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Abstract

Background

Lung transplant patients are a vulnerable group of immunosuppressed patients that are

prone to frequent respiratory infections. We studied 60 episodes of respiratory symptoms in

71 lung transplant patients. Almost half of these episodes were of unknown infectious etiol-

ogy despite extensive routine diagnostic testing.

Methods

We re-analyzed respiratory samples of all episodes with undetermined etiology in order to

detect potential viral pathogens missed/not accounted for in routine diagnostics. Respiratory

samples were enriched for viruses by filtration and nuclease digestion, whole nucleic acids

extracted and randomly amplified before high throughput metagenomic virus sequencing.

Viruses were identified by a bioinformatic pipeline and confirmed and quantified using spe-

cific real-time PCR.

Results

In completion of routine diagnostics, we identified and confirmed a viral etiology of infection

by our metagenomic approach in four patients (three Rhinovirus A, one Rhinovirus B infec-

tion) despite initial negative results in specific multiplex PCR. Notably, the majority of sam-

ples were also positive for Torque teno virus (TTV) and Human Herpesvirus 7 (HHV-7).

While TTV viral loads increased with immunosuppression in both throat swabs and blood
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samples, HHV-7 remained at low levels throughout the observation period and was

restricted to the respiratory tract.

Conclusion

This study highlights the potential of metagenomic sequencing for virus diagnostics in cases

with previously unknown etiology of infection and in complex diagnostic situations such as in

immunocompromised hosts.

Introduction

Post-transplant immunosuppression significantly increases the risk of viral infections in lung

transplant recipients [1–3]. Infections commonly considered to cause mild or self-limiting dis-

ease in immunocompetent hosts, can lead to unusual presentations with increased severity,

mortality or duration [4–6] and numerous community-acquired respiratory viral infections

are implicated in triggering rejection episodes [7]. As a consequence, lung transplant recipients

are frequently tested for a range of common respiratory viruses, bacteria and fungi [8–10].

Despite this rigorous testing, a considerable number of episodes of respiratory symptoms

remain unresolved [11]. Successful diagnosis would, however, be important for several rea-

sons. Specific treatment is available for most bacterial and fungal pathogens and some viruses.

A rapid confirmation reduces unnecessary diagnostic steps and allows to set effective measures

to restrict nosocomial transmission. Excluding potential transmissible pathogens as source of

the etiology is therefore equally important as their confirmation.

Most transplant centers employ a tight monitoring for clinical signs of respiratory infection

in lung transplant patients over prolonged periods after transplantation [12]. The panel of rou-

tinely assessed respiratory viruses has been continuously expanded in recent years. Currently,

many programs use multiplex PCR analysis targeting up to 20 different viruses, however, still

not all viruses potentially relevant to the lung transplant setting can be included. Considering

the high incidence of airway inflammation following lung transplantation, close monitoring of

the virome may be advantageous in linking distinct pathogen signatures with specific out-

comes, such as allograft dysfunction.

The rise of high-throughput sequencing, also called Next Generation Sequencing, com-

bined with virus-sequence independent amplification by random PCR allows for unbiased

detection of virtually any pathogen present in a given sample [13–15]. This methodology may

overcome one of the great limitations of routine virus diagnostics, which restricts the number

of detectable pathogens to the ones included in the assay. Here, we established and used this

approach for re-analyzing respiratory samples from lung transplant patients presenting with

symptoms suggestive of an airway infection for which no viral or microbial etiology was found

by extensive routine diagnostic methods with the aim to resolve a viral etiology of infection

using metagenomic sequencing.

Material and methods

Ethical statement

Samples were obtained from lung transplant patients and healthy controls within the Viral

Metagenome Study of the Clinical Research Priority Program ‘Viral Infectious Diseases’ of the

University of Zurich. The Ethics Committee of the Canton of Zurich approved the study and

written informed consent was obtained from all participants. None of the transplant donors
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were from a vulnerable population and all donors or next of kin provided written informed

consent that was freely given.

Transplant cohort

The study was performed at the University Hospital Zurich, Switzerland, which is a 900 bed

tertiary care teaching hospital covering all medical specialties except pediatrics and orthope-

dics. Since May 2013 patients listed for lung transplantation and patients with prior lung trans-

plant have been asked for participation in the current study. Inclusion criteria were age of at

least 18 years and written informed consent. The willingness to participate in the study was

notable, 83.8% of asked individuals consented. Lung transplant recipients were either included

at the time of transplantation (baseline enrollment) or at the time of presentation with symp-

toms suggestive of an airway infection (indication enrollment). Participants enrolled at base-

line had planned study visits at the time of transplantation, 4–6 weeks and 1 year thereafter.

Drop out rate was low with 4.1%. Additional visits were scheduled, if a patient developed

symptoms suggesting an airway infection. After every indication enrollment or symptom visit

a follow-up visit was scheduled. At each visit, throat swabs, plasma, urine and stool samples

were obtained and patients were evaluated for signs of infection and relevant transplant out-

come events. An airway infection was considered if cough and/or dyspnea and/or a decrease

in forced expiratory volume in 1 second (FEV1) were present (200 ml or 10% decrease [12,

16]). Fever alone was not considered sufficient to define an airway infection.

Healthy controls

Healthy donors were recruited at the University of Zurich and questioned for co-morbidities.

Throat swabs were obtained as for the lung transplant recipients.

Routine immunosuppression

Induction immunosuppression consisted of basiliximab (20 mg on day of surgery and post-

operative day 4) and methylprednisolone (1 g given during operative procedure, 125 mg on

postoperative day 1 and 2). Maintenance immunosuppression included mycophenolate mofe-

til, prednisone and a calcineurin inhibitor, primarily cyclosporine [17].

Antimicrobial prophylaxis

Lung transplant recipients received antibacterial and antifungal prophylaxis (sulfamethoxazole/

trimethoprim, itraconazole and aerosolized amphotericin B). Anti-viral prophylaxis was admin-

istered based on CMV-risk constellation depending on serology of donor and recipients. In

intermediate (donor CMV negative or positive/recipient CMV positive) or high risk (donor

positive/recipient negative) constellations valganciclovir was used, whereas in low risk constella-

tion (donor CMV negative/recipient CMV negative) valaciclovir as prophylaxis against HSV,

VZV was administered [17]. All prophylactic regimens were usually prescribed lifelong.

Routine viral and microbial testing

Routine workup included throat swabs or broncho-alveolar lavage (BAL) for viral and micro-

bial analysis. Respiratory viruses were tested using the respiratory pathogens 21 panel (Fast-

track Diagnostics, Junglinster, Luxembourg), which detects 18 different respiratory virus

types (Influenza A, Influenza A H1N1 pdm 09, and Influenza B viruses; Coronaviruses NL63,

229E, OC43 and HKU1; Parainfluenzavirus 1, 2, 3 and 4; Human Metapneumovirus A/B, Rhi-

novirus, Respiratory Syncytial viruses A/B, Adenovirus, Enterovirus, Parechovirus and
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Bocavirus) and Mycoplasma pneumoniae. CMV and EBV were tested in blood samples using

specific PCR [18, 19]. Routine cultures for bacteria and fungi were performed for all samples

sent to the microbiology laboratory.

Metagenomic sequencing and bioinformatic analysis

Throat swab samples were collected in 3 ml virus transport medium (HEPES buffer pH 7.4,

10% FCS, antibiotics); BAL samples were collected native. To enrich for free virus particles,

samples were centrifuged at 1500 rpm for 5 min and the supernatant filtered through a

0.45 μm filter. Total nucleic acids were extracted from 1000 μl of filtrate with a NucliSENS

EasyMAG (BioMérieux, Craponne, France) in an elution volume of 25 μl. RNA and DNA

were amplified in two separate workflows. For RNA amplification, a random primer with an

anchor sequence (ATCGTCGTCGTAGGCTGCTCNNNNNNNN, 5 μM) [20–22] was used for

reverse transcription (SuperScript III, Invitrogen/Thermo Fisher, Waltham, MA) of 5 μl eluate,

performed at 42˚C for 60 min. For the DNA workflow, 5 μl of the eluate was incubated with

the same random primer as in the RNA workflow at 94˚C for 2 min and cooled down to 10˚C

for 10 min. One round of second-strand synthesis (Large Klenow Fragment, New England

Biolabs, Ipswich, MA) with 5 U/μl enzyme per reaction was performed in both workflows at

37˚C for 30 min, followed by inactivation at 75˚C for 20 min. In both workflows, nucleic acids

were further amplified with AmpliTaq Gold (Applied Biosystems/Thermo Fisher) using only

the anchor primer (1 μM) and the following temperature protocol: 94˚C for 15 min; 40 cycles

of 94˚C for 30 s, 40˚C for 30 s, 50˚C for 30 s, 72˚C for 1 min; 72˚C for 5 min. Finally, both

workflows were pooled in equal amounts for library construction with NexteraXT (Illumina,

San Diego, CA) prior to sequencing for 150 bp on an Illumina MiSeq with version 3 reagents

and the “FASTQ only” workflow. Samples were demultiplexed using MiSeq Reporter v2.4.60.

The whole sequencing procedure took about 2–3 working days.

Reads were analyzed using the “VirMet” in-house bioinformatics pipeline [22]. Briefly,

reads were quality-filtered and cleaned from non-viral reads by aligning with STAR [23]

against human, bacterial, bovine, and canine genomes. The remaining reads were aligned

with BLAST [24] against an in-house viral database that contains > 46’000 complete viral

sequences. The BLAST hit with the lowest E-value was reported, given identity was higher

than 75%. Sequencing and bioinformatic analysis was done in duplicates for each sample and

the results merged for further analysis. Viral reads and undetermined reads of each sample

were uploaded to Zenodo (http://doi.org/10.5281/zenodo.400950).

For confirmation of identified virus hits, de-novo contigs were assembled with velvet (mini-

mum contig length 200) [25] using only the virus specific reads reported by the VirMet pipe-

line and analyzed by BLAST. Enteroviruses were genotyped with an automated genotyping

tool [26].

Confirmation of Rhinovirus, TTV and HHV-7 infection by specific PCR

Rhinovirus, TTV and HHV-7 were detected with specific real-time PCR as described [27–29].

For TTV and HHV-7, copies/μl were calculated using plasmid-based standards with known

concentrations in every run.

Results

Respiratory symptoms with etiology revealed by routine testing

A total of 71 lung transplant recipients participated in this study (Table 1). Among the 29

patients enrolled at baseline, 17 showed no respiratory symptoms up to 15 months after lung
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transplantation whereas 12 patients developed respiratory symptoms. Among those and the

additional 42 patients of the “indication enrollment”, we observed a total of 60 episodes of

respiratory symptoms (Figs 1 and 2A). A viral and bacterial etiology was established by routine

testing in 28 (47%) and 3 (5%) episodes, respectively. Of note, in 29 (48%) episodes, no micro-

bial or viral etiology of infection could be determined by routine diagnostics (Fig 2B). CMV

and EBV viral loads were tested frequently in blood and were negative during each of the

investigated 60 respiratory episodes.

Metagenomic sequencing of patients with respiratory symptoms of

unknown etiology

We were particularly interested in the 29 episodes of respiratory infections (from 24 different

patients) that were considered of unknown etiology, despite typical symptoms. We sequenced

27 throat swabs and 2 BAL samples using high-throughput metagenomic analysis (Table 2, S1

and S2 Tables) and identified reads of common respiratory viruses like Rhinovirus A and B

(HRV-A/B) and Human coronavirus (CoV) in five samples. To confirm the correct identifica-

tion of these viruses by our metagenomic pipeline, we performed de-novo assembly of all spe-

cific virus reads and used BLAST for aligning the resulting contigs against the full NCBI

database. For all four cases of rhinovirus detection, between 2 and 11 contigs were assembled

that were genotyped as expected to the corresponding Human rhinovirus A and B, respec-

tively. For fyc306, de-novo alignment was not done because of the small number of reads.

Direct BLAST analysis of those 12 reads produced matches to Human coronavirus genomes.

Next, the most frequently recorded reference sequence reported by the pipeline was used to

analyze the genome coverage. Although there were some prominent spikes in coverage, in

Table 1. Demographics of lung transplant recipients and controls.

Lung transplant recipients Healthy controls

Total (N) 71 42

Male (N, %) 35 (49%) 16 (38%)

Ethnicity (N, %)

White 70 (98.6%) 40 (95%)

Asian 1 (1.4%) 2 (4.8%)

Age (median years, interquartile range) 50 (33–58) 38 (29–56)

Underlying disease (N, %)

Cystic fibrosis 26 (36.6%)

COPDa 19 (26.8%)

Interstitial lung disease 12 (16.9%)

Alpha 1-antitrypsin-deficiency 3 (4.2%)

Sarcoidosis 3 (4.2%)

Other 8 (11.3%)

Co-morbidities (N, %)

Asthma 4 (9.5%)

Rhinitis 7 (16.8%)

Conjunctivitis 1 (4.2%)

Enrollment scenario (N, %)

Baseline enrollment 29 (40.9%)

Indication enrollment 42 (59.1%)

aChronic obstructive pulmonary disease

https://doi.org/10.1371/journal.pone.0177340.t001
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Fig 1. Overview of visits of lung transplant cohort. Relative timeline of visits for patients of the indication enrollment (A) and for

patients of the baseline enrollment starting at the transplantation (B). Symptoms are color coded as follows: no symptoms in green,
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most of the samples, the reads were distributed over several locations of the genome, giving

confidence that the reads originate from sequencing a full-length virus and not from a contam-

ination or misalignment (Fig 3). This was especially important to verify in the sample of

patient fyc306, which only accounted for 12 CoV reads.

airway infection in red, diarrhea in yellow, fever in blue, other symptoms (including dyspnea and decrease in FEV1) in purple, death

of the patient in black.

https://doi.org/10.1371/journal.pone.0177340.g001

Fig 2. Etiology of respiratory symptoms in lung transplant patients remained undetermined in almost half of analyzed

episodes. A) Number of lung transplant patients enrolled at baseline and by indication (in total 71). Patients with baseline

enrollment are grouped into those that never developed symptoms and those that developed at least one symptom (airway infection

or dyspnea or decrease in FEV1) during the first 15 months after transplantation. B) Etiology of respiratory symptoms among 60

observed episodes as determined by routine diagnostic testing. Episodes for which all routine diagnostic tests were negative were

summarized as unknown etiology.

https://doi.org/10.1371/journal.pone.0177340.g002

Metagenomic virus sequencing in lung transplant recipients

PLOS ONE | https://doi.org/10.1371/journal.pone.0177340 May 23, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0177340.g001
https://doi.org/10.1371/journal.pone.0177340.g002
https://doi.org/10.1371/journal.pone.0177340


Confirmation of respiratory virus infection by specific PCR

We used specific PCR to confirm the results for the five cases where rhinovirus and coronavirus

infections were detected by metagenomic analysis. As all five patients were previously checked by

multiplex PCR for the presence of respiratory viruses during routine testing but were diagnosed

as negative, we first re-examined the original diagnostic test results. In two cases (gkc048 and

lpt371), late amplification in the multiplex PCR was evident which, however, did not fulfill the cri-

teria for positivity (e.g. reaching a plateau until cycle 45) and therefore was reported as negative.

For patient fyc306, where CoV was detected by metagenomic sequencing, no respiratory virus

diagnostics had been performed for the analyzed symptom visit. A test conducted 14 days prior to

the symptom visit, however, showed evidence of late CoV amplification, but again did not fulfill

the criteria for positivity. Re-analysis of the sample from the symptom visit confirmed the results

of the metagenomics analysis and showed a clear positive for CoV HKU (ct 27.3).

Table 2. Virus reads reported by the bioinformatic pipeline.

Metagenomic Sequencing (reads) specific real-time PCR (ct)

ID HRV-A HRV-B HRV-C CoV TTV HHV-7 HRV TTV HHV-7

aaa505a 5’380 ndb 17.12 negc

agx716 3 27’266 27 nd 22.1 41.1

bvd197 8 nd neg 39.4

cjq504 1 1 3 318 nd neg 29.3

dha445a nd 36.3 40.2

fja259 (1/15) 132 nd 35.4 36.4

fja259 (2/15) 3 nd 37.8 39.3

fyc306 12 3 nd 31.7 36.5

gkc048 3 1’431 16 28 34.1 35.2

hjw495 1 1 1 25 nd 30.9 32.5

huh963 8 nd 29.9 33

hwa780 3 2’502 nd 23.4 neg

iwv516 8 2 nd 29.8 neg

jih765 3 5 nd 38.5 36.4

lpt371 875 5 22.4 neg 39.4

nrk011 (06/14) 9 2 nd 24.8 34.7

nrk011 (09/14) 44 56 neg 25.1 39.5

ozk162 2 nd neg neg

rcn630 56 72 2 35.9 27.6 neg

soy912 1 nd 35.2 37.5

ubh615 nd 36.8 neg

vbi271 nd 37.3 35.4

xch383 (3/14) 65 nd 35.3 34.3

xch383 (4/14) 54 nd 28.3 44.4

xya913 (02/14) 2 nd 36.0 37.8

xya913 (03/14) nd 41.7 neg

xya913 (04/14) nd 37.7 neg

yqv887 7 30 nd 28.9 33.6

ysm677 nd 33.4 38.4

a BAL samples
b not done
c negative (ct > 45)

https://doi.org/10.1371/journal.pone.0177340.t002
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We next conducted specific PCR for rhinovirus using a simplex assay which confirmed

high viral load rhinovirus infection of patient gkc048 (ct value 28) and patient lpt371 (ct value

22). The investigated sample from patient rcn630 showed a low Rhinovirus infection (ct value

36; 52 reads detected by sequencing). In contrast rhinovirus could not be detected by PCR in

patient nrk011 (09/14) (44 reads detected, Table 2).

Fig 3. Virus reads identified were distributed over the whole reference genomes. Coverage plots for

respiratory viruses identified in patients gkc048, nrk011 (09/14), lpt371, rcn630, fyc360. The coverage calculated

with samtools depth is shown at every position on the reference genome. The following reference genomes were

used for alignment: Human rhinovirus B83 strain ATCC VR-1193 (FJ445161.1) for gkc048, Human rhinovirus A46

(DQ473506.1) for lpt371, Human rhinovirus A21 strain ATCC VR-1131 (FJ445121.1) for rcn630, Human rhinovirus

A24 (EF173416.1) for nrk011 (09/14), Human coronavirus HKU1 strain N5P8 (DQ339101.1) for fyc360.

https://doi.org/10.1371/journal.pone.0177340.g003
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Frequent detection of non-respiratory viruses and bacteriophages

In addition to the common respiratory viruses reported above, we frequently identified reads

for Human herpes virus 7 (HHV-7) in 18 and Torque teno virus (TTV) in 9 of the 29 samples,

respectively (Table 2). TTV reads were analyzed in depth for different types and a cross con-

tamination of samples bvd197, cjq504, fja259 (1/15) and fyc306 with TTV sequences of sample

agx716 that was sequenced in the same run was detected (S3 Table). We further identified

reads for other human viruses including KI polyomavirus, Human papillomavirus and

Human herpesvirus 6A and 6B in individual samples (S1 Table). Reads from human endoge-

nous retrovirus can be explained by an incomplete filtering of human reads. Our metagenomic

pipeline further reported numerous reads of bacteriophages (S1 Table). All bacteriophages

identified primarily infect bacteria known to colonize the upper respiratory tract [30].

Dynamics of TTV and HHV-7 viral load in immunosuppressed patients

TTV and/or HHV-7 reads proved to be prevalent in many samples. While this was expected

for TTV, an ubiquitous annellovirus known to expand under immunosuppression [31–34],

the high prevalence of HHV-7 in respiratory tract samples was surprising. Specific real-time

PCR confirmed all cases with HHV-7 and TTV identified by metagenomic sequencing and

also identified additional cases that were not picked up in the metagenomic analysis (Table 2).

Viral load levels for HHV-7 were low across all samples limiting the chances for detection by

sequencing.

To assess whether the presence of these viruses was linked with either immunosuppression

or respiratory infection, we measured TTV and HHV-7 levels in all available throat swabs and

blood samples of the study participants and in throat swabs of healthy controls. Interestingly,

HHV-7 was only detected in throat swabs and could not be detected in blood, suggesting a

localized reactivation of HHV-7. Viral loads of TTV and HHV-7 proved similar amongst

healthy controls and lung transplant recipients at baseline (Fig 4), showing that lung transplant

recipients did not have higher viral loads at the time of transplant. Similarly, we did not see a

difference in TTV and HHV-7 virus loads between symptomatic visits and symptom-free visits

of both enrollment scenarios (Fig 4).

We next stratified our patients in two groups, based on whether patients developed respira-

tory symptoms up to 15 months after transplantation or not and monitored the viral loads of

TTV and HHV-7 longitudinally in these two patient groups. As shown in previous studies

[35], TTV viral loads in swab and blood significantly increased under immunosuppression

and plateaued after the first routine visit in both patient groups studied (Fig 5A). Importantly

though, we observed no significant difference in viral load between symptom-free and symp-

tomatic groups at baseline and at the visits closest to 5 weeks and to one year, respectively.

HHV-7 did not follow this pattern and viral loads remained at low levels in swabs throughout

the observation period and were undetectable in blood (Fig 5B).

Discussion

In the present study we used metagenomic virus sequencing to re-analyze episodes suggestive

of airway infection in lung transplant recipients that remained negative after extensive routine

testing to to identify a viral infectious etiology. Focusing on viruses, our open metagenomic

approach proved successful in identifying different pathogens. In five of the 29 samples, we

successfully detected sequencing reads of respiratory viruses that were not accounted for in

prior routine testing. Rhinovirus-specific simplex assays confirmed the presence of rhinovirus

in three out of four samples with previously negative results in routine multiplex diagnostics,

after HRV was detected by the metagenomic approach.
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Fig 4. TTV and HHV-7 viral loads did not correlate with symptoms. TTV virus loads in blood samples (A),

TTV viral loads in throat swabs (B) and HHV-7 viral loads in throat swabs (C). HC: healthy controls, B:
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The sequencing reads were distributed over the whole genome of the respective viruses (Fig

2) highlighting that indeed a full-length genome was detected. Despite the fact that three of

five detected viruses seemed of low level infection (indicated by low read numbers and high ct

value), the identified respiratory viruses are certainly clinically relevant as the infections

occurred in patients suffering from respiratory symptoms where despite extensive routine test-

ing no other etiology was found.

Importantly, the metagenomic analysis detected viral pathogens in samples in which the

prior routine multiplex PCR test was negative, the later confirmatory simplex PCR though

positive. This was likely due to a low specificity of the PCR for the given virus strains which

can occur particularly with multiplex assays [22]. However, as the primer and probe sequences

from the multiplex PCR assay are not available, this is difficult to asses.

While thus metagenomic sequencing in certain cases can be more effective than routine

multiplex PCR, a general drawback of metagenomic analysis remains its relatively low sensitiv-

ity compared to specific simplex PCR [36]. Indeed, the real time PCR detected TTV virus in 16

additional samples compared to metagenomic sequencing. On the other hand, detection by

metagenomic techniques cannot always be correlated with virus abundance.

baseline (time of transplantation) of baseline enrollment patients, S: symptomatic visits of both enrollment

scenarios, NS: non-symptomatic visits of both enrollment scenarios. Undetermined values were set to -2

log10 copies/μl for plotting and statistical analysis. Error bars show median and interquartile ranges, p-values

are calculated with the Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0177340.g004

Fig 5. TTV virus loads increase under immunosuppressive therapy in the early post transplantation phase. A) TTV virus loads monitored

longitudinally in blood and throat swab samples. Patients with baseline enrollment are grouped into those that never developed symptoms and those that

developed at least one symptom (airway infection or dyspnea or decrease in FEV1) during the first 15 months after transplantation. There was no significant

difference comparing the two patient groups at time of transplantation, at the visit closest to 5 weeks and at the visit closest to one year after transplantation

(Kruskal-Wallis test, data not shown). Undetermined values were set to -2 log10 copies/μl for plotting and statistical analysis. B) Same as in A, but for HHV-7

virus loads.

https://doi.org/10.1371/journal.pone.0177340.g005
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A number of factors influence the amount of virus in a given sample: location, technique of

sampling, and pre-analytical sample preparation have a great impact on the relative amount of

viral genome available to be sequenced [37]. Enrichment of viral nucleic acids from clinical

samples prior to sequencing as we successfully imply in our protocol is thus crucial [38].

Metagenomic sequencing frequently detected TTV and monitoring the longitudinal

dynamics of TTV by PCR showed an increase of the TTV after initiation of immunosuppres-

sion as previously described [31, 32, 35]. Nevertheless, the presence of the virus could not be

linked to any relevant, clinical manifestation so far.

Most intriguingly, we identified HHV-7 in the majority of swab samples. Unlike TTV,

HHV-7 showed no dynamics but remained at low levels even after initiation of immunosup-

pressive therapy. Interestingly, HHV-7 was restricted to the respiratory tract and not detect-

able in blood. The local presence of HHV-7 is intriguing and needs to be investigated in more

detail to understand its significance in lung transplant recipients. Owing to its commonly low

pathogenicity, clinical manifestations of HHV-7 disease are poorly described. Seroprevalence

of HHV-7 in the human population is estimated to be at 90% and the primary infection with

this virus typically occurs in the first 5 years of life [39]. HHV-7 has been linked to roseola-like

disease, fever or CMV disease [40, 41] and secondary reactivation of the latent reservoir of this

virus can take place in solid organ transplant patients in the first weeks of immunosuppressive

therapy [42], frequently in combination with detection of CMV [43–45].

Data from our cohort suggest that HHV-7 replication in the respiratory tract does not

depend on CMV replication. All our patients with either intermediate or high-risk constella-

tion received CMV antiviral prophylaxis with valganciclovir and accordingly CMV was not

detected in the 29 samples that were analyzed by metagenomic sequencing. Whether this med-

ication has any influence on HHV-7 replication remains unknown [46].

While our metagenomic approach identified respiratory viruses in five of 29 samples with

unknown etiology, in the remaining 24 symptomatic lung transplant samples no potentially

disease related viruses were found, leaving the exact etiology of symptoms unclear. Whether

this was due to insufficient sensitivity of the metagenomic approach, a novel virus not detected

in the bioinformatic analysis or an etiology other than of viral origin remains unknown.

For the time being, the relevance of metagenomic findings for the treating physician still

needs to be critically evaluated. A reliable metagenomics analysis must provide convincing evi-

dence that the identified virus reads indeed indicate presence of the postulated viruses. The

number of virus-specific reads, the depth of the coverage and the percent or locations of the

genome covered are main parts of this information, however, no appropriate thresholds have

been established in the literature so far [47]. In our hands,>10 sequencing reads and the virus

genome covered at several different locations (Fig 2) provided plausible indication that the

detected reads indeed indicated the presence of the postulated viruses. Nevertheless, a careful

evaluation and confirmation is necessary before treatment decisions can be solely based on

NGS findings.

Overall, our study highlights the potential of metagenomic virus sequencing in complex

diagnostic situations such as in immunocompromised hosts, where an open metagenomic

approach is a useful addition to routine test panels. Additional efforts in validation and result

interpretation are needed to fully incorporate this technology in the diagnostic repertoire.
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