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Probing intrinsic transport properties of single metal nanowires:
Direct-write contact formation using a focused ion beam

G. De Marzi, D. Iacopino, A. J. Quinn, and G. Redmonda)

Nanotechnology Group, NMRC, Lee Maltings, Prospect Row, Cork, Ireland

(Received 12 March 2004; accepted 14 June 2004)

The transport characteristics of 70-nm-diameter platinum nanowires(NWs), fabricated using a
pore-templated electrodeposition process and individually contacted using a focused ion beam(FIB)
method, are reported. This approach yields nanowire devices with low contact resistances
s,400 Vd and linear current–voltage characteristics for current densities up to 65 kA/cm2. The
intrinsic nanowire resistivitys33±5 mV cmd indicates significant contributions from surface- and
grain-boundary scattering mechanisms. Fits to the temperature dependence of the intrinsic NW
resistance confirm that grain-boundary scattering dominates surface scattering(by more than a
factor of 2) at all temperatures. Our results demonstrate that FIB presents a rapid and flexible
method for the formation of low-resistance ohmic contacts to individual metal nanowires, allowing
intrinsic nanowire transport properties to be probed. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1779972]

I. INTRODUCTION

Metallic nanowires(NWs) have been proposed as being
potentially important in the development of nanoelectronic
devices based on bottom-up fabrication.1,2 In this regard, it is
important to establish a method for rapid, flexible contacting
and characterization of nanowire-based electronic devices.
Electrical contacts are generally overlaid onto individual
nanowires using optical- or electron-beam lithography-based
methods.3,4 Focused ion beam(FIB) methods have been used
recently to make contacts to multiwalled carbon nanotubes
and semimetallic Bi NWs with some success.5,6 In this paper,
we report a general method for rapid fabrication of low-
resistance electrical contacts to metallic NWs, in which a
FIB system is employed for a direct write of electrical con-
tacts to nanowires assembled onto larger micron-scale elec-
trodes. Using this approach, the charge-transport properties
of single 70-nm-diameter platinum nanowires(Pt NWs) are
probed in depth using variable-temperature electrical charac-
terization.

II. NANOWIRE FABRICATION

Platinum nanowires are fabricated in commercial poly-
carbonate matrices(Poretics, Osmonics Inc., 50 nm nominal
pore diameter) by the method of pore-templated
electrodeposition.7 A gold layer is sputtered onto one side of
the membrane and serves as the working electrode in a stan-
dard three-electrode electrochemical cell. The NW elec-
trodeposition is carried out at −0.3 V relative to a standard
calomel reference electrode, with a Pt rod serving as the
counterelectrode. The employed electrolyte consists of 2%
H2PtCl6 in de-ionized waters.18 MVd. After pore filling by
electroplating, the template is removed from the electro-
chemical cell and dissolved in dichloromethane. The freed
NWs are then cleaned using an ultrasonic bath and further

purified by centrifugation. Scanning electron microscopy
(SEM) images of the Pt NWs confirm that the NWs are cy-
lindrical in shape, with a diameter of 70±5 nm and with
lengths up to 5mm. Figure 1(a) shows a high-resolution
SEM (HRSEM) image of a 70-nm-diameter polycrystalline

a)Electronic mail: gredmond@nmrc.ie

FIG. 1. (a) High-resolution SEM image showing a NW with polycarbonate
membrane coating;(b) after FIB deposition of interconnects, the membrane
is partially degraded, but the NW is not damaged;(c) SEM image of a Pt
NW deposited onto Au electrical contacts;(d) the NW is then contacted by
direct write of platinum metal junction contacts using a focused ion beam.
The apparent wire width broadening is due to melting of the residual poly-
carbonate membrane, which surrounds the NW.
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Pt NW. A thin-film layer surrounds the NW. We believe this
comprises residual polycarbonate material from the porous
membrane template.8 Repeated HRSEM imaging or FIB
deposition of metal junction contacts onto the NW results in
partial degradation of this membrane material[Fig. 1(b)].

Parallel planar Ti/Au microelectrodes are fabricated on
Si/SiO2 chip substrates(n-Si wafers with 500 nm thermal
SiO2) using UV lithography, metal evaporation, and liftoff,
with interelectrode gaps ranging from 1 to 5mm. The thick-
ness of the deposited gold in these contacts is 20 nm(plus
5 nm Ti adhesion layer) with a measured sheet resistance of
33 V /sq, so that the resistance of the microelectrode tracks
sRtrackd was estimated to be about 130V.

III. ROOM-TEMPERATURE ELECTRICAL
CHARACTERIZATION

A. Experimental setup

Room-temperature transport measurements are per-
formed on NWs drop-deposited onto parallel microelec-
trodes in a two-point geometry by sweeping the bias voltage
applied to the NWs−1.5–1.5 mVd and recording the current
with picoampere resolution. Variable-temperature measure-
mentss4–300 Kd are performed using a He-bath cryostat on
NW-bearing chips wire bonded to leadless chip carriers.

B. Direct-write contacts: FIB

Initial electrical characterization of single Pt NWs drop-
deposited on the microelectrodes[Fig. 1(c)] yields room-
temperature resistance values in excess of 1 GV for biases of
1 mV, attributed to the insulating residual polycarbonate
layer surrounding the NWs[Fig. 1(a)]. To form lower-
resistance contacts between the NWs and the electrodes, a
FIB system(FEI Vectra 200DE, 30 keV Ga ions, and 10 nm
nominal spot diameter) is therefore employed for imaging,
local polycarbonate layer removal, and direct write of the
electrical junction contacts between the NWs and the micro-
electrodes[Fig. 1(d)]. It is important to minimize exposure
of the NWs and the microelectrodes to the highly energetic
Ga ion beam because the beam can damage the surface and
increase the measured resistivity of the junction contact.9

However, at least one FIB image is necessary for alignment
purposes. All junction contacts are fabricated under the same
experimental conditions(10 pA beam current, 30 kV accel-
eration voltage). In the inset of Fig. 2, the room-temperature
current–voltage sI –Vd characteristic of a single
70-nm-diameter, 2.8-mm-long Pt NW contacted by FIB is
reported. The trace is ohmic for current densities up to
65 kA/cm2 (a value higher than that recently measured for
60-nm-diameter Cu NWs,<7 kA/cm2).4

C. Evaluation of the intrinsic nanowire resistivity and
the contact resistance

In order to evaluate the intrinsic NW resistivity,rNW, a
series of single NW devices was fabricated. For each device,
the mean room-temperature resistance,Rmeas, was calculated
by averaging the inverse slopes of several measuredI –V
curves, and the effective NW length,L (distance between the

FIB contacts), was measured by SEM. The intrinsic nanow-
ire resistivity,rNW, can be extracted from a linear fit ofRmeas

vs L, i.e., Rmeas=Rcont+rNWL /A, whereRcont is the contact
resistance, andA is the NW cross-sectional area. The slope
of the fit (solid line in Fig. 2) yields rNW=33±5 mV cm. A
relative resistivity ratio is defined asrrel=rNW/rBulk (rBulk

=10.7mV cm for Pt), yielding rrel
Pt =3, consistent with the

literature reports for 60-nm-diameter Cu and 70-nm-diameter
Au NWs (rrel

Cu=10 and rrel
Au=2, respectively).3,4 This en-

hanced ratio value can be attributed to both the surface- and
the grain-boundary scattering mechanisms operating within
the Pt NWs. This suggestion will be discussed in more detail
later. From the fit intercept value, a(constant) contact resis-
tanceRcont=RFIB+Rtrack=405±35V may be estimated. Tak-
ing Rtrack=130V, the room-temperature resistance of the
FIB junction contactssRFIBd is estimated to be 275V. The
linearity of the I –V curves, as well as the relatively low
value of the contact resistance, demonstrates the efficiency of
FIB as a contacting method.

IV. VARIABLE-TEMPERATURE ELECTRICAL
CHARACTERIZATION

A. The FIB contact contribution to the measured
resistance

Variable-temperature electrical characterization was un-
dertaken to gain insight into the possible contributions of the
different scattering mechanisms within the NWs. For this
purpose, the FIB junction contact resistivity was evaluated
because a contribution from the disordered Pt metal com-
pound deposited by the FIB system is expected.10 To this
end, a series of FIB-written individual test wires of different
lengths sL=2.0–6.5mmd and cross sections sA
=0.02–0.32mm2d were first written between parallel Au mi-
croelectrodes[see the inset in Fig. 3(b) for a typical ex-
ample]. The measured resistance values are plotted in Fig.
3(a) as a function ofL /A whereas in the inset of Fig. 3(a),
the room-temperaturesI –Vd characteristic of a 0.06mm2

cross-sectional area, 2-mm-long FIB-written test wire is re-

FIG. 2. Mean room-temperature resistance vs NW length for the FIB con-
tacted 70-nm-diameter Pt NWs. The intrinsic NW resistivity isrNW

=33±5 mV cm, extracted from the slope of the linear fit(solid line). The
contact resistance isRcont=405±35V (intercept value). Inset: room-
temperatureI –V characteristic of a 70-nm-diameter, 2.8-mm-long FIB-
contacted Pt NW. The linear fit demonstrates ohmic behavior for current
densities up to 65 kA/cm2.
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ported. As for the previous analysis, the value of a FIB-
written wire resistivitysrFIBd was extracted from the slope of
the linear fit in Fig. 3(a). A value of the rFIB

=2200±100mV cm, comparable to literature reports, was
obtained.9,11–13 This large resistivity value is expected be-
cause the FIB deposition method normally results in the for-
mation of a disordered metallic compound containing Pt
s30%d, C s,70%d from the precursor gas
(methylcyclopentadienyl-trimethyl platinum), contaminated
with Ga from the ion beam, and O from the chamber(back-
ground pressure: 5.5310−7 mbar).9 From the fit intercept
value it is found that the contact resistance between the FIB-
deposited compound and the underlying microelectrodes is
less than 80V. The temperature dependence of the resis-
tance of a FIB-written test wire,RFIB

meassTd, is plotted in Fig.
3(b), clearly showing a nonmetallic transport behavior
s]r /]T,0d down to 4 K. This type of conduction behavior
has been observed in a wide variety of disordered materials,
in which the resistance curves were fitted to a variable range
hopping(VRH) model.14–19

The R/T curve of Fig. 3(b) was indeed successfully fit-
ted to a three-dimensional(3D) VRH model, described in
Eq. (1) as follows:

RFIBsTd = R`eST0
T
D1/4

, s1d

in which R` is the resistance for higher temperatures, and

T0 =
18

kBjL
3NsEFd

, s2d

where kB is the Boltzmann constant,jL is the localization
length, andNsEFd is the density of states at the Fermi
energy.15,20,21From the fit, the values ofR`=576±5V and
T0=0.15±0.02 K were obtained. By assuming a rough esti-
mate ofNsEFd (<1029 eV−1 m−3 for Pt), a localization length
of jL<20 nm was calculated in Eq.(2).22 It should be
pointed out thatNsEFd is not precisely known because—as
stated earlier—the deposited compound also contains C, Ga,
and O in a variable concentration. These contamination ele-
ments should lower the value ofNsEFd, thus increasingjL,.
Similar values forT0 and for jL have been reported for or-
dered quasicrystals ofI-AlPdRe (T0,1 mK and jL

,300 nm).19

Within the framework of the Anderson theory of local-
ization, the calculated value ofjL implies that the one-
electron wave functions are no longer delocalized over the
entire wire, but rather decay exponentially over a distance of
the order ofjL.23 This means that the disorder inside the
FIB-deposited compound is large enough to “trap” the carri-
ers into localized states, from which they may escape by
thermally activated hopping conduction. Although Eq.(1) is
only strictly valid for jhop@jL, wherejhop is the VRH dis-
tance given byjhop>0.4jLsT0/Td1/4d, it has been shown,
however, that the valid range of Eq.(1) can be extended for
the case ofjL@jhop, where corrections to Mott’s calculation
gave the same exponential dependence of the conductivity,
and only the pre-exponential factorR` was affected.17,19,24

B. Evaluation of the intrinsic nanowire
resistance

Figure 4(a) shows the measured temperature dependence
of the resistanceRmeasof a FIB-contacted 70-nm-diameter Pt
NW device in the range 4–300 K. The device behavior is
clearly metallic down to 20 K(filled circles). Below 20 K,
however, the resistance increases. This low-temperature be-
havior might be attributable either to the contacts or to the
NW itself. The measured NW room-temperature resistivity is
33 mV cm (well below the Mooij limit for disordered met-
als: 150mV cm), suggesting that the increasing measured
resistance below 20 K can be attributed to the nonmetallic
nature of the FIB junction contacts.25 The measured resis-
tance may be described by the sum ofRmeassTd=RNWsTd
+Rtrack+RFIBsTd. As previously discussed in Sec. IIIC, the
room-temperature resistance of the FIB junction contacts
sRFIBd is estimated to be 275V. The temperature dependence
of RFIB is accounted for by rescaling the characteristic of the
measured FIB-written test wire,RFIB

meassTd, such that
RFIB

meass300 Kd=275V, and then subtracting this contribution
(plusRtrack) may then be subtracted fromRmeassTd in order to
extract the NW resistanceRNWsTd. The result of this analysis
is depicted in Fig. 4(b) (empty circles).

FIG. 3. (a) Measured resistance values of 20 single FIB wires bridging
microelectrodes plotted vs the length/cross-sectional area ratio(L /A); from
the slope of the fitting curve(solid line) the FIB-written wire resistivity can
be extractedsrFIB=2200±100mV cmd. Inset: room-temperatureI –V char-
acteristic of a FIB test wire. The linear fit demonstrates ohmic behavior;(b)
resistance of a 2-mm-long FIB-written test wire measured as a function of
temperature. The solid line represents a fit to the 3D variable-range hopping
model(VRH), whereRFIBsTd=R0expfsT0/Td¼g. Inset: SEM image of a FIB
test wire bridging parallel Au microelectrodes.
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C. Discussion

We first fit the intrinsic NW resistance data,RNW, to the
well-known Bloch-Gruneisen(BG) formula for classical
metals,

RBGsTd = R0 + R1TS T

QD
D4E

0

QD / T x5

sex − 1ds1 − e−xd
dx,

s3d

in which R0 is the residual resistance,R1 is the temperature
coefficient for the resistance, andQD is the Debye
temperature.26 The QD extracted from the fit, 118 K, is very
close to the surface Debye temperature for Pt(surface value:
110 K; bulk value: 230 K), even though the wire diameter is
70 nm, i.e., a substantial scattering contribution from the
bulk phonons is still expected.27,28 This result, together with
the enhanced room-temperature resistivity value
s33 mV cmd suggests that additional physics is still required

to explain the temperature dependence of the wire resistance.
Although electron-phonon and impurity scattering—
described by the BG model—is the dominant process in the
system, scattering contributions from the NW surface and
grain boundaries within the polycrystalline wire are also ex-
pected. The residual resistance ratio[RRR, where RRR
=Rs300 Kd /R0] is found to be RRR=1.5, a value compa-
rable with those reported for other metallic NWs.3,4 This de-
creased RRR(relative to polycrystalline platinum) is a clear
indication of the existence of the grain-boundary scattering
within the electrodeposited Pt NWs.29 Similar effects have
also been found in epitaxial Co/Ni superlattices, in which
the residual resistivity was observed to increase with de-
creasing overall film thickness in the ranged,50 nm.30

Size effects can be taken into account by two theories:
the Fuchs and Sondheimer theory(FS) for surface scattering,
and the Mayadas and Shatzkes model(MS) for grain-
boundary scattering.31,32An approximate formula for the FS
model for wires with circular or quadratic cross section is
given by

RFS

RBG
= 1 +

3

4
s1 − pFSd

l

d
, s4d

where pFS is the probability of an electron to be scattered
specularly at the surface,d is the diameter of the wire, andl
is the mean free path.33 From the MS theory, the grain-
boundary component to the resistivity is given by

RMS

RBG
=

1

1 −
3

2
a + a2 − a3lnS1 +

1

a
D , s5d

wherea=sl /DgrdsRgr/1−Rgrd, Dgr is the average dimension
of the grains, andRgr is the fraction of electrons not scattered
by the potential barrier at a grain boundary.33

Following Steinhöglet al., BG, FS, and MS models are
combined by adding the resistances, neglecting deviations
from the Matthiessen rule that may be expected in the pres-
ence of grain-boundary scattering.33 The intrinsic NW resis-
tance data,RNWsTd shown in Fig. 3(b), extracted from the
measured device data[Fig. 3(a)] as described previously, is
then fitted with the combined FS+MS+BG expression[solid
line in Fig. 4(b)]. Within this framework, the different con-
tributions to the measured resistance can be separated[Fig.
4(c)]. From this model, we findQD=195 K. The value is
lower than the bulk value because the lattice at the wire
surface vibrates more easily, due to the surface atoms having
fewer nearest neighbors. As a consequence, the higher-
energy phonons soften within the NW, andQD is reduced.
Similar effects have also previously been observed for thin
Au films deposited on amorphous substrates and in Co/Ni
superlattices.30,34

In the combined model, the temperature dependence of
the resistance is contained in the mean free path,l. The
number of charge carriers is assumed constant; thus, the
productlsTdrsTd should be a constant. In the curve fitting,
this value was kept as a free parameter. From the fit, it is
found that flsTdrsTdgPt=8310−11 V cm2, in good agree-
ment with the value reported by Fischeret al. for 2 nm thick

FIG. 4. (a) Resistance of a FIB contacted Pt NW,Rmeas, measured as a
function of temperature(filled circles); (b) the intrinsic NW resistance,RNW,
can be calculated at each temperature(open circles) by subtracting the con-
tributions of the underlying microelectrodes and the FIB-written junction
contacts. The solid line represents the fit to the combined BG-FS-MS model;
(c) separation of the different contributions toRmeassTd. Legend:sjd Esti-
mated FIB resistance,sPd electron-phonon interaction(BG model), smd
grain boundary scattering(MS model), and s.d surface scattering(FS
model).
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Pt films s2310−11 V cm2d.35 In our NW, an enhanced value
for the quantityflsTdrsTdgPt is reasonable because the num-
ber of carriers is greater than in ultrathin films, due to the
fact that a lower-defect density is expected. The fit result for
the specular scattering coefficient ispFS=0.177, very close to
the values reported by Fischeret al. (0.13–0.15), and the
grain-boundary reflection coefficientRgr=0.227, is compa-
rable with the values obtained for thin Au films(0.295), for
Cu (0.24), and for Al (0.17).32,34,35The mean average grain
diameter extracted from the fit is 21 nm, consistent with
measured grain sizess20–30 nmd in HRSEM images. This
combined model allows the relative magnitude of the grain-
boundary and the surface-scattering contributions to be esti-
mated: grain-boundary scattering dominates over surface
scattering at all temperatures by a factor of two.

V. CONCLUSIONS

These results demonstrate that FIB presents a rapid and
flexible method for making stable, low-resistance ohmic con-
tacts to single metal NWs for testing their electrical proper-
ties over a wide temperature ranges4–300 Kd. The linear
NW current–voltage characteristics were measured for cur-
rent densities up to 65 kA/cm2. The measured NW room-
temperature resistivitys33 mV cmd indicates contributions
due to surface- and grain-boundary scattering in the NWs.
The fits of the temperature dependence of the extracted in-
trinsic NW resistance suggest that electron-phonon scattering
is the dominant mechanism at all temperatures, but scattering
contributions from the NW surface and grains cannot be ne-
glected. FIB-written junction contacts may therefore be con-
sidered as an alternative to lithographically defined overlaid
microelectrodes for electrically contacting metallic nanowire
devices.
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