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Abstract. Extracting meaningful knowledge from (big) data represents
a key success factor in many industries today. Supervised machine learn-
ing (SML) has emerged as a popular technique to learn patterns in com-
plex data sets and to identify hidden correlations. When this insight
is turned into action, business value is created. However, common data
mining processes are generally not tailored to SML. In addition, they fall
short of providing an end-to-end view that not only supports building
a ”one off” model, but also covers its operational deployment within an
information system.
In this research-in-progress work we apply a Design Science Research
(DSR) approach to develop a SML process model artifact that comprises
model initiation, error estimation and deployment. In a first cycle, we
evaluate the artifact in an illustrative scenario to demonstrate suitability.
The results encourage us to further refine the approach and to prepare
evaluations in concrete use cases. Thus, we move towards contributing
a general process model that supports the systematic design of machine
learning solutions to turn insights into continuous action.

Keywords: Data Mining Process, Supervised Machine Learning, Infor-
mation Systems

1 Introduction & Methodology

In parallel to the ”data tsunami” triggered by sensor or social media data [1],
also the availability of methods and tools to exploit data has quickly picked up.
Thus, possibilities to take advantage from insights drawn from (big) data have
dramatically increased [2]. While many early attempts in knowledge discovery
or data mining have focused on one time analyses, organizations increasingly
embed such machine learning approaches in operational processes to reap on-
going benefits, e.g. predictive maintenance provision, forecasting processes, or
customer churn predictions. Significant importance has been attributed to su-
pervised machine learning approaches [3, 4]—where developed models can be
turned into analytics services embedded within larger applications [5].
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While there are several different process models on data mining in general
and although these models are widespread [6], existing approaches bear deficien-
cies in at least two aspects—as we will show in more detail later: First, they
are not tailored to SML classification and, thus, not granular enough to serve
as a hands-on guidance for data analysts. Second, they typically do not cover
the critical step of the model error estimation and the ultimate process step to
deploy an analytics service within an information system. In order to address
both of these gaps, we apply a Design Science Research (DSR) approach [7]
to design a comprehensive, end-to-end process model specifically for classifica-
tion using SML. This artifact describes the activities and the data flow during
the initiation, error estimation and deployment of a generic SML classification
model built to predict a certain attribute from a given dataset. Thus, we aim to
add knowledge in the form of operational principles/architecture, thus making a
”level 2” contribution to knowledge (”nascent design theory”) [8, p. 341]. As we
aim to develop a new solution for a known problem, the DSR contribution type
is an improvement [9]. Figure 1 depicts our approach—with the individual steps
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Fig. 1. DSR activities of the first cycle, according to Peffers et al. [10]

also serving to structure the remaining paper: At first, we review relevant litera-
ture and conduct exploratory interviews with two experts from industry—both
confirming awareness of an issue (section 2). Then, we explain the suggestion and
development of our novel process model (section 3). In the evaluation step, we
test the artifact for suitability in an illustrative scenario [11] (section 4). Accord-
ing to Peffers et al. [10], an illustrative scenario is an evaluation method type and
defined as ”Application of an artifact to a synthetic or real-world situation aimed
at illustrating suitability or utility of the artifact” [10]. In our case we apply the
process model (artifact) to the development of a SML classification service to
predict the age of Twitter users (real-world situation) to illustrate its suitabil-
ity. Finally, we derive knowledge out of the completed design cycle—which then
leads us into subsequent design cycles (section 5).

2 Awareness of Problem

There is a variety of different process models for data mining [6], common rep-
resentatives amongst researchers and practitioners being Knowledge Discovery
in Databases (KDD) [12] and Cross Industry Standard Process for Data Mining
(CRISP-DM) [13]. While these process models are highly popular, they are ei-
ther pursuing particular objectives or are focusing on a limited part of the overall
process only [6]. None is specifically tailored to SML classification challenges nor
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does any of them include the error estimation and deployment steps of a predic-
tive model within an information system. Table 1 compares the most common
models as to the full coverage of a SML process from model instantiation to
model deployment.

Table 1. Comparison of different data mining process models regarding a holistic su-
pervised machine learning process

Source Model initiation Model error estimation Model deployment

Fayyad et al. [12] (KDD) G# G# #

Chapman et al. [13] (Crisp-DM)  #  

Witten et al. [14] # #  

Cabena [15] G# # #

Anand & Büchner [16]  # #

Cios et al. [17] G# # #

Brodley & Smyth [18]   #

#= Not addressed, G#= Partially addressed,  = Fully addressed

As the table shows, related work is very much focused on the process steps of
the model initiation (like preprocessing and model training)—but usually misses
out on the error estimation as well as the important final step to embed the
generated models within an IS artifact (and thus to create an actionable analytics
service). Furthermore, none of the existing processes is describing the data flow
during the process, which is a crucial aspect for creating a well-performing SML
model.

Therefore, in this research-in-progress paper we propose a holistic process

model for SML classification—from problem to final deployment. Such an artifact
can then be used for arbitrary SML model scenarios aiming at actionable SML
analytics services, e.g. in predictive maintenance applications or any of the other
scenarios mentioned before.

In order to contrast evidence from literature to current industry perception,
we additionally conduct exploratory interviews with two experts that analyze
data on a daily basis. They confirm the necessity of a fine-grained process model
tailored to SML classification tasks and emphasize the importance of standard-
ization in this context. According to them, currently established processes (e.g.
KDD) are insufficient as a guideline for building a SML classification model that
serves to derive knowledge out of data and is deployed for continuous use. Thus,
insights from both the literature review and industry interviews confirm the lack
of a holistic process model tailored to SML applications.

3 Suggestion & Development

Our goal is to design a process model that depicts the activities as well as the
data flow throughout the initiation, error estimation and deployment of a SML
classification process to predict a certain attribute from a large set of data. The
process runs through three consecutive phases, and ends with a deployed SML
classification model (figure 2). From a data perspective, we have to keep in mind
that for any supervised learning a ground truth data set (where the targeted
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attribute is known) is needed to train and test the model. To achieve this, the
process starts with a well-defined problem that describes the (business) setting
as well as the objective to be predicted. In the first phase, the model initiation,
the problem space is explored to gain insights. Methods, like an exploratory
data analysis [19], can be of use to find meaningful patterns and to identify
the relevant data (features) that can later on be processed. Furthermore, the
performance metrics are selected that are afterwards used to validate and test
the model. Common metrics include Fβ-score, ROC-AUC, sensitivity, recall,
specificity, accuracy, Cohen’s Cappa and others. The metrics are selected in
light of the specific problem setting, e.g. reflecting classification error impacts.

After that, the raw data is gathered. Should the target attribute not already
be included in the data, a manual labelling process is necessary. In that case,
to ensure correctness of the ground truth data, it is advisable to categorize the
data by more than one human assessor to minimize the manual classification
bias [20]. Next, this data is cleaned and structured and further preprocessed

(if necessary). Depending on the data input, fundamental preprocessing might
be necessary. For instance, if text needs to be analyzed, common preprocessing
techniques from the field of natural language processing (NLP) would be a n-
gram generation [21] or stemming [22]. The result of this step is the ground truth

data, which serves as the basis for the remaining process. The only remaining
step is choosing a classification algorithm.

The second main phase is the model error estimation, where the goal is to
estimate the expected performance of a model on unseen data. This is necessary,
as a model selection without a previous error estimation cannot make meaningful
estimations about performances and will result in too optimistic results [23]. As
we aim at identifying a solid model, we also need to regard different algorithm

parameters, which will characterize our machine learning model. A parameter, for
instance, is the error term penalty in case of evaluating a support vector machine
[24]. For each parameter a range of values has to be chosen (search space).
Then, data is split to be handled in an outer and inner cross validation (nested
cross validation). In the inner iteration, the model is trained and validated for
different parameter sets towards its fit for the given problem. Various techniques
for parameter tuning, such as a grid search, a bayesian optimization [25], a
gradient-based optimization [26] or a random select [27] can be used. Ultimately,
the previously defined metrics determine the best performing parameters on the
inner iteration. After iterating through all possibilities (in case of a grid search),
the best performing pair of parameters (on average) is then used to train on the
whole data set from the inner fold and validate it on completely unseen data
from the outer fold. Only by doing this, we can gain insight on how well the
model would perform on new, unseen data—and how the results vary across
different scenarios [28]. This process is repeated multiple times—depending on
the amount of folds and runs from the outer cross validation. After all outer
fold are iterated, we can calculate the mean, deviation and confidence interval
for the different acquired performances from their validation on the outer folds.
This result gives then insight about the expected performance of our model on
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unseen data and how widely it varies—and therefore how stable the model is
and how much it tends to over-fit [29].

Fig. 2. End-to-end process model for SML classification including the data flow, divided
into model initiation, error estimation and deployment.

The goal of the final model deployment phase is the generation, implementa-
tion and distribution of a built SML model—potentially as an analytics service—
within an information system. First, we perform another cross validation with
the identical parameter search space from the error estimation. We identify the

combination of parameters which achieves the best results regarding our pre-
viously defined performance metrics. As data is always valuable and in most
cases scarce, the complete data set is used to train the final machine learning
classification model using the previously selected parameters. Then, an export of

the final model (serialization) is needed to save the state of the model and the
used preprocessing pipeline for further usage. Now, the serialized object can be
included into a workflow, such as a connected web service, to predict the target
value of new, incoming data. Hereby, data gets sent to the serialized object to
be preprocessed and classified by the model. The deployed SML classification
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model, including the preprocessing steps, is the final output of the third phase
and the overall process.

4 Evaluation

The developed artifact is evaluated by performing an illustrative scenario [10]
to show its suitability as an SML classification process model. As a real-world
scenario, we want to predict the age-class (1-17, 18-24, 25+ years of age) of
a Twitter user by applying NLP and SML to the user’s tweets. This informa-
tion would be valuable, e.g., to analyze demographics of trending topics or the
automatic elicitation of customer needs [20].

Fig. 3. Overview over the process that includes the three main sub-processes of solving
a text mining problem.

As depicted in fig. 3, we follow the developed process to cope this challenge
as an illustrative scenario. During the model initiation, we explore the problem
space by comparing research about age classification and the feasibility of a
tweet-based age classifier [30]. We define the F1-score as our performance metric,
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which represents a trade-off between recall and precision. After that, we use the
official Twitter API1 to gather profiles and tweets of Twitter users who have at
least 20 tweets and who mention their age in the profile description. Manually, we
sort out profiles that might be misleading, e.g. bots (structure & clean data). We
then link the profiles to the corresponding age class (manually label profiles). For
each profile we concatenate 20 tweets that represent a text with a corresponding
age-class. This yields in a imbalanced data set with 781 categorized texts with a
distribution of 305 (1-17) to 285 (18-24) to 191 (25+). We use Natural Language
Processing (NLP) techniques as preprocessing [30], such as an n-gram processing,
emoticon-count, hashtag-count and hyperlink-count, and preprocess the tweets.
The output now represents our ground truth data set. Now we perform a pre-
test using several SML classifier algorithms and choose the Stochastic Gradient
Descent classifier as the best performing algorithm.

During the model error estimation phase, we first define a range of parame-
ters to tune the SML algorithm which defines our parameter search space. Now
we perform a nested cross validation with an inner 4-fold cross validation and
an outer 10-fold cross validation, to first tune and then validate the classifier
parameters. As an output of the inner cross validation, we get the best perform-

ing parameters. Then, the outer cross validation outputs the performance results

that we use to calculate the expected performance on unseen data. The mean is
47.47% F1-score, a deviation of 5.05% and confidence interval of [36.12; 57.04].

In a last step, the model deployment, we perform a 10-fold cross validation

with a Grid Search to identify the best performing parameters out of the param-
eter search space. The best run scores a F1-score of 52.02% which lays inside
the confidence interval identified during the model error estimation phase. Now
all ground truth data is used to train the final model. This final text classifier
is exported and deployed in a web service architecture. Providing a REST-API,
concatenated tweets of Twitter users can be sent to the API, triggering the clas-
sifier to predict the age and return the the response. The deployed model now
has an expected performance on unseen data derived during the model error esti-
mation phase. The classifier is made publicly accessible as a web service through
a user interface for demonstration2. With that, the age predicting SML classifier
can be embedded in other applications to dynamically segment groups of users.
As we tightly adhere to the developed process and succeed in building a text-
based age classifier for Twitter users, we demonstrate that the developed artifact
is suitable and helpful to guide both activities and data flow during the initiation,
generation and deployment of a SML classification model.

5 Conclusion

We suggest and develop a holistic process model as an artifact to systematically
build SML classification models that predict an attribute from a given dataset.
It both attends to the specifics of a SML classification model and includes the

1

2

https://dev.twitter.com/rest/public,  last  accessed  on  23-02-2017.  
http://age-prediction.science,  last  accessed  on  21-04-2017.
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deployment into an information system for continuous use and actionability. In
a first design cycle we run a first validation to test the suitability of the artifact
via an illustrative scenario [11]: We build a text-based age classifier for Twitter
users applying a step-by-step mapping to the developed process model.

Our future research will include additional evaluations of the artifact—in
concrete case studies and in experimental benchmarks vs. established process
models. We expect to generate more insights from the evaluations that will help
us to further refine the artifact in future design cycles, e.g. by detailing sub-steps
or providing decision guidance.

Thus, we contribute a first version of an artifact that will augment the in-
ventory of concepts and methods in knowledge discovery. The managerial impli-
cations of a comprehensive process model for supervised machine learning are
evident. As data availability and SML classification approaches soar in impor-
tance, a standardized and holistic process model is key to ensure flawless, high
prediction quality and efficient SML classification models that can also be em-
bedded in information systems for continuous support of decisions and actions.

Acknowledgements The authors would like to thank Björn Schmitz for his
input and contributions to the process model.
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