

BOISE STATE UNIVERSITY **College of Engineering** Materials Science and Engineering

Atomic Force Microscopy (AFM)

AFM is a surface characterization technique that can generate high resolution maps of sample topography and surface properties such as adhesion or modulus at very small length scales (~1 nm – 100 μm). To achieve this, a sharp probe is brought in contact (or near-contact) with a sample and rastered across the surface.

To tracks changes in the probe deflection as it encounters changes in topography or tip-sample interaction strength, a laser reflects off the back of the probe to a 4 quadrant photodetector. This data is then used to create a topographical image of the surface or force-distance curves.

Bio AFM

- Sample Types
- DNA
- Proteins
- Lipid bilayers
- Live or stained cells
- Physiologically relevant
- Fluid environment
 - Buffer (pH control)
 - Salt concentration (osmotic pressure/ionic strength)
- Temperature control
- Applications
- High resolution topography
- Video rate imaging = dynamics/kinetics
- Nanomechanics

Author:

Jesse Schimpf Materials Science & Engineering Undergraduate Research Assistant Surface Science Laboratory, Micron School of Materials Science & Engineering jesseschimpf@u.boisestate.edu

Above: SEM micrograph of a Bruker ScanAsyst-Air-HR probe with an ~2 nm radius of curvature.

Advanced Atomic Force Miroscopy for BioMaterials Research Jesse Schimpf,¹ Michael Abend,² Conner Patricelli,³ Paul H. Davis.^{1*} Gunes Uzer,² Daniel Fologea,³ and Elton Graugnard¹ ¹Micron School of Materials Science & Engineering, ²Department of Mechanical & Biomedical Engineering, ³Department of Physics, *Mentor

Left: High resolution fluid AFM image of DNA origami sharp triangles.²

Co-Authors

Michael Abend, <u>michaelabend@u.boisestate.edu</u> Conner Patricelli, <u>connerpatricelli@u.boisestate.edu</u> Paul H. Davis (mentor), <u>pauldavis2@boisestate.edu</u> Gunes Uzer, <u>gunesuzer@boisestate.edu</u> Elton Graugnard, <u>eltongraugnard@boisestate.edu</u> Daniel Fologea, <u>danielfologea@boisestate.edu</u>

High Resolution Fluid Imaging

DNA

Nanomechanics

Ref	e	r	er	າດ	:e	S
				-		

& Acknowledgements

1. U. Maver, T. Velnar, M. Gaberšček, O. Planinšek, and M. Finšgar, TrAC, Trends Anal. Chem. 80: 96-111 (2016). 2. Image courtesy of Paul Davis and Brett Ward.

3. N. Sukamwang and K. Umezawa, *Toxins* **5** (2013).

4. R. M. Zadegan, E. G. Lindau, W. P. Klein, C. Green, E. Graugnard, B. Yurke, W. Kuang, & W. L. Hughes Sci. Rep. accepted (2017). 5. E. Krueger, J. Shim, A. Fathizadeh, A. Chang, B. Subei, K. Yocham, P. Davis, E. Graugnard, F. Khalili-Araghi, R. Bashir, D. Estrada, D. Fologea ACS Nano 10: 8910-8917 (2016).

6. C. M. Green, <u>K. Schutt</u>, <u>N. Morris</u>, R. Zadegan, W. L. Hughes, W. Kuang, & E. Graugnard *Nanoscale* (2017). 7. Data and images courtesy of Jesse Schimpf, Michael Abend, and Gunes Uzer.