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The formation, stability, and suitability of n-type junctions in germanium
formed by solid phase epitaxial recrystallization

R. Duffy,a� M. Shayesteh, M. White, J. Kearney, and A.-M. Kelleher
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland

�Received 29 April 2010; accepted 17 May 2010; published online 10 June 2010�

Design and optimization of n-type doped regions in germanium by solid phase epitaxial
recrystallization �SPER� have been studied by the authors. A systematic study is presented of
process variables that influence activation and thermal stability, including preamorphization,
coimplants, recrystallization temperature, and postrecrystallization thermal treatments. Unlike
silicon, activation after recrystallization in germanium is not optimum where the
postrecrystallization thermal budget is kept to a minimum. With the aid of modeling, a maximum
peak activation of 7�1019 cm−3 was extracted. A steady increase in sheet resistance during
postrecrystallization anneals confirms the formation of metastable activation by SPER. It is
predicted that active concentrations of 6–8�1019 cm−3 are sufficient to meet targets for sub-20 nm
technologies. © 2010 American Institute of Physics. �doi:10.1063/1.3452345�

As germanium provides much higher carrier mobilities
than silicon, interest in this semiconductor has risen sharply
in recent times,1–4 especially in the ongoing battle to boost
metal-oxide-semiconductor �MOS� device drive current in
advanced technologies. n-type dopants in germanium have
proven to be problematic, and are now a key bottleneck in
the realization of advanced n-type MOS �NMOS� device per-
formance and scaling.5 In short, phosphorus �P� and arsenic
�As� are relatively difficult to activate and diffuse quickly,6–9

leading to high resistances and limited capability to reduce
the device dimensions.

Solid phase epitaxial recrystallization �SPER� is advan-
tageous in this regard, as the low-temperature process limits
dopant diffusion, while metastable solubility can be
generated10,11 higher than equilibrium solubility.12,13 A low-
temperature process also reduces the risk of substrate loss
and dopant out-gassing, which have been flagged as critical
concerns for processing germanium substrates.14,15 SPER has
recently been explored for p-type16–18 and n-type19,20 dopant
activation in germanium but a number of key issues remain.
Deactivation kinetics have been studied in silicon21–23 but
this aspect is largely unexplored at this point of time for
n-type dopants in germanium. Moreover, optimization of
process variables such as implants and recrystallization tem-
peratures require fine tuning. Finally, it must be determined
whether the dopant activation levels produced by SPER will
be useful for future generation complementary metal-oxide
semiconductor technologies.

Note that germanium is easier to amorphize than
silicon,24 possibly linked to less dynamic annealing during
ion implant. Amorphization occurs even during a 5
�1013 cm−2 dose P implant.25 Consequently it is expected
that n-type implants required for highly doped regions will
amorphize the germanium substrate. In this work we focus
on P, to be consistent with most experimental studies to date
in this field.

Experiments were performed on �100� n-type germa-
nium wafers, with bulk resistivity of 0.2–0.5 � cm. After a

standard clean, wafers received a boron implant with a dose
of 1�1013 cm−2 and energy of 60 keV, and a P implant with
a dose of 1�1015 cm−2 and energy of 15 keV which amor-
phizes to a depth of 33 nm.26 In some cases wafers first
received a germanium preamorphizing implant �PAI� with a
dose of 1�1014 cm−2 and energy of 150 keV which amor-
phizes to a depth of 120 nm.27 One wafer received a fluorine
�F� implant with a dose of 1�1015 cm−2 and energy of 10
keV. Finally, one wafer received only 5�1014 cm−2 P dose
but had an additional As implant with the same projected
range, with a dose of 5�1014 cm−2 and energy of 28 keV.
All implants were performed at a tilt of 7°, with a native
oxide covering the substrate. Wafers were subsequently
annealed for SPER in an inert ambient for 3 min at either
400 or 500 °C. Intrinsic germanium recrystallization rates
are �2 nm /s and 200 nm/s, respectively, for these
temperatures,27 and so the SPER anneals should avoid in-
complete recrystallization. All the post-SPER anneals were
performed at 400 °C, in additive increments of 10, 30, 100,
and 300 min. Based on the model of Ioannou et al.,14 1.3 nm
of substrate loss is expected for a 400 °C 443 min anneal.

Anneal temperatures were kept in the 400–500 °C
range, as P diffusion is known to occur quite rapidly already
at 600 °C.6–9 Quantifying the expected diffusion is difficult
as available diffusivity values were either extracted under
intrinsic conditions, or at higher temperatures than studied
here.1 However, extrapolating diffusivity values from Chui
et al.,6 which are accurate for high concentrations, only a few
nanometers of diffusion could be expected for the highest
thermal budgets in this work.

Figure 1 shows experimental sheet resistance �Rs� data
as a function of implant and anneal. The data is divided into
two groups, namely, those recrystallized at 400 °C and those
recrystallized at 500 °C. Rs is lower when recrystallization
is done at a higher temperature, which is in contrast to sili-
con where a low thermal budget for recrystallization is gen-
erally accepted as being the best approach. This trend was
also evident in the recent results of Chao and Woo.20 The
gradual increase in Rs in Fig. 1�b� with post-SPER annealing
indicates the destruction of metastable activation. It is as-
sumed that the lack of this trend in Fig. 1�a� is due to lowera�Electronic mail: ray.duffy@tyndall.ie.
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activation created by SPER at 400 °C. The inclusion of
coimplants such as PAI and F have a minor impact on the
single P implant approach. Combining P with As leads to
higher Rs values.

Equilibrium and metastable solubility and activation can
be hindered by dopant-defect cluster formation. P tends to
combine with vacancies �V� in germanium to form PnVm
clusters.28,29 The initial Rs value may be influenced by the
formation of PnVm clusters or other grown-in complexes in
amorphous germanium. Formation of vacancy-rich clusters
is known to occur in amorphous silicon, as FnVm clusters can
nucleate during SPER.30 Higher SPER temperature could
limit the formation of these clusters and complexes. Using
even higher temperatures ��500 °C� may not provide an
added benefit, as for the same P implant �1�1015 cm−2, 15
keV�, high-temperature flash31 and laser26 anneal do not beat
SPER at 500 °C in terms of the Rs versus junction depth
�Xj� tradeoff.

Deactivation kinetics in post-SPER silicon have been
linked to interstitials �I� emitted from the end-of-range
�EOR� defect band interacting with the dopant atoms, and
the formation of dopant-defect clusters, the rate of which
depends on the thermal budget of the postanneals,21 the lo-
cation of the EOR band with respect to the dopant,22 and the
presence or not of a coimplanted nondopant species.23 In
germanium, the EOR defects are relatively short lived and do
not necessarily follow a classical Ostwald ripening process.27

However, due to the greater likelihood of PnVm cluster for-
mation, rather than PnIm formation, the thermal stability of
the activated profile largely depends on the vacancy popula-
tion, which often relies on thermal generation and injection
from surfaces. Techniques that control these processes need
future exploration.

In order to interpret the Rs data more thoroughly and
evaluate the activation levels generated by SPER, modeling
was undertaken using The Stopping and Range of Ions in
Matter �SRIM�.32 P implants with 1�1015 cm−2 dose were

modeled with energies ranging from 0.5 to 20 keV, shown in
the inset of Fig. 2. Rs is defined as Rs=1 /�o

Xjq�NDdx, where
Xj is junction depth, q is electronic charge, � is electron
mobility and is a function of active donor concentration, ND.
Using the mobility data of Fistul et al.33 Rs was extracted for
each implanted profile for varying ND, assuming a diffusion-
less anneal. Figure 2 shows that Rs decreases with increasing
ND and implant energy as expected. The lowest and highest
experimental Rs values extracted, namely, 128.9 and
336.9 � /sq are plotted on the 15 keV trend line in Fig. 2.
From this plot we can extract the corresponding active levels
of 7�1019 cm−3 and 1.1�1019 cm−3, respectively.

This analysis can be more useful by considering the
Rs versus Xj tradeoff. Assuming an extended planar bulk
architecture, channel concentration increases with MOS
device and junction scaling. For the P profiles of Fig. 2, in
accordance with specs in the ITRS Roadmap 2000–2009
editions,34 Xj is the depth at concentrations of 5
�1018 cm−3, 2.5�1018 cm−3, and 1�1018 cm−3, for the
0.5–2 keV, 5–10 keV, and 15–20 keV profiles, respectively.
Rs versus Xj is plotted in Fig. 3, in the form of constant ND
contour lines. The corresponding P implant energies are in-
cluded on the x-axis. ITRS Roadmap target specs are added
from the 2009 and 2003 editions. The 2009 edition specs are
more relevant as those are the targets that industry is shoot-
ing for at this point in time. However, due to the lack of
development of scaled implanted n-type junctions in germa-
nium, to date published Rs versus Xj data is limited to Xj
�60 nm.26,31,35 2003 specs are a useful guide as they con-
cern junctions with Xj=28–75 nm. The afore-mentioned
flash and laser anneal data are also shown in Fig. 3.26,31 Note
Heo et al.36 reported Rs versus Xj data with Xj�60 nm, by
combining PH3 plasma doping with laser anneal.

According to the ITRS, Rs is a designated percentage of
total source-drain resistance �RSD�. While Rs is not specified
for different device options, RSD is defined with the same
value for high performance �HP�, low-operating power
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FIG. 1. Experimental Rs vs anneal time for n-type doped germanium layers.
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�LOP�, and low-standby-power �LSTP� devices. Thus here
Rs specs for LOP and LSTP are taken as those listed in the
ITRS Roadmap for HP devices. Xj is a function of gate
length �Lgate� which does change with device option. In Fig.
3 Rs versus Xj targets are separated for the 2003 ITRS HP,
LOP, and LSTP devices. Clearly a higher active concentra-
tion is required for HP devices.

For the 2009 specs there was very little difference in
targeted Lgate and Xj, thus for clarity only the most aggres-
sive target is shown in Fig. 3. P implants followed by a
diffusionless anneal, such as SPER, can meet the extended
planar bulk ITRS specs for Lgate=17–22 nm with an active
concentration of 8�1019 cm−3. If a germanium-on-insulator
or other thin-body germanium architecture is used for Lgate
=17–22 nm, the resulting junction profiles can be assumed
to be boxlike. The procedure of Fig. 3 was repeated for that
case, and an active concentration of 6�1019 cm−3 was suf-
ficient to hit the 2009 ITRS targets. Note, the plot is not
shown here due to its similarity to Fig. 3.

In conclusion, the typical problems of n-type impurities
in germanium such as diffusion, substrate loss, and out-
gassing can be overcome by using SPER for dopant activa-
tion. Recrystallization at 500 °C produced an active concen-
tration of 7�1019 cm−3 which is in the order of that needed
for sub-20 nm technologies.

This work has been funded by the Science Foundation
Ireland under Research Grant No. 09/SIRG/I1623.
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