp BDEs up to topological equivalence as defined in Section 1.3.1.

The lifted field method may not be used to establish the topological configura-

tions of the integral curves of cusp BDEs as the surface M̃ is not smooth. Therefore

we use the blowing-up technique described in Section 1.3.

Two blowing-ups are required to establish topological configurations of the in-

tegral curves of cusp type two BDEs and cusp type three BDEs. The first is the

standard polar blowing-up described in Example 1.3.1.

The second blowing-up is made at the point where the blown-up discriminant

meets the exceptional fibre, which we may take to be at u = 0, v = 0. We use

the quasi-homogeneous polar blowing-up (u, v) = (r2 cos θ, r sin θ). Our use of this

more complicated blowing-up saves work, as the resulting vector fields have only
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elementary singularities in most of the cases we consider.

In practice we use the v-direction blowing-up u = st2, v = t, obtained by the

change of coordinates (r, θ) 7→ (s, t) = (cot θ csc θ, r tan θ). We also consider the

u-direction blowings-up u = ±t̃2, v = s̃t̃, and look for singularities at s̃ = t̃ = 0.

Remarks 7.2.1 1. The first x-direction (respectively y-direction) blowing-up is

orientation preserving when u > 0 (respectively ṽ > 0), and reversing when

u < 0 (respectively ṽ < 0).

2. If a point (u0, v0) in the (u, v)-plane corresponds to a point with polar coor-

dinates (r0, θ0), then the point (−u0, v0) corresponds to the point (r0, θ0 + π).

Similarly if a point (ũ1, ṽ1) corresponds to a point with polar coordinates (r1, θ1)

then the point (ũ1,−ṽ1), corresponds to a point (r1, θ1 + π).

3. The second (v-direction) blowing-up is orientation preserving when t 6= 0.

4. If a point (s0, t0) in the (s, t)-plane corresponds to a point with polar coordinates

(r0, θ0), then the point (−s0, t0) corresponds to the point (r0,−θ0).

A full proof of Theorem 7.2.4 is given. The other results are proved using a similar

method and we include only the key points. We use the appropriate normal forms of

the 1-jets of the coefficients from Proposition 7.1.3 throughout. In all illustrations

the foliation F1 (respectively F2) and its blowings-up are solid (respectively broken)

curves. The thick black curves are the discriminants.

7.2.1 Cusp type 1 BDEs

Cusp type 1 BDEs with codimension 2 are studied in [66]. The cubic φ (7.2) has

either two or no roots at regular points of the exceptional fibre. Such BDEs are

stable when deformed within the set of cusp BDEs.

Theorem 7.2.2 ([66]) Suppose that the discriminant of a BDE has a cusp singu-

larity. Then the BDE is generically locally topologically equivalent to one of the

following normal forms.
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(i) (y,−x+ y, y2) Figure 7.1, left,

(ii) (y, x+ 2y, y2) Figure 7.1, center,

(iii) (y, x+ y, y2) Figure 7.1, right,

The topological type is determined by the 2-jets of the coefficients of the BDE.

Figure 7.1: The integral curves of cusp type 1 BDEs.

For a cusp type 1 BDE the cubic φ may have double root at a regular point of

the exceptional fibre. Such BDEs have codimension 3.

Theorem 7.2.3 A BDE of cusp type 1 with the cubic φ having a double root is

locally topologically equivalent to (y, x +
√

2y, y2). The configuration of the integral

curves are as shown in Figure 7.2. The topological type is determined by the 2-jets

of the coefficients of the BDE.

Figure 7.2: The integral curves of the cusp type 1 BDE (y, x+
√

2y, y2).

Proof : We adopt the normal form for the 1-jet of the coefficients of a cusp type

1 BDE given in Proposition 7.1.3. The cubic φ is determined by the 1-jet of the

coefficients, and is given by

φ(p) = p3 + 2b11p
2 ± 2p.
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The surface M̃ is singular at x = y = p = 0. Hence φ has a double root at a regular

point of the exceptional fibre if the quadratic p2 + 2b11p± 2 has a double root. This

occurs when b2
11 = 2. By making the change of coordinates

(x, y) 7→ (x,−y)

if necessary we take b11 =
√

2.

A single x-direction blowing-up is sufficient to establish the topological config-

urations of the integral curves. The blown-up discriminant is a parabola tangent

to the exceptional fibre at the point u = 0, v = −
√

2/2. One blown-up vector

field is regular in a neighbourhood of the exceptional fibre, the other has a saddle

singularity at the point u = 0, v = 0 and a saddle-node singularity at the point

u = 0, v = −
√

2, equivalent to

u
∂

∂u
+ (v +

√
2)2 ∂

∂v
.

2

Figure 7.3: The integral curves of Y1 (left) and Y2 (right) for a cusp type one BDE

with b2
11 = 2.

7.2.2 Cusp type 2 BDEs

We now establish topological models for cusp type 2 BDEs. As the modulus b11

appearing in the 1-jet varies, topological changes occur when the type or relative

position of the singularities occurring on the exceptional fibres change. We begin by

identifying the values where changes occur and establishing the configurations when

b11 lies in each of the open intervals that they define.
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Theorem 7.2.4 A BDE of cusp type 2 with b11 6= −3/2,−3/4,−1/2, 0 is locally

topologically equivalent to

xdy2 + 2b11ydxdy + x2dx2 = 0.

The exceptional values bound open intervals where the topological type is constant.

The integral curves are shown in Figure 7.4.

Figure 7.4: The integral curves of a BDE of cusp type 2 with b11 a fixed value in

the intervals (left to right) (−∞,−3
2
), (−3

2
,−3

4
), and (−3

4
,−1

2
) (top pictures), and

(−1
2
, 0) and (0,∞) (bottom pictures).

Proof : We write

ω = (a, b, c) = (x+Ha(x, y), b11y +Hb(x, y), Hc(x, y)),

where the Ha, Hb and Hc are germs of smooth functions with zero 1-jets at the

origin and b11 6= −1/2, 0. We set

j2Ha = a20x
2 + a21xy + a22y

2,

j2Hb = b20x
2 + b21xy + b22y

2,

j2Hc = c20x
2 + c21xy + c22y

2.
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(a) Blowing-up in the x-direction.

We set x = u, y = uv. We write

Ha(u, uv) = u2Ka(u, v), Hb(u, uv) = u2Kb(u, v), Hc(u, uv) = u2Kc(u, v)

where Ka, Kb, Kc are smooth functions. Observe that

dy2 = u2dv2 + 2uvdudv + v2du2

dxdy = udvdu+ vdu2

dx2 = du2.

The blown-up BDE is therefore (u, v)∗ω = uω1, where

ω1 = (u2A, uB,C)

with

A = 1 + uKa,

B = (1 + b11)v + uvKa + uKb,

C = (1 + 2b11)v2 + uv2Ka + 2uvKb + uKc.

The quadratic form ω1 is a product of two 1-forms with associated vector fields

Xi = u2A
∂

∂u
+ (−uB + (−1)i

√
u2(B2 − AC)

∂

∂v
, i = 1, 2.

We can factor out a term u from Xi and consider the vector fields

Yi = uA
∂

∂u
+ (−B + (−1)i

√
B2 − AC)

∂

∂v
, i = 1, 2,

in a neighbourhood of the exceptional fibre u = 0. Both Y1 and Y2 are singular at

u = v = 0 and regular elsewhere on the exceptional fibre. As the origin is at the

intersection of the exceptional fibre and the blown-up discriminant B2 − AC = 0,

neither vector field Yi is smooth there. We make a further blowing-up.

Second blowing-up.

We consider the BDE ω1 and set u = st2, v = t. We write

Ka(st
2, t) = K̄a(s, t), Kb(st

2, t) = K̄b(s, t), Kc(st
2, t) = K̄c(s, t).
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Observe that K̄c(s, 0) = c20. The blown-up BDE is

(s, t)∗ω1 = t4ω2,

with ω2 = (t2Ā, stB̄, s2C̄), where

Ā(s, t) = (1 + 2b11) + s(t2K̄a + 2tK̄b + K̄c),

B̄(s, t) = (3 + 5b11) + s(3t2K̄a + 5tK̄b + 2K̄c),

C̄(s, t) = (9 + 12b11) + s(9t2K̄a + 12tK̄b + 4K̄c).

The blown-up discriminant is δ̄ = B̄2 − ĀC̄. We have j1δ̄ = b2
11 − sc20, so the

discriminant intersects the exceptional fibre t = 0 transversely at s = b2
11/c20. The

quadratic form ω2 is a product of two 1-forms with associated vector fields

X̄i = t2Ā
∂

∂t
+ (−tsB̄ + (−1)i

√
s2t2(B̄2 − ĀC̄))

∂

∂s
, i = 1, 2.

We factor out a term t in Xi and consider the vector fields

Ȳi = tĀ
∂

∂t
+ (−sB̄ + s(−1)i

√
(B̄2 − ĀC̄))

∂

∂s
, i = 1, 2.

We study the vector fields Ȳi, i = 1, 2 in a neighbourhood of the exceptional fibre

t = 0. Observe that both Y1 and Y2 are regular at the intersection of the exceptional

fibre t = 0 and the blown-up discriminant δ̄ = 0, and are transverse to the blown-up

discriminant there. We have

Ȳi(s, 0) = s(−(3 + 5b11 + 2c20s) + (−1)i
√

(b2
11 − c20s))

∂

∂s
, i = 1, 2.

Both Ȳ1 and Ȳ2 are singular at the origin, and Ȳ1 (respectively Ȳ2) is also singular

at t = 0, s = α where α = −3(3 + 4b11)/(4c20) when b11 > −3/2 (respectively

b11 < −3/2). Observe that α > 0 when b11 < −3/4 and α < 0 otherwise. We

calculate j1Ȳi(0, 0) and j1Ȳi(α, 0), where i = 1, 2. The type of singularity at each

point as b11 varies is shown in Table 7.2.

We have divided by a factor of st5. Hence the integral curves of the vector field

Ȳi are the blowings-up of Fi when st > 0 and the blowings-up of F3−i when st < 0.

The integral curves of Ȳ1 and Ȳ2 in a neighbourhood of the exceptional fibre t = 0

are shown in Figure 7.5.
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(0, 0) (α, 0)

b11 Ȳ1 Ȳ2 Ȳ1 Ȳ2

(−∞,−3/2) Saddle Saddle Regular Saddle

(−3/2,−3/4) Saddle Saddle Node Regular

(−3/4,−1/2) Node Saddle Saddle Regular

(−1/2, 0) Saddle Saddle Saddle Regular

(0,∞) Saddle Saddle Saddle Regular

Table 7.2: Singularities of the vector fields Ȳ1 and Ȳ2 for cusp type 2 BDEs.

b11 < −3
2

b11 ∈ (−3
2
,−3

4
) b11 ∈ (−3

4
,−1

2
) b11 ∈ (−1

2
, 0) b11 > 0

Figure 7.5: The integral curves of the vector fields Ȳ1 (top) and Ȳ2 (bottom) for

cusp type 2 BDEs.

Blowing down.

Blowing down we have the integral curves of the first x-direction blowing-up, that is,

the integral curves of the vector fields Y1 and Y2. The first blowing-up is orientation

preserving when u > 0 and orientation reversing when u < 0, and we have divided

by a factor of u2. Hence the integral curves of the vector field Yi are the blowings-up

of Fi when u > 0 and the blowings-up of F3−i when u < 0. These are shown in

Figure 7.6.

(b) Blowing-up in the y-direction.

Consider the directional blowing-up x = ũṽ, y = ṽ. We set

Ha(ũṽ, ṽ) = ṽ2Pa(ũ, ṽ), Hb(ũṽ, ṽ) = ṽ2Pb(ũ, ṽ), Hc(ũṽ, ṽ) = ṽ2Pc(ũ, ṽ),
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b11 < −3
2

b11 ∈ −(3
2
,−3

4
) b11 ∈ (−3

4
,−1

2
) b11 ∈ (−1

2
, 0) b11 > 0

Figure 7.6: The integral curves of the vector fields Y1 (top pictures) and Y2 (bottom

pictures) for cusp type 2 BDEs.

where Pa, Pb, Pc are smooth functions. The blown-up BDE is (ũ, ṽ)∗ω = ṽω̃1, where

ω̃1 = (ṽ2Ã, 2ṽB̃, C̃),

with

Ã = ṽPc

B̃ = (b11 + ṽPb + ũṽPc)

C̃ = (1 + 2b11)ũ+ ṽPa + 2ũṽPb + ṽũ2Pc.

We decompose ω̃1 into 1-forms, factor out a term ṽ and consider the vector fields

Ỹi = ṽÃ
∂

∂ṽ
+ (−B̃ + (−1)i

√
(B̃2 − ÃC̃))

∂

∂ũ
, i = 1, 2,

in a neighbourhood of the exceptional fibre. At the origin, when b11 < 0, Y1 is

singular and Y2 is regular. This is interchanged when b11 > 0.

The singular vector field is

Ỹj = ṽÃ
∂

∂ṽ
+ (−ÃC̃

2B̃
+ Ã2g(u, v))

∂

∂ũ
,

where j = 1 if b11 < 0, j = 2 if b11 > 0, and g(u, v) is the germ of some smooth

function with zero 1-jet at the origin. This is singular on the set Ã(ũ, ṽ) = 0 which

(since c20 6= 0) is generally a smooth curve. At the origin

j1(Ỹj/Ã) = ṽ
∂

∂ṽ
− ((1 + 2b11)ũ− a22ṽ)

2b11

∂

∂ũ
.

Hence the type of singularity is as shown in Table 7.3.
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b11 Ỹ1 Ỹ2

(−∞,−1/2) Saddle Regular

(−1/2, 0) Node Regular

(0,∞) Regular Saddle

Table 7.3: Singularities of the vector fields Ỹ1 and Ỹ2 for cusp type 2 BDEs.

b11 < −1
2

b11 ∈ (−1
2
, 0) b11 > 0

Figure 7.7: The integral curves of the vector fields Ỹ1 (top pictures) and Ỹ2 (bottom

pictures) for cusp type 2 BDEs.

The y-direction blowing-up is is orientation preserving when ṽ > 0 and orienta-

tion reversing when ṽ < 0, and we have divided by a factor of ṽ2. Hence the integral

curves of the vector field Yi are the blowings-up of Fi when ṽ > 0 and the blowings-

up of F3−i when ṽ < 0. The integral curves of Ỹ1 and Ỹ2 in a neighbourhood of the

exceptional fibre ṽ = 0 are shown in Figure 7.7.

(c) Blowing-down.

We combine the x-direction and y-direction blowings-up into a polar blowing-up,

and blow down. The full polar blowing-ups are shown in Figure 7.8 (upper pictures)

and the integral curves are shown in Figure 7.8 (lower pictures).

(d) The equivalence homeomorphism.

The next step is to show that any two BDEs with these configurations are topolog-

ically equivalent. We give a proof in the case b11 ∈ (−3/2,−3/4), the other cases

follow by a similar method.
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b11 < −3
2

b11 ∈ (−3
2
,−3

4
) b11 ∈ (−3

4
,−1

2
) b11 ∈ (−1

2
, 0) b11 > 0

Figure 7.8: Polar blowing-up (top) and integral curves (bottom) of cusp type 2

BDEs.

We construct a homeomorphism as follows. Choose a neighbourhood U of the

singularity of any BDE ω of cusp type 2 with b11 ∈ (−3/2,−3/4) as shown in Figure

7.9, where all of the lines shown are integral curves, other than the discriminant,

which is the thick black cusp AOE, and the thin black line segments AB and DE,

which are everywhere transverse to both foliations. Note that it is always possible to

choose them thus: if we choose a region containing B disjoint from the discriminant

then the foliations are everywhere transverse to one another, so can be modelled by

verticle and horizontal lines, and we can clearly construct a curve transverse to both

segments. At A the unique solution direction is not tangent to the discriminant, so

we can choose a direction that lies between the solution direction and the tangent

to the discriminant, which by continuity is transverse to the solution curves nearby.

We choose a similar neighbourhood U ′ of the singularity of any other BDE ω′ of

cusp type 2 with b11 ∈ (−3/2,−3/4), with corresponding vertices on the boundary

O′, A′, B′, C ′, D′, E ′, F ′, G′.

We give the boundary ∂U of U a positive orientation, and let

h : CDE → C ′D′E ′

be any increasing homeomorphism of the section CDE of ∂U , sending vertices to

vertices. It is clear that such a homeomorphism exists, since CDE is homeomorphic

to any compact subset of the real line.

We divide U into 5 regions for the purposes of constructing the homeomorphism:
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A

B

C

D

E

O

Figure 7.9: The neighbourhood U of the singularity.

R1: The region bounded by the segment of the discriminant OA and

the red solution curve through A.

R2: The region bounded by the red solution curve through A and

the segment of the separatrix OB.

R3: The region between the segments of the separatrices OB and OD.

R4: The region bounded by the blue solution curve through E and

the segment of the separatrix OD.

R5: The region bounded by the segment of the discriminant OE and

the blue solution curve through E.

We define similar regions R1′-R5′ in U ′.

Choose a point p ∈ R1. Slide along the red curve until it reaches the discriminant,

then along the blue curve meeting the discriminant at that point until it reaches a

point p1 on the section of CD ⊂ ∂U . Now return to the original point p, and slide

along the blue curve until it reaches a point p2 on CD. Note that p2 ≥ p1, with

equality if and only if p lies on the discriminant, and that the pair (p1, p2) is different

for each distinct p ∈ R1. Now apply h, noting that h(p2) ≥ h(p1), and reverse the

above process, sliding along the integral curves of ω to determine a point p′ ∈ R1′.

We define H :R1→ R1′ by H(p) = p′.

For a point q ∈ R2 we determine the unique pair (q1, q2) ∈ DE ⊂ ∂U by sliding

along the red curve through q onto the segment AB, and from there along the blue

curve to determine q1, and sliding along the blue curve through q to determine q1.
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We then apply h and reverse the sliding process to determine q′, and extend H to

R2 by defining H(q) = q′. The homeomorphism extends to R4 and R5 in a similar

way, by associating to each point a unique pair of points on BC.

In R3 we associate to each point r a pair (r1, r2) where r1 lies on BC and is

obtained by sliding along the red curve, and r2 lies on CD and is obtained by

sliding along the blue curve.

It can easily be checked that H is well defined on the boundary curves of the

sectors, and is a homeomorphism taking the integral curves of the BDE ω to those

of ω′.

(e) Normal forms.

We now have that the topological type depends only on the value of b11 (and on

c20 6= 0). We obtain the topological normal forms given in the statement of the

Theorem by setting c20 = 1, choosing a value of b11 in each of the open regions

determined by the values in the set {−3/2,−3/4,−1/2, 0}, and setting all other

terms equal to zero. 2

We consider now the exceptional values of b11 (note that when b11 = −1/2 the

BDE is not of cusp type 2 and when b11 = 0 the discriminant has singularity worse

than A2). These BDEs have codimension ≥ 4.

Theorem 7.2.5 A cusp type 2 BDE with codimension 4 is locally topologically

equivalent to one of the following normal forms.

(i) (x,−3

2
y + x2, x2) Figure 7.10, left,

(ii) (x,−3

4
y, x2) Figure 7.10, right,

The topological type is determined by the 2-jets of the coefficients of the BDE.

Proof : We follow the notation of the proof of Theorem 7.2.4.

When b11 = −3/2, the vector fields Ȳ1 and Ȳ2 are both singular at the intersection

of the exceptional fibre t = 0 and the blown-up discriminant. Following the method

used in [64, 66], we change variables and set w = t, z2 = δ̄, and restrict our attention

to the region z > 0. Then

(w, z)∗Ȳ1 =
9

2c20

(
z

2
+

(c21 + 12b20)w

8c20

+ h.o.t.)
∂

∂w
+ (

wz

2c20

+ h.o.t.)
∂

∂z
,
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Figure 7.10: The integral curves of cusp type 2 BDEs with codimension 4.

which has a saddle-node at w = 0, z = 0 provided c21 + 12b20 6= 0. The centre

manifold is transverse to the exceptional fibre. The integral curves of (w, z)∗Ȳ2 may

be obtained from those of (w, z)∗Ȳ1 via the change of variables z 7→ −z. The integral

curves of (w, z)∗Ȳ1 and (w, z)∗Ȳ2 are shown in Figure 7.11 (the solid parts are the

the curves that are of interest).

Figure 7.11: The integral curves of (w, z)∗Ȳ1 (left) and (w, z)∗Ȳ2 (right).

When b11 = −3/4, at (s, t) = (0, 0) the vector field Ȳ1 has a saddle-node singu-

larity equivalent to

t
∂

∂t
+ s2 ∂

∂s

and Ȳ2 has a saddle. Both Ȳ1 and Ȳ2 are regular elsewhere on t = 0. The integral

curves of Ȳ1 and Ȳ2 are illustrated in Figure 7.12.

Blowing down gives the integral curves of Y1 and Y2. These are illustrated in

Figure 7.13.

The blowing-up in the y-direction yields the same configuration of the integral

curves of Ỹ1 and Ỹ2 as in the proof of Theorem 7.4 when b11 < −1/2, that is, as

shown in Figure 7.7 (left). We combine the directional blowings-up into a polar

blowing-up, and blow down to obtain the configuration. This is illustrated in Figure

7.14. 2
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b11 = −3
2

b11 = −3
4

Figure 7.12: The integral curves of the vector fields Ȳ1 and Ȳ2 for cusp type 2 BDEs

with codimension 4.

b11 = −3
2

b11 = −3
4

Figure 7.13: The integral curves of the vector fields Y1 and Y2 for cusp type 2 BDEs

with codimension 4.

Remarks 7.2.6 1. One may construct homeomorphisms using the method of [13]

to show that the integral curves of a cusp type 2 BDE when b11 takes any

value in (−∞,−3/2) are topologically equivalent to those when b11 takes any

value in (0,∞), and that those when b11 takes any value in (−3/2,−1/2) are

topologically equivalent to those when b11 takes any value in (−1/2, 0). No

topological change occurs at b11 = −3/4. These topologically equivalent cases,

however, may have topologically different deformations in generic families, as

there are qualitative differences evident in their blowings-up.

2. Furthermore, the integral curves of cusp type 2 BDEs are topologically equiva-

lent to those of a BDE with a folded singularity (see [30]): a folded saddle when

b11 ∈ (−∞,−3/2)∪(0,∞) and a folded node when b11 ∈ (−3/2, 0)\{−1/2, 0}.

When b11 = −3/2, the lowest codimension case (Theorem 7.2.5 (i)) is topo-

logically equivalent to a folded saddle-node.
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b11 = −3
2

b11 = −3
4

Figure 7.14: Polar blowing-up and integral curves of cusp type 2 BDEs with codi-

mension 4.

Figure 7.15: The integral curves of a cusp type 3 BDE.

7.2.3 Cusp type 3 BDEs

Theorem 7.2.7 A BDE of cusp type 3 is topologically equivalent to

(x+ y)dy2 − 1

2
ydxdy + x2dx2 = 0.

The topological type is determined by the 2-jet of the coefficients of the BDE. The

configuration of the integral curves are as shown in Figure 7.15.

Proof : We use the notation of the proof of Theorem 7.2.4. In the second blowing-

up, the vector fields Ȳi are regular at all points on the exceptional fibre except for

the point s = 0, t = 0 (the intersection of the two exceptional fibres). Here the

vector field Ȳ2 has a saddle singularity, and the vector field Ȳ1 has a saddle-node

singularity equivalent to

t2
∂

∂t
− s ∂

∂s
.

These are illustrated in Figure 7.16. Blowing-down gives the integral curves of Y1

and Y2. These are illustrated in Figure 7.17. The y-direction blowing-up yields no

singularities at the origin. Blowing down a second time we obtain the configuration

in Figure 7.15. 2
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Figure 7.16: The integral curves of Ȳ1 (left) and Ȳ2 (right) for a cusp type 3 BDE.

Figure 7.17: The integral curves of Y1 (left) and Y2 (right) for a cusp type 3 BDE.

7.3 Configurations of the separatrices

Blowing-up allows us to highlight further differences between the various types of

cusp BDE. The observations below are immediate from the proofs of Theorem 7.2.2,

Theorem 7.2.4 and Theorem 7.2.7, and we do not include proofs.

Recall Definition 1.3.2. The separatrix curves do not always separate distinct

sectors, and there may be curves that do so which are not separatrices in the sense

of Definition 1.3.2.

Proposition 7.3.1 Let l be the limiting tangent line to the discriminant at the

origin. A cusp type m BDE of lowest codimension has one or three separatrices, all

transverse to l (m = 1); one separatrix transverse to l, and a cuspidal separatrix

with limiting tangent line l (m = 2); one cuspidal separatrix with limiting tangent

line l (m = 3). See Figure 7.18.

The separatrices also highlight differences between those cusp type 2 BDEs that are

topologically equivalent despite having different blowings-up (see Remark 7.2.6). In

particular the cuspidal separatrix points in the same direction as the discriminant

when b11 < −3/4 and in the opposite direction when b11 > −3/4. When b11 = −3/4

there is no cuspidal separatrix, although this case is topologically equivalent to those

when b11 ∈ (−3/2,−3/4) ∪ (−3/4,−1/2) ∪ (−1/2, 0) (the cuspidal separatrix does
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not separate distinct sectors for such values of b11).

Further differences are observed when one considers the foliation to which each

separatrix belongs (see Figure 7.18).

Cusp type 1

(y, y − x, y2) (y, y + 2x, y2) (y, y +
√

2x, y2) (y, y + x, y2)

Cusp type 2

(x,−2y, x2) (x, x2 − 3
2
y, x2) (x,−y, x2)

(x, −3
4
y, x2) (x, −1

4
y, x2) (x, y, x2)

Cusp type 3

(x+ y, −1
2
x, x2)

Figure 7.18: The separatrices of cusp BDEs.

7.4 Degenerate cusp BDEs

We consider now the degenerate case where the lifted field φ vanishes at all points

of the exceptional fibre. Such BDEs have codimension ≥ 5. We establish the

topological configurations of the integral curves in the least degenerate case. The
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proof for Theorem 7.4.1 employs the same blowing-ups as those used in Theorem

7.2.4.

Theorem 7.4.1 A cusp BDE with linear part equivalent to (x,−y/2, 0) and with

codimension 5 is topologically equivalent to

(x+ y2,−1

2
y, x2).

The configuration of the integral curves of such BDEs are as shown in Figure 7.19.

Figure 7.19: The integral curves of a cusp BDE equivalent to (x+ y2,−y/2, x2).

Proof : Consider the first x-direction and y-direction blowing-ups. In the nota-

tion of the proof of Theorem 7.2.4, the vector fields Yi, Ỹi, i = 1, 2 are singular along

the whole of the exceptional fibre. We may, however, write Yi(u, v) = uZi(u, v), and

Ỹi(ũ, ṽ) = ṽZ̃i(ũ, ṽ) for some smooth vector fields Zi, Z̃i, i = 1, 2. Away from the

exceptional fibre the integral curves of Yi (respectively Ỹi) are the same as those of

Zi (respectively Z̃i).

We consider a second blowing-up. The integral curves of Ȳ1 and Ȳ2 are illustrated

in Figure 7.20. Blowing down gives the integral curves of Y1 and Y2. These are

Figure 7.20: The integral curves of the vector fields Ȳ1 (left) and Ȳ2 (right) for

degenerate cusp BDEs.
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illustrated in Figure 7.21 (left). The integral curves obtained by the y-direction

blowing-up are shown in Figure 7.21 (right).

Figure 7.21: The integral curves of the vector fields Y1 and Y2 (left), and Ỹ1 and Ỹ2

and (right) for degenerate cusp BDEs.

We combine the x-and y-direction blowing-ups to obtain a polar blowing-up, and

blow down to obtain the configuration. This is illustrated in Figure 7.22. 2

Figure 7.22: Polar blowing-up (left) and integral curves (right) of degenerate cusp

BDEs.

7.5 Discriminant having a Y 1
1,2-singularity

We study BDEs with 2-jets equivalent to a (x2,−xy, 2y2), and with the discriminant

having a Y 1
1,2-singularity at the origin, (that is, a singularity that is A-equivalent to

−x2y2 − x5 − y6). Such BDEs arise in the study of the characteristic curves on a

cross-cap (see Chapter 8).

Theorem 7.5.1 A BDE with 2-jet equivalent to (x2,−xy, 2y2) and a discriminant

having a Y 1
1,2-singularity equivalent to −x2y2− x5− y6 then it is topologically equiv-

alent to

x2dy2 + 2(−xy − y3)dxdy + (2y2 − x3)dx2 = 0.

See Figure 7.23.
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Figure 7.23: The integral curves of a Y 1
1,2-BDE.

Proof : We write ω = (a, b, c) = (x2 + Qa(x, y),−xy + Qb(x, y), 2y2 + Qc(x, y)),

where Qa, Qb, Qc are smooth functions with zero 2-jets at the origin. We write

j3Qa = a30x
3 + a31x

2y + a32y
2x+ a33y

3,

j3Qb = b30x
3 + b31x

2y + b32y
2x+ b33y

3,

j3Qc = c30x
3 + c31x

2y + c32y
2x+ c33y

3,

The discriminant is δ = b2 − ac, which has a Y 1
1,2-singularity at the origin if

c20 6= 0 and b2
33 − c33a33 6= 24a44, where

a44 =
∂4Qa

∂y4
(0, 0).

The discriminant is equivalent to

−x2y2 + sign(c0)x5 + sign(b2
33 − c33a33 − a44)y6.

We consider only the case b2
33 − c33a33 − 24a44 < 0, and c20 < 0 (the case c20 > 0

gives topologically equivalent integral curves, up to a reflection in the y-axis).

The vector fields Y1 an Y2 studied in the first x-direction blowing-up are singular

only at the origin, however they are not smooth there. After a second blowing-

up, the discriminant is transverse to the exceptional fibre t = 0 at s = −1/c0.

The integral curves meet the discriminant transversally. The vector fields are both

singular at t = 0, s = 0, but no integral curves exist in a neighbourhood of this

point. The vector field Ȳ1 has a saddle at t = 0, s = −5/(4c0) (see Figure 7.24.)

A first blowing-down gives the integral curves of the vector fields Y1 and Y2.

These are shown in Figure 7.25 (left and centre).

A y-direction blowing-up is considered, but yields no extra information since

there are no integral curves in a neighbourhood of the origin.
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Figure 7.24: The integral curves of Ȳ1, left and Ȳ2, right for a Y 1
1,2-BDE.

The second blowing-down gives the configuration of the integral curves of the

original BDE. These are shown in Figure 7.25 (right).

Figure 7.25: The integral curves of Y1 (left) and Y2 (centre), and the configuration

at the singularity (right) for a Y 1
1,2-BDE.

2



Chapter 8

Pairs of foliations on a parabolic

cross-cap

We turn our attention now to singular surfaces in R3. Given a surface patch

parametrised by

r : U ⊂ R2 → R3,

Whitney ([75]) showed that r may have a singularity, known as a cross-cap, that is

stable under smooth changes of coordinates in the source and target. As a cross-cap

is a stable singular surface in R3 it is natural to seek understand its differential

geometry.

The topological configurations of the asymptotic curves in the domain of a

parametrisation of a hyperbolic cross-cap are established in [74], and the topological

configurations of the asymptotic curves, characteristic curves and the lines of cur-

vature on hyperbolic and elliptic cross-caps, in the domain and on the surface, are

established in [64]. In this chapter we establish the configurations of the asymptotic

and characteristic curves on a parabolic cross-cap.

The lines of curvature on a singular surface with a cross-cap singularity are

studied in [64]. In the general the topological configurations of the lines of curvature

on a cross-cap is independent of whether the cross-cap in hyperbolic, parabolic or

elliptic, as the parameter ν in the parametrisation of the cross-cap (8.1.1) does not

affect the topological normal form of the BDE of the principal directions so these

curves are not considered in this chapter.

156
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The results of this chapter and of Chapter 9 will appear in [55].

8.1 The cross-cap

It is shown in [75] that if

g : R2, 0→ R3, 0

is a germ of a smooth mapping, then g has a local A-stable singularity if and only

if it is A-equivalent to f(x, y) = (x, xy, y2).

Definition 8.1.1 A cross-cap is the image of any map-germ

r : R2, 0→ R3, 0

that is A-equivalent to (x, xy, y2).

As a cross-cap is a stable singular surface in R3, it is natural to seek to understand

its differential geometry.

Cross-caps play a significant role in the study of other geometrical objects. For

example, any immersion of the projective plane in R3 must have a cross-cap. The

geometry of cross-caps also turns out to be significant in the study of the projections

of smooth surfaces in R4 to 3-spaces (see [50]).

The differential geometry of the surface is preserved by isometries of R3 and

enlargements of R3 of the form (X, Y, Z) 7→ t(X, Y, Z), so we must restrict ourselves

to such changes of coordinates in the target. The parametrisation of a cross-cap in

Proposition 8.1.1 is given in [74], we include here an outline of the proof.

Proposition 8.1.1 ([74]) Any germ of a map A-equivalent to f can be transformed

by smooth changes of coordinates in the source and isometries and enlargements of

the target to

r(x, y) = (x, xy + p(y), νx2 + µxy + y2 + q(x, y)), (8.1)

where p(y) and q(x, y) are germs, at the origin, of functions with j2p = j2q = 0,

and ν, µ are constants.
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Proof : Let

g : R2, 0 → R3, 0

(x, y) 7→ (g1(x, y), g2(x, y), g3(x, y)).

be a germ that is A-equivalent to f . Then, by a rotation in the target if necessary,

we may assume j1g2 = j1g3 = 0, as the Jacobian of g has rank one at the origin.

We may then, by a diffeomorphism in the source if necessary, assume g1 = x.

By a further rotation in the target and a linear change of coordinates in the

source we may write

g(x, y) = (x, xy + p1(x, y), d1x
2 + d2xy + d3y

2 + q1(x, y)),

where d1, d2, d3 ∈ R and j2p1 = j2q1 = 0.

Any germ of the form (x, y) 7→ (x, xy+r1(x, y)) with j2r1 = 0 may be reduced to

the form (x, y) 7→ (x, xy+ r2(y)) where j2r2 = 0 by a smooth change of coordinates

in the source (this result is given in [74] and is proved using tools from singularity

theory). This is used to reduce the parametrisation of the cross-cap to the form

g(x, y) = (x, xy + p2(y), d1x
2 + d2xy + d3y

2 + q2(x, y)).

The proof is completed by scaling the coordinates in the source and in the target.

2

We will write

j4p(y) = p3y
3 + p4y

4,

j3q(x, y) = q30x
3 + q31x

2y + q32xy
2 + q33y

3.
(8.2)

For a singular surface with a cross-cap singularity there is no well-defined unit

normal to the surface at the cross-cap point as ||rx × ry|| = 0, so the coefficients of

the second fundamental form are not defined. However the surface is smooth other

than at the cross-cap, and the BDEs of the asymptotic and characteristic curves,

lines of curvature and the families Cα and Rα are homogeneous in l,m, n, so we

can multiply their coefficients by an appropriate power of ||rx× ry||, or equivalently

replace l,m and n in each equation by

l1 = rxx · (rx × ry),m1 = rxy · (rx × ry), n1 = ryy · (rx × ry).
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Thus for a cross-cap we take the asymptotic BDE to be

n1dy
2 + 2m1dxdy + l1dx

2 = 0. (8.3)

We take the characteristic BDE to be

(2m1(Gm1 − Fn1)− n1(Gl1 − En1))dy2

+2(m1(Gl1 + En1)− 2Fl1n1)dxdy

+(l1(Gl1 − En1)− 2m1(Fl1 − Em1))dx2 = 0.

(8.4)

We take the principal BDE to be

(Gm1 − Fn1)dy2 + (Gl1 − En1)dxdy + (Fl1 − Em1)dx2 = 0. (8.5)

The parabolic set is given by m2
1− n1l1 = 0. If ν 6= 0 in (8.1) then the parabolic

set has a Morse singularity at the origin: A+
1 if ν < 0, in which case we have a

hyperbolic cross-cap, and A−1 if ν > 0, in which case we have an elliptic cross-cap. If

ν = 0 the parabolic set has a more degenerate singularity. If q30 6= 0, the parabolic

set has an A2-singularity (a cusp), and we label the surface a parabolic cross-cap.

We take, without loss of generality, q30 > 0.

Remark 8.1.2 If affine changes of coordinates in the target are permitted, we can

simplify the parametrisation given in Proposition 8.1.1 to

r(x, y) = (x, xy + p(y), εx2 + y2 + q(x, y)), (8.6)

where ε = 1, 0,−1 for respectively elliptic, parabolic and hyperbolic cross-caps.

8.2 The asymptotic curves and the characteristic

curves on a parabolic cross-cap

Establishing the configurations on the parabolic cross-cap of the asymptotic and

characteristic curves is done in two stages. Firstly we establish the configurations in

the domain by studying the appropriate BDE. Secondly we map the foliation to the

surface. This is trivial for smooth surfaces, as the parametrisation is a diffeomor-

phism from the domain to the image. In the case of a cross-cap, however, we must

analyse how the leaves of the foliations in the domain intersect the double point

curve.
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8.2.1 Configurations of the asymptotic curves

In [64] it is shown that there are two generically occurring topological configurations

of the asymptotic curves in the domain of an elliptic cross-cap. The asymptotic BDE

is topologically equivalent to

xdy2 + 2(−y + x2)dxdy + xdx2 = 0

or to

xdy2 + 2(−y + xy)dxdy + xdx2 = 0.

In Figure 8.1 these are labelled case 1 and case 2 respectively.

It is shown in ([74]) that there is one topological configuration for hyperbolic

cross-caps, and the BDE is topologically equivalent to

xdy2 + 2ydxdy − xdx2 = 0.

Figure 8.1: Configuration of the asymptotic curves in the domain of the parametri-

sation of a hyperbolic cross-cap (left), and an elliptic cross-cap, case 1 (centre), case

2 (right).

We adopt the parametrisation of a cross-cap given in Remark 8.1.2.

Proposition 8.2.1 The asymptotic BDE in the domain of a parametrisation of a

parabolic cross-cap is topologically equivalent to

xdy2 − 2ydxdy + x2dy2 = 0.

The topological type is completely determined by the 3-jet of the parametrisation of

the surface. See Figure 8.2.
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Figure 8.2: Configurations in the domain of the asymptotic curves at a parabolic

cross-cap.

Proof : At a parabolic cross-cap we parametrise the surface as in (8.1.2) with

ε = 0. We calculate the coefficients of the second fundamental form. The coefficients

of the asymptotic BDE may be written as

(x+H1(x, y),−y +H2(x, y), H3(x, y))

where Hi, (i = 1, 2, 3) are smooth functions, with

j2H1 = q32x
2 + 3q33xy − 3p3y

2,

j2H2 = q31x
2 − 3q33y

2,

j2H3 = 3q30x
2 + 3q31xy.

Since q30 6= 0 we may apply Theorem 7.2.4 to establish the result. 2

We seek now the configuration of the curves on the surface. If the cross-cap is

parametrised as in (8.1), then the 3-jet at the origin of the double-point curve is

(−p3y
2 − p3(−µp3 + q33)y3, y).

If (x1, y1) and (x2, y2) are two points on the double-point curve with the same image

under r, then

y2 = −y1 − q30y
2
1 +O(y3

1). (8.7)

The double-point curve is transverse to the limiting tangent to the parabolic set

at the origin, and has a non-empty intersection with the hyperbolic region in a

neighbourhood of the cross-cap. Thus we must take it into account when mapping

the asymptotic curves to the surface.

In the case of the asymptotic curves we may take µ = 0, so the 3-jet of the

double-point curve is

(−p3y
2 − p3q33y

3, y).
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There is a single separatrix transverse to the limiting tangent to the parabolic set

at the origin. The 3-jet at the origin of a parametrisation of this separatrix is

(−p3y
2 − (3q33p3 − 8p4)

5
y3, y).

Thus this separatrix and the double point curve have generically 3-point contact at

the origin. The image of this separatrix under r has a cusp at the cross-cap point.

As shown in Figure 8.3, the double point curve (in dashed lines), in a neighbour-

hood of the origin, intersects one foliation only once, but intersects the other twice

(which foliation depends on the sign of p4− p3q33). We need to establish whether or

not these two intersection points map to the same point on the surface.

Figure 8.3: Configurations of the asymptotic curves with the double-point curve

(shown in dashed lines).

There are two involutions on the double point curve: τ , which interchanges points

of intersection of the double-point curve with a particular asymptotic curve, and σ,

which interchanges points with the same image under r.

Theorem 8.2.1 For a generic parabolic cross-cap, τ(β) 6= σ(β) for any point β

with β 6= (0, 0) on the double point curve in a neighbourhood of the origin. As a

consequence, the configuration of the asymptotic curves on a parabolic cross-cap is

as shown in Figure 8.4.

Proof : We label the red and blue foliations F1 and F2 respectively. Without

loss of generality we take p4 − p3q33 > 0. In a neighbourhood of the origin, each

leaf of F2 intersects the double point curve twice. The case p4 − p3q33 < 0 follows

by a similar argument on F1. The separatrix transverse to the limiting tangent to

the parabolic set at the origin is given locally by the graph of a function x = l(y),
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Figure 8.4: The asymptotic curves on a parabolic cross-cap.

where

j3l = −p3y
2 − (3q33p3 − 8p4)

5
y3.

We make changes of coordinates x = X + l(Y ), y = Y, so this separatrix is along

the Y -axis, the separatrix being a curve of F2. The asymptotic BDE in this new

system of coordinates is in the form

A(X, Y )dY 2 + 2B(X, Y )dXdY + C(X, Y )dx2 = 0, (8.8)

where

A(X, Y ) = a(X + l(Y ), Y ) + 2b(X + l(Y ), Y )l′(Y ) + c(X + l(Y ), Y )l′(Y )2

B(X, Y ) = b(X + l(Y ), Y ) + b(X + l(Y ), Y )l′(Y )

C(X, Y ) = c(X + l(Y ), Y ).

In the (X, Y ) plane, the horizontal direction is a solution of the BDE (8.8) when

C(X, Y ) = 0. We have

j2C(X, Y ) = 3q30X
2 + q31XY,

so if q31 6= 0 this set has an A−1 -singularity at the origin, that is, it has two transver-

sally intersecting branches. One branch is tangent to the Y -axis and the other to

the line

3q30X + q31Y = 0.

We label these branches C1 and C2 respectively. A calculation shows that C1 is given

by

X = p3Y
2 + h.o.t.

Further calculations show that in the region Y > 0, C1 and C2 are the loci of turning

points of leaves of F2, and that if q31 > 0, C1 is the locus of local minima and C2 the

locus of local maxima, the reverse being the case if q31 < 0.
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Figure 8.5: Involutions on the double point curve: (l-r) cases 1,2 and 3.

The vertical direction is a solution to the BDE if A(X, Y ) = 0. This set is a

smooth curve in a neighbourhood of the origin. So in such a neighbourhood, no leaf

of either foliation has a vertical tangent other than the separatrix X = 0.

The double point curve is parametrised as (ζ(Y ), Y ), where ζ(Y ) is a smooth

function with

j3ζ =
8(−q33p3 + p4)

5
Y 3.

There are three cases. If p3q31 > 0, the turning points of the leaf of F2 lie on

opposite sides of the double point curve. We label this case 1. If p3 < 0, q31 > 0

(case 2), the turning points both lie on the opposite side of the double point curve

from the point where leaf meets the discriminant. If p3 > 0, q31 < 0 (case 3), both

turning points lie between the discriminant and the double point curve. See Figure

8.5.

The leaves of F2 are tangent to

ξ2 = A
∂

∂X
+ (−B −

√
B2 − AC)

∂

∂Y
.

Choose a point on the Y -axis, (0, t) where t > 0 is small. Denote the leaf of F2

through this point by γt. Choose a half-line h starting at the origin and making an

angle φ with the negative X-axis. We write the intersection of h and γt as

U(t)(1, tanφ).

The polar blowing-up,

x = ρ cos θ, y = ρ sin θ
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of ξ2 yields a regular vector field η2 for (θ, ρ) ∈ [π/2, π − φ] × [0, a), where a is a

small positive real number. It follows that the map

k :
π

2
× [0, a1)→ (π − φ)× [0, a2)

determined by the flow of η2 is smooth and k′(0) 6= 0 (a1, a2 are appropriately chosen

real numbers). Blowing down we have U(t) = k(t), that is, that U(t) is a smooth

function of t, and that U ′(t) 6= 0. It follows that we can write

U(t) = t(c+ L(t))

for some (negative) non-zero scalar c and smooth function L vanishing at t = 0.

Denote by β = (β1, β2) the intersection of γt and the double point curve in the

region X < 0.

Case 1.

Denote by ν = (ν1, ν2) the point on the double point curve with ν1 = U(t). We have

β2 < ν2. From (8.7), if

σ(β) = (σ1(β), σ2(β)),

then

σ2(β) = −β2(1 + ψ(β2))

for some smooth function ψ vanishing at the origin. For small β2 (that is, small t),

we then have that σ2(β) > σ2(ν).

Since U(t) = ν1 = ζ(ν2), we have

t(c+ L(t)) = ζ(ν2).

The inverse function Theorem and the expression for the 3-jet of ζ yields

η2 = t1/3α(t)

where α is some function, smooth off the origin, continuous at the origin and with

α(0) < 0. It follows that

σ2(ν) = −t1/3α(t)(1 + ψ(t1/3α(t))),

and so σ2(ν) > t for small t. Since in this case γt is strictly decreasing between the

positive Y -axis and the double point curve, t > τ2(β), hence σ2(β) > τ2(β).
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Case 3.

Define s(t) the Y -coordinate of the local maximum of γt at the its intersection with

C1. Note s(t) > τ2(β). Denote by ν = (ν1, ν2) the point on the double point curve

with ν1 = U(s(t)). We can, by choice of the half-line h, guarantee that β2 < ν2. So

by the argument used in the previous case, σ2(β) > σ2(qν). Also by the argument

used in the previous case, σ2(ν) > s(t), and hence σ2(β) > τ2(β).

Case 2.

We define s(t) to be the Y -coordinate of the point where γt meets the discriminant

and follow the argument used in case 3 to show σ2(β) > τ2(β).

Hence we have proved that, provided p3 6= 0 and p4 − q33p3 6= 0 (we also need

q30 6= 0 for the configurations in the domain), σ(β) 6= τ(β). This is satisfied for an

open and dense set of parabolic cross-caps. 2

8.2.2 Configurations of the characteristic curves

It is shown in [64] that there are two generically occurring configurations of the

characteristic curves at an elliptic cross-cap. The BDE is topologically equivalent

to either

(x2 + y4)dy2 − 2xydxdy + (−x2 + 2y2 + y3)dx2 = 0

(case 1), or to

(x2 + y4)dy2 − 2xydxdy + (−x2 + 2y2 + xy2)dx2 = 0

(case 2). See Figure 8.6.

Proposition 8.2.2 The equation of the characteristic curves in the domain of a

parametrisation of a parabolic cross-cap is topologically equivalent to

x2dy2 − 2xydxdy + (2y2 − x3)dx2 = 0.

The topological type is completely determined by the 3-jet of the parametrisation of

the surface. See Figure 8.7 (left). The configuration on the surface is as shown in

Figure 8.7 (right).
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Figure 8.6: Configurations of the characteristic curves in the domain of an elliptic

cross-cap, case 1 (left) and case 2 (right).

Proof : For a parabolic cross-cap parametrised as in (8.1.1), the coefficients of

equation (8.4) are in the form

(a, b, c) = (x2 +Q1(x, y),−xy +Q2(x, y), 2y2 +Q3(x, y)),

where Q1, Q2, Q3 are smooth functions, with

j3Q1 = 2q32x
3 + 6(q33 − µp3)yx2 − 6p3xy

2,

j3Q2 = 1
2
q31x

3 − yq32x
2 +

9

2
(−q33 + µp3)y2x+ 3p3y

3,

j3Q3 = −3q30x
3 − 3q31x

2y + 6(q33 − µp3)y3.

If δ is the discriminant of equation (8.4) then

j5δ = x2y2 + 3q30x
5 + 2q31yx

4 − 2q32y
2x3 + 9(−q33 + µp3)y3x2 + 6p3xy

4.

This has a Y 1
1,2-singularity at the origin if q30 6= 0. We apply Theorem 7.5.1 to

establish the first assertion.

As noted, the intersection of the double point curve and the elliptic region is

empty, so the characteristic curves can be mapped to the surface without problem.

For the smooth part of the surface, the parametrisation is a diffeomorphism from

the domain to the image. We therefore simply map each sector of the configuration

in the parameter space to the surface in the appropriate way. 2
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Figure 8.7: Configurations in the domain of the characteristic curves at a parabolic

cross-cap (left), and their image on the surface (right).



Chapter 9

One-parameter families of

cross-caps

It is natural to consider a one-parameter family of cross-caps in which the transition

between the two generic (that is, the hyperbolic and elliptic) cross-caps is realised at

a parabolic cross-cap. In this chapter we establish a parametrisation of this family

and study the bifurcation of the asymptotic and characteristic curves in the family.

We adopt (following [33]) the notion of fibre topological equivalence, that is we

shall consider two families of BDEs, ωt and τt, equivalent if there exist neighbour-

hoods U ⊂ R2, V ⊂ Rr and W ⊂ R3, and a family of homeomorphisms ht, for

t ∈ V , all defined on U such that ht is a topological equivalence between ωt and

τψ(t), where ψ is a homeomorphism defined on W .

Although we are interested in the local configurations of the asymptotic and

characteristic curves that appear in the bifurcation, we cannot rule out the possibility

of semi-local phenomena emerging from the local singularity.

9.1 Generic families of cross-caps

Let Σk ⊂ Jk(2, 3) denote the set of k-jets of parametrisations of cross-caps where

k is an integer greater than 2, that is, the set of k-jets germs of smooth maps

R2, 0 → R3, 0 that are A-equivalent to (x, xy, y2). This is a smooth variety of

codimension 2 in Jk(2, 3).

169
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To an r-parameter family of cross-caps

r(x, y, t) = (α1, α2, α3)

depending smoothly on t, we associate the jet-extension map

Φ : R2, (0, 0)× Rr, 0 → Σk

(x, y, t) 7→ jk(α1, α2, α3)t|(x,y)

where jk(α1, α2, α3)t|(x,y) is the k-jet of (α1, α2, α3) at (x, y) with t fixed.

We say that a particular type of cross-cap is of codimension m if the conditions

that define it yield a semi-algebraic set, R, of codimension m in Σk, that is invariant

under the natural action of the (k+1)-jets of diffeomorphisms in (x, y), multiplication

by non-zero functions in (x, y) and isometries of R3 in the target.

We say that an r-parameter family of cross-caps is generic if the map Φ is

transverse to R. A necessary condition for genericity is r ≥ m.

Proposition 9.1.1 A generic 1−parameter family of cross-caps, rt, can be written

as

(x, xy + p(x, y, t), y2 + tx2 + µ(t)xy + qt(x, y, t)), (9.1)

where µ(0) = µ0 and pt, q are smooth functions with the following properties. For t

fixed p and q have zero 2-jets at the origin and p(x, y, 0) has no dependency on x.

Proof : Suppose that the family is given by

rt = (g1(x, y, t), g2(x, y, t), g3(x, y, t)),

with r0 as above. The cross-cap is A-stable, so all members of the family rt have a

cross-cap singularity at some point near the origin.

At the cross-cap point the Jacobian of rt has rank one. This occurs when

g1xg2y − g2xg1y = g1xg3y − g1xg2y = 0.

Define a map-germ

h : (R2 × R), (0, 0) → (R2, 0)

(x, y, t) 7→ (g1xg2y − g2xg1y, g1xg3y − g3xg1y).
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We have ∣∣Dh(x,y)(0, 0, 0)
∣∣ =

∣∣∣∣∣∣ 1 µ0

0 1

∣∣∣∣∣∣ = 1,

so by the implicit function Theorem 1.1.6 h−1(0) is a smooth curve in the (x, y) plane

parametrised by t, so by making a translation depending smoothly on t if necessary,

we may assume that the cross-cap singularities of all members of the family rt are

at the origin.

Following the method of [74], for t fixed we may make a smooth change of

coordinates in the source so that

g1(x, y, t) = x,

and so that

j1g2 = j1g3 = 0

at the origin. We make a rotation in the target to set

j2g2(x, y, t) = xy + c1x
2.

The cross-cap is at the origin so c1 = 0 (we again use the implicit function Theorem

1.1.6 to show that these transformations depend smoothly on t).

We now have

j2g3(x, y, t) = d1y
2 + d2xy + d3x

2

where di depend smoothly on t, and d1(0) 6= 0. We scale coordinates in the source

and dilate in the target to make d1 ≡ 1, these changes being smooth since d1 does

not vanish.

The condition for a parabolic cross-cap is d3 = 0, which is the case at t = 0.

The jet-extension map is transverse to the subset of Σ2 defining parabolic cross-caps

provided d′3(0) 6= 0. We take this to be the case, so we can make a smooth change

of parameter t to give the parametrisation in the required form. 2

In a generic family the parabolic cross-cap is the transition between a hyperbolic

and elliptic cross-cap. It is shown in [50] that for each fixed t the parabolic set is a

section of a Whitney umbrella. Thus the bifurcation of the parabolic set is as shown

in Figure 9.1.
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Figure 9.1: The bifurcation in the domain of the parabolic set at a parabolic cross-

cap.

9.2 Bifurcations in the asymptotic curves

We require some preliminary results.

Proposition 9.2.1 The cross-cap in (9.1) changes from hyperbolic (t < 0) to el-

liptic (t > 0) through a parabolic cross-cap t = 0. For the elliptic cross-cap, the

asymptotic BDE is equivalent to

xdy2 + 2(−x+ xy)dxdy + xdx2 = 0.

The other configuration of the asymptotic curves on an elliptic cross-cap (see Figure

8.1) does not appear in the bifurcation.

Proof : We make affine changes of coordinates in the target in order to simplify the

parametrisation in Proposition 9.1.1 to

rt = (x, xy + p(x, y, t), y2 + tx2 + q(x, y, t)). (9.2)

We calculate the coefficients, L1,M1, N1, of the asymptotic BDE on a cross-cap.

The parabolic set is given by the discriminant δ = M2
1 − L1N1. We find that

j2δ = 4y2 − 4tx2

and the first assertion follows immediately.

It is shown in [64] that if the asymptotic BDE on an elliptic cross-cap is written

as

(x+H1(x, y))dy2 + 2(−y +H2)dxdy + (x+H3(x, y))dx2 = 0,
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where Hi, i = 1, 2, 3, are smooth functions with zero 1-jets at the origin, and one

sets

A(x, y) = j2H1, B(x, y) = j2H2, C(x, y) = j2H3,

then the two generically occurring configurations of the asymptotic curves in the

domain of a parametrisation of an elliptic cross-cap are distinguished by the sign of

Λ1Λ2 where

Λ1 = −1

2
(C(1, 1) + 4B(1, 1) + 3A(1, 1)),

Λ2 =
1

2
(C(1,−1) + 4B(1,−1) + 3A(1,−1)).

The equation of the asymptotic curves in the domain of an elliptic cross-cap is

topologically equivalent to

xdy2 + 2(−y + x2)dxdy + xdx2 = 0

when Λ1Λ2 > 0, and to

xdy2 + 2(−x+ xy)dxdy + xdx2 = 0

when Λ1Λ2 < 0 ([64]).

For t fixed we write

j3pt = p30x
3 + p31x

2y + p32xy
2 + p33y

3,

j3qt = q30x
3 + q31x

2y + q32xy
2 + q33y

3,

where the coefficients depend smoothly on t. When t = 0 we have the parabolic

cross-cap parametrised by (8.1.1), so p30 = p31 = p32 = 0 at t = 0. We also have the

genericity condition q30 6= 0 at t = 0.

The 1-jet of the asymptotic BDE, when using the parametrisation (9.2) is

(x,−y, tx).

If we write the BDE as

(x+H1(x, y, t))dy2 + 2(−y +H2(x, y, t))dxdy + (tx+H3(x, y, t))dx2 = 0

then we have

j2M1 = (p31 + q32)x2 + 3q33xy − 3p33y
2,

j2M2 =
1

2
q31x

2 − 2p31xy − (
3

2
q33 + 2p32)y2,

j2M3 = (tp31 + 3q30)x2 + (−6p30 + 2tp32 + q31)xy + (−2p31 + 3tp33)y2.



9.2. Bifurcations in the asymptotic curves 174

We make the change of variables (x, y) 7→ (x/
√
t, y) in the source and multiply

the equation by
√
t. We obtain a new BDE

(x+K1(x, y, t))dy2 + 2(−y +K2(x, y, t))dxdy + (x+K3(x, y, t))dx2 = 0 (9.3)

where

K1(x, y, t) =
√
tH1(

x√
t
, y, t),

K2(x, y, t) = H2(
x√
t
, y, t),

K3(x, y, t) =
1√
t
H3(

x√
t
, y, t).

We set

A(x, y, t) = j2K1 =
(p31 + q32)√

t
x2 + 3q33xy − 3

√
tp33y

2

B(x, y, t) = j2K2 =
q31

2t
x2 − 2p31√

t
xy − 3(q33 + 2p32)

2
y2

C(x, y, t) = j2K3 =
(tp31 + 3q30)

t
√
t

x2 +
(−6p30 + 2tp32 + q31)

t
xy

+
(−2p31 + 3tp33)√

t
y2.

Then the configuration depends on the sign of Λ1(t)Λ2(t) where

Λ1(t) = −1

2
(C(1, 1, t) + 4B(1, 1, t) + 3A(1, 1, t)),

Λ2(t) =
1

2
(C(1,−1, t) + 4B(1,−1, t) + 3A(1,−1, t)).

We have

Λ1(t) =
−3(q30 + (q32 − 2p31)t− 2p33t

2 + ((q31 − 2p30) + (q33 − 2p32)t)
√
t)

2t
√
t

Λ2(t) =
3(q30 + (q32 − 2p31)t− 2p33t

2 − ((q31 − 2p30) + (q33 − 2p32)t)
√
t)

2t
√
t

Since t > 0 the sign of Λ1(t)Λ2(t) is the same as that of

4

9
t

3
2 Λ1(t)Λ2(t) = −((q30 + (q32 − 2p31)t− 2p33t

2)2 − t((q31 − 2p30) + (q33 − 2p32)t)2).

Note that

lim
t→0

(
4

9
t

3
2 Λ1(t)Λ2(t)) = −q2

30(0) < 0.

Thus for small t, Λ1(t)Λ2(t) < 0, and by Theorem 3.1 of [64] the BDE is topologically

equivalent to

xdy2 + 2(−y + xy)dxdy + xdx2 = 0.

2
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Proposition 9.2.2 The separatrix transverse to the limiting tangent to the discrim-

inant does not bifurcate in the family.

Proof : We write the BDE in the form

(x+H1(x, y, t))dy2 + 2(−y +H2(x, y, t))dxdy + (tx+H3(x, y, t))dx2 = 0,

and take the affine chart q = dx/dy for RP 1. The surfaces Mt associated to the

BDE are then given by G(x, y, q) = 0, where

G(x, y, q) = (x+H1(x, y, t)) + 2(−y +H2(x, y, t))q + (tx+H3(x, y, t))q2.

This surface is smooth on this chart for all values of t. We look for roots of the cubic

φ(q) = (Gy + qGx)(0, 0, q).

One root lies at q = 0. The lifted field has a saddle there, with one separatrix

projecting to a curve transverse to the discriminant of the BDE. 2

In [25, 74] the family of height functions (recall Definition 1.2.4) on a cross-cap

is considered. It is shown that the height function in no direction at a parabolic

cross-cap has worse than an A2-singularity, provided the discriminant has a genuine

A2-singularity. Thus no cusps of Gauss appear in the bifurcation of a parabolic

cross-cap.

This observation excludes the possibility of semi-local phenomena occurring in

the bifurcation. Should any integral curve meet the discriminant at two distinct

points, the foliation would necessarily have a singularity between them. As the

discriminant is smooth away from the cross-cap, the singularity would be a cusp of

Gauss.

We are now in a position to establish the following result.

Theorem 9.2.1 The asymptotic BDE on a generic one-parameter family of sur-

faces parametrised by rt, with r0 having a parabolic cross-cap at the origin is fibre

topologically equivalent to

xdy2 + 2(−y + txy)dxdy + (tx+ (1− t2)x2)dx2 = 0.
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The topological type is completely determined by the 3-jet of the parametrisation of

the surface. See Figure 9.2 (top pictures). The curves map to the surface as shown

in Figure 9.2 (bottom pictures).

Figure 9.2: The bifurcations of the asymptotic curves at a parabolic cross-cap in

the domain (top pictures) and on the surface (bottom pictures): t < 0 (left), t = 0

(centre) and t > 0 (right).

Proof : We must show that the configuration of the integral curves is constant

in t > 0 and constant in t < 0 (the singularity of the surface that occurs when

t = 0 is at infinity). This is done by choosing an appropriate neighbourhood of the

discriminant and sliding along integral curves to construct the required homeomor-

phism (see [13, 63, 65, 66]). For fixed t < 0, the equation given in the statement is

topologically equivalent to the normal form of the asymptotic BDE on a hyperbolic

cross-cap established in [74]. For fixed t > 0 the equation given in the statement

is topologically equivalent to the normal form of the asymptotic BDE on an elliptic

cross-cap of the required type as given in Proposition 9.2.1. If the genericity condi-

tions established in Section 8.2.1 that allow us to map the curves to the surface are

satisfied when t = 0, they will, by continuity, be satisfied for t close to zero, so we

can map the curves to the surface as shown. 2
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9.3 Bifurcations in the characteristic curves

We take the parametrisation as in (9.1). When t < 0, the cross-cap is hyperbolic

and so no characteristic curves exist in a neighbourhood of the cross-cap.

Proposition 9.3.1 In the family rt (9.1) the characteristic BDE at the elliptic

cross-cap (when t > 0) is equivalent to

(x2 + y4)dy2 − 2xydxdy + (−x2 + 2y2 + xy2)dx2 = 0.

The other type of elliptic cross-cap in Figure 8.6 does not appear in the bifurcation.

Proof : The proof is similar to that of Proposition 9.2.1 and is omitted. 2

It is noted in [64] that the singularity of the BDE of the principal directions

at a hyperbolic/parabolic/elliptic cross-cap is locally an isolated point, so there

is no sequence of umbilic points converging to the cross-cap point, and no such

points appear in the bifurcation. Since no cusps of Gauss appear in the bifurcation

either, the characteristic curves form a family of cusps at the smooth part of the

discriminant.

Theorem 9.3.1 The characteristic BDE on a generic 1-parameter family of cross-

caps is fibre topologically equivalent to

(x2 + y4)dy2 − 2xydxdy + (−tx2 + 2y2 + txy2 − x3)dx2 = 0.

The topological type is completely determined by the 3-jet of the parametrisation of

the surface. The bifurcation is illustrated in Figure 9.3 (upper pictures).

Proof : The proof is similar to that of Theorem 9.2.1. The characteristic curves

can be mapped onto the surface without difficulty as the intersection of the elliptic

region and the double point curve is empty. 2
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Figure 9.3: The bifurcation of the characteristic curves at a parabolic cross-cap in

the domain (upper pictures) and on the surface (lower pictures): t < 0 (left), t = 0

(centre) and t > 0 (right).



Ideas for further work

The largest open problem in this area remains that of defining the characteristic

curves via contact with a model submanifold. This would allow one, for example, to

explain the significance of the characteristic locus of inflections, the characteristic

bi-inflections and the special curves connected to the torsion of the characteristic

curves that were defined in chapter 6.

On smooth surfaces, the characteristic curves on elliptic discs need further inves-

tigation. We saw in chapter 3 that the number and type of cusps of Gauss on the

boundary of an elliptic disc is connected to the number of umbilic points within the

disc. It may also be possible to adapt Uribe-Vargas’ results ([71, 72]) concerning

global properties of the flecnodal curve to the characteristic inflection curve. Of

course, the proper context in which to study elliptic discs is within 1-parameter

families of smooth surfaces.

West ([74]) considered the ridge curves on cross-cap, and also showed that there

is no conodal curve in the neighbourhood of a cross-cap point. Other special curves,

including the flecnodal curve, characteristic inflection curve, zero-torsion curves and

sub-parabolic lines, should also be studied on singular surfaces. In the case of the

flecnodal curve one may apply our results from chapter 7 on the configuration of the

inflection sets of cusp BDEs. The families of curve congruences, Cα and Rα, have

also not yet been considered on cross-caps.

In chapter 4 we exhibited a natural one-to-one correspondance between BDEs

at a point on a surface S and linear involutions of the projective line. The latter

are the induced action on RP 1 of real 2× 2 matrices with vanishing trace. The set

of such matrices is the Lie Algebra associated to the group SL(2,R). Furthermore,

the Jacobian of two any BDEs (that is, the polar of the line that joins them) corre-
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sponds to the (induced action on RP 1) of the Lie bracket (commutator) of the two

corresponding matrices. In other words, the set of all binary quadratic forms is the

projectivation of a real Lie Algebra. This gives rise naturally to several questions.

Can the results of chapter 4 be reformulated in terms of Lie algebras? Is there a

group of forms that corresponds to SL(2,R)? Can correspondances be established

between other Lie algebras and forms on the tangent bundles to surfaces or higher

dimensional manifolds?

Our work in chapter 4 on involutions on the real projective line showed that

given two such involutions σ1, σ2, the composite maps σ1 ◦ σ2 ◦ σ1 and σ2 ◦ σ1 ◦ σ2

are also involutions. The self-polar triple comprising the asymptotic, principal and

characteristic BDEs is constructed using two linear involutions, which we labelled C

and O. In chapter 5 we considered quadratic forms constructed using the involution

C◦O◦C, namely the third fundamental form and the BDE of the MOSI curves. The

work in chapter 4 suggests that we should also consider BDEs constructed using the

involution O ◦C ◦O. Preliminary calculations indicate that, following our methods

one obtains a self-polar triple of BDEs comprising the principal BDE and two BDEs,

analogous to the asymptotic and characteristic BDEs that have the parabolic set as

their common discriminant and folded singularities at the point of intersection of

the parabolic set and the sub-parabolic lines.

There is further work to be carried out concerning the MOSI curves defined

in chapter 5, and the related one-parameter families of BDEs. In particular, the

evolution of the configuration of the integral curves at the discriminants in these

families should be studied, as it is for the families Cα and Rα in [14]. It is also clear,

from the results proved here, that these BDEs have intrinsic meaning in terms of

the geometry of the surface that has not yet been identified.

The asymptotic and characteristic curves and the lines of curvature, and hence all

related geometry, are derived from the metric and the Weingarten map (or equiv-

alently the first and second fundamental forms). The Weingarten map is a self

adjoint linear operator. In [67] the properties of an arbitrary surface endowed with

an arbitrary self-adjoint operator and a Riemmannian metric. These ideas have also

been extended to surfaces in Lorentzian space, that is, a surface with a pseudo-
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Riemmannian metric. It would be of interest to carry out similar work with the new

BDEs and families of BDEs that were defined in chapter 5, since those BDEs are

also derived purely from the metric and the Weingarten map.

Our work on cusp BDEs in chapter 7 is, to a certain extent, incomplete. Unstable

singular BDEs are only properly understood by considering their bifurcations in

generic families. Furthermore, there are BDEs that have discriminants with other

types of singularities that have the same codimension as the cusp BDEs we studied,

that should be considered when these generic families are studied.
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