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Abstract 

In recent years, RNA interference (RNAi) has emerged as a potential therapeutic offering the 

opportunity to treat a wide range of diseases, including prostate cancer. Modified 

cyclodextrins have emerged as effective gene delivery vectors in a range of disease models. 

The main objective of the current study was to formulate anisamide-targeted cyclodextrin 

nanoparticles to interact with the sigma receptor (overexpressed on the surface of prostate 

cancer cells). The inclusion of octaarginine in the nanoparticle optimised uptake and 

endosomal release of siRNA in two different prostate cancer cell lines (PC3 and DU145 

cells). Resulting nanoparticles were less than 200 nm in size with a cationic surface charge (~ 

+20 mV). In sigma receptor-positive cell lines, the uptake of anisamide-targeted 

nanoparticles was reduced in the presence of the sigma receptor competitive ligand, 

haloperidol. When cells were transfected in 2D, the levels of PLK1 mRNA knockdown 

elicited by targeted versus untargeted nanoparticles tended to be greater but the differences 

were not statistically different. In contrast, when cells were grown on 3D scaffolds, 

recapitulating bone metastasis, targeted formulations showed significantly higher levels of 

PLK1 mRNA knockdown (46 % for PC3 and 37 % for DU145, p<0.05). To our knowledge, 

this is the first time that a targeted cyclodextrin has been used to transfect prostate cancer 

cells in a 3D model of bone metastasis. 

Keywords: RNAi, Sigma receptor, prostate cancer metastasis, collagen scaffolds, siRNA 

delivery, bone microenvironment 
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Introduction 

Prostate cancer is the most commonly diagnosed non-cutaneous cancer in men of the western 

world 
1
, with approximately 220,000 newly diagnosed cases and 28,000 deaths in the USA 

alone in 2015 
2
. The vast majority of prostate cancer cases are diagnosed at the local stage, 

where many effective and curative options are available (including surgery and radiotherapy) 

3
. However, when the disease becomes metastatic, it is far more difficult to treat, with newly 

developed drugs (such as Cabazitaxel and Abiraterone Acetate) offering only a very modest 

increase in the length of survival (approximately 2.4 to 4.8 months) 
4, 5

. Hence new 

treatments are urgently required. 

RNA interference (RNAi) occurs in the majority of eukaryotic cells where double stranded 

RNA (dsRNA) regulates gene expression in a sequence-specific manner 
6
. Fire and Mello 

were awarded the Nobel Prize in 2006 for this discovery and it opened up the potential of 

using RNAi to treat a wide range of diseases including cancer 
7
. However, the development 

of RNAi drugs has been slow, with the key obstacle to clinical translation being the design of 

an effective delivery vector that is capable of binding, protecting and efficiently delivering 

siRNA to the target tissue 
8
. 

Cyclodextrins (CD) are naturally occurring cyclic oligosaccharides that are formed by the 

enzymatic degradation of starch 
9
. Modified CDs used for siRNA delivery have been shown 

to effectively facilitate gene silencing in a wide range of disease models including 

Huntington’s disease, inflammatory bowel disease (IBD) and prostate cancer 
10-13

. 

The sigma receptor is a membrane bound protein that is known to be overexpressed in a wide 

range of human cancers, including prostate cancer 
14

. Recently, our group developed a 

modified CD with a guanidino group on the primary-OH face to complex siRNA and an 

anisamide group (a ligand for the sigma receptor) on the secondary-OH face to target the 
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delivery vector to prostate cancer cells. The anisamide-targeted CD successfully silenced 

VEGF mRNA in PC3 prostate cancer cells and significantly reduced tumour volume in a 

TRAMP-C1 induced xenograft mouse model of prostate cancer, following its intravenous 

administration 
15

. In addition, we have also shown that the anisamide targeting ligand can be 

incorporated into hydrophilic dilysine-CD nanoparticles by inclusion complex formation 

achieved by attaching the ligand via a PEG chain to adamantane; a hydrophobic molecule 

known to form stable inclusion complexes with cyclodextrins 
16

. This formulation produced 

high levels of anisamide-mediated cellular uptake but modest levels of gene silencing. 

Octaarginine (R8) is a cell penetrating peptide (CPP). CPPs are typically less than 30 amino 

acid residues in length and rich in lysine and/or arginine. The highly cationic nature of these 

peptides aids cellular uptake and also enhances endosomal escape 
17

. Recently, post-insertion 

of DSPE-PEG2000-R8 into preformed CD.siRNA nanoparticles resulted in a greater level of 

knockdown in mHypoE N41 cells when compared to both CD.siRNA alone and a PEGylated 

control 
18

.  

Traditionally when developing novel therapeutics to treat cancer, in vitro studies are carried 

out on cells grown in a monolayer. This approach, while useful, has several limitations 

highlighting the advantages of developing three dimensional (3D) cell culture models to 

simulate the physiological microenvironment 
19-21

. Recently, a 3D model of prostate cancer 

bone metastasis was established by culturing LNCaP and PC3 prostate cancer cells on 

collagen-based scaffolds engineered to mimic the bone microenvironment. Cells cultured in 

3D were successfully transfected with CD.siRNA nanoparticles and demonstrated high levels 

of siRNA uptake and highly efficient gene silencing 
22

. As the bone is the major site of 

secondary metastases in prostate cancer and negatively impacts a patient’s quality of life due 

to pain, fractures and spinal cord and nerve root compression, this 3D pre-clinical bone model 

could provide a useful biopharmaceutical tool to help develop and evaluate novel therapies 
23, 
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24
. Physiologically relevant 3D models of disease facilitate mechanistic studies at the cellular 

level and can help predict the in vivo response, thus improving in vitro-in vivo correlations 

while simultaneously reducing the number of live animal experiments in accordance with the 

three R’s principle 
25

. 

The aim of the current study was to formulate a multifunctional anisamide-targeted CD 

nanoparticle containing the R8 endosomal escape peptide to deliver therapeutic siRNA to 

prostate cancer cells via binding to the sigma receptor. Where previously we had incorporated 

the anisamide targeting ligand by exploiting CD inclusion complex formation 
16

, in this paper 

a different formulation approach was investigated and the nanoparticles were formulated by 

using post-insertion of DSPE-PEG5000-anisamide and DSPE-PEG2000-R8 into preformed 

amphiphilic CD.siRNA complexes. The physicochemical properties and the receptor specific 

uptake of the targeted nanoparticles were assessed, and the gene silencing efficacy was 

evaluated using a 3D scaffold model of bone metastasis. 
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Materials and methods 

Materials 

Anisic acid and dicyclohexylcarbodiimide (DCC) were procured from Sigma-Aldrich (St 

Louis, MO, USA). DSPE-PEG5000-amine and DSPE-PEG5000-methyl (DPM) were purchased 

from Nanocs (New York, NY, USA). Slide-A-Lyzer Dialysis Cassettes (MWCO – 3.5 KDa) 

were purchased from Pierce-Thermo Scientific (Waltham, MA, USA). Heptakis[2-O-(N-(3′′-

aminopropyl)-1′H-triazole-4′-yl-methyl)-6-dodecylthio]-β-cyclodextrin  (Figure 1), the 

cationic amphiphilic cyclodextrin, was synthesized as previously described 
26

. 

 

Figure 1: Chemical structure of the cationic amphiphilic cyclodextrin 
26

. 

Synthetic siRNA 

Synthetic siRNA duplexes were obtained from Sigma-Aldrich, IDT or Genepharma. Negative 

control siRNA and 6-carboxyfluorescein (6-FAM)-labelled negative control siRNA were 
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obtained from Sigma Aldrich (St. Louis, Missouri). Luciferase siRNA was custom 

synthesized by IDT (Coralville, Iowa) with the following sequence: (sense 5’-

GGGGGACGAGGACGAGCACUTC-3’). PLK1 siRNA was synthesized by Genepharma 

(Shanghai, China) with the following sequence: (sense 5’- 

AGAmUCACCCmUCCUmUAAAmUAUU-3’), where “m” indicates a 2’O-methylated 

nucleotide on the right. 

Synthesis of DSPE-PEG5000-anisic acid 

P-anisic acid (5.26 mg, 0.0346 mmol) was dissolved in DMSO (2 ml). DSPE-PEG5000-Amine 

(100 mg, 0.0173 mmol) was dissolved in pyridine (1 ml) and added to the anisic acid-DMSO 

solution followed by the addition of DCC (16 mg, 0.7785 mmol). The reaction was carried 

out at room temperature for 4 h. The solution was dialyzed in Slide-A-Lyzer Dialysis 

Cassettes with a MWCO of 3.5 KDa against deionized water for 3 days. The dialysate was 

further lyophilized and the final product was analyzed by FTIR and 
1
H NMR. 

Preparation of CD.siRNA nanoparticles 

Cyclodextrin was dissolved in chloroform to a final concentration of 1 mg /ml. Chloroform 

was removed under a steady stream of nitrogen gas. The resulting lipid films were dissolved 

in water to 1 mg /ml and were sonicated for 1 h to reduce particle size. To form CD.siRNA 

nanoparticles, CD and siRNA were mixed at a specific mass ratio (in this case MR20) of CD 

to siRNA. These were allowed to stabilize at room temperature for 20-30 minutes. A post-

insertion method was then used to insert PEG chains and R8 into CD.siRNA NPs. Briefly, 

DSPE-PEG5000-anisamide, DSPE-PEG5000-methyl and DSPE-PEG2000-R8 were dissolved in 

20mM HEPES buffer (pH 7.4) and heated at 37°C for 10 minutes. DSPE-PEG reagents were 

mixed with CD.siRNA complexes which were heated at 37°C for 1 h at 300 rpm. 

Particle size and zeta potential (ζ) 
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CD complexes were formed as detailed above and were made up to a final volume of 1 ml 

with deionised (DI) water. Particle size and zeta potential were measured using a Malvern 

Zeta Sizer (Malvern, Worcestershire, UK). 

Nanoparticle assessment in physiological conditions 

In order to determine the ability of the CD complexes to protect siRNA in the presence of 

serum, complexes were incubated at 37°C for various time points (0, 5, 15, 60, 120, 240 and 

480 mins). At each of the time points, complexes were heated at 80°C for 5 min followed by 

incubation with excess heparin (5µl of a 2000U/ml solution, Sigma) for 1 h at room 

temperature. Samples were run on a 1.5 % agarose gel at 120 V for 30 minutes. A salt 

containing media (i.e. OptiMEM®) was used to determine the ability of the nanoparticles to 

resist aggregation. Complexes were diluted to a final concentration of OptiMEM® of 90 % 

v/v. At 4, 24 and 48 h aggregation was determined using the Malvern Zeta Sizer as above. 

Cell culture 

Luciferase cells stably transfected with the pGL4 Luc2 plasmid (Luc PC3) (donated by Dr 

Coulter, School of Pharmacy, Queens University Belfast, Belfast, NI) and DU145 cells 

(donated by Professor Watson, Conway Research Institute, University College Dublin, 

Dublin, Ireland) were maintained in RPMI 1640 medium supplemented with 10 % FBS, 2 

mM L-Glutamine and 50 units/ml penicillin and 50 µg/ml streptomycin. Mouse macrophage 

RAW264.5 cells were maintained in Dulbecco’s Modified Eagle’s Medium supplemented 

with 10 % FBS and 50 units/ml penicillin and 50 µg/ml streptomycin. All cells were grown in 

the Forma Series II Water Jacketed CO2 incubator (Thermo Electron Corporation, Waltham, 

Massachusetts) at 37°C with 5 % CO2 and 95 % relative humidity. 

MTT assay 
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1x10
4
 PC3 or DU145 cells were seeded into a 96 well plate 24 h prior to transfection. 100 nM 

siRNA complexed with Lipofectamine 2000 (LF2000) or CD were prepared as above and 

added to cells. After 24 h or 48 h, the complexes were removed and fresh serum-free media 

supplemented with MTT reagent (5 mg/ml) was added and incubated for additional 4 h at 

37°C. Following incubation, the resulting formazan crystals were dissolved in dimethyl 

sulfoxide (DMSO). Absorbance was measured at 590 nm using a multiplate reader (Perkin 

Elmer – Wallac Victor2™ 1420 multiplate counter).  

Cell culture in 3D on collagen-based scaffolds 

Collagen-nHA scaffolds (S500), containing 5-fold nanohydroxyapatite to collagen by weight, 

were synthesised as previously described 
27

. 24 h prior to transfection, 1 x 10
5
 PC3 or DU145 

cells were seeded onto the scaffolds. Briefly, 5 x 10
4 

cells (in 25 µl of media) were seeded 

onto one side of the scaffold and left for 15 min at room temperature. Scaffolds were then 

inverted and a further 5 x 10
4 

cells were seeded onto the opposite side of the scaffold. 

Following this, 1 ml of complete media was added to each well and cells were incubated for 

24 h at 37°C before performing further experiments. 

Competitive uptake and uptake of targeted nanoparticles in 3D cell culture 

6-FAM-labelled scrambled siRNA was used for all uptake experiments. PC3 and DU145 

cells (5 x 10
4
) were seeded in 24-well plates, 24 h prior to transfection. 4 h prior to adding 

complexes, cells were pre-treated with 40 µM haloperidol (an antagonist of the sigma 

receptor), 4 h later the media was replaced and 50 nM siRNA complexed with CD was added 

to cells. After a further 4 h, the complexes were removed, the cells were washed twice with 

PBS, lysed ( in 1 % Triton X-100 and 2 % SDS) and protein concentrations were quantified 

using a BCA assay 
28

. Measurement of 6-FAM-labelled scrambled siRNA delivered by the 

CD nanoparticles both in presence and absence of haloperidol was determined by measuring 
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the fluorescence intensity using a multiplate reader (excitation 485 nm, emission 535 nm) and 

normalised to the protein content of the respective sample. 

For visualization of siRNA delivered via CD nanoparticles to cell cultures in 3D, cells were 

seeded onto the scaffolds as described above. 24 h after seeding, cells were transfected with 

50 nM 6-FAM-labelled siRNA either alone or complexed in a targeted NP formulation. Ten 

mins prior to imaging, cells were stained with 5 µg/mL solution of WGA-Alexa Fluor 633 

(Invitrogen) prepared in Hank’s Balanced Salt Solution at room temperature 
22

. The 3D 

scaffolds were imaged using an Olympus Fluoview FV1000 Laser Scanning Confocal 

Microscope with IX71 microscope. Images were captured using Olympus FV10-ASW 

software. 

Luciferase assay 

PC3 cells (1 x 10
4
) were seeded in white 24-well plates 24 h prior to transfection. Cells were 

transfected with either LF2000 or CD complexed with 100 nM scrambled siRNA or 

luciferase siRNA. 24 h later, complexes were removed and replaced with fresh media and 

incubated for another 24 h. Following this time, media was replaced with fresh media 

supplemented with D-Luciferin. The resulting luminescence was determined using a 

multiplate reader at 560 nm and luminescence was normalised to protein concentration (using 

BCA assay). 

RNAi transfection and Quantitative real-time (RT) PCR 

PC3 and DU145 cells (1 x 10
5
) were seeded into 24-well plates 24 h prior to transfection. 

Complexes were prepared as above and added to the cells at a final siRNA concentration of 

100 nM. Complexes were removed 24 h later and incubated for an additional 24 h in fresh 

media. Total RNA was extracted using the GenElute™ Mammalian Total RNA Mini-prep 
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Kit (Sigma) and quantified using a Nanodrop (Thermo Fisher Scientific, Waltham, MA, 

USA). cDNA was synthesised using a High-capacity cDNA Reverse Transcription Kits 

(Applied Biosystems, Foster City, California). RT-PCR was performed using Applied 

Biosystems TaqMan® Gene expression assays for human PLK1 (catalogue number 

Hs00153444_m1) and β-actin (catalogue number Hs01060665_g1) and Applied Biosystems 

TaqMan® Universal PCR Master Mix. Quantitative real-time PCR was carried using the 

Applied Biosystems 7300 Real-Time PCR system. Cycling conditions were as follows: 10 

min at 95 °C, 40 cycles of [15 sec at 95 °C; 1 min at 60 °C]. Average cycle threshold (CT) 

values were used to determine gene expression. β-actin was used as an endogenous control 

and CT values were normalized to the levels of β-actin expression using the 2Delta CT 

method 
26

. 

Pro-inflammatory cytokines 

RAW264.7 cells were seeded at 1 x 10 
5 

cells per well in a 24 well plate, 24 h prior to 

transfection. Cells were incubated with LF2000 or CD complexes for 4 h or 24 h. LPS (10 

ng/ml) was used as a positive control for immunotoxicity as previously described 
10

. RT-PCR 

was carried out as above using Applied Biosystems TaqMan® Gene expression assays for 

mouse β-actin (catalogue number 4352341E), COX-2 (catalogue number Mm00478374_m1) 

and TNF-α (catalogue number Mm00443258_m1). 

Statistical analysis 

Data were expressed as mean ± standard deviation (SD). One-way Analysis of Variance 

(ANOVA) was used to test the significance of differences in three or more groups followed 

by Tukey’s post-hoc test for all experiments except for Figure 8 and Figure 10, where a two-

tailed unpaired student t-test was used to compare PLK1 siRNA knockdown with its non-

silencing counterpart. In all cases, P < 0.05 was considered to be statistically significant 
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(*p<0.05, p<0.01, ***p<0.001). All graphs and statistical calculations were prepared using 

GraphPad Prism 5 (San Diego, California). 
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Results and discussion 

In this study, four different cyclodextrin formulations were investigated as follows: 

1) Formulation one was a cationic amphiphilic CD complexed with siRNA (hereafter 

referred to as CCD).  

2) Formulation two was a targeted NP containing CCD co-formulated with a blend of 

DSPE-PEG5000-anisamide (DPAA) and DSPE-PEG2000-R8 (referred to as TR8+). 

Octaarginine (R8) was incorporated as it is a well-established endosomal escape 

peptide previously shown to have superior activity compared to other CPPs such as 

octalysine (K8) 
29

.  

3) Formulation three was a targeted NP but without R8 and contained CCD with DPAA 

only (referred to as TR8-).  

4) Formulation four was the untargeted control NP containing CCD with DSPE-PEG5000 

(DPM) and DSPE-PEG2000-R8 (referred to as UR8+).  

The exact composition of each of these formulations is given in table 1.  

Synthesis of DSPE-PEG5000-anisamide 

DSPE-PEG5000-anisamide was synthesised as outlined above and the structure was verified 

by NMR and FTIR as indicated below (Figures 2 and 3). 

1
H NMR analysis 

1
H NMR (600MHz, DMSO D6) δ0.85 (S, 6H, CH3 x2), δ0.85 (S, 6H, CH3 x2, alkyl chain 

termini), δ1.0-1.4 (M, 60H, CH2 x 30, alkyl chain DSPE), δ1.5 (M, 4H, CH2CO x2, DSPE), 

δ3.0-4.3 (M, 453H, CH2O/CHO/CH2N, DSPE-PEG), δ3.8 (S, no integration, OCH3, anisic 

acid), δ5.0 (br S, 2H, NH x2), δ7.0 (d, J=12Hz, 0.24H, Ar-H, anisic acid), δ7.8 (d, J=12Hz, 

0.24H, Ar-H, anisic acid). The integration performed by NMR analysis confirmed 12% 
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substitution of Anisic acid to DSPE-PEG-amine (Figure 2).
 
This compound was further co-

formulated with nanoparticles as a targeting ligand and used for in vitro studies. 

 

Figure 2:
1
H NMR spectra of the conjugated DSPE-PEG5000 with AA in d6DMSO.  

FTIR analysis 

The IR absorption bands for free p-anisic acid were observed at 3000-2545 cm
-1

 (O-H 

stretching), 1786 cm
-1

 (C=O stretch), 1603 cm
-1

 and 1517 cm
-1

 (C=C stretch) of the aromatic 

ring (Figure 3a). The FTIR spectra of DSPE-PEG-Amine shows characteristic peaks at 2919 

cm
-1

 (C-H stretch), 1114 cm
-1

 (C-O stretch), and the peaks at 1468 cm
-1

, 1345 cm
-1

, 952 cm
-1

 

and 842 cm
-1

 also belong to the PEG (Figure 3b). The absorbance bands characteristic of 

amide coupling observed in the FT-IR spectrum of DSPE-PEG5000-Anisic acid were 1628 

cm
-1

(Amide I) and 1574 cm
-1

 (Amide II) (Figure 3c). The relative intensities of these bands 
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(1:0.3) is that expected for secondary acyclic amides.  This confirmed coupling of p-anisic 

acid with DSPE-PEG-Amine 

 

Figure 3: FTIR analysis of A) p-anisic acid, B) DSPE-PEG5000-NH2 and C) DSPE-PEG5000-

anisamide. 

Physicochemical characterisation of Cyclodextrin nanoparticles 

DSPE-PEG5000 was post inserted into pre-formed CD.siRNA nanoparticles. Interestingly, 

following the addition of DSPE- PEG5000 the nanoparticles decreased in size (between 60-80 

nm) as measured using Dynamic Light Scattering (DLS) (Table 1). It has previously been 

reported that the co-formulation of a cationic CD vector with a PEGylated CD likewise 

resulted in a smaller particle diameter 
30

. Cationic NPs are generally more cytotoxic in nature 

than their neutral counterparts; this can be due to disruption of the plasma membrane as well 
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as significant mitochondrial and lysosomal damage 
31

. The addition of PEG onto the surface 

of cationic NPs has been shown to reduce the surface charge as well as attenuate non-specific 

binding to serum proteins following systemic delivery 
32, 33

. The addition of DSPE-PEG5000 

significantly (p<0.001) reduced the zeta potential of nanoparticles from +46.42 ± 1.67 mV to 

between +20.74 and +23.40 mV (Table 1). A significant reduction in the cationic surface 

charge of CD nanoparticles has previously been reported following insertion of DSPE-

PEG5000 into preformed CD.siRNA complexes 
34

. 

Table 1: Physicochemical properties of CD.siRNA complexes before and after the 

incorporation of DSPE-PEG5000 by the post-insertion method. Data is presented as the mean 

± SD (n=5). 

 

Formulation 

Formulation 

abbreviation 

Molar Ratio of CD:DSPE-

PEG5000-Anisamide:DSPE-

PEG5000-Methyl:DSPE-PEG2000-

R8 

Diameter (nm) PDI Zeta Potential (mV) 

UnPEGylated 

CD.siRNA 

CCD 1:0:0:0 202.90 ± 20.41 0.33 ± 0.04 46.42 ± 1.67 

Targeted 

(PEGylated) 

CD.siRNA (R8 +) 

TR8+ 1 : 0.75 : 0 : 0.10 132.42 ± 7.97 0.29 ± 0.03 23.40 ± 1.50 

Targeted 

(PEGylated) 

CD.siRNA (R8 -) 

TR8- 1 : 0.75 : 0 : 0 137.04 ± 6.72 0.31 ± 0.04 20.74 ± 2.27 

Untargeted 

(PEGylated) 

CD.siRNA (R8 +) 

UR8+ 1 : 0 : 0.75 : 0.10 146.08 ± 5.56 0.35 ± 0.03 23.06 ± 1.74 
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An integral factor in the development of an effective non-viral gene delivery vector for in 

vivo applications is the ability of the vector to protect siRNA from serum nucleases which 

can potentially degrade siRNA. It has previously been shown that free siRNA can be 

degraded in as little as 1 min in the presence of physiological concentrations of serum 
34

. In 

contrast, as demonstrated in this study, when siRNA is complexed with the untargeted but 

PEGylated CD.siRNA complex, siRNA degradation does not occur until approximately 8 h 

(UR8+). Furthermore, the addition of a targeting ligand (TR8+) led to no detectable 

degradation even at the 8 h time point (Figure 4a).  
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Figure 4: Assessment of the modified CD.siRNA nanoparticles in physiological conditions. 

(a) Serum stability of targeted CD (TR8+) (top) and untargeted CD (UR8+) (bottom) in 

physiological concentrations of FBS over 8 h. (b) Aggregation of CD formulations in 

physiological salt concentrations over 4, 24 and 48 h (***p<0.001). Data are presented as 

mean ± SD (n=4).  
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The ability of the modified CD to resist aggregation in physiological salt concentrations was 

also investigated. As seen in figure 4b, the CCD complexes tended to aggregate, reaching 

particle sizes of greater than 1000 nm after 24 h. In contrast, both of the R8-containing 

PEGylated nanoparticles (TR8+ and UR8+) resisted aggregation up to 48 h and maintained 

particle sizes of approximately 180-190 nm.  

Toxicity and immunotoxicity of CD nanoparticles in vitro. 

The cyclodextrin-containing formulations under investigation in this study (CCD, UR8+, 

TR8+ and TR8-) did not elicit a cytotoxic response in either PC3 or DU145 prostate cancer 

cells when compared to untreated controls as measured using the MTT assay (Figure 5). The 

cationic CD formulation (CCD) used in this study has previously been shown to be non-toxic 

in a range of different cell lines including neuronal mouse mHypoE-N41 cells, human 

prostate PC3 cells and human astroglioma U87 cells 
12, 13, 30

. In contrast, the lipofectamine 

control displayed significant levels of reduction in cell viability for both cell lines over the 48 

h period (p<0.001). 
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Figure 5: Cytotoxicity of CD complexes. Toxicity of the CD complexes was determined by 

MTT assay in PC3 (a) and DU145 (b) cells 24 and 48 h following transfection with 100 nM 

siRNA. Data are expressed as mean ± SD (n=4). (*** p<0.001 relative to the untreated 

control). 
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In order to determine if the CD complexes under investigation elicited an immune response, 

the complexes were incubated with mouse macrophage RAW264.7 cells 
12

. LPS was used as 

a positive control and changes in the levels of two inflammatory-related cytokines; 

cyclooxygenase-2 (COX-2) and tumour necrosis factor alpha (TNF-α) were monitored. 

COX-2 is a cyclooxygenase that metabolises arachidonic acid to prostaglandins. It is a key 

regulator of inflammation and has been shown to be  induced by exogenous stimuli 
35

. 

Previous studies have shown that several different types of nanoparticles, including multi-

wall carbon nanotubes, silica, silver, aluminium and carbon black nanoparticles, induce an 

increase in the expression of COX-2 in macrophages 
36-39

. For each of the CD-containing 

formulations tested, only a modest increase in COX-2 mRNA levels (1.4 to 5.4-fold) was 

observed (Figure 6a). However, this increase was not statistically significant from the 

untreated control. In contrast, the use of LPS showed a significant increase (p<0.001) in 

COX-2 mRNA levels of approximately 300 and 2000 fold after 4 and 24 h respectively.  

TNF-α is a key pro-inflammatory cytokine involved in the innate immune response 
40

. 

Interestingly, it is cytotoxic to tumour cells under certain conditions, however, due to its pro-

inflammatory nature it can also promote tumour angiogenesis and tumour growth 
41, 42

. 

DOTAP and multi-walled carbon nanotubes complexed with siRNA have been shown to 

significantly induce TNF-α expression 
43, 44

. As with COX-2, the modest increases (between 

1.2 to 2.7- fold) in TNF-α induction following incubation with any of the CD formulations 

were not significant relative to the untreated control  (Figure 6b) (p>0.05). The LPS positive 

control significantly increased TNF-α expression (p<0.001) by approximately 14.4 and 24-

fold increase after 4 and 24 h, respectively.  

These results support a previous study, published by our group, where the amphiphilic 

cationic CD formulations failed to induce COX-2 and TNF-α expression in a BV2 microglial 
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cell line 
12

. The above data demonstrate that the CD nanoparticles do not induce either a 

cytotoxic or immunotoxic profile in the cell lines tested. 
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Figure 6: Fold changes in the expression of mRNA for pro inflammatory cytokines (COX-2 

(a) and TNF-α (b)) in RAW246.7 cells following incubation with CD.siRNA complexes for 4 h 

(white) and 24 h (grey). LPS (10 ng/ml) was used as a positive control. Data are represented 

as mean ± SD (n=3) (*** p<0.001 relative to the untreated control). 
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Competitive inhibition assay 

Cellular uptake of the CD formulations was investigated in two sigma receptor positive cell 

lines; PC3 and DU145 cells. The TR8+ nanoparticles showed significantly higher uptake in 

PC3 cells compared to UR8+ (Figure 7a) (p<0.05) in accordance with previous studies 

which showed increased uptake of anisamide targeted nanoparticles in sigma receptor 

positive cells relative to untargeted nanoparticles 
15, 45

. For the DU145 cell line (Figure 7b), 

while there was a greater uptake for the TR8+ formulation when compared with UR8+, this 

difference did not reach statistical significance (p>0.05). While there is evidence of the 

specific uptake of targeted nanoparticles in PC3 and DU145 cells, there does appear to be a 

relevant amount of uptake that is receptor-independent or non-specific. Many different 

physicochemical properties of nanoparticles contribute to their cellular uptake, with one of 

the contributors being the surface charge 
46

. Positively charged nanoparticles increase their 

non-specified affinity to the negatively charged plasma membrane and their subsequent 

uptake into cells 
47

. While there was an observed reduction in the surface charge of the 

cyclodextrin nanoparticles following the inclusion of PEG into the formulation (from 46 mV 

to ~25 mV) (Table 1), these nanoparticles are still cationic in nature. It is hypothesised that 

this cationic nature is contributing to the non-specific uptake observed in figure 7. 

Haloperidol has a high affinity for the sigma receptor and has previously been used in 

competition assays to demonstrate sigma receptor-mediated uptake of anisamide-linked 

nanoparticles 
14, 15

. In the current study, a significant reduction (p<0.05) in the uptake of 

TR8+ nanoparticles in both PC3 and DU145 cells following 4 h pre-incubation with 40 µM 

haloperidol was observed (Figure 7a and 7b respectively). In contrast, no reduction in the 

uptake of UR8+ nanoparticles following haloperidol pre-incubation occurred. These results 

support the evidence for sigma-receptor mediated uptake of anisamide-targeted nanoparticles 

in PC3 and DU145 cells. In anticipation of R8 interfering with the targeting ability of 
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anisamide on the surface of the nanoparticle, a shorter PEG length of PEG2000 was adopted 

for R8 relative to the anisamide ligand (PEG5000). A similar strategy was recently used by 

Xiang et al. where a CPP was attached to a PEG chain with a lower molecular weight relative 

to that containing a folate targeting ligand 
32

. The fact that the targeted formulation showed a 

significant reduction in uptake following pre-incubation with haloperidol in both cell lines 

highlights that the incorporation of DSPE-PEG2000-R8 did not interfere with the targeting 

ability of anisamide on the surface of the nanoparticles. 

There is some controversy relating to the targeting specificity of anisamide to either the 

sigma 1 receptor (S1-R) or the sigma 2 receptor (S2-R) 
48

. Depending on the cell line in 

question, the localisation of S1-R can either be intracellular or alternatively on the cell 

surface 
49, 50

. It is still unknown whether anisamide preferentially binds S1-R or S2-R and 

further work to determine S1-R localisation in prostate cancer cell lines is currently ongoing. 
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Figure 7: Uptake of 6-FAM labelled siRNA (50 nM) complexed with TR8+ and UR8+ into 

(a) PC3 and (b) DU145 cells. For haloperidol pre-treatment, cells were treated with 40 µM 

haloperidol for 4 h prior to transfection. 4 h after transfection, cells were lysed and uptake 

was analysed by quantification of the fluorescent intensity normalised to protein content. 

Data are presented as mean ± SD (n=3) (*p<0.05, **p<0.01).  
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Knockdown of polo-like kinase 1 (PLK1) in 2D 

Polo-like kinase 1 (PLK1) is a key regulator of the cell cycle. It is known to be overexpressed 

in prostate cancer cells, with a high level of PLK1 expression correlating to poor patient 

outcomes 
51

. The use of ATP-competitive inhibitors of PLK1 in vivo has been reported to be 

of therapeutic value in various cancers 
52, 53

. Several studies have also shown efficacy in 

treating various cancers by silencing PLK1 using siRNA 
54-56

. In a recent study, PLK1 siRNA 

was encapsulated in a PSMA-targeted liposomal formulation and produced a significant 

increase in the levels of apoptosis in the prostate cancer cell line, 22RV1 cells. In a 22RV1 

xenograft model, liposomes containing PLK1 siRNA showed a significant reduction in 

tumour volume compared to an untreated control 
32

. Due to the previous successes of PLK1 

siRNA in the treatment of prostate cancer, it was chosen for the present study. 

The ability of the targeted formulations to silence PLK1 was initially evaluated in 2D prostate 

cancer cell culture. In 2D in vitro silencing studies (Figure 8), while the level of PLK1 

mRNA knockdown tended to be greater with the targeted (TR8+) versus the untargeted 

(UR8+) formulation,  the differences were not significantly different in either cell line (PC3 

cells: ~ 40 % knockdown for both TR8+ and UR8+ (Figure 8a), DU145 cells: 55 % 

knockdown for TR8+, ~ 40 % for UR8+ (Figure 8b)). These levels of gene silencing were 

superior to those reported previously for anisamide targeted hydrophilic CD nanoparticles 
16

. 

In the absence of R8, there was no significant PLK1 gene knockdown compared to the non-

silencing control in either cell line. The positive effect of R8 reported in this study is 

consistent with previous results where the incorporation of R8 into a CD formulation resulted 

in enhanced gene knockdown in a neuronal cell line 
18

.  
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A similar trend was observed in the levels of luciferase reporter gene knockdown when 

luciferase siRNA was incorporated into targeted (TR8- and TR8+) and untargeted 

nanoparticles (UR8+) (Supplementary Figure 1). 
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Figure 8: Knockdown of PLK1 gene in PC3 (a) and DU145 cells (b) using 100 nM siRNA. 

PLK1 gene expression was normalised to the non-silencing counterpart whose expression 

was set to 100 %. Data are presented as mean ± SD (n=3) (p***<0.001).  

Uptake and knockdown of PLK1 in cells grown in 3D. 

The vast majority of cancer studies in vitro are conducted using two-dimensional (2D) 

techniques involving petri dishes and plastic wells 
57

. These conventional 2D methods often 
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fail to mimic the complex microenvironment that is present in cancerous tissues 
58

. For 

example, it was recently shown that when LNCaP cells were grown in a 3D environment, 

they were more resistant to docetaxel treatment than when grown in 2D 
22, 59

. Such studies 

highlight the need to move away from 2D cell-culture models to more clinically relevant 3D 

study models in order to more accurately determine the cellular response to drugs under 

development 
25

. Although 3D models are to date not routinely used for drug assessment 

during in vitro development, a wide range of options for culturing cells in 3D are now 

available including spheroids, scaffolds, organotypes and explants 
60

. 

A recent study described the use of collagen-nanohydroxyapatite-based scaffolds (containing 

5-fold nanohydroxyapatite relative to collagen (i.e.S500)) to simulate a physiologically 

relevant 3D prostate cancer metastases model 
22

. These scaffolds have been engineered to 

have a porous structure that allows for the infiltration of both cells and nutrients 
27

. In the 

study, two prostate cancer cell lines (LNCaP and PC3 cells) were shown to infiltrate and 

proliferate on the scaffolds, but at a slower rate when compared to 2D counterparts 
22

. Cells 

also demonstrated increased resistance to docetaxel treatment when cultured on this specific 

collagen-based scaffold suggesting enhanced physiological relevance relative to standard 2D 

cell culture on plastic tissue culture plates. Thus, in the present study, we have used this 3D 

model for the first time to investigate the ability of the targeted nanoparticles (TR8+) to 

deliver siRNA to sigma receptor positive prostate cancer cells in an in vitro bone metastatic 

model. 

Figure 9 shows the uptake of 6-FAM-labelled siRNA (either alone, or complexed in a 

targeted CD nanoparticle) at 24 and 48 h in either PC3 (left) or DU145 (right) cells grown on 

S500 scaffolds. In the case of the TR8+ nanoparticle, it is clear that fluorescent siRNA is 

present within the boundary of the cell membrane for both cell lines at 24 and 48 h. In 

contrast, for the naked siRNA, no siRNA was visible within the cell membrane at either of 
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the time points. These results indicate that the targeted CD nanoparticles can effectively 

deliver siRNA to prostate cancer cells that have been cultured in 3D on a S500 scaffold. 
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Figure 9: Uptake of fluorescent siRNA into PC3 (left) and DU145 (right) cells grown on S500 scaffolds either complexed in targeted CD or as 

naked siRNA for 24 or 48 h. Cell membrane was labelled with Alexa 633 (red) and the siRNA was labelled with 6-FAM (shown in green). siRNA 

within the cell boundary is marked with white arrows. 
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`

 

Figure 10: Knockdown of PLK1 in a) PC3 and b) DU145 cells grown on S500 scaffolds 48 h 

following transfection. PLK1 gene expression was normalised to the non-silencing 

counterpart whose expression was set to 100 %. Data are presented as mean ± SD (n=4).  
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When the cells on the scaffold were transfected with the targeted nanoparticles, significant 

reductions in the levels of PLK1 mRNA (approximately 45 % and 40 % for PC3 and DU145, 

respectively) were observed compared to the non-silencing controls. In contrast, the levels of 

gene silencing (approximately 15 %) observed in both cell lines with the untargeted 

formulations were not statistically significant versus the control. 

In 3D, the levels of PLK1 mRNA knockdown mediated by the targeted nanoparticles were 

significantly greater than the untargeted nanoparticles in both PC3 (p=0.0425) and DU145 

cells (p=0.0269). The differences in the levels of PLK1 mRNA knockdown between cells 

grown in 2D versus 3D are summarised in table 2. The advantages of the targeted delivery 

system appear to be masked in the 2D culture (Figure 10), as similar levels of knockdown 

are seen for both the targeted and untargeted formulations. In contrast, the incorporation of 

the anisamide-targeting ligand into the formulation shows a greater level of knockdown 

versus the untargeted formulation in the 3D scaffold model (Figure 10). Previous studies 

have highlighted similar discrepancies when delivering genetic material to cells grown in 2D 

versus 3D. In a recent study, 3D porous chitosan-alginate scaffolds were used to grow 

TRAMP-C2 prostate cancer cells. Targeted iron oxide NPs and untargeted NPs were used to 

deliver a gene for red fluorescent protein (RFP); in 2D no differences between the targeted 

and untargeted formulations, with regards to both uptake and transfection, were observed. In 

contrast, when cells were grown in 3D, there was an approximate 2-fold increase in RFP 

expression for the targeted formulations, with no difference observed for the untargeted 

formulation. In addition, due to the enhanced malignant microenvironment in the 3D model it 

was hypothesized that the expression level of the target receptor, MMP-2, was increased, thus 

providing a greater number of cell surface receptors for attachment of the targeted NP 
61

. 

Table 2: Summary of the level of knockdown of PLK1 in PC3 and DU145 cells grown in 2D 

and 3D (*p<0.05, n=3). 
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Cell Line Sample 2D 3D 

PC3 

TR8+ 43.09 ± 1.39 46.09 ± 12.54 

UR8+ 42.58 ± 1.18 13.93 ± 23.21 

Significance p=0.8567 p=0.0425(*) 

 

 

DU145 

TR8+ 54.01 ± 12.66 37.27 ± 11.06 

UR8+ 38.59 ± 6.41 13.50 ± 4.81 

Significance p=0.115 P=0.0269(*) 
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Conclusions  

Treating advanced prostate cancer is a challenge for clinicians with current therapies offering 

only a modest survival benefit. RNAi has significant potential for treating disease, with the 

development of an effective delivery vector being the main barrier to clinical translation. In 

this study, a CD-based anisamide targeted nanoparticle was formulated to exploit specific 

uptake via the sigma receptor, known to be overexpressed in prostate cancer cells. When 

assessed in a 2D cell model, while the targeted formulation resulted in slightly greater levels 

of gene knockdown, the untargeted formulation produced a high degree of non-specific 

uptake which also translated into significant gene silencing.  In contrast, in the 3D model, 

significant gene silencing was detected only with the targeted formulation implying that this 

model was more effective at distinguishing between targeted and untargeted formulations. 

This apparent superior performance of the 3D model may be related to a higher level of 

sigma receptor expression by cells in a 3D environment, as suggested previously in the case 

of the MMP-2 receptor (52). In addition, the geometry of the scaffold may facilitate a more 

favourable presentation or orientation of the receptor thus promoting specific receptor-ligand 

binding. 

It is hoped that this 3D in vitro model of bone cancer metastasis will provide a 

biopharmaceutically relevant tool to more accurately predict the in vivo response to RNAi 

therapeutics thus reducing the need for pre-clinical animal studies. To our knowledge, this is 

the first example of the use of a targeted CD nanoparticle to deliver siRNA to prostate cancer 

cells grown in a 3D model of bone metastasis. 
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