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Abstract. We describe the development of a new software tool, called "Pomelo", for the calculation of Set

Voronoi diagrams. Voronoi diagrams are a spatial partition of the space around the particles into separate

Voronoi cells, e.g. applicable to granular materials. A generalization of the conventional Voronoi diagram for

points or monodisperse spheres is the Set Voronoi diagram, also known as navigational map or tessellation by

zone of influence. In this construction, a Set Voronoi cell contains the volume that is closer to the surface of

one particle than to the surface of any other particle. This is required for aspherical or polydisperse systems.

Pomelo is designed to be easy to use and as generic as possible. It directly supports common particle shapes

and offers a generic mode, which allows to deal with any type of particles that can be described mathematically.

Pomelo can create output in different standard formats, which allows direct visualization and further processing.

Finally, we describe three applications of the Set Voronoi code in granular and soft matter physics, namely the

problem of packings of ellipsoidal particles with varying degrees of particle-particle friction, mechanical stable

packings of tetrahedra and a model for liquid crystal systems of particles with shapes reminiscent of pears.

The analysis of geometries and structures on a mi-

cro scale level is an important aspect of granular and soft

matter physics to attain knowledge about many interest-

ing properties of particle packings, including contact num-

bers, anisotropy, local volume fraction, etc. [1–3]. A

well-established concept is the so called Voronoi Diagram.

Here, the system is investigated by dividing the space into

separate cells in respect to the positions of the center of the

particles. A cell assigned to a certain particle is defined

as the space (or region of space) that contains all the vol-

ume closer to the center of this specific particle than to any

other one (see figure 1 left). This partition of space, how-

ever, only yields precise results for monodisperse spheres

as the construction fails otherwise due to morphological

properties of the objects. For nonspherical or polydisperse

particles the classical Voronoi diagram is of limited use-

fullnes, as shown in figure 1 (center) for a system of bidis-

perse spheres. A generalized version of the Voronoi Di-

agram, the Set Voronoi Diagram [4], also known as nav-

igational map [5] or tessellation by zone of influence [6],

has to be applied. In this case the cells contain all space

around the particle which is closer to the particle’s surface

than to the surface of any other particle. Figure 1 (right)

shows the Set Voronoi Diagram of a mixture of differently

shaped particles.
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Here we introduce a software tool called Pomelo, which

calculates Set Voronoi Diagrams based on the algorithm

described in [4]. Pomelo is particularly versatile due to its

ability to generically handle any arbitrary shape which can

be described mathematically. For instance objects neither

have to be convex nor simply connected. In the first step of

the algorithm (figure 2 left) a triangulation of the particle’s

bounding surface is generated to sample its shape. Pomelo
offers functionality for some common particle shapes, but

the user is can also specify generic particle shapes. Af-

ter the discretisation of the surface the system is tessel-

lated by calculating the classical Voronoi diagram of all

surface points of this triangulation. This is shown in figure

2 (center). To get the Set Voronoi tessellation of the sys-

tem, cells belonging to points on the same particle surface

are merged to a single cell in the last step (figure 2 right).

The resulting partition represents the Set Voronoi Diagram

of the system. With this algorithm, systems and mixtures

of particles of any arbitrary shape can be treated.

1 Pomelo

Pomelo is a generic Set Voronoi tool written in c++11 and
licensed under GPL3. Pomelo can be downloaded, see ref.

[7], as well as all instructions regarding setting up, build-

ing and using Pomelo. The system requirements are g++
4.9.2 or clang++ 3.5.0-10 or any higher version.
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Figure 1. Left: The Voronoi Diagram of a system of monodisperse spheres. Center: The Voronoi Diagram is not suitable for a system

of bidisperse spheres, as Voronoi cells are overlapping with particles. Right: The Set Voronoi Diagram of a mixture of differently

shaped objects.

Figure 2. Sketch of the Set Voronoi algorithm from left to right. Generating points on particle surface. Calculating Voronoi Diagram

of surface points. Merging cells belonging to the same particle.

While Pomelo can directly handle common particle

shapes (mono- and polydisperse spheres, tetrahedra, el-

lipsoids and spherocylinders), it also provides a generic
mode. The latter works for any shape which surface can

be described mathematically. The following two sections

will describe how to use Pomelo in both cases. To use

Pomelo in genericmode (see section 1.2), lib-lua 5.2
or higher is required.

1.1 Common Particle Shapes

Particle shapes that are intrinsically supported by Pomelo
are mono- and polydisperse spheres, tetrahedra, sphero-

cylinders and ellipsoids. Pomelo comes with a set of de-

mos and tests.

One test case is a set of polydisperse spheres in a cubic

cell. The input is a xyzr file. Its first line is the number

of particles. The second line is a comment which con-

tains some information (separated by comma) required by

Pomelo. This includes boundary conditions (periodic/non

periodic in each axis), box size, shrink and the number

steps in φ and θ for discretizing the sphere’s surface. Every

following line describes one sphere in the packing with its

parameters (coordinates and radius). To run the demo, call

Pomelo with the command line argument -SPHEREPOLY,
the path to the xyzr file and the desired output folder.

Pomelo’s output are the vertices, faces and cells of the

Set Voronoi Diagram. The output can be set to different

formats, like the POLY file format, off (for geomview) or

a gnuplot readable format for easy visualisation.

1.2 Generic Mode

Using Pomelo in generic mode allows to calculate the Set

Voronoi Diagram for generic particles. The input is a

position file, which is a list of all particles which are

described by a set of parameters each. The parameters are

a complete description of the particles surface within the

packing. The read file is key for Pomelos versatility. It al-
lows the user to create a surface triangulation based on the

parameters given in the position file with a script written

in the lua language [8]. The script tells Pomelo how to cre-

ate a surface triangulation with the particles parameters as

given in the position file. It can be fully customized by

the user to match any specific particle shape. This allows

the user to create even systems composed of a mixture of

diferent particles. The surface triangulation of all particles

will then be used to calculate the Set Voronoi Diagram as

described above.

Pomelo’s demos include a variety of examples on how

to use the read script to handle different types of particles.

2 Applications of Set Voronoi Diagrams

2.1 Ellipsoid Packings

To demonstrate the use of Set Voronoi Diagrams the local

packing fraction which is defined as Φl =
ve
vi

with vi being

the volume of the Set Voronoi Cell and ve =
4
3
πabc the

volume of the particle is calculated. It has been shown

that the probability distribution of local packing fractions

is universal for sphere packings [1] and jammed pro- and

oblate ellipsoid packings [9].
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Figure 3. Ellipsoids (α = 1.4) in an isotopic system (left) and

ther Set Voronoi Cells (right).

Experimental granular packings of triaxial ellipsoids

(three distinct axis lengths a, b, c) have been measured

at various global packing fractions using X-ray tomogra-

phy, see figure 3. Particle positions, orientations and size

have been determined and the Set Voronoi Diagrams have

been calculated for each packing. Here the particles are

shrinked by Pomelo to improve the quality of the cells.

The statistical distribution of local packing fractionsΦl for

spheres (α = 1.0) and triaxial ellipsoids (α = 1.1, α = 1.4)
is shown in figure 4. To first order, the distribution can be

collapsed on a master curve, as shown in Ref. [9], by sub-

tracting the global volume fraction Φg =
<ve>
<vi>

and scaling

the distribution by σ(Φl), see figure 4. Thus the functional

form of the distribution is invariant to global packing frac-

tion Φg and aspect ratio α, to first order.
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Figure 4. Probability distribution of rescaled local packing frac-

tions Φl for packings of spheres (particle aspect ratio α = 1.0)

and triaxial ellipsoids (α = 1.1, α = 1.4). Global packing frac-

tions range from 0.62 to 0.65.

2.2 Tetrahedra

Packings of tetrahedra can also be treated with Pomelo
without using the generic mode. The data was obtained

by X-ray tomography [10]. Each tetrahedra is described

by the positions of its 4 vertices. Pomelo is able to process

the data directly. This gives the advantage to treat not only

tetrahedra but pyramids in general.

The Set Voronoi tessellations of tetrahedra packings

(figure 5) with different packing fraction and contact num-

bers are calculated with Pomelo. The local packing frac-

tion is shown for those systems in figure 6.

Figure 5. Tetrahedra of one of the experiments (left) and their

Set Voronoi cels (right).
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Figure 6. Probability distribution of rescaled local packing frac-

tions Φl for different systems of tetrahedra. The colorbar and the

point’s color show the global packing fraction of the system.

2.3 Pear Shaped Particles

The third example is the calculation of the Set Voronoi

Diagrams of pear shaped or tapered particles. The shape

of these particles is described by the aspect ratio α and

the degree of tapering αθ. By using two Bézier curves

forming the bottom and top part of the pear and rotat-

ing them around their symmetry axis the surface of the

particle is generated (figure 7) [11]. A triangulation algo-

rithm of this surface is implemented within the read file,

which allows Pomelo to process pear shaped particles in

the generic mode. The position file provides the posi-

Figure 7. Pear shaped by two Bézier curves. Both are deter-

mined by the aspect ratio α = Height

Width
and the degree of tapering

αθ =
Heightθ
Width

.
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tion, orientation, size, aspect ratio and degree of tapering

for every individual particle.

Figure 8. Pears (α = 3.0, αθ = 3.8) in an isotropic system (left)

and their Set Voronoi cells (right).

Systems of hard pear shaped particles (α = 3.0) with

different degrees of tapering are generated using Molec-

ular Dynamics (see figure 8) [11]. The statistical distri-

bution of the local packing fractions Φl for different pear

systems (αθ = 3.0,Φg = 0.48 ; αθ = 3.8,Φg = 0.50 ;

αθ = 6.0,Φg = 0.54) is shown in figure 9. Similarly to

the sphere and ellipsoid packings the distributions of the

different pear systems collapse on a master curve. Ac-

cordingly the distribution is not only invariant to global

packing fraction Φg but also to degree of tappering αθ for
pears. However, the data of ellipsoids/spheres and pears

do not collapse on the same curve.
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Figure 9. Probability distribution of rescaled local packing frac-

tions Φl for pears (α = 3.0) with different degree of tapering and

packing fraction (αθ,Φg) ∈ {(3.0, 0.48); (3.8, 0.50); (6.0, 0.54)}.
The dashed line shows the master curve of the sphere distribu-

tions.

3 Outlook

We have shown that Pomelo is applicable for a variety of

systems, including spheres, ellipsoids, tetrahedra and pear

shaped particles. We have illustrated its use to calculate

Set Voronoi volume distributions. However, it is conceiv-

able to analyse other interesting measures like Minkowski

tensors, by piping the Set Voronoi Cells into correspond-

ing analysis tools [9, 12, 13]. It is yet also unclear how

similar volume distributions of different systems are.
One way to improve the calculation of the Set Voronoi

Diagram is to implement an adaptive sampling of the par-

ticle’s surface. By comparing the distance between two

neighboring surface points to the distance to the face of

the Set Voronoi Cell it is possible to obtain an estimate

on where the surface triangulation needs a better resolu-

tion and where a coarse resolution is good enough. This

estimate will be used to change the density of the surface

triangulation of the particles.
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