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Abstract

When biomarker studies involve patients at multiple centers and the goal is to de-

velop biomarker combinations for diagnosis, prognosis, or screening, we consider eva-

luating the predictive capacity of a given combination with the center-adjusted AUC

(aAUC), a summary of conditional performance. Rather than using a general met-

hod to construct the biomarker combination, such as logistic regression, we propose

estimating the combination by directly maximizing the aAUC. Furthermore, it may

be desirable to have a biomarker combination with similar predictive capacity across

centers. To that end, we allow for penalization of the variability in center-specific

performance. We demonstrate good asymptotic properties of the resulting combinati-

ons. Simulations provide small-sample evidence that maximizing the aAUC can lead
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to combinations with greater predictive capacity than combinations constructed via

logistic regression. We further illustrate the utility of constructing combinations by

maximizing the aAUC while penalizing variability. We apply these methods to data

from a study of acute kidney injury after cardiac surgery.

Keywords: Adjusted AUC; Biomarker combinations; Multicenter; Penalization; Pre-

diction.

1 Introduction

Multicenter studies, where centers could be hospitals, clinics, or providers, have long been

used in therapeutic settings as a way to increase power and improve generalizability, and are

increasingly common in biomarker studies (e.g., Feldstein et al. (2009); Degos et al. (2010);

Nickolas et al. (2012)). Additionally, it is now feasible to measure many biomarkers on each

participant. As the performance of individual biomarkers is often modest, there is interest in

developing combinations of biomarkers for prognosis, diagnosis, and screening. When studies

of multiple biomarkers also involve multiple centers, the central question becomes how such

biomarker combinations should be constructed.

One such study is the Translational Research Investigating Biomarker Endpoints in Acute

Kidney Injury (TRIBE-AKI) study. The TRIBE-AKI study involves data from 1219 cardiac

surgery patients at six centers in North America (Parikh et al., 2011). Study patients were

followed for diagnosis of acute kidney injury (AKI) during hospitalization. For each patient,

blood and urine were collected at multiple time points pre- and postoperatively, and about

two dozen biomarkers were measured at each time point. AKI is typically diagnosed via

changes in serum creatinine but these changes often do not happen until several days after

the injury. The goal of the study is to identify combinations of biomarkers that can provide

an earlier diagnosis of AKI.

Methods to construct biomarker combinations by maximizing the area under the receiver
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operating characteristic (ROC) curve (AUC) have been proposed. However, in a multicen-

ter setting, there is interest in the conditional, or center-specific, performance. One such

summary measure is the center-adjusted AUC (aAUC). We propose a method to construct

linear biomarker combinations by targeting the aAUC. We then extend our method to allow

for penalization of the variability in center-specific performance; this provides combinations

with good overall performance and more similar performance across centers.

2 Background

Let D be a binary outcome, where “cases” have (or will experience) the outcome, denoted by

D = 1 or the subscript D, and “controls” do not have (or will not experience) the outcome,

denoted by D = 0 or the subscript D̄.

2.1 Center-adjusted AUC

Without loss of generality, we assume that for a given predictor Z, higher values of Z are

more indicative of D. Thus, for a particular threshold δ, the true and false positive rates are

P (Z > δ|D = 1) and P (Z > δ|D = 0), respectively. The ROC curve for Z plots the true

positive rate versus the false positive rate over the range of possible thresholds for Z; thus, it

exists in the unit square (Pepe, 2003). The predictive capacity of Z is often summarized via

the area under the ROC curve (AUC), a measure of the ability of Z to discriminate between

cases and controls. The ROC curve for a useless predictor lies on the 45-degree line, and the

corresponding AUC is 0.5 (Pepe, 2003). The ROC curve for a perfect predictor reaches the

upper left-hand corner of the unit square, and its AUC is 1 (Pepe, 2003). The AUC can also

be interpreted as the probability that Z for a randomly chosen case is larger than Z for a

randomly chosen control (Pepe, 2003).

In the multicenter setting, Z can be evaluated marginally, by considering the AUC for Z

pooled across centers, or conditionally, by summarizing center-specific AUCs. If we consider a
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measure of marginal performance (i.e., the AUC for Z pooled across centers), we allow center

to potentially influence the assessment of the predictive capacity of Z, severely restricting

interpretability and generalizability (Janes and Pepe, 2008). Instead, performance should be

assessed conditionally and then summarized across centers; this is analogous to the center-

adjusted odds ratio in the etiologic setting and the center-adjusted treatment effect in the

therapeutic setting (Kahan, 2014; Janes and Pepe, 2008). One such summary measure is

the center-adjusted AUC (aAUC).

The center-adjusted ROC (aROCZ) and corresponding center-adjusted AUC (aAUCZ)

of Z, proposed by Janes and Pepe (2009), can be written as

aAUCZ =

∫ 1

0

aROCZ(t)dt

=

∫ 1

0

∑
c

ROCZ|C=c(t)P (C = c|D = 1)dt

=
∑
c

wcAUCZ|C=c,

where C indicates center, t denotes the false positive rate, ROCZ|C=c and AUCZ|C=c denote

the center-specific ROC and AUC, respectively, and wc = P (C = c|D = 1) is the distribution

of center among cases. When the center-specific AUCs are constant across centers, the

adjusted AUC is simply that center-specific AUC (Janes, Longton, and Pepe, 2009). More

generally, the aAUC is a weighted average of the center-specific AUCs (Janes et al., 2009).

Weighting by the proportion of cases is appealing because centers with more cases tend to

estimate the AUC with more precision than centers with fewer cases (Pepe, 2003). The

aAUC is a summary of the accuracy of Z within each center (Janes and Pepe, 2008) and

provides an estimate of the performance of Z in new centers, to the extent that the new

centers are similar to those used to evaluate Z.
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2.2 Biomarker Combinations

Many biomarker assays are now relatively affordable and/or can be used to measure multiple

biomarkers at once. This has increased the ability of investigators to measure many biomar-

kers in each individual, leading to growing interest in developing biomarker combinations for

diagnosis, prognosis, or screening.

For a collection of biomarkers X, the combination P (D = 1|X) (and monotone increasing

functions of P (D = 1|X)) is optimal in terms of maximizing the true positive rate at each

false positive rate (McIntosh and Pepe, 2002). Thus, to the extent that the linear logistic

model holds, that is, P (D = 1|X) = expit(θ>X), the combination θ>X is optimal. As the

linear logistic model may not hold, methods have been developed to construct biomarker

combinations by maximizing the AUC without relying on this model (Pepe et al., 2006).

Methods have also been developed to identify combinations of biomarkers that maximize

the AUC while accommodating covariates (Liu and Zhou, 2013; Schisterman, Faraggi, and

Reiser, 2004). However, implementation of the method proposed by Liu and Zhou (2013)

is computationally challenging or prohibitive for more than two biomarkers. The method

proposed by Schisterman et al. (2004) assumes that the biomarkers have multivariate normal

distributions and requires specification of the relationship between the covariates (i.e., center)

and the biomarkers.

When the same data are used to construct a biomarker combination and evaluate its

performance (with the aAUC, for example), the resulting estimate of performance is op-

timistically biased (Copas and Corbett, 2002). This optimistic bias, which we refer to as

“resubstitution bias” (Kerr et al., 2015), can be addressed by using a bootstrapping proce-

dure to estimate the optimistic bias and correct the apparent estimate of performance (Copas

and Corbett, 2002; Harrell, 2001). Bootstrapping assumes the observations are exchange-

able, but in the context of a multicenter study, observations from the same center may be

correlated; thus, bootstrap resampling by center has been suggested (Bouwmeester et al.,

2013; van Oirbeek and Lesaffre, 2010; Localio et al., 2001; Janes et al., 2009). However, si-
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milar results for the average cluster-specific AUC (where in our case, ‘cluster’ is center) have

been found whether resampling is done on clusters or individual observations (Bouwmeester

et al., 2013).

2.3 Smooth AUC Approximations

Logistic regression models are typically fit by maximizing the logistic likelihood. However,

we are interested in using fitted combinations for diagnosis, prognosis, or screening, which

motivates maximizing measures of predictive capacity, i.e., matching the objective function

to the intended use of the combination (Pepe and Thompson, 2000; Pepe et al., 2006). Thus,

as alluded to above, constructing biomarker combinations by directly maximizing the AUC

is an appealing alternative to logistic regression. One benefit of directly maximizing the

AUC is that the resulting combination is optimal regardless of whether the logistic model

holds (Pepe et al., 2006). Furthermore, the AUC of a linear combination constructed by

targeting the AUC will be at least as large as the AUC for the individual biomarkers (Pepe

and Thompson, 2000). This simple, desirable property might not hold when a combination

is constructed by maximizing the likelihood.

In practice, the true AUC for a given vector of coefficients θ is unknown. Instead, we

can consider the empirical AUC, which can be written

ˆAUC(θ) =
1

nDnD̄

nD∑
i=1

nD̄∑
j=1

1(θ>XDi > θ>XD̄j),

where nD and nD̄ are the number of cases and controls, respectively, 1(·) is the indicator

function, XDi denotes the biomarker vector for the ith case, and XD̄j denotes the biomarker

vector for the jth control. Since ˆAUC involves indicator functions, direct maximization is

challenging. However, smooth approximations to the empirical AUC have been proposed. Lin
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et al. (2011) used an approximation based on the the probit function to estimate θ:

θ̂ = arg max
θ∈Θ

Rn(θ)

= arg max
θ∈Θ

[
1

nDnD̄

nD∑
i=1

nD̄∑
j=1

Φ
{
θ>(XDi −XD̄j)/h

}]
,

where Θ = {θ ∈ Rp : ||θ|| = 1}, Φ is the standard normal distribution function, and

h is a tuning parameter. The function Φ(v/h) serves as an approximation to the indicator

function I(v > 0) and the tuning parameter h represents the trade-off between approximation

accuracy and estimation feasibility and tends to zero as the sample size grows (Lin et al.,

2011). Lin et al. (2011) noted that if h is too small, estimation will be unstable, and propose

choosing the tuning parameter to be h = σ̃n−1/3 where σ̃ is the sample standard error of

θ̃>X for the starting value θ̃. In order to retain identifiability, constraints must be imposed

on θ. Specifically, we constrain ||θ|| = 1 as in (Fong, Yin, and Huang, 2016).

Due to the smoothness of Rn, gradient-based methods can be used to estimate θ. Ho-

wever, since Rn is not convex, convergence to a global maximum is not guaranteed. Other

approximations have been proposed, including the logistic function (Ma and Huang, 2007)

and the ramp function (Fong et al., 2016). The probit function approximation tends to be

more accurate and stable than the logistic function approximation (Lin et al., 2011) and

implementation is more straightforward than for the ramp function approximation.

3 Methods

The population consists of M centers (M ∈ [m,∞]) where center c has Nc observations,

c = 1, ...,M . We observe data from m centers with nc observations from center c, giving n

total observations. We consider a p-dimensional vector of biomarkers X. Recall that cases

are denoted by either D = 1 or the subscript D, and controls are denoted by either D = 0

or the subscript D̄. Let (X, D) be the biomarkers and outcome for an arbitrary observation.

7
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We use the subscript i on X and D to denote the biomarkers and outcome, respectively,

for the ith observation. We use the superscript c on X and D to denote the biomarkers

and outcome, respectively, for an observation from cluster c. Throughout, we will assume

that the center-specific disease prevalence is non-trivial; that is, P (D = 1|C = c) ∈ (0, 1),

c = 1, ...,M . We will consider linear biomarker combinations, as they are often a reasonable

choice and have intuitive appeal for clinical collaborators.

3.1 Direct Maximization

We are interested in the aAUC for a combination of the biomarkers defined by θ:

aAUC(θ) =
M∑
c=1

wcAUCc(θ)

AUCc(θ) = P (θ>Xc
D > θ>Xc

D̄),

where wc = P (C = c|D = 1). As with the unadjusted AUC, in practice the aAUC is

unknown and we instead consider the empirical aAUC. The empirical aAUC, ˆaAUC, is

based on empirical estimates of the center-specific AUCs, ˆAUCc, and the weights, ŵc:

ˆaAUC(θ) =
m∑
c=1

ŵc ˆAUCc(θ)

ˆAUCc(θ) =
1

ncDn
c
D̄

nc
D∑

i=1

nc
D̄∑

j=1

1(θ>Xc
Di > θ>Xc

D̄j)

ŵc =
ncD
nD

.

Again, ˆaAUC is a function of ˆAUCc, which involves indicator functions, making direct

maximization challenging. However, we can use a smooth approximation to ˆAUCc, which

in turn provides a smooth approximation to ˆaAUC. In particular, we propose the SaAUC
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estimate

θ̂ = arg max
θ∈Θ

aRn(θ), , (1)

where

aRn(θ) =
m∑
c=1

ŵcR
c
nc

(θ)

Rc
nc

(θ) =
1

ncDn
c
D̄

nc
D∑

i=1

nc
D̄∑

j=1

Φ
{
θ>(Xc

i −Xc
j)/hc

}
,

and hc is a tuning parameter that tends to zero as nc grows.

In the above formulation, each center has its own tuning parameter hc. We choose these

tuning parameters to be hc = σ̃cn
−1/3
c , where σ̃c is the sample standard error of θ̃>Xc for the

starting value θ̃. The objective function (1) is a sum of smooth functions, and is therefore also

smooth. We constrain ||θ|| = 1 and use Lagrange multipliers to incorporate this constraint.

Asymptotic results for this method are given in Section 3.3.

3.2 Penalization

In practice, it is unlikely that a given combination will have the same AUC in each center.

This could be due to heterogeneity in the biomarker associations and/or heterogeneity in

performance due to, for example, differences in the populations of patients at different cen-

ters. It may be desirable to construct a biomarker combination that has relatively similar

performance across centers. In particular, it may be worth sacrificing a small amount of the

overall performance (in terms of the aAUC) for less variability in the center-specific AUCs.

To accomplish this, we propose the following:

θ̂λ = arg max
θ∈Θ

{
aRn(θ)− λ

m∑
c=1

ŵc
(
Rc
nc

(θ)− aRn(θ)
)2

}
,

where λ is a fixed penalty parameter, λ ≥ 0. Since aRn(θ)− λ
∑m

c=1 ŵc
(
Rc
nc

(θ)− aRn(θ)
)2

9
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is the difference of two smooth functions, it can be maximized using gradient-based methods.

The goal of this penalized method is to construct a combination whose performance in a new

center will be similar to what has been observed in previous centers. Of course, the notion of

“similar” depends upon the degree of underlying variability across the population of centers,

as well as the centers that have been sampled and can be used to estimate θλ.

3.3 Asymptotic Results

In the theorem below, we demonstrate good operating characteristics for the combination θ̂λ

in large samples. By setting λ = 0, we can obtain asymptotic results for the maximization

of aRn(θ) without penalization. Let

Q̃n(θ;λ) = aRn(θ)− λ
m∑
c=1

ŵc
(
Rc
nc

(θ)− aRn(θ)
)2

Q(θ;λ) = aAUC(θ)− λ
M∑
c=1

wc (AUCc(θ)− aAUC(θ))2 .

We first present several conditions necessary for the theorem:

(A1) The m centers are randomly sampled from the population of M centers, and nc obser-

vations are randomly sampled from center c, c = 1, ...,m.

(A2)
∑m

c=1 |E(ŵc)− wc| → 0 as nc →∞, c = 1, ...,m, and m→M such that
√
nc/m→∞.

(A3) The centers are independent and within each center, the observations Oc
i = (Dc

i ,X
c
i),

i = 1, ..., nc, are independent and identically distributed (p + 1)-dimensional random

vectors such that there exists at least one component of Xc, Xc
k for some k ∈ {1, ..., p},

with distribution that has everywhere positive Lebesgue density, conditional on the

other Xc components.

(A4) The support of Xc, c = 1, ...,M , is not contained in any proper linear subspace of Rp.
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(A5) For fixed λ ≥ 0, both the maximum of Q̃n(θ;λ) and the maximum of Q(θ;λ) over

B = {θ ∈ Rp : ||θ|| = 1, |θk| > 0} are attained.

Theorem 1. Fix λ ≥ 0 and suppose conditions (A1)–(A5) hold. Then supθ∈B Q(θ;λ) =

Q(θ̂λ;λ) + op(1) as nc →∞, c = 1, ...,m, and m→M such that
√
nc/m→∞.

The proof of the theorem is given in Web Appendix A. We have previously demonstrated

that, under certain conditions, ˆAUCc(θ) converges uniformly in probability to AUCc(θ)

and ˆaAUC(θ) converges uniformly in probability to aAUC(θ), and we use these results

in the proof of the theorem (Meisner, Parikh, and Kerr, 2017). Briefly, the proof first

demonstrates uniform convergence in probability of the difference between Q(θ;λ) and the

empirical analogue of Q̃n(θ;λ) (that is, with ˆAUCc in place of Rc
nc

) to zero. The proof

then uses previous results for Rn to demonstrate uniform convergence in probability of the

difference between Q̃n(θ;λ) and the empirical analogue of Q̃n(θ;λ) to zero. Combining these

results gives the desired conclusion.

3.3.1 Choosing the Penalization Parameter λ

In other penalized estimation procedures, such as ridge regression or lasso, the penalty

parameter λ is typically chosen via cross-validation, where the value of λ that gives the best

cross-validated performance is selected. The motivation for cross-validation is that apparent

measures of performance for a given model (that is, estimates of performance based on the

data used to fit the model) will tend to be optimistic (Hastie, Tibshirani, and Friedman,

2016). Cross-validation is one way of addressing this problem.

For our penalized estimation method, we can extend the ideas behind cross-validation to

the multicenter setting. As just described, the goal of cross-validation is typically to get an

idea of the performance in new observations. In the case of data from multiple centers, we

would like to get an idea of the performance in new centers. To that end, we propose the

following procedure, which we call “leave one center out cross-validation” (LOCOCV):

1. Choose a sequence of λ values: {λ1, λ2, ..., λr}
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2. For each value of λ:

(a) For i = 1, ...,m, estimate the biomarker combination using the data from all but

the ith center.

(b) Estimate the AUC of the fitted combination from (a) using the data from the ith

center.

3. Plot the m center-specific AUCs from (2b), the corresponding center-adjusted AUC,

and the variability in the center-specific AUCs around the center-adjusted AUC (i) in

the cross-validation “training” centers and (ii) in the cross-validation “test” centers as

a function of λ.

4. Choose an appropriate value of λ, and use this value to estimate the biomarker com-

bination using the data from all m centers.

It is difficult to define “appropriate” when choosing a value of λ. In some situations,

it may be preferable to sacrifice a small amount of overall performance (aAUC) in return

for substantial decrease in the variability of the center-specific AUCs. In other situations,

any decline in overall performance may be very undesirable. Thus, we recommend using

the cross-validation plot described above to choose λ, rather than an automated procedure,

because the trade-offs for a larger or smaller value of λ may depend on the specific context.

An R package including code to implement these methods, maxadjAUC, will be publicly

available.

4 Results

4.1 Direct Maximization

We used simulations to investigate the performance of the proposed direct maximization

method in a variety of situations. These simulations were based in large part on the set-up
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used by Fong et al. (2016).

In each simulation, we generated a population of centers and individuals, and obtained

training data by sampling from this population. In particular, we first sampled m centers

from the population of M centers. Then, within each of the m sampled centers, we sampled

nc observations of the Nc observations available in each center (where Nc and nc did not vary

across centers). These observations formed the training data, in which the combinations were

constructed. The fitted combinations were then evaluated in independent test data, which

consisted of the Nc observations in each of the M − m centers not used in the training

data. We considered the following settings: (i) M = 50, Nc = 5, 000,m = 6, nc = 200, (ii)

M = 500, Nc = 500,m = 50, nc = 50, and (iii) M = 5000, Nc = 200,m = 500, nc = 20.

Fong et al. (2016) noted that the presence of outliers may lead to diminished performance

of logistic regression and similar methods, while methods based on maximizing the AUC may

be less affected since the AUC is a rank-based measure. Thus, we considered simulations

with and without outliers in the data-generating model. We focused on the setting of two

biomarkers (X = (X1, X2)) and considered

(X | C) = {(1−∆)× Z0}+ {∆× Z1}

(D | X, C) ∼ Bernoulli
[
f{θC0 + 4X1 − 3X2 − (X1 −X2)3}

]
where Z0 and Z1 are independent bivariate normal random variables with mean zero and

respective covariance matrices

0.2×

 1 0.9

0.9 1

 , 2×

 1 0

0 1

 ,

f(v) = expit(v), θC0 ∼ Uniform(−1, 1), and ∆ is an independent Bernoulli random variable

with success probability π, where π = 0.05 when outliers were simulated and π = 0 otherwise.

Other simulations with more complex center effects were considered, though the results were
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largely similar to those based on the scenario described above.

When m = 6, estimates from robust logistic regression were used as the starting values,

and the proposed SaAUC method was compared to robust logistic regression and standard

unconditional logistic regression, both with fixed center-specific intercepts. In particular,

we used the robust logistic regression method proposed by Bianco and Yohai (1996). This

method uses a deviance function that limits the influence individual observations have on

the model fit, making it more robust to outliers than standard (likelihood-based) logistic

regression. When m = 50 or m = 500, we also used conditional logistic regression both to

provide starting values for and to compare with the SaAUC method. For all methods, a

linear combination was fitted. The simulations were repeated 1000 times.

The results are presented in Table 1 where estimates from robust logistic regression were

used as starting values for the SaAUC approach. Clearly, the proposed method outperforms

both standard and robust logistic regression, both in terms of the center-adjusted AUC and

the center-specific AUCs. There also appears to be less variability in performance across

simulations when the SaAUC approach is used to construct combinations. In general, we

found that this gave very similar results as when estimates from conditional logistic regression

were used for m = 50 and m = 500 (Web Table 1). As was observed by Fong et al. (2016) for

the AUC, when outliers were not present, the three methods produced combinations with

comparable performance.

The proposed SaAUC method had excellent convergence rates (less than 0.03% of simu-

lations failed). Robust logistic regression failed to converge in up to 3% of simulations for

m = 50 and up to 15% for m = 500; when this happened, standard unconditional logistic re-

gression was used to obtain starting values. In addition, when simulating data with outliers,

in some instances the true biomarker combination was so large that it returned a non-value

for the outcome D (in R, this occurs for expit(x) when x > 800). These observations had

to be removed from the simulated dataset, though this happened for less than 0.01% of

observations. Finally, for m = 500, some of the training data centers were concordant (that
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Table 1: Mean (standard deviation) of the aAUC in test data and mean (standard deviation)
of the minimum and maximum center-specific AUCs (AUCc) across the centers in the test
data based on combinations fitted by logistic regression (GLM), robust logistic regression
(rGLM), and the SaAUC method (SaAUC). Robust logistic regression estimates were used
as the starting values for the SaAUC method.

Outliers aAUC(θ̂GLM ) AUCc(θ̂GLM ) aAUC(θ̂rGLM ) AUCc(θ̂rGLM ) aAUC(θ̂SaAUC) AUCc(θ̂SaAUC)
Min Max Min Max Min Max

m = 6
Yes 0.6244 0.6065 0.6424 0.6492 0.6315 0.6666 0.6856 0.6684 0.7025

(0.012) (0.013) (0.013) (0.030) (0.031) (0.030) (0.007) (0.008) (0.007)

No 0.7032 0.6866 0.7197 0.7032 0.6866 0.7196 0.7030 0.6864 0.7195
(0.002) (0.004) (0.004) (0.002) (0.004) (0.004) (0.002) (0.004) (0.004)

m = 50
Yes 0.6233 0.5444 0.6992 0.6473 0.5692 0.7215 0.6843 0.6082 0.7564

(0.008) (0.014) (0.012) (0.027) (0.030) (0.026) (0.004) (0.011) (0.009)

No 0.7036 0.6301 0.7731 0.7036 0.6301 0.7731 0.7035 0.6299 0.7730
(0.001) (0.009) (0.008) (0.001) (0.009) (0.008) (0.001) (0.010) (0.008)

m = 500
Yes 0.6221 0.4683 0.7659 0.6333 0.4798 0.7756 0.6796 0.5287 0.8154

(0.004) (0.015) (0.013) (0.013) (0.020) (0.017) (0.004) (0.015) (0.012)

No 0.7038 0.5574 0.8330 0.7038 0.5574 0.8330 0.7037 0.5573 0.8329
(0.001) (0.014) (0.010) (0.001) (0.014) (0.010) (0.001) (0.014) (0.010)

is, all cases or all controls) and were removed from the analysis. Up to 11% of simulations

had one or two concordant training centers.

4.2 Penalized Estimation

We explored our proposed penalized estimation procedure via simulated datasets. In parti-

cular, we used individual datasets generated under a variety of models to explore how the

method may perform in practice.

As was done in the earlier simulations, we first generated a population of centers and

individuals, and obtained training data by sampling from this population. Specifically, we

considered a population of M = 50 centers with Nc = 5, 000 observations in each and

sampled m = 6 centers and nc = 200 observations in each to form the training data, with

the observations in the remaining M −m = 44 centers serving as test data.
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We considered nearly 400 individual datasets; different data-generating mechanisms were

used and included variations on the link function, the distribution of the biomarkers across

centers, and the degree of heterogeneity in the true biomarker combination across centers.

We simulated four independent normally distributed biomarkers with equal variance and

throughout, the true, optimal biomarker combination in each center was linear. Estimates

from robust logistic regression were used as starting values for the penalized estimation

procedure. For each simulation, we applied the LOCOCV procedure described above. We

considered 50 values of λ equally-spaced (on the log scale) between 0.1 and 200. This range

of values is somewhat arbitrary. In other penalized estimation procedures, it is common

to choose the maximum value of λ to be the value that returns coefficient estimates of 0.

The analogous requirement in the current setting would be the value of λ that gives center-

specific AUCs of 0.5 in all centers. This is only expected to occur when all of the biomarker

coefficients are 0, which cannot happen due to the constraint ||θ|| = 1 in the penalized

estimation procedure. The key point is that the range of λ values used here is meant to be

illustrative, not prescriptive.

We present a handful of examples here, and include several more in the Web Figures

1–16. All of the plots we present have the same layout: the left plot gives the training data

results, the middle plot gives the results of the LOCOCV procedure, and the right plot gives

the test data results. In each plot, the horizontal axis shows log10λ. The left vertical axis

displays the AUC, and corresponds to the gray lines (center-specific AUCs for the penalized

estimation procedure) and the black lines (center-adjusted AUCs for the penalized estimation

procedure, robust logistic regression (“rGLM”), and standard logistic regression (“GLM”)).

The right vertical axis shows the variability in the center-specific performance on the standard

deviation scale and corresponds to the red lines (variability relative to the adjusted AUC

in the training centers) and blue lines (variability relative to the adjusted AUC in the test

centers). In the test data, the centers are so large that the AUCs calculated in these centers

are presumed to be equal to the population values. In the training data and cross-validation
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procedure, on the other hand, the AUCs are empirical estimates. For example, in the test

data, for a combination θ̂ estimated in the training data, the variability relative to the

training centers is
∑M−m

c=1 wc(AUCc(θ̂)− ˆaAUC(θ̂))2 and the variability relative to the test

centers is
∑M−m

c=1 wc(AUCc(θ̂)− aAUC(θ̂))2, where the wc’s are the weights for the centers

in the test data, ˆaAUC is the adjusted AUC among the centers in the training data, and

aAUC and AUCc are the adjusted AUC and the center-specific AUC, respectively, among

the centers in the test data. Finally, throughout, the dashed lines represent the standard

logistic regression results and the dot-dashed lines represent the robust logistic regression

results.

Figures 1 and 2 present examples where the LOCOCV procedure does a particularly nice

job of mimicking the patterns in the test data. We encountered some datasets where the

penalized estimation procedure did not work as well. For instance, in a small number of

datasets, the variability increases with increasing λ in the test data, despite the patterns

seen in the training data and the LOCOCV results; Figure 3 presents one such example.

In this situation, a value of λ may be chosen that results in a fitted combination with

worse overall performance and more variability in center-specific performance than would be

obtained without penalization. However, in this example, the drop in overall performance is

not large and the variability is fairly small even when λ is large. Our simulations indicate

that when the centers in the training data are not representative of the population of centers,

the results from the cross-validation procedure may not reflect the patterns in the test data;

such discrepancies would be expected in general when a resampling procedure is applied to

a non-representative sample.

Problems with convergence were uncommon in our simulations. Out of nearly 400 ex-

amples considered, convergence issues were encountered in fewer than 6%. Such issues ge-

nerally only arose with the more extreme scenarios we considered and primarily occurred

during cross-validation. In practice, this may require modification of the range of λ values

considered. None of the results presented here had any convergence failures.
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Figure 1: Penalized estimation example 1. In this example, the penalized estimation pro-
cedure produces combinations with reduced variability across centers with minimal loss in
overall performance (for modest λ values). Importantly, the LOCOCV results mimic what
is seen in the test data. This figure appears in color in the electronic version of this article.

4.3 TRIBE-AKI Data

To illustrate the methods we have developed, we used data from the TRIBE-AKI study and

constructed combinations of three biomarkers measured immediately after surgery: urine

NGAL, plasma h-FABP, and plasma TNI. These data are used as illustration and not to

report new findings of the TRIBE-AKI study. We removed observations with missing values

for any of the three biomarkers (leaving 962 observations), log-transformed the biomarker

values, and scaled the biomarkers to have equal variance. The prevalence of AKI in each

center was between 7.8% and 22.9%, and the sizes of the centers ranged from 53 to 483

patients.

We applied standard logistic regression (“GLM”), robust logistic regression (“rGLM”),

and the proposed SaAUC method to the TRIBE-AKI study data. The fitted combinations

(with normalized coefficients) for GLM, rGLM, and SaAUC were

0.0720 ∗ NGAL + 0.9917 ∗ h-FABP− 0.1068 ∗ TNI

0.0720 ∗ NGAL + 0.9917 ∗ h-FABP− 0.1068 ∗ TNI

0.0107 ∗ NGAL + 0.9585 ∗ h-FABP− 0.2849 ∗ TNI,
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Figure 2: Penalized estimation example 2. This is an example where the LOCOCV results
closely mimic the patterns seen in the test data, indicating the importance of performing
cross-validation. This figure appears in color in the electronic version of this article.

respectively. The apparent estimated center-adjusted AUCs for these combinations are

0.6878, 0.6878 and 0.6918, respectively. After optimism correction, the center-adjusted AUC

estimates are 0.6819, 0.6820 and 0.6825. Thus, it seems that in these data, there is little

difference in the performance of the combinations (though there are clear differences in the

fitted combinations themselves). Furthermore, there appears to be more optimism in the

apparent adjusted AUC estimate for the combination fitted by the SaAUC method, which

might be expected in general since the SaAUC method optimizes a smooth approximation

to this estimate.

Finally, we applied the proposed penalized estimation method to the TRIBE-AKI study

data (Figure 4). The results from the LOCOCV procedure support choosing λ ≈ 101.5,

which is expected to give a reduction in variability in center-specific performance of about

25–30%, with essentially no loss in overall (center-adjusted) performance. In particular, the

LOCOCV results indicate that when λ = 0.1 (the smallest value considered by LOCOCV),

the center-specific AUC estimates ranged from 0.6042 to 0.7250, but when λ = 101.5, the

center-specific AUC estimates were between 0.6270 and 0.6986. Using λ = 101.5 in the full
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Figure 3: Penalized estimation example 3. This is an example where the penalization proce-
dure does not work as well, since the variability in performance across centers increases with
increasing λ, despite the patterns seen in the training data and the LOCOCV. This figure
appears in color in the electronic version of this article.

TRIBE-AKI study dataset yielded the combination

−0.1067 ∗ NGAL + 0.9911 ∗ h-FABP + 0.0798 ∗ TNI.

5 Discussion

We have developed a method to construct biomarker combinations by maximizing a smooth

approximation to the center-adjusted AUC. This method is directly applicable to the covariate-

adjusted AUC for any discrete covariate, and so could be applied beyond the multicenter

setting. In addition, we have incorporated a penalty term that can be used to encourage

similarity in performance across centers. This penalized estimation approach could be useful

in other settings with discrete nuisance covariates, such as batch. We used data on biomar-

kers measured after cardiac surgery to construct combinations for the diagnosis acute kidney

injury, demonstrating the feasibility of our methods.

A limitation of the methods we have proposed is that they cannot be used to generate

predicted probabilities, as they do not relate the biomarker combination to P (D = 1). Thus,
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Figure 4: Penalized estimation method applied to the TRIBE-AKI study data. The results
from the LOCOCV procedure support choosing λ ≈ 101.5, which is expected to give a
reduction in variability in center-specific performance of about 25–30%. This figure appears
in color in the electronic version of this article.

our methods provide tools for risk stratification within each center rather than risk prediction

models. In addition, in multicenter studies, different sampling schemes could be used (e.g.,

case-control or stratified case-control sampling). The estimated weights ŵc would potentially

be affected by different sampling procedures, and may not reflect P (C = c|D = 1). This

would in turn affect the interpretation of the center-adjusted AUC, though it would still

be a summary of the conditional performance. Our methods would then be optimizing this

summary of conditional performance. The sampling scheme could also affect the validity of

the asymptotic results we have provided. Furthermore, if a study involves matching, our

methods would need to be modified to adjust the AUC for the matching in addition to

center (Janes and Pepe, 2008).

The adjusted AUC is a reasonable estimand even when the center-specific AUCs of a

given combination are not the same across centers, though it is helpful to consider the

center-specific AUCs, as these provide some insight into how the combination might be

expected to perform in a new center. In addition, differences in performance across centers

may be scientifically meaningful and merit further investigation. When assessing center-

specific AUCs, it is important to also consider the sizes of the centers, as estimates of center-
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specific AUCs from small centers may be highly variable. One feature of our penalization

approach is the use of the weights ŵc in the penalty function, which reflect the proportion of

cases in each center and so will tend to give less weight to small centers. Furthermore, the

optimal combination (in terms of the center-specific AUC) may be different for each center.

Importantly, however, our aim is not to identify the optimal combination in every center;

instead, we are interested in constructing a single combination that performs well across

centers.

Since our smooth approximation function is not convex, further research is needed on the

choice of starting values. It may also be possible to extend the method proposed by Fong

et al. (2016), which optimizes the convex ramp function approximation to the AUC, to the

center-adjusted AUC. This may lead to further improvements in performance over logistic

regression, as was seen in Fong et al. (2016) for the unadjusted AUC. When the centers are

very small, as when “centers” are clinicians, the empirical center-specific AUC will be unre-

liable. Research is needed into the use of other (possibly parametric) methods to estimate

the center-specific AUC by borrowing information across centers, which may be useful when

the centers are small. Extensions of the methods we have proposed to other center-adjusted

measures of performance, such as the partial AUC or the true positive rate for a fixed false

positive rate, is another avenue for future research.

6 Supplementary Materials

Appendices, Tables, and Figures referenced in Sections 3.3, 4.1, and 4.2 are available with

this paper.
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Web Appendix A

Proof of Theorem 1. First we will show supθ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ = op(1). Let

Qn(θ;λ) = ˆaAUC(θ)− λ
m∑
c=1

ŵc

(
ˆAUCc(θ)− ˆaAUC(θ)

)2
.

We can write

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ ≤ sup

θ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣+ sup

θ∈B
|Qn(θ;λ)−Q(θ;λ)| .
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Under conditions (A1)–(A4), we have shown (Lemma 1 and Theorem 1 in Meisner, Parikh,

and Kerr (2017)) that supθ∈B
∣∣ ˆaAUC(θ)− aAUC(θ)

∣∣ = op(1) and

supθ∈B

∣∣∣ ˆAUCc(θ)− AUCc(θ)
∣∣∣ = op(1), c = 1, ...,M. We can write

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)|

≤ sup
θ∈B

∣∣∣ ˆaAUC(θ)− aAUC(θ)
∣∣∣

+ λ sup
θ∈B

∣∣∣∣∣
M∑
c=1

wc(AUCc(θ)− aAUC(θ))2 −
m∑
c=1

ŵc( ˆAUCc(θ)− ˆaAUC(θ))2

∣∣∣∣∣
≤ sup

θ∈B

∣∣∣ ˆaAUC(θ)− aAUC(θ)
∣∣∣

+ λ
M∑

c=m+1

sup
θ∈B

∣∣wc(AUCc(θ)− aAUC(θ))2
∣∣

+ λ sup
θ∈B

∣∣∣∣∣
m∑
c=1

{
wc(AUCc(θ)− aAUC(θ))2 − ŵc( ˆAUCc(θ)− ˆaAUC(θ))2

}∣∣∣∣∣ ,
where

∑M
c=m+1 supθ∈B |wc(AUCc(θ)− aAUC(θ))2| = o(1) as m → M . Then by Theorem 1

in Meisner et al. (2017),

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)| ≤ op(1) + o(1) + λ

m∑
c=1

sup
θ∈B

∣∣wcY c
1 (θ)2 − ŵc(Y c

2 (θ) + Y c
1 (θ) + Y3(θ))2

∣∣ ,

2
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where Y c
1 (θ) = AUCc(θ)−aAUC(θ), Y c

2 (θ) = ˆAUCc(θ)−AUCc(θ), and Y3(θ) = aAUC(θ)−

ˆaAUC(θ); note that |Y c
1 (θ)| ≤ 1, |Y c

2 (θ)| ≤ 1 and |Y3(θ)| ≤ 1. Then

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)|

≤ op(1) + o(1) + λ

m∑
c=1

sup
θ∈B

∣∣(wc − ŵc)Y c
1 (θ)2

−ŵc
{
Y c
2 (θ)2 + Y3(θ)2 + 2Y c

1 (θ)Y c
2 (θ) + 2Y c

1 (θ)Y3(θ) + 2Y c
2 (θ)Y3(θ)

}∣∣
≤ op(1) + o(1) + λ

m∑
c=1

sup
θ∈B

∣∣(wc − ŵc)Y c
1 (θ)2

∣∣+ λ
m∑
c=1

sup
θ∈B

∣∣−ŵcY c
2 (θ)2

∣∣
+ λ

m∑
c=1

sup
θ∈B

∣∣−ŵcY3(θ)2
∣∣+ λ

m∑
c=1

sup
θ∈B
|−2ŵcY

c
1 (θ)Y c

2 (θ)|

+ λ
m∑
c=1

sup
θ∈B
|−2ŵcY

c
1 (θ)Y3(θ)|+ λ

m∑
c=1

sup
θ∈B
|−2ŵcY

c
2 (θ)Y3(θ)| .

We have (by Lemma 1 and Theorem 1 in Meisner et al. (2017)) supθ∈B |Y c
2 (θ)| = op(1), c =

1, ...,M and supθ∈B |Y3(θ)| = op(1). This gives

sup
θ∈B

∣∣(wc − ŵc) [Y c
1 (θ)]2

∣∣ = |wc − ŵc| sup
θ∈B

[Y c
1 (θ)]2 ≤ |wc − ŵc|

sup
θ∈B

∣∣−ŵc [Y c
2 (θ)]2

∣∣ = ŵc sup
θ∈B

[Y c
2 (θ)]2 ≤ ŵc sup

θ∈B
|Y c

2 (θ)| = ŵcop(1)

sup
θ∈B

∣∣−ŵc [Y3(θ)]2
∣∣ = ŵc sup

θ∈B
[Y3(θ)]2 ≤ ŵc sup

θ∈B
|Y3(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcY

c
1 (θ)Y c

2 (θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcY

c
1 (θ)Y3(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcY

c
2 (θ)Y3(θ)| = ŵcop(1).

Since
∑m

c=1 ŵc = 1 for every m,

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)| ≤ op(1) + o(1) + λ

m∑
c=1

|wc − ŵc| .
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Furthermore, we have previously shown (Theorem 1 in Meisner et al. (2017)) that∑m
c=1 |wc − ŵc| = op(1) as nc →∞, c = 1, ...,m, and m→M such that

√
nc/m→∞. Thus,

supθ∈B |Qn(θ;λ)−Q(θ;λ)| = op(1).

Now consider supθ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣. We will first show supθ∈B

∣∣∣aRn(θ)− ˆaAUC(θ)
∣∣∣

= op(1). Ma and Huang (2007) demonstrated that supθ∈B

∣∣∣Rc
nc

(θ)− ˆAUCc(θ)
∣∣∣ = op(1) as

nc →∞. We can write

sup
θ∈B

∣∣∣aRn(θ)− ˆaAUC(θ)
∣∣∣ ≤ m∑

c=1

ŵc sup
θ∈B

∣∣∣Rc
nc

(θ)− ˆAUCc(θ)
∣∣∣ ≤ m∑

c=1

ŵcop(1) = op(1)

since
∑m

c=1 ŵc = 1 for every m.

Now consider supθ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣. We can write

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣

≤ sup
θ∈B

∣∣∣aRn(θ)− ˆaAUC(θ)
∣∣∣

+ λ sup
θ∈B

∣∣∣∣∣
m∑
c=1

{
ŵc( ˆAUCc(θ)− ˆaAUC(θ))2 − ŵc(Rc

nc
(θ)− aRn(θ))2

}∣∣∣∣∣
≤ op(1) + λ

m∑
c=1

sup
θ∈B

∣∣ŵcZc
1(θ)2 − ŵc(Zc

2(θ) + Zc
1(θ) + Z3(θ))2

∣∣ ,
where Zc

1(θ) = ˆAUCc(θ)− ˆaAUC(θ), Zc
2(θ) = Rc

nc
(θ)− ˆAUCc(θ), and Z3(θ) = ˆaAUC(θ)−

aRn(θ); note that |Zc
1(θ)| ≤ 1, |Zc

2(θ)| ≤ 1 and |Z3(θ)| ≤ 1. This gives

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣ ≤ op(1) + λ

m∑
c=1

sup
θ∈B

∣∣−ŵcZc
2(θ)2

∣∣
+ λ

m∑
c=1

sup
θ∈B

∣∣−ŵcZ3(θ)2
∣∣+ λ

m∑
c=1

sup
θ∈B
|−2ŵcZ

c
1(θ)Zc

2(θ)|

+ λ

m∑
c=1

sup
θ∈B
|−2ŵcZ

c
1(θ)Z3(θ)|+ λ

m∑
c=1

sup
θ∈B
|−2ŵcZ

c
2(θ)Z3(θ)| .
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We have that supθ∈B |Zc
2(θ)| = op(1), c = 1, ...,M and supθ∈B |Z3(θ)| = op(1). This gives

sup
θ∈B

∣∣−ŵc [Zc
2(θ)]2

∣∣ = ŵc sup
θ∈B

[Zc
2(θ)]2 ≤ ŵcop(1)

sup
θ∈B

∣∣−ŵc [Z3(θ)]2
∣∣ = ŵc sup

θ∈B
[Z3(θ)]2 ≤ ŵcop(1)

sup
θ∈B
|−2ŵcZ

c
1(θ)Zc

2(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcZ

c
1(θ)Z3(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcZ

c
2(θ)Z3(θ)| = ŵcop(1).

Since
∑m

c=1 ŵc = 1 for every m, we have supθ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣ = op(1).

Combining these results, we have supθ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ = op(1). Then

∣∣∣∣Q(θ̂λ;λ)− sup
θ∈B

Q(θ;λ)

∣∣∣∣ ≤ ∣∣∣∣sup
θ∈B

Q(θ;λ)− sup
θ∈B

Q̃n(θ;λ)

∣∣∣∣+

∣∣∣∣sup
θ∈B

Q̃n(θ;λ)−Q(θ̂λ;λ)

∣∣∣∣
≤ sup

θ∈B

∣∣∣Q(θ;λ)− Q̃n(θ;λ)
∣∣∣+
∣∣∣Q̃n(θ̂λ;λ)−Q(θ̂λ;λ)

∣∣∣
≤ op(1) + sup

θ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ = op(1),

giving supθ∈B Q(θ;λ) = Q(θ̂λ;λ) + op(1) as nc → ∞, c = 1, ...,m, and m → M such that

√
nc/m→∞.
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Web Table 1

Table 1: Mean (standard deviation) of the aAUC in test data and mean (standard deviation)
of the minimum and maximum center-specific AUCs (AUCc) across the centers in the test
data based on combinations fitted by conditional logistic regression (θ̂GLM) and the SaAUC
method (θ̂SaAUC). Conditional logistic regression estimates were used as the starting values
for the SaAUC method.

Outliers aAUC(θ̂GLM) AUCc(θ̂GLM) aAUC(θ̂SaAUC) AUCc(θ̂SaAUC)
Min Max Min Max

m = 50
Yes 0.6233 0.5444 0.6992 0.6824 0.6062 0.7547

(0.008) (0.014) (0.012) (0.004) (0.011) (0.009)

No 0.7036 0.6301 0.7731 0.7035 0.6299 0.7730
(0.001) (0.009) (0.008) (0.001) (0.010) (0.008)

m = 500
Yes 0.6221 0.4684 0.7659 0.6764 0.5253 0.8128

(0.004) (0.015) (0.013) (0.003) (0.015) (0.012)

No 0.7038 0.5574 0.8330 0.7037 0.5573 0.8329
(0.001) (0.014) (0.010) (0.001) (0.014) (0.010)
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Web Figure 1

Figure 1: Penalized estimation example 3. This is an example where the LOCOCV procedure
does very well in mimicking the patterns seen in the test data.

Web Figure 2

Figure 2: Penalized estimation example 4. This illustrates a setting where there is a clear
benefit to penalizing as there is a reduction in variability with little loss in overall perfor-
mance.
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Web Figure 3

Figure 3: Penalized estimation example 5. This is an example where the LOCOCV results
are inconclusive in terms of which value of λ should be chosen.

Web Figure 4

Figure 4: Penalized estimation example 6. This is an example where the penalization pro-
cedure does not work as well, since in the test data, the aAUC decreased more quickly with
increasing λ than was indicated by the LOCOCV procedure and the training data.
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Web Figure 5

Figure 5: Penalized estimation example 7. In this example, the LOCOCV procedure does a
nice job capturing the trends seen in the test data.

Web Figure 6

Figure 6: Penalized estimation example 8. In this example, there is a clear benefit to
penalization.
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Web Figure 7

Figure 7: Penalized estimation example 9. In this example, there is a clear benefit to
penalization for a range of λ values.

Web Figure 8

Figure 8: Penalized estimation example 10. In this example, there is a clear benefit to
penalization.
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Web Figure 9

Figure 9: Penalized estimation example 11. Here, there is a clear benefit to penalization,
and the overall performance even increases slightly as λ increases.

Web Figure 10

Figure 10: Penalized estimation example 12. In this example, there is a definite benefit to
penalization for a range of λ values.
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Web Figure 11

Figure 11: Penalized estimation example 13. In this example, the LOCOCV procedure
returns somewhat inconclusive results, making the choice of λ less clear.

Web Figure 12

Figure 12: Penalized estimation example 14. In this example, the LOCOCV procedure is a
bit misleading, when compared to the results in the test data.
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Web Figure 13

Figure 13: Penalized estimation example 15. In this example, the LOCOCV procedure is a
bit misleading, when compared to the results in test data.

Web Figure 14

Figure 14: Penalized estimation example 16. In this example, the variability in performance
in test data increases slightly with increasing λ, though this is not reflected in the LOCOCV
results.
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Web Figure 15

Figure 15: Penalized estimation example 17. In this example, the overall performance in test
data decreases more rapidly with increasing λ than is suggested by the LOCOCV results.

Web Figure 16

Figure 16: Penalized estimation example 18. In this example, the relationship between λ
and variability in performance in the test data is somewhat unusual and is not seen in the
LOCOCV results.
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