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ABSTRACT

The Weather Research and Forecasting (WRF) Model is evaluated as a regional climate model for the

simulation of climate indices that are relevant to viticulture in Western Australia’s wine regions at a 5-km

resolution under current and future climate. WRF is driven with ERA-Interim reanalysis for the current

climate and three global climatemodels (GCMs) for both current and future climate. The focus of the analysis

is on a selection of climate indices that are commonly used in climate–viticulture research. Simulations of

current climate are evaluated against an observational dataset to quantify model errors over the 1981–2010

period. Changes to the indices under future climate based on the SRES A2 emissions scenario are then

assessed through an analysis of future (2030–59) minus present (1970–99) climate. Results show that when

WRF is driven with ERA-Interim there is generally good agreement with observations for all of the indices

although there is a noticeable negative bias for the simulation of precipitation. The results for the GCM-

forced simulations were less consistent. Namely, while the GCM-forced simulations performed reasonably

well for the temperature indices, all simulations performed inconsistently for the precipitation index. Climate

projections showed significant warming for both of the temperature indices and indicated potential risks to

Western Australia’s wine growing regions under future climate, particularly in the north. There was dis-

agreement between simulations with regard to the projections of the precipitation indices and hence greater

uncertainty as to how these will be characterized under future climate.

1. Introduction

The grapevine is particularly sensitive to its environ-

ment and has well-defined climatic conditions that en-

able it to grow and ripen its fruit to an optimum level

(Urhausen et al. 2011). Growing wine grapes outside of

their optimum climatic thresholds can detrimentally

impact the resulting wine quality. Accordingly, centuries

of experience have enabled the suitable pairing of pre-

mium wine varieties with their most favorable environ-

ments (Moriondo et al. 2013). This has resulted in the

world’s viticulture regions for high-quality wine pro-

duction being associated with fairly narrow geographical

and therefore climatic niches that inevitably place them

at particular risk from climate change (Jones 2007).

Several studies have investigated the effects of climate

change on wine grape production. It has been shown

that hotter growing conditions can cause negative effects

for wine grape color and acidity (Barnuud et al. 2014a,b)

as well as an increase in alcohol content (Duchêne and

Schneider 2005; Jones andGoodrich 2008). Warmer and

drier conditions have also been associated with signifi-

cant advancements in the timing of phenological events,

such as budburst and harvest, and decreases in wine

grape yield (Fraga et al. 2016). Furthermore, it has been

indicated that some regions in the south of Europe will

become climatically unsuitable to produce high-quality

wine, while previously unsuitable northern regions will

become viable under a range of future climate scenarios

(Tóth and Végvári 2016).
Western Australia (WA) supports an industry for

world-class wine production that makes a significant

contribution to the state’s economy. For example, in

2010, viticulture represented 41% of the total value

(AUD $1.1 billion) added by horticulture to WA’s

economy (Wines of Western Australia 2014). Viticul-

ture in WA makes up less than 5% of the total pro-

duction by volume nationally, yet it represents almost

25% of Australia’s premium wine market (Wines of

Western Australia 2014). Therefore, wine quality isCorresponding author: Jatin Kala, j.kala@murdoch.edu.au
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particularly important toWA’s wine industry in terms of

its monetary value as well as its identity. The state’s wine

grape growing regions are predominantly located in its

southwestern corner, an area of known vulnerability to

climate change, with significant trends toward a warmer

and drier climate (Hope 2006; Bates et al. 2008).

Prior research into climate change in WA’s wine re-

gions has indicated that the region may face challenges

under future climate. However, these studies have

largely relied upon climatic data provided by global

climate models (GCMs), which are limited in their ap-

plicability to viticulture research because of their coarse

resolution of 100–250km. For example, Hall and Jones

(2009) evaluated climate projections from a single GCM

to investigate how several temperature indices that de-

scribe Australia’s wine grape growing conditions may

change under future climate. The study focused on all of

Australia’s wine regions and included an analysis of

WA. Their findings indicated that temperatures will

increase in WA’s wine regions and that these increases

could result in some regions no longer being viable for

premium wine production, particularly the state’s

northern regions.

In two national studies that also included evaluations

of WA’s wine regions, Webb et al. (2007, 2008) used

GCMs to investigate climate change impacts on wine

grape quality and grapevine phenology, respectively.

Their findings indicated that a warmer climate would

result in changes to the timing of phenological events for

the grapevine in WA’s wine regions. Projected changes

included a shorter growing season and the delayed oc-

currence of budburst (Webb et al. 2007). A reduction in

wine grape quality, particularly in the state’s northern

wine regions, was also projected (Webb et al. 2008).

While theseGCM-based studies provide highly valuable

information about the potential impacts of climate

change on viticulture in WA, they are nonetheless in-

herently limited by their coarse resolution. GCMs are

well documented to be unable to resolve finescale features,

including topography, land cover, and mesoscale weather

systems (e.g., Christensen et al. 2007; Rummukainen

2016). Additionally, the wine-producing region ofWA is

located in the southwest, which is a region of strong

land–atmosphere coupling (Hirsch et al. 2014b), and

being situated close to the coast, it frequently experi-

ences sea breezes (Clarke 1989). Hence, there is po-

tential for regional climate models (RCMs) to add value

to GCMs in the region, and this has been shown by re-

cent studies (Andrys et al. 2015, 2016).

Given the issues associated with the coarse resolution

of GCMs, some studies have used the ‘‘statistical

downscaling’’ technique to downscale future climate

projections from GCMs to provide regional climate

information for WA’s wine regions (Barnuud 2012).

While this approach can be useful because of its low

computational cost, it is based on the assumption that

present-day relationships between large- and local-scale

climate will remain the same under future climate,

which is nonverifiable (Hewitson et al. 2014; Wilby et al.

2004). Additionally, these simulations do not provide

information on changes in the dynamics of the atmo-

sphere, and given the known effects of topography (Pitts

and Lyons 1990), land use (Hirsch et al. 2014b,a), and

mesoscale features such as the sea breeze (Clarke 1989)

in the region, there is clearly a need for high-resolution

regional climate projections for WA’s wine regions,

which are not provided by GCMs or statistical down-

scaling approaches. Additionally, prior research has

shown the benefits of using RCMs to provide climatic

information for viticultural regions elsewhere, including

France (Xu et al. 2012; Bonnefoy 2013; Bonnardot et al.

2014) and SouthAfrica (Bonnardot and Cautenet 2009).

RCM simulations for southwest Western Australia

(SWWA), which includes all the wine-producing regions

of WA (Fig. 1), have been conducted by Kala et al.

(2015) and Andrys et al. (2015, 2016, 2017) using the

Weather Research and Forecasting (WRF) Model.

WRF is a next-generation mesoscale modeling system

(Skamarock et al. 2005) that has been commonly used

for the purposes of dynamically downscaling GCMs,

including applications in Europe (Heikkilä et al. 2011;

Soares et al. 2012), North America (Gula and Peltier

2012), Asia (Chotamonsak et al. 2011; En-Tao et al.

2010), and eastern Australia (Evans and McCabe 2010).

WRF is also one of the RCMs that is being used for the

Coordinated Regional Climate Downscaling Experi-

ment (CORDEX; Giorgi et al. 2009), an international

initiative of the World Climate Research Program.

WRF, like any RCM, is sensitive to model physics

options as well as the input forcing data, and this sensi-

tivity was assessed by Kala et al. (2015) over SWWAat a

10-km resolution over a 1-yr time scale. They found that

the ERA-Interim (Dee et al. 2011) was the best-

performing reanalysis for the region as compared with

the NCEP–NCAR reanalysis (Kalnay et al. 1996) and

NCEP’s final (FNL) global tropospheric reanalysis, and

they also determined the best combination of WRF

physics options (among some of the most commonly

used options) for SWWA. This study found that generally,

WRF simulated the climate of SWWA well. However,

issues were highlighted relating to the model’s inability to

adequately reproduce summer rainfall and an underesti-

mation of coastal rainfall, which was attributed to un-

resolved topography at a 10-km resolution.

Based on the findings of Kala et al. (2015), Andrys et al.

(2015) used the same model setup of Kala et al. (2015) but
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extended the simulations over a 30-yr period (1981–2010)

using ERA-Interim. Two nested domains at 5- and 10-km

resolutions were evaluated. Their study focused on climate

extremes and indices that are of significance to cereal crop

applications. The higher-resolution simulation showed

improved skill in reproducing summer and autumn rainfall

and rainfall on the midwest coast owing to an improved

resolution of the topography. Warm and cold extremes

and seasonal minimum and maximum temperatures were

well represented by WRF; however, there was a tendency

to underestimate average maximum temperatures and

overestimate average minimum temperatures.

While the work ofAndrys et al. (2015) provided a very

useful climatology for SWWA, the use of a reanalysis to

drive the simulations restricts the analysis to the present

climate only. Therefore, Andrys et al. (2016) conducted

further research to investigate WRF’s skill in re-

producing the historical climate of SWWA at a 5-km

resolution when driven with four different GCMs. The

focus was on the simulation of winter cold fronts that

bring the bulk of the rainfall to the region and climate

extremes during the cereal crop growing season. Results

were varied between the four GCM-forced simulations,

with one of them performing exceptionally well in re-

producing the climatology of SWWA, two reasonably

well, and one poorly. Issues that were highlighted were

attributed to both systematic errors present inWRF and

the lateral boundary conditions provided by the GCMs.

WRF was shown to add value to the GCMs when sim-

ulating the daily distribution of rainfall, particularly

during the cereal crop growing season. However, it was

found that WRF consistently simulated cooler temper-

atures than the GCMs and demonstrated significant

biases for maximum temperatures in some simulations.

Following on from assessing the biases in WRF and

the four GCMs, Andrys et al. (2017) analyzed WRF

projections of SWWAclimate driven by threeGCMs for

the period 2030–59 relative to 1970–99. They investi-

gated changes to the distribution of daily temperatures,

seasonal means, and extreme climate indices relevant to

cereal crops. Their findings indicated that temperatures

would increase and that this would be most pronounced

for maximum temperatures in comparison with mini-

mum temperatures. All simulations agreed that winter

precipitation would decrease; however, the magnitude

of the projected decrease varied between simulations.

There was less model agreement with regard to changes

in precipitation for the other seasons.

In summary, SWWA is a region of significant wine

production. Previous studies have predominantly relied

on GCMs alone (Webb et al. 2007, 2008; Hall and Jones

2009) or statistical downscaling (Barnuud 2012) to in-

vestigate future changes in climate with respect to wine

production. The recent work of Andrys et al. (2015,

2016, 2017) using WRF as an RCM to provide regional

climate projections for the region provides a valuable

FIG. 1. Western Australia’s wine regions.
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opportunity to investigate the impacts of future climate

change on the viticulture industry. The aim of this paper

is to first evaluateWRF as an RCM to be used for future

climate–viticulture research in SWWA by focusing on

indices that are relevant to viticulture and, second, to

assess the future risks associated with viticulture in this

region. The first aim will be addressed by comparing

outputs from WRF driven with boundary conditions

from reanalysis data (Andrys et al. 2015) with an ob-

servational dataset for the present climate over a 30-yr

period. This will involve examining long-term means as

well as time series and will quantify the biases inherent

in WRF. Following this, an evaluation of WRF climate

simulations under current climate using boundary con-

ditions from three GCMs (Andrys et al. 2016) will be

carried out through a comparison with the observational

dataset. This analysis will be limited to long-term means

only and will highlight the limitations of the GCMs.

Finally, with an understanding of the biases inherent in

WRF and the GCMs, projections of the climate indices

relevant to viticulture will be analyzed to quantify

changes to the growing conditions for viticulture in

SWWA under future climate.

2. Methods

a. SWWA

There are nine wine-producing regions in WA, as

shown in Fig. 1. These regions are located predomi-

nantly in the state’s southwest. SWWA experiences a

Mediterranean-type climate that is characterized by

hot, dry summers and cool, wet winters (Charles et al.

2010; Gentilli 1972). Over 80% of the annual rainfall

falls during the cooler months (May–October). There

is a strong decrease in the rate of rainfall from south to

north across the region and a slight increase over the

first 30 km from west to east. This increase in rainfall is

most prominent around the Darling Scarp; whereafter,

the rate of rainfall decreases with distance inland

(Wright 1974). The Darling Scarp is a 300-m-high es-

carpment located 25 km inland running parallel to the

north–south coastline and can be seen in Fig. 2b.

Andrys et al. (2015) showed that WRF simulations at

10-km resolution had a positive bias on the windward

(west) side of the scarp and strong negative bias east of

the scarp. Simulations at 5-km resolution resolved the

positive bias and reduced the negative bias, but

nonetheless, a lower negative bias remained east of the

scarp, which would potentially have an impact on wine

regions along the west coast (Fig. 1).

WA’s wine regions are currently most reputable for

the production of premium white grape varieties,

including chardonnay, semillon, and sauvignon blanc in

Margaret River, riesling in the Great Southern; and

verdelho in the Swan District. The Margaret River re-

gion is also renowned for the production of premium red

grape varieties, specifically, cabernet sauvignon and

merlot. The growing season for wine grapes occurs in the

warmer months from 1 October to 30 April.

b. Climate model data

The RCM data analyzed in this study were produced

by Andrys et al. (2015, 2016, 2017) using WRF, version

3.3 (Skamarock et al. 2005). Three nested domains were

used as illustrated in Fig. 2. The outer domain was at a

50-km resolution based on the CORDEX Australasia

domain and the two nested domains at 10- and 5-km

resolutions, respectively. A 3-month model spinup pe-

riod was used. The model setup and parameter options

that were chosen by Andrys et al. (2015, 2016, 2017)

were based on the findings of Kala et al. (2015), who

explored the sensitivity of WRF to different physics

options and input forcing data over SWWA. The

setup included the single-moment 5-class microphysics

scheme (Hong et al. 2004), theRapidRadiative Transfer

Model for longwave radiation (Mlawer et al. 1997), the

Dudhia scheme for shortwave radiation (Dudhia 1989),

the Yonsei University planetary boundary layer scheme

(Hong and Lim 2006), the Kain–Fritsch (Kain 2004)

scheme for convective parameterization for the first

(50 km) and second (10 km) domains only, the MM5

surface-layer scheme (Grell et al. 2000), and the Noah

land surface model (Chen and Dudhia 2001). The model

used a 150-day averaging period for deep soil tempera-

tures and spectral nudging above the planetary bound-

ary layer for the outer domain only. Thirty vertical levels

were used, with levels more tightly packed close to the

surface to ensure higher resolution close to the ground.

Carbon dioxide concentrations were updated monthly

based on observations from Baring Head, New Zealand

(Keeling et al. 2001), considered to be representative of

the Southern Hemisphere. Before analyzing the results, a

10-gridpoint relaxation zone was removed from the do-

main boundaries to account for the relaxation zone.

The innermost nested domain (5-km resolution) was

chosen for evaluation in this study as it was shown by

Andrys et al. (2015) to provide a superior representa-

tion of SWWA climate. The climate simulations for

SWWA were driven with boundary conditions from

ERA-Interim (section 1) and three GCMs (section 2).

ERA-Interim-driven simulations were available for

the period 1981–2010 (Andrys et al. 2015), and the

GCM-forced simulations were available for the periods

1970–99 for current climate (Andrys et al. 2016) and

2030–59 for future climate (Andrys et al. 2017).
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1) ERA-INTERIM

ERA-Interim is a reanalysis produced from the Eu-

ropean Centre for Medium-Range Weather Forecasts.

It is available beginning in 1979 and continues to be

updated in real time with a 6-h analysis window. It has a

spatial resolution of approximately 80 km, and there are

60 vertical levels from the surface up to 0.1 hPa. The

ERA-Interim-forced simulation will now be referred to

as WRF-ERA.

2) GCMS

The GCMs that have provided the lateral boundary

conditions for the WRF simulations of current and fu-

ture climate are the National Center for Atmospheric

Research Community Climate System Model, version 3

(CCSM3; Collins et al. 2006); the Commonwealth Sci-

entific and Industrial Research Organization Mark 3.5

(CSIRO; Gordon et al. 2002); and the Max Planck In-

stitute ECHAM5 model (Roeckner et al. 2003). These

GCMs are part of phase 3 of the Coupled Model In-

tercomparison Project (CMIP3), which is the model

ensemble that was used to inform the IPCC Fourth

Assessment report.

The choice of GCMs byAndrys et al. (2016) was driven

by the availability of 6-hourly data from different CMIP3

GCMs at the time and the findings of Perkins et al. (2007),

who assessed the performance of several CMIP3 GCMs

in simulating temperature and precipitation over Aus-

tralia and found that these three GCMs performed sat-

isfactorily. Andrys et al. (2016) also included the Model

for Interdisciplinary Research on Climate, version 3.2

(MIROC3.2; Hasumi and Emori 2004) in their analysis.

However, this model was shown to have a poor perfor-

mance in simulating the climate of SWWA and has

therefore not been included for evaluation in this study.

For all climate projections, the A2 scenario was used.

The A2 scenario is at the upper end of the emissions sce-

narios and postulates little change in greenhouse gas

(GHG) emissions over the course of the twenty-first cen-

tury (Nakićenović and Coauthors 2000). The WRF simu-

lations that have been driven with boundary conditions

from CCSM3, CSIRO, and ECHAM5 will be referred to

as WRF-CCS, WRF-CSI, and WRF-ECH, respectively.

c. Observational data

The observational data used for evaluation consisted of

daily gridded observations of precipitation and maximum

and minimum temperatures at a resolution of 5km from

1980 to 2010. These data have been provided by the

Australian Bureau of Meteorology (BoM) as part of the

Australian Soil Water Availability Project (AWAP;

Raupach et al. 2009) and are an interpolation of direct

surface measurements recorded from a network of

weather stations across Australia. The number of stations

recording data varies in time and by variable. Precipitation

has been interpolated from between 5000 and 7000 sta-

tions across Australia, whereas temperature has only been

recorded at between 600 and 850 stations (Jones et al.

2007). The AWAP dataset is currently the best available

gridded temperature and precipitation dataset for Aus-

tralia and has been used for model evaluation purposes by

numerous studies (Evans andMcCabe 2010; Andrys et al.

2015; Kala et al. 2015). King et al. (2013) evaluated the

efficacy of the AWAP dataset in terms of representing

extreme rainfall over Australia and demonstrated good

agreement with station observations but cautioned against

the use of the griddedAWAPdataset in regions with poor

station coverage, such as inland centralWesternAustralia.

FIG. 2. Contour map showing the topography of (a) the outer

model domain (50-km resolution), including the extent of the

nested grids, and (b) the topography of the innermost nested domain

(5-km resolution) used byAndrys et al. (2015, 2016, 2017) in theWRF

simulations of present and future climate (Andrys et al. 2015).
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The wine regions of SWWA are located close to the coast

where station density is highest (Jones et al. 2007); hence,

this is not an issue.

d. Climate indices

Two temperature indices, the Huglin index (HI) and

the cool night index (CI), were selected for analysis.

These indices were included in the multicriteria climatic

classification (MCC) system developed by Tonietto and

Carbonneau (2004) as a research tool for viticultural

zoning worldwide. Growing-season precipitation (GSP)

was selected to represent the water component in the

relationship between climate and viticulture. The grid-

ded observational dataset (Jones et al. 2007; Raupach

et al. 2009) provides daily minimum and maximum

temperatures. Averages were therefore calculated as the

mean of the maximum and minimum temperature. Simi-

larly, averages for all modeled data were calculated as the

mean of the daily minimum andmaximum temperature to

enable comparison. All temperature indices are calculated

from the air temperature recorded at 2m above ground.

The class limits for each of the temperature indices, the

time frame over which they are calculated, and their main

sources are summarized in Table 1.

1) HUGLIN INDEX

The HI [Eq. (1); Huglin 1978] is a heat summation

index that is commonly used to describe varietal suit-

ability within a given region. It takes the mean of the

average and maximum temperatures, effectively giving

an estimate of daytime temperatures. It therefore gives

focus to the time of day during which photosynthesis is

most active, indicating the sugar potential according to

different varieties (Huglin 1978). A base temperature of

108C is used, and temperatures above this threshold are

summed over a 6-month period from October to March

(in the Southern Hemisphere). It also includes an ad-

justment for latitude K to account for varying day

lengths (Table 1):

HI5 �
31Mar

1Oct

max[(T
mean

2 101T
max

2 10)/2, 0]K, (1)

where K is a latitude coefficient that takes into account

increasing day lengths (Table 2).

2) COOL NIGHT INDEX

TheCI [Eq. (2)], is calculated as the averageminimum

temperature of March (in the Southern Hemisphere),

which represents the ripening month in the Southern

Hemisphere. Minimum temperatures during the ripen-

ing period influence wine grape characteristics with

respect to color and aroma (Tonietto and Carbonneau

2004). Combined with HI, these indices allow a concise

determination of a region’s varietal suitability based on

the heat accumulation during the vegetative growth

period of the vine and nighttime temperatures during

the ripening period (Table 1):

CI5 avg(T
min_March

) . (2)

3) GROWING-SEASON PRECIPITATION

GSP [Eq. (3)] is an important index for climate–

viticulture research for several reasons. First, excessive

moisture during this period can provide favorable con-

ditions for diseases such as powdery mildew to develop

(Nicholas et al. 1994). It has therefore commonly been

used in viticulture–climate evaluations (Cabré et al.

2016; Fraga et al. 2012, 2014). Second, it is used in the

calculation of the dryness index, which is the third index

included by Tonietto and Carbonneau (2004) in the MCC

system and is used to describe the water component of

viticulture regions. It is calculated as the total rainfall from

October to April (in the Southern Hemisphere):

GSP5 �
30Apr

1Oct

Precipitation. (3)

GSP was selected as an index for evaluation in this

study because observed (OBS) daily precipitation data

were available to allow a comparison with simulations.

However, it is a simple index that provides limited in-

formation regardingwater availability for the grapevine.A

more useful index commonly used within the climate sci-

ences is precipitation minus evapotranspiration, as it pro-

vides information on the actual amount of soil water

available to vegetation (e.g., Roderick et al. 2014; Greve

et al. 2014; Byrne and O’Gorman 2015). As such, when

assessing changes to the viticulture indices under future

climate, growing-season precipitation–evapotranspiration

(GSP-EVT) was also included as an additional index. This

index is calculated by subtracting total evapotranspiration

over the growing season from GSP and gives an in-

dication of how much water is available for use by the

grapevine. It was not possible to include this index in the

evaluation section as no observational data for evapo-

transpiration were available. We note that the dryness

index of Tonietto and Carbonneau (2004) is essentially

GSP-EVT but includes a soil water reserve term, which

represents the amount of soil water available to the

roots. Although soil moisture outputs are available from

WRF over four soil layers, there is a lack of information

about the rooting depths of different varieties of

grapevines as well as a lack of soil moisture observations

at different depths. Hence, we only show differences in
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GSP-EVT and do not include soil water available

to roots.

e. Data analysis

1) MODEL EVALUATION

To enable intercomparison, the AWAP observational

dataset of temperature and precipitation were in-

terpolated from the original regular grid (5-km resolu-

tion) to the rotated latitude–longitude projection of the

WRF domain (5-km resolution) using simple inverse-

distance weighting. The rotated latitude–longitude

projection is one of the many projection options avail-

able in WRF, and more details can be found in Wang

et al. (2015). This particular projection was used as it is

the recommended projection following CORDEX

guidelines (available at https://www.cordex.org). The

first part of the analysis involved evaluating WRF-

ERA’s simulation of each index against observations.

Spatial model agreement was examined with bias con-

tour plots (WRFminus observations) for the whole wine

region. Subsequently, spatial and temporal agreement

with observations was assessed by using the metrics of

pattern correlation [corr; Eq. (4)], which describes spa-

tial agreement, centered root-mean-square differences

[RMSDs; Eq. (5)], which is a measure of the average

magnitude of model error, and variance ratios [VRs;

Eq. (8)], which describe the difference between the

observed and simulated average annual variance. These

metrics were summarized in a Taylor diagram, which is a

commonly used diagram for examining climate model

simulations (Taylor 2001). A regional analysis of biases

was also undertaken by computing regionally averaged

absolute (WRF minus observations) and percentage

[(WRF minus observations/observations) 3 100] biases

for each of thewine regions. Last, the ability ofWRF-ERA

to reproduce the interannual variability of the indices was

evaluated through a comparison of the observed and

simulated annual anomalies from 1981 to 2010 for each of

the indices, averaged over all of the wine regions.

The second stage of the analysis involved evaluating

the GCM-forced simulations against observations. For

this, the analysis that was carried out was identical to that

for WRF-ERA except that annual anomalies were not

computed as an RCM driven with a GCM can only be

expected to reproduce the mean climate over at least 10–

30 years rather than the climate for one particular year.

Also, this analysis covered the period from 1981 to 1999 to

enable comparisons between WRF-ERA and the WRF

simulations driven by the GCMs under current climate.

The formulas for calculating the corr, the centered

RMSD, the annual variance for the observations s2
o and

simulation s2
s , and the annual VR are given below,

where s is the simulated field, o is the observed field, and

the overall mean of a field is indicated by an overbar:

corr5

1

N
�
N

n51

(s
n
2 s)(o

n
2 o)

s
s
s
o

, (4)

RMSD5
1

N
�
N

n51

[(s
n
2 s)(o

n
2 o)]2 , (5)

s2
s 5

1

N
�
N

n51

(s
n
2 s)2 , (6)

s2
o 5

1

N
�
N

n51
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TABLE 1. Table showing the time period used for the calculation, class limits, and sources for HI and CI.

Index Months Class limits Source

HI [Eq. (1)] 1 Oct–31 Mar Very cool 5 #1500 Huglin (1978)

Cool 5 1500–1800

Temperate 5 1800–2100

Warm temperate 5 2100–2400

Warm 5 2400–3000

Very warm 5 .3000

CI [Eq. (2)] 1–31 Mar Very cool nights 5 #12 Tonietto and Carbonneau (2004)

Cool nights 5 12–14

Temperate nights 5 14–18

Warm nights 5 .18

TABLE 2. The length-of-day coefficient K for HI (Huglin 1978).

Lat K

#408000 1.00

408010–428000 1.02

428010–448000 1.03

448010–468000 1.04

468010–488000 1.05

488010–508000 1.06
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2) FUTURE CLIMATE PROJECTIONS

Climate projections were analyzed from each GCM-

driven simulation and their ensemble mean through an

analysis of future minus present climate contour plots for

each climate index. This is known as the delta change ap-

proach and is a simple and frequently used method for

overcoming some of the bias issues associated with climate

modeling (Liang et al. 2008;Ruml et al. 2012). This approach

is based on the assumption that a model’s bias is constant in

time so that by subtracting the present climate from the fu-

ture climate, the bias is effectively removed, and the amount

of climate change to be expected can be quantified.

The difference between future climate and present

climate was tested for statistical significance using the

Zwiers and von Storch t test at a 95% confidence interval

for each index (Zwiers and von Storch 1995). This t test

is a statistical tool that was specifically developed for

analyzing small samples (#30) of climate data. It is

suitable for this application as it takes into account the

serial correlation of the data. The assumptions of the test

are that the two samples are Gaussian and serially cor-

related with the same variance and lag-1 correlation

(Zwiers and von Storch 1995). The Zwiers and von

Storch t test has been used widely in climate research for

testing differences between two climate means (Deser

et al. 2004; Räisänen et al. 2004; Jungclaus et al. 2010;

Reda 2015; Chiodo et al. 2016).

3. Results

a. Evaluation of WRF-ERA against observations
(1981–2010)

In this section, WRF simulations that have been

driven with ERA-Interim are compared with the

AWAP observations to quantify WRF’s downscaling

capabilities for SWWA in relation to the climatic indices

relevant to viticulture. The indices are evaluated for the

period 1981–2010.

Figure 3 shows the observed and simulated indices

and the corresponding model biases averaged over the

period 1981–2010. There was a clear north–south tem-

perature gradient for the observed HI (Fig. 3a). HI

ranged from 2900 units in the north of the region to 1800

units on the southeast coast (Fig. 3a). According to the

Tonietto and Carbonneau (2004) classification (Table 1),

this spans the ‘‘warm’’ to ‘‘temperate’’ temperature

regimes. The north–south decreasing temperature gradi-

ent was well represented by WRF-ERA, and biases were

predominantlywarm forHI (Fig. 3a). The observedCIwas

warmest along the west and southeast coastlines (148–
178C) and coldest in the center of the state’s wine region

(128–148C; Fig. 3b), ranging from ‘‘cool’’ to ‘‘temperate’’

nights as classified by Tonietto and Carbonneau (2004;

Table 1). Again, WRF-ERA was able to capture this

general pattern of CI well, and biases were 618C across

most of the region (Fig. 3b). Some areas, however, had a

bias of up to 28C, particularly in the center, where CI was

observed to be coldest. A warm bias of up to 28C was also

noted in a corner of the southwestern tip.

The observed GSP increased from north to south and

showed an initial increase from west to east, coinciding

with the location of theDarling Scarp, before decreasing

again (Fig. 3c). Wine regions along the south coast were

found to experience up to 400mm per growing season

and as little as 180mm per growing season in the north

and east. WRF-ERA was able to represent a north–

south increasing rainfall gradient for GSP but with less

definition than what was observed. The observed west–

east gradient was only slightly evident in the simulation,

and WRF-ERA did not capture the extent of the in-

crease of rainfall along the scarp (Fig. 3c). Bias was

predominantly dry with the exception of some wet bias

on the eastern part of the region, and bias was largest

along the coast and the Darling Scarp.

Figure 4 shows a Taylor diagram for the three climate

indices. These plots graphically summarize how well the

simulated indices match the observed indices in terms of

their corr [Eq. (4)], RMSD [Eq. (5)], and average annual

VR [Eq. (8); Taylor 2001]. The arc on the Taylor dia-

gram shows the corr, while the x and y axes indicate the

VR. The dashed line labeled REF highlights where the

VR is equal to 1, and the concentric semicircles that

increase around the point on the x axis labeled REF

represent the RMSD, with each contour representing

0.5 RMSD. Good model agreement with observations is

represented by the index point being found close to the

x axis and near the REF line.

Pattern correlation was high (corr. 0.85) for all of the

indices, particularly for HI (corr . 0.95). GSP had the

lowest pattern correlation (corr 5 0.87). RMSDs

were ,1 for the temperature indices and only slightly

greater than 1 for GSP. The VR for HI was slightly

greater than 1, indicating that the average annual vari-

ance was less than observed, and just below 1 for CI and

GSP, indicating the contrary.

Regionally averaged biases indicate that model

agreement was highest for CI (Fig. 5). Simulated CI did

not differ by more than 618C from the observations for

any of the regions, and biases were all ,10%. Biases

were predominantly positive, but there was a slight un-

derestimation of CI in Margaret River (Fig. 1). Re-

gionally averaged biases for HI were all positive

(Fig. 5a) and larger than those for CI. However, regional

biases were still mostly,10%. The exceptions were the
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FIG. 3. OBS, WRF-ERA simulation, and bias (WRF2OBS) for (a) HI, (b) CI, and (c) GSP (for the October–

April growing season; in this and subsequent figures, per growing season is indicated as GS21) averaged from

1981 to 2010.
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Perth Hills (12.0%), the Swan District (13.1%), and

Geographe (11.9%). Average regional biases were

consistently negative for GSP and substantially higher

than what was found for the temperature indices

(Fig. 5c). All biases . 20% with the exception of the

Great Southern (13.0%), and Margaret River had the

greatest percentage bias at just over 30%.

Figure 6 shows that the observed annual anomalies

did not indicate any observable trend in the indices over

the given time period (no statistical test was applied).

Anomalies for HI were generally well represented by

WRF-ERA (Fig. 6a). However, model agreement for

interannual variability was poor across some years.

Notable discrepancies were for the years 1991, 2001, and

2003. The observed interannual variability for CI was

also well captured by WRF-ERA, with the simulation

consistently showing a close match with observations

across the given time period. An exception was the year

2007, which was a cooler than average year but was

simulated as slightly warmer than average (Fig. 6b). For

GSP, the observed anomalies had a poorer representa-

tion by WRF-ERA, with several years showing marked

discrepancies between observations and the simulation.

Notable examples were the years 1985, 1989, 1990, 1994,

2001, 2003, and 2005 (Fig. 6c).

b. Evaluation of WRF-CCS, WRF-CSI, and WRF-
ECH against observations (1981–99)

Following on from the evaluation of WRF-ERA’s

simulation against observations, and with an under-

standing of the biases associated with WRF, the next

section explores WRF’s ability to reproduce the climate

indices relevant to viticulture when using boundary

conditions from three GCMs for the period 1981–99.

WRF-ERA was included in this evaluation as a refer-

ence point to measure model skill.

Figures 7–9 show the observed and simulated temper-

ature indices with corresponding biases for WRF-ERA,

WRF-CCS, WRF-CSI, and WRF-ECH averaged from

1981 to 1999. All of the GCM-forced simulations were

able to represent the north–south temperature gradient

acrossWA’s wine regions forHI. Similarly, CI’s pattern of

warmer temperatures along the coast and cooler values in

the center was also simulated by all models. The north–

south gradient for GSP was also well captured by the

simulations, but precipitation around the Darling Scarp

was poorly represented. All of the simulations had pre-

dominantly dry biases, most notably along the coastline

and the Darling Scarp. WRF-CCS and WRF-ECH

demonstrated a slight wet bias in the southeast (Fig. 9).

Pattern correlation was high for all simulations of HI

(.0.95) and reasonable for CI (0.85 , corr ,0.90;

Fig. 10). There was little difference in corr values be-

tween simulations, and HI generally had the greatest

spatial agreement for all simulations. For the tem-

perature indices, the VRs for WRF-CCS and WRF-

CSI were .1, indicating simulated annual variance

was, on average, greater than observed. This discrep-

ancy was largest for WRF-CSI’s simulation of HI, as

evidenced by the high VR and RMSD. WRF-ECH, on

the other hand, had VRs all ,1 for the temperature

indices, showing that this simulation had higher annual

variance. For GSP, WRF-CCS had the greatest spatial

agreement with observations (corr5 0.83); however, it

had amarkedly highVR (.3) andRMSD (.5).WRF-CSI

had the lowest pattern correlation with observations

(corr 5 0.62). Both WRF-CSI and WRF-ECH over-

estimated the average annual variance with VRs , 1.

The distribution, sign, and magnitude of the regional

biases identified in WRF-CCS’s simulation of the tem-

perature indices were closely aligned with what was

found forWRF-ERA’s simulations (Figs. 11a,b and 12a,b).

For CI, biases were lowest for WRF-CCS relative to the

other GCM-forced simulations. For the temperature

indices, WRF-CSI had a notably warmer tendency and

showed the least skill. For HI and CI, WRF-CSI had

average regional warm biases that exceeded 30% and

60% in some regions, respectively (Figs. 11 and 12).

For HI, WRF-ECH had regional biases that were

smaller than all other simulations, includingWRF-ERA

(mostly ,10%; Fig. 11).

Average regional biases show that GSP was pre-

dominantly underestimated by all simulations and across

all regions with the exception of a slight overestimation

FIG. 4. Taylor plot showing spatial and temporal agreement of

WRF-ERA with observations for HI, CI, and GSP (for the October–

April growing season) from 1981 to 2010 (RMSD contour interval 5
0.5). Labels 1, 2, and 3 refer to HI, CI, and GSP, respectively.
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by WRF-ECH in the Great Southern and Manjimup

(Fig. 13). WRF-ECH showed the greatest accuracy in

reproducing GSP when compared with the other

simulations, with substantially lower biases across all

regions. This simulation had particularly good agree-

ment with observations for Blackwood Valley, Man-

jimup, the Great Southern, and the Swan District

(bias , 10%). WRF-ERA, WRF-CCS, and WRF-CSI

all had a similar pattern of regional biases for GSP, but

biases were generally larger for WRF-CCS. For WRF-

CCS and WRF-CSI, biases for GSP exceeded 30% for

all regions with the exception of WRF-CSI in the

Great Southern, where the bias was just under 20%

(Fig. 13).

c. Climate projections (2030–59 minus 1970–99)

Having quantified the errors associated with WRF

and the GCM-forced simulations, future changes to the

viticulture indices are now quantified by applying the

delta change method of future (2030–59) minus current

(1970–99) climate for the threeGCM-forced simulations

and their ensemble mean.

The simulations projected increases in both tempera-

ture indices across all of WA’s wine regions (Fig. 14). All

of these changes were statistically significant with the

exception of an inland part in the north of the region for

WRF-ECH’s simulation of CI. For the temperature in-

dices, WRF-CSI projected the greatest degree of warm-

ing. Furthermore, projected warming had a north–south

decreasing trend. There was less model agreement with

regard to future changes in GSP (Fig. 14c). WRF-CCS

projected large decreases in GSP, WRF-CSI projected

little change but some drying in the north and southeast,

and WRF-ECH projected an increase in precipitation in

the north and southeast and some decrease in the

southwest. The ensemble mean projected an overall de-

cline in GSP. However, the projected changes were not

statistically significant with the exception of a small area

in the north for WRF-CSI. As with GSP, projections for

GSP-EVTvaried between ensemblemembers.WRF-CCS

FIG. 5. Absolute (red) and percentage (white) bias forWRF-ERAover the period 1981–2010 averaged across all

regions (AR), Blackwood Valley (BV), Geographe (GG), Great Southern (GS; here also used as a region label),

Manjimup (MJ), Peel (PL), Pemberton (PM), Perth Hills (PH), and Swan District (SD) for (a) HI, (b) CI, and

(c) GSP (for the October–April growing season).
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projected increases to the index in the northeast and

southeast and decreases in the southwest. Statistically

significant change was only identified in the southeast.

WRF-CSI projected little change, and WRF-ECH sug-

gested GSP-EVT will increase across most of the region,

particularly in the north and northeast, with only a small

area projected to experience statistically significant

change. The ensemble mean showed minimal change

across most of the region, with some significant increases

in the north, northeast, and southeast.

For all simulations, the regionally averaged pro-

jected change indicated that HI will increase by .220

units in all regions, with the northern regions projected

to increase by up to 400 units (Fig. 15a). The southern

regions were projected to have lower increases in HI.

There was little difference in the magnitude of pro-

jected warming between the simulations for HI. For CI,

all regions were projected to experience warming of at

least 18C by all simulations, with WRF-CSI projecting

larger increases of approximately 28C across most of

the regions. The ensemble mean projected a minimum

of 1.48C regionwide. For GSP, differences between

simulations were particularly marked, most notably

in the large reduction in GSP projected by WRF-CCS

(Fig. 15c). For the ensemble mean, changes were pro-

jected to be largest for Pemberton (295mmper growing

season) and smallest for the Swan District (240mm per

growing season). Projected regional changes in GSP-

EVT varied markedly between regions and simulations.

Averaged across all regions, GSP-EVT was projected to

increase. Generally, less change was projected for the

regions in the south and southwest (,15mm per grow-

ing season), and larger changes were projected for the

regions in the north (up to 45mm per growing season).

WRF-ECH projected notably larger increases in the

northern regions relative to the other ensemble

members.

4. Discussion and conclusions

a. WRF regional climate simulations using ERA-
Interim boundary conditions

This study has shown that when WRF is driven with

ERA-Interim data, the RCM provides a satisfactory

representation of the indices that are relevant to viticul-

ture, particularly for the temperature indices. Average

regional percentage biases were largely ,10% for the

temperature indices (Fig. 5), and WRF was shown to

have a dominant warmer tendency. Andrys et al. (2015)

highlighted a prominent cold bias for maximum tem-

peratures in these WRF simulations of SWWA climate.

This deficiency in WRF has also been highlighted in

other regional climate studies for SWWA (Kala et al.

2015), United States (Zhang et al. 2009), and Europe

(Dasari et al. 2014; Heikkilä et al. 2011; Katragkou et al.

2015; Soares et al. 2012). However, the viticulture-

related indices evaluated in the present study include

HI, which incorporates an average of maximum and

minimum temperatures, and CI, which is the average

minimum temperature in March. Therefore, WRF’s

FIG. 6. Time series [1981–2010 (series begins in 1982,which represents the 1981/82 growing season)] comparingOBSand simulated (WRF-ERA)

annual anomalies averaged over the whole wine region for (a) HI, (b) CI, and (c) GSP (for the October–April growing season).
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specific bias characteristics are less identifiable

because of averaging resulting in masked biases. This

highlights a shortfall of the study in that, by using av-

erages for model evaluation, the distinct model bias

characteristics can be hidden through bias compensa-

tion, which has the potential to incorrectly indicate

model skill. This is also an issue that has been high-

lighted in other model evaluation studies (García-Díez
et al. 2013; Katragkou et al. 2015; Perkins et al. 2007).

Notwithstanding, the skill shown for the other perfor-

mance measures of corr, RMSD, and VR (Fig. 4),

which are all independent of model biases, provides a

reliable endorsement for the use of WRF to investigate

changes to the indices relevant to viticulture in WA’s

wine regions.

For the temperature indices, CI was simulated with

the greatest accuracy, with average regional percentage

biases largely ,5%. There were slightly larger biases

associated with the simulation of HI, which may be re-

lated to the method of calculation. Because HI is a heat

summation index whereby temperatures are summed

over the growing season, bias is accumulated over this

time frame. The bias calculated for CI, however, is

an average of the biases associated with the simulation

of minimum temperatures during March. Minimum

temperatures are generally influenced by topography

FIG. 7. (a) OBS and simulatedHI forWRF-ERA,WRF-CCS,WRF-CSI, andWRF-ECHand (b) biases (WRF2OBS) for all simulations

averaged over the period 1981–99.
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to a greater extent thanmaximum temperatures because

of cold air drainage at night (e.g., Chung et al. 2006;

Hubbart et al. 2007; Bigg et al. 2014), and errors asso-

ciated with the simulation of minimum temperatures are

therefore usually related to the resolution of the climate

model limiting the accurate representation of finer-scale

features (Perkins et al. 2007). Pattern correlation for CI

was slightly lower in comparison with HI but still within

an acceptable range (corr 5 0.88; Fig. 4). A finding of

lower pattern correlation values for minimum temper-

atures is consistent with other comparable regional cli-

mate evaluations (Andrys et al. 2015; Soares et al. 2012;

Zhang et al. 2009). The predominantly warm biases that

were identified in WRF-ERA’s simulation of CI are

consistent with the findings of Andrys et al. (2015) for

WRF’s simulation of minimum temperatures in spring.

A warm bias for WRF’s simulation of minimum tem-

peratures was also identified by Kala et al. (2015)

in SWWA.

WRFwas found to have larger errors when simulating

precipitation than it did for the temperature-related

indices, which is a common finding in climate modeling

research (Chotamonsak et al. 2011; Salathe et al. 2010).

The magnitude and distribution of rainfall are strongly

influenced by local features such as topography. SWWA

is characterized by relatively low relief; therefore,

FIG. 8. As in Fig. 7, but for CI.
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topography is not a primary influence on its climate.

However, the Darling Scarp does generate an increase

in rainfall in its vicinity, as noted in the observed GSP

(Fig. 3c). Because of the resolution of the climate sim-

ulations analyzed (5 km), this precipitation pattern has

not been fully captured by WRF-ERA, as evidenced by

the negative bias found in this area. In a study by Pitts

and Lyons (1990), it was shown that a resolution of

0.5 km was needed to accurately reproduce the wind-

generated turbulence of the scarp and hence its

potential influence on local precipitation patterns.

Furthermore, rainfall during the growing season in

SWWA is generally low as the majority of the region’s

rainfall occurs during winter. The main driver of the

climate in this region is the position of the subtropical

high pressure belt. During spring and summer, it is lo-

cated to the south of SWWA, with the associated cold

fronts located farther south of the continent, resulting in

hot, dry conditions for the region as anticyclonic condi-

tions dominate. During autumn, the high pressure belt

migrates northward and is positioned at SWWA’s

northern boundary duringwinter, allowing for the regular

passage of cold fronts that bring the majority of the

annual rainfall to SWWA (Gentilli 1972). Rainfall that

occurs during the growing season (i.e., late spring, sum-

mer, and early autumn) is generally strongly influenced

FIG. 9. As in Fig. 7, but for GSP.
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by surface heating and associated convection, a process

that is known to be difficult for climatemodels to simulate

accurately (Harding et al. 2013; Heikkilä et al. 2011).

Biases across the region were predominantly negative

for GSP, with just a slight wet bias in the southeast

(Fig. 3c). When averaged for the regions, this was

completely masked by the dominant dry bias (Fig. 5c).

This is in contrast to findings from other studies that

have used WRF as an RCM to simulate precipitation

and found the overestimation of precipitation to be

more characteristic of WRF (Argüeso et al. 2012;

Caldwell et al. 2009; Heikkilä et al. 2011; Katragkou

et al. 2015). However, all of these studies ran WRF at a

coarser resolution of 10–36 km and in regions with

comparatively complex topography. There is a known

tendency of RCMs to overestimate precipitation on the

windward side of topographical features, known as the

windward/lee effect, when their resolution is not fine

enough to effectively resolve convection (Wulfmeyer

et al. 2008). The finer resolution of 5 km used in this

study could be a reason why such biases were not found,

but these differences could also be due to different

physics options used by these other studies using WRF.

A significant dry bias was identified along the southwest

coastline. This issue was also highlighted by Andrys

et al. (2015), who showed that the dry bias along the

coast could be explained by the western domain

boundary being too close to the coastline. This was

shown by carrying out an additional simulation during

2007 (when the bias was highest) but extending the

western boundary of the domain by an additional 10 grid

points (50 km) into the Indian Ocean, thus providing

additional distance between the domain boundary and

the coastline. Andrys et al. (2015) showed that this re-

duced the dry bias to a large extent but not completely.

Similar edge effects have been reported elsewhere (Seth

and Giorgi 1998; Lowrey and Yang 2008). There were

no observable trends in GSP over the period 1981–2010.

This is consistent with previous studies on climatic

trends in the region, which have found a clear decreasing

trend in rainfall in the region during winter (June–

August) since the mid-1970s, but not during other sea-

sons (Allan and Haylock 1993; Smith et al. 2000; Hope

et al. 2006).

b. WRF regional climate simulations using GCM
boundary conditions

The WRF-ERA simulation, being driven with a

reanalysis product, provides a useful reference for

comparison with WRF simulations driven with GCMs.

The close alignment between WRF-ERA and WRF-

CCS in terms of the magnitude, sign, and regional

distribution of biases associated with the temperature

indices (Figs. 7 and 8) indicates that the quality of the

driving data in this simulation is superior to that of

the other GCMs for temperature-related indices.

This is in support of the findings of Andrys et al. (2016),

whereWRF-CCS was found to consistently score higher

on performance-based measures when simulating tem-

perature in SWWA relative to the other GCM-forced

simulations.

WRF-CSI had a prominent warmer tendency that

was not present in the other simulations and, in terms

of biases, showed the least skill in simulating the

temperature indices. The warm bias that has been

highlighted in WRF-CSI is consistent with the findings

of Andrys et al. (2016), where a positive bias was

identified in WRF-CSI’s simulations of the climate in

SWWA for both minimum and maximum tempera-

tures but particularly for minima. The distinct contrast

inWRF-CSI’s simulation of the temperature indices to

that of the other GCM-forced simulations indicates

that the warm bias has been inherited by the input

driving data.

The sign of the biases exhibited by WRF-ECH’s

simulation of the temperature indices also largely

matched the sign of those found for WRF-ERA. How-

ever, the magnitude was lower for HI and comparable

for CI (Figs. 7 and 8). WRF-ECH performed better than

WRF-CSI, a finding that differs from that of Andrys

et al. (2016), where the two members were generally

found to be comparable in terms of performance,

both having equally significant errors but of different

FIG. 10. Taylor plot comparing spatial and temporal agreement

of WRF-ERA, WRF-CCS, WRF-CSI, and WRF-ECH with ob-

servations for HI, CI, and GSP (for the October–April growing

season) for the period 1981–99 (RMSD contour interval 5 0.5).

Labels 1, 2, and 3 refer to HI, CI, and GSP, respectively.
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characteristics. The improved performance of WRF-

ECH to that of WRF-CSI in simulating the indices rel-

evant to viticulture can be related to the calculation of

the indices, which ultimately reflects the error char-

acteristics in different ways. For example, a systematic

cold bias of up to 58C was identified in WRF-ECH by

Andrys et al. (2016), which has effectively counter-

acted the warm bias inherent in the simulation of HI

shared by all ensemble members. WRF-ECH was

found by Andrys et al. (2016) to perform well when

simulating minimum temperatures, which is further

supported by the low biases associated with its sim-

ulation of CI. Conversely, the simulation of minimum

temperatures was where WRF-CSI was found to be

poorest, hence its notable overestimation of CI. Despite

these biases, pattern correlation values for the temper-

ature indices were high (0.85, corr, 0.97) and similar

for all simulations (Fig. 10). This indicates that WRF is

able to accurately reproduce the spatial pattern of

temperature in these regions despite the large-scale

biases introduced by the driving data.

The biases suggest that WRF-ECH reproduced the

observed GSP more accurately than the other simula-

tions, even improving upon WRF-ERA (Fig. 13).

However, pattern correlation was second to lowest

(corr 5 0.74), next to WRF-CSI, for GSP, indicating

the spatial distribution of rainfall was poor for WRF-

ECH (Fig. 10). Andrys et al. (2016) examined seasonal

rainfall biases in SWWA produced by the same GCM-

driven simulations that are analyzed here. WRF-ECH

was found to have a more persistent wet bias than the

other simulations while also exhibiting some dry bias,

particularly in spring and along the coast in winter.

Therefore, by looking at total rainfall over the growing

season, the biases in the WRF-ECH simulation are

effectively masked. The biases for this simulation are

therefore low but for the ‘‘wrong’’ reasons rather than

as a result of model skill, hence an example of bias

compensation. Further work on the frequency, in-

tensity, and timing of precipitation simulations

throughout the growing season is therefore required to

better understand these biases.

FIG. 11. The HI absolute (red) and percentage (white) bias (WRF 2 OBS) averaged across AR, BV, GG, GS

(here used as a region label), MJ, PL, PM, PH, and SD for (a) WRF-ERA, (b) WRF-CCS, (c) WRF-CSI, and

(d) WRF-ECH over the period 1981–99.
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Model performance with respect to the simulation of

GSP was inconsistent for all ensemble members. For

example, although spatial correlation for GSP was best

for WRF-CCS, biases, RMSD, and VRs were notably

high, with biases exceeding 60% in the northern wine

regions (Fig. 13b). This large bias forWRF-CCS is likely

to be related to the fact that winter precipitation is not

included in GSP. Winter was the only season where

WRF-CCSwas found byAndrys et al. (2016) to exhibit a

wet bias. Hence, by not including this season, the dry

bias found for the other seasons is more notable. The

inconsistency demonstrated by the three ensemble

members in simulating GSP diminishes confidence in

the use of these simulations to quantify future changes

to this index in the wine regions of WA. Any use of the

GSP results should therefore take into consideration

the high uncertainty with respect to future changes in

precipitation.

In summary, it can be concluded that WRF-CCS

offers a superior representation of the temperature-

related indices that are important to viticulture in

WA’s wine regions when compared with WRF-CSI

and WRF-ECH. For GSP, however, all simulations

had significant shortfalls when reproducing this

index for WA’s wine regions, with no ensemble

member showing any distinct advantage over

the others.

c. WRF regional climate projections for viticulture in
Western Australia

Based on the findings of this research, where cli-

mate projections were based on the assumptions of

the A2 emission scenario, all of WA’s wine regions

are expected to experience statistically significant

increases in HI under future climate (Fig. 14). Sig-

nificant increases in CI were also projected for all

regions and all simulations with the exception of

WRF-ECH, where part of the region was projected to

not experience any significant change. WRF-CSI was

generally found to result in a higher warming scenario

when compared with the other simulations, which is a

distinction that was also made by Webb et al. (2008)

and Barnuud (2012) when comparing climate pro-

jections from CMIP3 GCMs for WA’s wine regions.

FIG. 12. As in Fig. 11, but for CI.
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Although there were some differences in the magni-

tude of projected warming, all simulations agreed on

the direction of change, which increases confidence in

the projections.

Regional differences in the projected warming of

HI were not marked, although the Swan District and

the Perth Hills were projected to have a slightly

larger increase than the other regions (Fig. 15a).

These regions at the north of WA’s viticulture area

are already experiencing warm growing conditions.

The projected increases in HI would push them into

the ‘‘very warm’’ classification (Table 1), potentially

challenging the regions’ capacity to produce premium

quality wines. The most southern regions and central

west regions, which currently fall into the ‘‘temper-

ate’’ and ‘‘warm temperate’’ categories for HI, would

be reclassified as ‘‘warm temperate’’ and ‘‘warm,’’

respectively. Such changes could lead to future

growing conditions being more favorable for alter-

native varieties to those that are currently grown.

Several European studies have also highlighted how

increases in HI will lead to some viticulture regions

no longer being viable for premium wine production

(Seguin 2005; Stock et al. 2005) and a shift in varieties

for other regions (Fraga et al. 2013; Lorenzo et al.

2013; Moral et al. 2016).

Other studies that have evaluated climate projections

for viticulture-related climate indices in WA’s wine

regions have also highlighted the vulnerability of WA’s

wine industry, particularly for the northern regions. For

example, Hall and Jones (2009) found that WA’s

northern wine regions would potentially experience

growing conditions in the future that would deem them

no longer viable for premium wine production. These

included the Perth Hills and Swan District by 2030, Peel

by 2050, and Geographe by 2070. This was also sup-

ported by the findings of Barnuud (2012), who also

classified north Blackwood as no longer viable for

premium wine production by 2070. Research that has

evaluated the potential impacts of climate change on the

quality of wine produced inWA has also highlighted the

wine region’s vulnerability, particularly for the hotter

northern regions. For example, Webb et al. (2008)

carried out a regionally specific evaluation of climate

change impacts for Australia’s viticulture industry for

2030 and 2050 under scenarios of low, medium, and high

FIG. 13. As in Fig. 11, but for GSP.
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FIG. 14. Differences between future (2030–59) and historical (1970–99) simulations fromWRF-CCS, WRF-CSI, WRF-

ECH, and their ensemble mean for (a) HI, (b) CI, (c) GSP (for the October–April growing season), and (d) GSP-EVT.

Stippling shows areas where there is a statistically significant difference at a 95% confidence interval.
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warming. The cost to premium wine grape quality was

quantified, and the Swan District was projected to ex-

perience up to 100% cost to quality by 2050, whereas

the Great Southern and Margaret River, in the cooler

south, were projected to entail lower costs to quality of

up to 15% and 20%, respectively. Hence, the results

presented here, based on high-resolution climatic

data, provide a strong reinforcement to findings from

previous research that have indicated WA’s wine

regions will face challenges under future climate.

Current CI classifications of WA’s wine regions range

from ‘‘temperate nights’’ in the Swan District and the

Perth Hills to ‘‘cool nights’’ in the cooler central regions

(Fig. 3b; Table 1). The ensemble mean climate pro-

jection suggested that all regions would experience a

warming of at least 1.48C for CI, with slightly more

warming projected for the Swan District and the Perth

Hills (Fig. 15b). This could result in the northern regions

being reclassified as ‘‘warm nights’’ under future climate.

Higher nocturnal temperatures during the ripening period

are associated with a loss of aroma in the resulting wine as

well as a lightening of color in red wines (Tonietto and

Carbonneau 2004). It is acknowledged that in WA, it is

possible for wine grapes to be harvested prior to the month

of March, depending on the variety and season conditions.

Therefore, the CI, as it is calculated here, would not be

applicable in such cases. Further research that modified the

CI to apply to the specific ripening period of certain vari-

eties would provide greater value when investigating how

changes to this index may impact viticulture in WA.

Notwithstanding, the findings clearly point to a warmer

climate, the implications of which for WA’s wine regions

could be a change of identity for the wine industry. For

example, while the state’s wine regions are currently most

well known for specific varieties of premium quality, future

climate could lead to a shift in varieties, such as from cooler

climate white varieties to red varieties more suited to

warmer conditions.

There was less agreement between models with

regard to changes to GSP and GSP-EVT in WA’s wine

FIG. 15. Projected change (2030–59minus 1970–99) fromWRF-CCS,WRF-CSI,WRF-ECH, and their ensemble

mean averaged across AR, BV, GG, GS (here also used as a region label), MJ, PL, PM, PH, and SD for (a) HI,

(b) CI, (c) GSP (for the October–April growing season), and (d) GSP-EVT.
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regions. While projections for GSP indicated largely drier

conditions, projections for GSP-EVT suggested an in-

crease in water availability under future climate, with no-

table variability between ensemble members for both

indices. There is therefore greater uncertainty as to how

these indices will change under future climate. This am-

biguity related to future precipitation projections is a

common issue in climate change research because climate

models are not able to simulate rainfall with the same

accuracy as temperature (Alexander and Arblaster 2009).

This research explored a range of plausible climate pro-

jections for the climate indices relevant to viticulture inWA

by evaluatingWRF simulations that were driven with three

different GCMs. However, because of data availability, the

project was limited to one RCM and one SRES emissions

scenario; thus, the full range of uncertainty related to the

future climate of WA’s wine region was not taken into ac-

count. Furthermore, the climate data that were available for

evaluation were produced fromWRF simulations driven by

CMIP3 GCMs. However, CMIP5 GCMs (Taylor et al.

2012) currently represent the state of the art for GCMs.

Therefore, it is acknowledged that there are now improved

datasets available for carrying out climate change evalua-

tions than what has been used in this research. Nonetheless,

CMIP3 GCMs are still very useful and still widely used as

boundary conditions for regional climate studies (e.g., Fita

et al. 2017; Evans et al. 2017; Olson et al. 2016).

Because there were significant biases identified in the

WRF simulations, it was not possible to evaluate the

absolute values projected for the indices and then relate

those to the established climatic thresholds for different

varieties. A warm bias of 28C, for example, could in-

accurately indicate that a temperature threshold had

been exceeded. To reduce these biases, future research

will make use of ERA-Interim as a surrogate truth to

correct biases from the GCMs prior to use as boundary

conditions in WRF. This method has recently been suc-

cessfully implemented to reduce biases from WRF

regional climate simulations driven with GCMs (e.g., Xu

and Yang 2012; Yu and Wang 2014; Bruyère et al. 2014).
Another method that will also be investigated will be to

reduce biases from the current temperature and pre-

cipitation simulations by bias correcting the latter against

the AWAP gridded observations, following the meth-

odology of Argüeso et al. (2013), who bias corrected

WRF temperature and precipitation simulations over

southeast Australia. Applying these bias correction

methods would minimize the identified biases, thus fa-

cilitating an evaluation of thresholds. This would enable

an assessment of current varietal suitability based on

established thresholds and of how this may change un-

der future climate. Considering that the productive

lifespan of the grapevine is expected to be .50 years, a

current understanding of what varieties will be most

suited to future climate can be of high value.
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Duchêne, E., and C. Schneider, 2005: Grapevine and climatic

changes: A glance at the situation in Alsace. Agron. Sustain-

able Dev., 25, 93–99, doi:10.1051/agro:2004057.

Dudhia, J., 1989: Numerical study of convection observed during

the Winter Monsoon Experiment using a mesoscale two-

dimensional model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/

1520-0469(1989)046,3077:NSOCOD.2.0.CO;2.

En-Tao, Y., W. Hui-Jun, and S. Jian-Qi, 2010: A quick report on a

dynamical downscaling simulation over China using the

nested model. Atmos. Oceanic Sci. Lett., 3, 325–329,

doi:10.1080/16742834.2010.11446886.

Evans, J. P., and M. F. McCabe, 2010: Regional climate simula-

tion over Australia’s Murray-Darling basin: A multitemporal

assessment. J. Geophys. Res., 115, D14114, doi:10.1029/

2010JD013816.

——, D. Argueso, R. Olson, and A. Di Luca, 2017: Bias-corrected

regional climate projections of extreme rainfall in south-

east Australia. Theor. Appl. Climatol., doi:10.1007/

s00704-016-1949-9, in press.

Fita, L., J. P. Evans, D. Argüeso, A. King, and Y. Liu, 2017:

Evaluation of the regional climate response in Australia to

large-scale climate modes in the historical NARCliM simu-

lations. Climate Dyn., doi:10.1007/s00382-016-3484-x, in press.

Fraga, H., A. C. Malheiro, J. Moutinho-Pereira, and J. A. Santos,

2012: An overview of climate change impacts on European

viticulture. Food Energy Secur., 1, 94–110, doi:10.1002/

fes3.14.

——, ——, ——, and ——, 2013: Future scenarios for viticultural

zoning in Europe: Ensemble projections and uncertainties. Int.

J. Biometeor., 57, 909–925, doi:10.1007/s00484-012-0617-8.

——,——,——,G.V. Jones, F. Alves, J. G. Pinto, and J. A. Santos,

2014: Very high resolution bioclimatic zoning of Portuguese

wine regions: Present and future scenarios. Reg. Environ.

Change, 14, 295–306, doi:10.1007/s10113-013-0490-y.

——, I. García de Cortázar Atauri, A. C. Malheiro, and J. A.

Santos, 2016:Modelling climate change impacts on viticultural

yield, phenology and stress conditions in Europe. Global

Change Biol., 22, 3774–3788, doi:10.1111/gcb.13382.

García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Sea-
sonal dependence of WRF Model biases and sensitivity to

PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139,

501–514, doi:10.1002/qj.1976.

Gentilli, J., 1972: Australian Climate Patterns. Thomas Nelson,

285 pp.

JULY 2017 F I RTH ET AL . 2135

http://dx.doi.org/10.1007/s10584-007-9390-9
http://dx.doi.org/10.1002/met.1317
http://dx.doi.org/10.1175/2008JAMC1710.1
http://dx.doi.org/10.1175/2008JAMC1710.1
https://hal.archives-ouvertes.fr/hal-01011461
https://hal.archives-ouvertes.fr/hal-01011461
http://dx.doi.org/10.1007/s00382-013-2011-6
http://dx.doi.org/10.1175/JCLI-D-15-0369.1
http://dx.doi.org/10.1175/JCLI-D-15-0369.1
http://dx.doi.org/10.1007/s00484-015-1126-3
http://dx.doi.org/10.1007/s00484-015-1126-3
http://dx.doi.org/10.1007/s10584-009-9583-5
http://dx.doi.org/10.1007/s10584-009-9583-5
http://dx.doi.org/10.4225/08/584d9590d046b
http://dx.doi.org/10.4225/08/584d9590d046b
http://dx.doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
http://dx.doi.org/10.1088/1748-9326/11/3/034015
http://dx.doi.org/10.1002/asl.313
http://dx.doi.org/10.1007/s10584-006-9211-6
http://dx.doi.org/10.1016/j.agrformet.2005.12.011
http://dx.doi.org/10.1016/j.agrformet.2005.12.011
http://dx.doi.org/10.1175/JCLI3761.1
http://dx.doi.org/10.1155/2014/704079
http://dx.doi.org/10.1155/2014/704079
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
http://dx.doi.org/10.1051/agro:2004057
http://dx.doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
http://dx.doi.org/10.1080/16742834.2010.11446886
http://dx.doi.org/10.1029/2010JD013816
http://dx.doi.org/10.1029/2010JD013816
http://dx.doi.org/10.1007/s00704-016-1949-9
http://dx.doi.org/10.1007/s00704-016-1949-9
http://dx.doi.org/10.1007/s00382-016-3484-x
http://dx.doi.org/10.1002/fes3.14
http://dx.doi.org/10.1002/fes3.14
http://dx.doi.org/10.1007/s00484-012-0617-8
http://dx.doi.org/10.1007/s10113-013-0490-y
http://dx.doi.org/10.1111/gcb.13382
http://dx.doi.org/10.1002/qj.1976


Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate

information needs at the regional level: The CORDEX

framework. WMO Bull., 58, 175–183.

Gordon, H. B., and Coauthors, 2002: The CSIROMk3 climate system

model. CSIRO Atmospheric Research Tech. Rep. 60, 130 pp.

[Available online at https://publications.csiro.au/rpr/download?

pid5procite:ff94db7e-ad41-40bf-b6be-2ab1ad07805c&dsid5DS1.]

Grell, G. A., S. Emeis, W. R. Stockwell, T. Schoenemeyer,

R. Forkel, J. Michalakes, R. Knoche, and W. Seidl, 2000:

Application of a multiscale, coupledMM5/chemistry model to

the complex terrain of the VOTALP valley campaign.Atmos.

Environ., 34, 1435–1453, doi:10.1016/S1352-2310(99)00402-1.
Greve, P., B. Orlowsky, B.Mueller, J. Sheffield,M. Reichstein, and

S. I. Seneviratne, 2014: Global assessment of trends in wetting

and drying over land. Nat. Geosci., 7, 716–721, doi:10.1038/

ngeo2247.

Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the

Great Lakes Basin of North America using the WRF regional

climate model: The impact of the Great Lakes system on re-

gional greenhouse warming. J. Climate, 25, 7723–7742,

doi:10.1175/JCLI-D-11-00388.1.

Hall, A., and G. V. Jones, 2009: Effect of potential atmospheric

warming on temperature-based indices describing Australian

winegrape growing conditions. Aust. J. Grape Wine Res., 15,

97–119, doi:10.1111/j.1755-0238.2008.00035.x.

Harding, K. J., P. K. Snyder, and S. Liess, 2013: Use of dynamical

downscaling to improve the simulation of central U.S. warm

season precipitation in CMIP5 models. J. Geophys. Res. At-

mos., 118, 12 522–12 536, doi:10.1002/2013JD019994.

Hasumi, H., and S. Emori, 2004: K-1 coupled GCM (MIROC)

description. Center for Climate System Research Tech. Rep. 1,

34 pp. [Available online at http://ccsr.aori.u-tokyo.ac.jp/;hasumi/

miroc_description.pdf.]

Heikkilä, U., A. Sandvik, and A. Sorteberg, 2011: Dynamical

downscaling of ERA-40 in complex terrain using the WRF

regional climate model. Climate Dyn., 37, 1551–1564,

doi:10.1007/s00382-010-0928-6.

Hewitson, B., J. Daron, R. Crane,M. Zermoglio, and C. Jack, 2014:

Interrogating empirical-statistical downscaling. Climatic

Change, 122, 539–554, doi:10.1007/s10584-013-1021-z.

Hirsch, A. L., A. J. Pitman, and J. Kala, 2014a: The role of land

cover change in modulating the soil moisture-temperature

land-atmosphere coupling strength over Australia. Geophys.

Res. Lett., 41, 5883–5890, doi:10.1002/2014GL061179.

——, ——, S. I. Seneviratne, J. P. Evans, and V. Haverd, 2014b:

Summertime maximum and minimum temperature coupling

asymmetry over Australia determined using WRF. Geophys.

Res. Lett., 41, 1546–1552, doi:10.1002/2013GL059055.

Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment

6-class microphysics scheme (WSM6). J. Korean Meteor. Soc.,

42, 129–151.
——, J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice

microphysical processes for the bulk parameterization of

clouds and precipitation. Mon. Wea. Rev., 132, 103–120,

doi:10.1175/1520-0493(2004)132,0103:ARATIM.2.0.CO;2.

Hope, P. K., 2006: Projected future changes in synoptic systems

influencing southwest Western Australia. Climate Dyn., 26,

765–780, doi:10.1007/s00382-006-0116-x.

——, W. Drosdowsky, and N. Nicholls, 2006: Shifts in the synoptic

systems influencing southwest Western Australia. Climate

Dyn., 26, 751–764, doi:10.1007/s00382-006-0115-y.

Hubbart, J. A., K. L. Kavanagh, R. Pangle, T. Link, and

A. Schotzko, 2007: Cold air drainage and modeled nocturnal

leaf water potential in complex forested terrain. Tree Physiol.,

27, 631–639, doi:10.1093/treephys/27.4.631.

Huglin, P., 1978: Nouveau mode d’évaluation des possibilités hé-
liothermiques d’un milieu viticole. C. R. Acad. Agric. Fr., 64,

1117–1126.

Jones, D. A., W. Wang, R. Fawcett, and I. Grant, 2007: Climate

data for the Australian Water Availability Project: Final

milestone report. Australian Bureau of Meteorology Rep.,

36 pp.

Jones, G. V., 2007: Climate change: Observations, projections,

and general implications for viticulture and wine pro-

duction. Whitman College Economics Dept. Working Paper

7, 15 pp.

——, and G. B. Goodrich, 2008: Influence of climate variability on

wine regions in the western USA and on wine quality in the

Napa Valley. Climate Res., 35, 241–254, doi:10.3354/cr00708.

Jungclaus, J., and Coauthors, 2010: Climate and carbon-cycle var-

iability over the last millennium. Climate Past, 6, 723–737,

doi:10.5194/cp-6-723-2010.

Kain, J. S., 2004: The Kain–Fritsch convective parameterization:

An update. J. Appl. Meteor., 43, 170–181, doi:10.1175/

1520-0450(2004)043,0170:TKCPAU.2.0.CO;2.

Kala, J., J. Andrys, T. J. Lyons, I. J. Foster, and B. J. Evans,

2015: Sensitivity of WRF to driving data and physics op-

tions on a seasonal time-scale for the southwest of Western

Australia. Climate Dyn., 44, 633–659, doi:10.1007/

s00382-014-2160-2.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471,

doi:10.1175/1520-0477(1996)077,0437:TNYRP.2.0.CO;2.

Katragkou, E., and Coauthors, 2015: Regional climate hindcast

simulations within EURO-CORDEX: Evaluation of a WRF

multi-physics ensemble. Geosci. Model Dev., 8, 603–618,

doi:10.5194/gmd-8-603-2015.

Keeling, C. D., S. C. Piper, R. B. Bacastow, M. Wahlen, T. P.

Whorf, M. Heimann, and H. A. Meijer, 2001: Exchanges of

atmospheric CO2 and
13CO2 with the terrestrial biosphere and

oceans from 1978 to 2000. I. Global aspects. Scripps Institution

of Oceanography Tech. Rep. 01–06, 28 pp. [Available online

at http://scrippsco2.ucsd.edu/assets/publications/keeling_sio_

ref_series_exchanges_of_co2_ref_no_01-06_2001.pdf.]

King, A. D., L. V. Alexander, and M. G. Donat, 2013: The efficacy

of using gridded data to examine extreme rainfall character-

istics: A case study for Australia. Int. J. Climatol., 33, 2376–

2387, doi:10.1002/joc.3588.

Liang, X.-Z., K. E. Kunkel, G. A. Meehl, R. G. Jones, and J. X. L.

Wang, 2008: Regional climate models downscaling analysis of

general circulation models present climate biases propagation

into future change projections. Geophys. Res. Lett., 35,

L17S19, doi:10.1029/2008GL033666.

Lorenzo, M. N., J. J. Taboada, J. F. Lorenzo, and A. M. Ramos,

2013: Influence of climate on grape production and wine

quality in the Rías Baixas, north-western Spain. Reg. Environ.

Change, 13, 887–896, doi:10.1007/s10113-012-0387-1.

Lowrey, M. R. K., and Z.-L. Yang, 2008: Assessing the capability

of a regional-scale weather model to simulate extreme pre-

cipitation patterns and flooding in central Texas. Wea. Fore-

casting, 23, 1102–1126, doi:10.1175/2008WAF2006082.1.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and

S. A. Clough, 1997: Radiative transfer for inhomogeneous

atmospheres: RRTM, a validated correlated-k model

for the longwave. J. Geophys. Res., 102, 16 663–16 682,

doi:10.1029/97JD00237.

2136 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56

https://publications.csiro.au/rpr/download?pid=procite:ff94db7e-ad41-40bf-b6be-2ab1ad07805c&amp;dsid=DS1
https://publications.csiro.au/rpr/download?pid=procite:ff94db7e-ad41-40bf-b6be-2ab1ad07805c&amp;dsid=DS1
http://dx.doi.org/10.1016/S1352-2310(99)00402-1
http://dx.doi.org/10.1038/ngeo2247
http://dx.doi.org/10.1038/ngeo2247
http://dx.doi.org/10.1175/JCLI-D-11-00388.1
http://dx.doi.org/10.1111/j.1755-0238.2008.00035.x
http://dx.doi.org/10.1002/2013JD019994
http://ccsr.aori.u-tokyo.ac.jp/~hasumi/miroc_description.pdf
http://ccsr.aori.u-tokyo.ac.jp/~hasumi/miroc_description.pdf
http://dx.doi.org/10.1007/s00382-010-0928-6
http://dx.doi.org/10.1007/s10584-013-1021-z
http://dx.doi.org/10.1002/2014GL061179
http://dx.doi.org/10.1002/2013GL059055
http://dx.doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
http://dx.doi.org/10.1007/s00382-006-0116-x
http://dx.doi.org/10.1007/s00382-006-0115-y
http://dx.doi.org/10.1093/treephys/27.4.631
http://dx.doi.org/10.3354/cr00708
http://dx.doi.org/10.5194/cp-6-723-2010
http://dx.doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
http://dx.doi.org/10.1007/s00382-014-2160-2
http://dx.doi.org/10.1007/s00382-014-2160-2
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.5194/gmd-8-603-2015
http://scrippsco2.ucsd.edu/assets/publications/keeling_sio_ref_series_exchanges_of_co2_ref_no_01-06_2001.pdf
http://scrippsco2.ucsd.edu/assets/publications/keeling_sio_ref_series_exchanges_of_co2_ref_no_01-06_2001.pdf
http://dx.doi.org/10.1002/joc.3588
http://dx.doi.org/10.1029/2008GL033666
http://dx.doi.org/10.1007/s10113-012-0387-1
http://dx.doi.org/10.1175/2008WAF2006082.1
http://dx.doi.org/10.1029/97JD00237


Moral, F. J., F. J. Rebollo, L. L. Paniagua, A. García, and E. M. de

Salazar, 2016: Application of climatic indices to analyse viticul-

tural suitability in Extremadura, south-western Spain. Theor.

Appl. Climatol., 123, 277–289, doi:10.1007/s00704-014-1363-0.

Moriondo, M., G. V. Jones, B. Bois, C. Dibari, R. Ferrise,

G. Trombi, and M. Bindi, 2013: Projected shifts of wine re-

gions in response to climate change. Climatic Change, 119,

825–839, doi:10.1007/s10584-013-0739-y.
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