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Collision bounds for the additive Pollard rho
algorithm for solving discrete logarithms

Joppe W. Bos, Alina Dudeanu and Dimitar Jetchev

Communicated by Rainer Steinwandt

Abstract. We prove collision bounds for the Pollard rho algorithm to solve the discrete
logarithm problem in a general cyclic group G. Unlike the setting studied by Kim et al.,
we consider additive walks: the setting used in practice to solve the elliptic curve discrete
logarithm problem. Our bounds differ from the birthday bound O.

p
jGj/ by a factor

of
p

log jGj and are based on mixing time estimates for random walks on finite abelian
groups due to Dou and Hildebrand.
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1 Introduction

Let G be a finite cyclic group of prime order and let g 2 G be a generator. Given
g and an element h 2 G, the discrete logarithm problem (DLP) is the problem of
computing an integer y such that h D gy . This problem is believed to be hard in
the case for certain groups of points on elliptic curves over a finite field but can be
solved in subexponential time for multiplicative groups of finite fields [1] and for
Jacobians of hyperelliptic curves of high genus [2,3,10,12,14,18]. For this reason,
the elliptic curve discrete logarithm problem (ECDLP) is used as the theoretical
foundation of many standardized protocols used in elliptic curve cryptography [25,
28]. To highlight the practical importance of this problem, the United States’
National Security Agency restricts the use of public key cryptography in “Suite
B” [31] to ECC only.

The parallelized [37] Pollard rho algorithm [33] is one of the most commonly
used methods for solving the discrete logarithm problem when G is a generic finite
cyclic group. The basic idea is to define a walk over the elements of the group G

using an iteration function. One might solve the DLP when a group element is
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encountered twice (such an event is commonly referred to as a collision). If one
assumes that the elements from the walk generated by this iteration function are
independent and uniformly random among all elements of G, the birthday paradox
implies that one can obtain a collision with probability greater than 50% after
O.
p
jGj/ steps and with high probability after O.

p
jGj logjGj/ steps [13, 17].

Here, with high probability means that the probability of success is 1 �O.jGj�c/

for some c > 0 that does not depend on jGj.

Obviously, the assumption that the points generated by the Pollard rho iteration
function are independent and uniformly random among all elements of G is in-
correct (see Section 2.2 for more details). This has motivated a line of research
to rigorously prove the desired bound of O.

p
jGj/ matching the lower bound for

solving discrete logarithms for generic algorithms in prime order groups by Shoup
[35] (in the black-box model). This is an active area demonstrated by the fact that
the run-time of another generic method to solve the DLP, the Pollard kangaroo
method [33, 34], has been rigorously proven correct [29]. The rigorous proof for
the Pollard rho method was established using Markov chains by Kim, Montenegro,
Peres and Tetali in 2008 [21, 22] improving on previous attempts [23, 26].

Unfortunately, the proof presented in [21, 22] only works for the original itera-
tion function used by Pollard in [33]. In practice, however, the so-called additive
walks as studied by Teske [36] are used to solve instances of the DLP (see, e.g.,
the methods described in [6, 9, 16] for solving the discrete logarithm problem for
elliptic curves). A property from the original Pollard rho iteration function that is
not present in these additive walks is crucial for establishing rapid mixing results
for random walks in the proof by Kim et al.

As far as we know, this paper is the first attempt to rigorously prove the run
time of the additive Pollard rho method. It is well known from experimental data
[7, 36] and heuristic arguments [4, Appendix B] that by increasing the number
of partitions in the additive walk, the performance of the iteration function better
resembles the behavior of a truly random walk. We use a model introduced by
Greenhalgh [15] and extended by Hildebrand [20, Theorem 2] where the num-
ber of partitions in the iteration function depends logarithmically on the cardinal-
ity of the group G. This is in agreement with the intuition that one should use
more partitions when larger instances of the DLP are being solved. Using this
idea together with results about estimating mixing times for random walks on ad-
ditive groups due to Dou and Hildebrand [11, 19], we prove a collision bound
of O.

p
jGj log jGj/ with probability greater than 50% and a collision bound of

O.
p
jGj logjGj/ with high probability (see Corollary 3.2). Hence, we are short by

a factor
p

logjGj from the birthday bound for both the case of 50% probability of
success and the case of high probability of success.
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The paper is organized as follows: Section 2 states the preliminaries related
to Pollard rho and motivates our work. In Section 3, we explain why the recent
methods of Kim et al. [21,22] are not applicable in any obvious way to the setting
of the additive Pollard rho algorithm. In Section 4, we recall some basics on
random walks on groups, convolutions of functions from Fourier analysis and their
links to the distributions of end-points of random walks. Section 5 is devoted to
the proof of our main theorem.

2 Preliminaries and motivation

2.1 The classical Pollard rho method

Throughout, we use multiplicative notation for the group G of prime orderN . The
Pollard rho algorithm, originally proposed as an integer factorization method [32],
was later modified to obtain one of the most commonly used methods for solving
the discrete logarithm problem when G is a generic finite cyclic group [33]. In this
context, generic means that the application of the algorithm is independent of the
representation of the group elements, i.e., the algorithm works for any represen-
tation as long as the group operation and the operation of testing equality of two
group elements are both efficient.

The original Pollard rho method works as follows: partition the group G into
three sets S1; S2 and S3 of roughly the same size, pick a random element v0 2
Œ0; jGj � 1�, compute x0 D gv0 2 G and for i � 0 let xiC1 D f .xi / where
f WG ! G is defined as follows:

f .x/ D

8̂<̂
:
gx if x 2 S1;
hx if x 2 S2;
x2 if x 2 S3:

The sequence ¹xiºi�0 represents a walk on G that will eventually enter a cycle,
i.e., there will be integersm > n such that xm D xn (we say that we have obtained
a collision). Since each xn is of the form gunhvn for some known un; vn 2 Z, we
obtain umC yvm � unC yvn mod N , i.e., unless vm � vn mod N , the solution
of the discrete logarithm problem is y D un�um

vm�vn
mod N . Using standard cycle-

detection algorithms, such as Floyd’s cycle finding method [24, Exercise 3.1.6],
the above method requires to store a constant number of group elements. If one
makes the heuristic assumption that the subsequent elements of the Pollard rho
walk are independent and uniformly random, one would get (by using the birthday
bound) that it takes O.

p
jGj/ steps in order to obtain a collision with probability

greater than 50%.
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2.2 Complexity analysis

Regardless of the simplicity of the above method, a mathematically rigorous run-
time analysis is a rather subtle question of probability theory and statistics. There
are two separate stages for analyzing the complexity of solving the discrete loga-
rithm problem via Pollard rho: (1) one needs upper bounds for the number of steps
required to obtain a collision in the Pollard rho walk; (2) one needs to estimate the
probability of the collision being degenerate. In this paper, we only restrict to (1)
and only note that (2) has been carried out rigorously for the classical version of
the algorithm in [27].

Regarding (1), we start with the following heuristic argument: if one makes the
false assumption that the elements x0; x1; : : : (at least up to the first step when
a collision is obtained) are independent and uniformly random among all ele-
ments of G, the birthday paradox would imply that one can reach a collision with
probability greater than 50% after O.

p
jGj/ steps and with high probability after

O.
p
jGj logjGj/ steps [13, 17]. The elements x0; x1; : : : are, however, far from

being independent and uniformly random as they are constructed using the random
initial point, the iteration function f and the partitioning G D S1 t S2 t S3. The
obvious goal is to rigorously prove the birthday bound O.

p
jGj/ that is observed

in practice.
The function f in the original Pollard rho algorithm is fixed. As far as choosing

the partition G D S1 t S2 t S3 is concerned, we can view it as being given by
a function `WG ! ¹1; 2; 3º. The number of steps it takes to obtain a collision
depends on the choice of the function `. It is clear that for certain (degenerate)
choices, this number can be quite large (e.g., if S1 D G and S2 D S3 D ; then
it can take as many as jGj steps to obtain a collision). What one could hope for
is that for a random choice of ` (selected among some prescribed distribution on
the set of all such functions), the collision time will be what we expect (namely,
O.
p
jGj/). If we consider the steps of the Pollard rho walk as random variables

X0; X1; : : : , the collision time T will then be a stopping time random variable
where the randomness is determined by the choice of ` as well as by the random
choice of the initial element. One could then try to show that with high probability,
T D O.

p
jGj/. We refer to this probabilistic model as Model 1. It is clear that the

values of X1; : : : ; Xn; : : : are completely determined by the choices of X0 and `.
Unfortunately, it is not known how to analyze the statistical behavior of Model 1.
A common approach to remedy this problem is to use pseudo-random walks in
order to approximate (statistically) the random variables Xi with other random
variables that are easier to work with. The idea is that XnC1 can be modeled as
being computed from Xn by using (with probability 1=3) a random transition out
of the three different transition steps. This gives us the model of a random walk on
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the so-called Pollard rho graph (a 3-regular graph whose vertices are the elements
of G and whose edges are determined by the transition steps). Of course, once
we obtain a collision, the walk should no longer be random, but deterministic. We
refer to this approximation model as Model 2. In this case (for the classical Pollard
rho), one can show that with probability more than 50% (or, more generally, with
any probability that is independent of jGj), a collision occurs after O.

p
jGj/ steps.

In fact, this was not known until recently: the desired bound of O.
p
jGj/ was

rigorously established using Markov chains by Kim, Montenegro, Peres and Tetali
in 2008 [21, 22] improving on [23, 26]. The argument relies on establishing rapid
mixing results for random walks in the Pollard rho graph where the squaring step
plays a crucial role (see Section 3.1 for more details). Yet, currently nothing is
known about how well Model 2 approximates Model 1 or vice versa.

2.3 Additive Pollard rho method

In practice (e.g., for groups of points on elliptic curves), the squaring step is
often avoided due to inefficiency reasons to solve elliptic curve discrete loga-
rithm problems. Instead, a small integer r is chosen and an r-tuple .s1; : : : ; sr/
of group elements (transition steps) is precomputed. Given a partition function
`WG ! ¹1; 2; : : : ; rº, one uses the transition function f .x/ D xC s`.x/ instead of
the function defined in the original Pollard rho method. This gives rise to a varia-
tion of Pollard rho that uses no squaring steps. These walks are known as r-adding
walks [36].

The theoretical question studied in this paper is relevant as it is the first attempt
to provide a rigorous analysis of the variation of Pollard rho that is most commonly
used nowadays. In practice, when solving the discrete logarithm problem, one uses
a parallel version of Pollard rho [37]. This leads to an m-fold speedup when the
workload is shared among m computational units. The main cost of the Pollard
rho method is computing the iteration function f . Computing a single step in the
Pollard rho walk (a single iteration of f ), is equivalent to computing the group
operation in G. In the setting of elliptic curves where we use the additive notation
for the group operation, this operation is either a point doubling or a point addition.

Montgomery’s simultaneous inversion method is often used to speed up Pollard
rho [30]. When processing m independent walks in the parallel version of the al-
gorithm, the simultaneous inversion method allows one to substitute m inversions
by 3m� 3 multiplications and a single inversion. When used in combination with
affine Weierstrass coordinates, this results in a cost (ignoring modular additions
and subtractions) of s squarings, 2 C 3m�3

m
multiplications and 1

m
inversions to

implement the group operation for a single walk where s D 1 and s D 2 for
elliptic curve addition and point doubling, respectively. This makes affine Weier-
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strass coordinates the preferred point representation for this type of application
and shows that from a performance perspective, point doublings are to be avoided.

3 Run-time analysis for r-adding walks

Analyzing Model 1 is out of reach even in the setting of the classical Pollard rho
method. We thus restrict ourselves to Model 2 in the setting of the Pollard rho
method using r-adding walks.

3.1 Classical Pollard rho and block walks

The method of Kim, Montenegro, Peres and Tetali [21, 22] applies to the classical
version of Pollard rho that uses three transition steps, one of which is the squar-
ing step and the other two are multiplications by g and h, respectively. Under
Model 2, this is achieved by choosing transition steps uniformly at random among
the three until a collision has been obtained. Under this model, it is shown that a
collision is obtained in O.

p
jGj/ steps. The key observation is the fact that one

can split the pseudo-random walk into blocks using the squaring steps of the walk
as a separating move. More precisely, if one represents the walk by the random
variablesXi D gYi for unique Yi ’s in Œ0; jGj�1� then one defines a new sequence
of random variables ¹Tiº as follows: let T0 D 1 and let T1 be the first step when
the walk makes a squaring transition. More generally, let Ti be the first step after
Ti�1 when the walk makes a squaring transition. Let bi D YTi�1 � YTi�1 be
the contribution from the i th block (this is the part of the original walk covered
by addition steps only). The block walk is then defined as the random process
Zs D YTs D 2

sYT0 C 2
Ps
iD1 2

s�ibi . One can estimate the probability Bs.u; v/
of reaching a vertex v starting from a vertex u via a pseudo-random walk consist-
ing of exactly s blocks (as opposed to a fixed number of steps). More precisely,
assuming that Z0 D u, Bs.u; v/ is the probability that Zs D v. Obtaining good
upper and lower bounds for these probabilities is possible for the following two
reasons: if S is the set of blocks for which bi D 0 or 1, i.e., the blocks of zero
steps (two consecutive squarings), and the blocks of one multiplication-by-g step
(a squaring followed by multiplication by g followed by another squaring) then
one can separate the total contribution from these special blocks and conditions on
the total contribution of the remaining blocks. Calculating this conditional proba-
bility amounts to calculating the probability of a given integerw being represented
as w D

Ps
iD1 2

s�ibi where bi D 0 or 1. Using the uniqueness of the binary rep-
resentation of w, one can determine uniquely the contribution of each block from
the set S and thus, establish strong upper bounds on this conditional probabil-
ity. This allows to deduce (via Plancherel’s formula from Fourier analysis and the
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fact that the contributions bi of the blocks are independent considered as random
variables) that Bs.u; v/ is close to uniform for s that is polylogarithmic in logjGj
which shows rapid mixing for the block walk. Here, the squaring step plays a key
role.

It is difficult to generalize the block-walk method of [21, 22] in the additive
Pollard rho setting since we have no natural choice for the separating move (as
is the squaring step in the classical Pollard rho). Even if one declares one of
the existing steps as separating, one still has no analogue of the uniqueness of the
binary expansion. One can work harder and estimate the number of representations
of w as a combination of the remaining (non-separating) steps, but eventually, we
were unable to obtain an asymptotically useful bound. From that point of view, the
problem of analyzing Pollard rho equipped with r-adding walks looks harder than
analyzing the original Pollard rho using a mixed walk. Before stating the main
result, we make two separate comments that will motivate the precise formulation
chosen for the complexity analysis.

3.2 Randomization over the addition steps

Suppose that one is interested in analyzing the case of Pollard rho for additive
walks. One then loses the important property that the squaring step contributes to
the rapid mixing properties of the Pollard rho walk. When no squaring is used,
there exist special cases in which it might take as many as jGj steps for the walk
to even reach a certain element of the group.

To make this precise, note that each choice of the r-tuple .s1; : : : ; sr/ of transi-
tion elements gives rise to a stopping time random variable Ts1;:::;sr , namely, the
first time when a collision is obtained in the walk. More precisely, let

Ts1;:::;sr D min
®
j > 0 W 9i < j such that Xi D Xj

¯
;

where .s1; : : : ; sr/ are the transition steps in the Pollard rho walk.
Here, the distribution of Ts1;:::;sr depends on the source of randomness for the

Pollard rho walk. For Model 1, this source is the choice of a random partition of
G into r disjoint sets whereas for Model 2, it is the random choice of a transition
element at each step in the walk. In either case, we are interested in showing that
Ts1;:::;sr is bounded by some appropriate upper bound with either probability at
least 50% (or any fixed probability, independent of jGj) or with high probability
(i.e., probability 1�O.jGj�c/ for some c > 0) over the desired source of random-
ness. For instance, one might want to show that Ts1;:::;sr is less than a constant
times

p
jGj with probability more than 50% for an r-tuple .s1; : : : ; sr/ of transi-

tion steps. Yet, in the r-adding walk case, it is unreasonable to expect such a result
to hold for a fixed r-tuple .s1; : : : ; sr/ as there might be very degenerate choices
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that do not even allow one to reach every element of the group G in O.
p
jGj/

steps. For instance, consider G D .Z=NZ;C/ for some integer N > 0 and sup-
pose that r D O.logN/. Consider the transition elements si D i mod N for
i D 1; : : : ; r . It is clear that if the walk starts at the zero element, it cannot reach
the element N � 1 mod N in time less than N= logN . This degeneracy leads to a
poor mixing time for the Pollard rho walk for this particular choice of steps. One
way to remedy this issue is to establish the expected upper bound on the stop-
ping time Ts1;:::;sr with high probability over the random choice of the transition
elements .s1; : : : ; sr/ as well as over the source of randomness of Model 2.

3.3 Dependency on r

One expects that by increasing the size of the set of precomputed points that can
be added to the current point in the iteration function results in a pseudo-random
walk behaving more like a truly random walk. This was experimentally shown
to be true by Teske [36] and is made more precise by Bernstein who showed,
using a heuristic argument [4, Appendix B] refining the analysis from [8], that the
expected number of steps to reach a collision when using an r-adding walk iss

�jGj

2.1 �
Pr
jD1 p

2
j /
;

where typically pj � 1
r

(see also [5]). Hence, the use of an r-adding walk re-
sults in a bound that is larger than the birthday bound

p
�jGj=2 by a factor ofp

r=.r � 1/, so the larger r is, the closer the expected bound is to the birthday
bound. This argument is extended in [7] when using mixed walks (walks that
have both multiplication and squaring steps). The expected number of steps for
reaching a collision is thens

�jGj

2.1 � p2D �
Pr
jD1 p

2
j /
;

where pD D 1 �
Pr
iD1 pi is the probability of choosing a squaring step. For

instance, the original mixed walk used by Pollard is expected to differ from the
birthday bound by a factor of

p
3=2 � 1:22.

A major question is then how r should depend on jGj. Assuming that r does
not depend on jGj, we note that an argument of Greenhalgh [15] as extended by
Hildebrand [20, Theorem 2] (see also Theorem 4.8) establishes lower bounds on
the mixing time that are exponential (in logjGj) as opposed to mixing times that
are polynomial (in logjGj) in the case when r depends logarithmically on jGj
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(see Theorem 4.4). One would then expect that in the case when the mixing time
is poor, the number of steps to achieve a collision must be far from the birthday
bound. We thus allow r to depend logarithmically on jGj.

3.4 Main theorem

Similarly to the case of the classical Pollard rho algorithm with three transitions,
proving anything under Model 1 seems hopeless. Our main theorem shows that
such a result for r-adding walks can indeed be shown under Model 2 with an
asymptotic upper bound

p
jGj logjGj on the number of steps (with probability

greater than 50%).

Theorem 3.1. Let a > 1, ı > 0 and 
 > 0 be real numbers. There exists n0 � 0
with the following property: if G is a finite cyclic group of prime order jGj � n0
and � > 1 is a real number then

Pr
s1;:::;sr

random walk

�
Ts1;:::;sr �

r
.2C ı/�

e
jGj logjGj

�
� 1 � e�� �

1

jGj

;

where r D b.logjGj/ac. Here, the probability is taken over a uniformly random
choice of an r-tuple .s1; : : : ; sr/ of distinct elements of G and over the randomness
of Model 2.

The implications of this theorem are stated in the following corollary.

Corollary 3.2. Let a > 1 be a real number. If G is a finite group that is cyclic of
prime order and if r D b.logjGj/ac then solving the discrete logarithm problem
with the Pollard rho method using an r-adding walk requires

(i) O.
p
jGj log jGj/ steps with probability � 0:5 as jGj ! 1,

(ii) O.
p
jGj logjGj/ steps with high probability, i.e., if 
 > 0 is any fixed real

number (independent of jGj) then the probability of not finding a collision in
O.
p
jGj logjGj/ steps is bounded by O.jGj�
 / as jGj ! 1,

where the probability is over the choice of uniformly random r-tuple .s1; : : : ; sr/
of distinct elements of jGj and the randomness in Model 2.

Proof. This follows immediately from Theorem 3.1 when we fix a constant 
 > 0
and consider � D log 2jGj


jGj
�1
for the first part and � D 
 logjGj for the second

part.
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To prove the theorem, we first need mixing time estimates for random walks on
the group G. Such estimates over a random choice of r independent adding steps
were established by Dou and Hildebrand [11, 19]. The idea then is the following:
given the mixing time � (i.e., the number of steps needed to make the end point of
the walk look uniformly random), we make t0 initial steps and then � additional
steps. Since � is a mixing time, the probability of the end point of the walk be-
ing any of the t0 initial points is t0

jGj
, i.e., the probability of failing to produce a

collision at this step should be bounded by 1 � t0
jGj

. If no collision has occurred,
we perform another � steps and calculate the probability of failure. We continue
until the probability of failure becomes less than e�� . Suppose we have done s
such iterations (performing � steps s times after the original t0 steps). We then
need to minimize the total number of t0 C �s steps subject to the constraint that
the failure probability is smaller than e�� . By solving this optimization problem,
we see that it takes O.

p
jGj logjGj/ steps to produce a collision with probability

at least 1 � e�� .

4 Random walks on groups and mixing times

Let G be a finite abelian group, let P be a probability distribution on G and let U
be the uniform distribution on G. Following [19], we define the statistical distance
between the probability distribution P and the uniform distribution U as

kP � U k WD
1

2

X
s2G

ˇ̌̌
P.s/ �

1

jGj

ˇ̌̌
:

Given two real-valued functions f WG ! R and gWG ! R, we define their con-
volution as

.f ? g/.x/ WD
X
y2G

f .xy�1/g.y/:

As the convolution is associative, them-fold convolution f ?� � �?f is well-defined
and we denote it by f ?m. Let r be a positive integer (that may or may not depend
on jGj) and let s1; : : : ; sr 2 G be a sequence of r distinct elements of G (we
refer to these elements as the transition steps). Let p1; : : : ; pr be a set of positive
real numbers such that

Pr
iD1 pi D 1 (we refer to these numbers as transition

probabilities). Let Ps1;:::;sr be the distribution defined by

Ps1;:::;sr .s/ WD

´
pi if s D si for some i D 1; : : : ; r;
0 otherwise.

In the case of the r-adding walk version of Pollard rho under Model 2, we take
pi D 1=r for every i D 1; : : : ; r . Note that P ?ms1;:::;sr is the distribution of the end
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point of an m-step random walk starting from the identity element of the group G

(this follows, e.g., by induction on m).

Definition 4.1. Given � > 0 and a sequence s1; : : : ; sr of transition steps, we
define the �-mixing time �s1;:::;sr .�/with respect to that sequence to be the smallest
integer m such that kP ?ms1;:::;sr � U k < �.

Remark 4.2. Using the fact that s1; : : : ; sr generate G (since G is of prime order),
using spectral analysis of the adjacency matrices of the Cayley graph constructed
from ¹s1; : : : ; srº, one can show that the mixing time �s1;:::;sr .�/ is well-defined.

Remark 4.3. We cannot find a reasonable bound for �s1;:::;sr .�/ for every r-tuple
.s1; : : : ; sr/ of transition steps. Yet, for a uniformly random r-tuple among all
jGjŠ

.jGj�r/Š
r-tuples of distinct elements of G, one could expect a reasonable upper

bound. This can be formalized using Markov’s inequality as well as bounds on the
expectation of the statistical difference between the distribution of the end-point of
the mth step of the random walk and the uniform distribution (due to Hildebrand).
This is indeed the approach that we take.

The next theorem shows that if we allow polylogarithmic dependence of r on
jGj then one does indeed get a polynomial (in logjGj) mixing time.

Theorem 4.4 ([11, Theorem 1]). Let r D b.logjGj/ac for some constant a > 1

and let �0 > 0 be given. Suppose that m > a
a�1

log jGj
log r .1C �

0/. Then

E
s1;:::;sr

�
kP �ms1;:::;sr � U k

�
! 0 as jGj ! 1;

where the probability is taken over a uniformly random r-tuple .s1; : : : ; sr/ of
distinct elements of G.

Remark 4.5. For our particular application, the version stated above is not suffi-
cient as it does not quantify the rate of convergence of the expectation as jGj !
1. Yet, we should point out that such a quantification is implicit in the proof by
Dou and Hildebrand. We state and prove an effective version in the next section
and apply this version to obtain upper bounds on the mixing time �s1;:::;sr .�/ that
holds with high probability over the choice of the r-tuple .s1; : : : ; sr/.

Remark 4.6. We note that Hildebrand’s bound is optimal in the following sense:
it is shown in [19, Theorem 3] that if r D b.logjGj/ac for some constant a < 1

then for any fixed positive real number b, the distance kP �ms1;:::;sr � U k ! 1 as
jGj ! 1 form D b.log jGj/bc and any choice s1; : : : ; sr 2 G of transition steps.
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Finally, we note that if r is independent of jGj then the mixing time becomes
exponential as shown by the following two theorems establishing upper and lower
bounds, respectively.

Theorem 4.7 ([19, Theorem 1]). Suppose that r � 2 is a fixed positive integer and
let p1; : : : ; pr be fixed transition probabilities as above. Given � > 0, there exists
a constant 
 that depends on r , � and the pi ’s, but not on jGj such that

E
s1;:::;sr

�
kP �ms1;:::;sr � U k

�
< �

for m D b
 jGj2=.r�1/c where the expectation is taken over a uniformly random
r-tuple .s1; : : : ; sr/ of distinct elements of G.

Theorem 4.8 ([20, Theorem 2]). Let r be constant (independent of jGj) and let
pi D

1
r

for i D 1; : : : ; r . Let ı < 1
2

be fixed. There exists a value 
 > 0

(independent of jGj) such that if m < 
 jGj2=.r�1/ then kP �ms1;:::;sr � U k > ı for
any r-tuple .s1; : : : ; sr/ of distinct elements of G.

4.1 Upper bounds on mixing times

The mixing time �s1;:::;sr .�/ can get as large as jGj for certain degenerate r-tuples
.s1; : : : ; sr/ of transition steps. We thus need a way to show that with high prob-
ability over a randomly chosen r-tuple .s1; : : : ; sr/ of distinct elements of G, the
mixing time can be bounded by a sufficiently strong upper bound. The following
definition is helpful in order to make this rigorous:

Definition 4.9. Let � > 0 be a real number and let m be a positive integer. We
say that an r-tuple .s1; : : : ; sr/ of distinct elements of G is .�;m/-faulty if
kP ?ms1;:::;sr � U k > � or equivalently, if �s1;:::;sr .�/ > m.

Using the work of Dou and Hildebrand [11] and Markov’s inequality, one can
prove the following:

Lemma 4.10. Let a > 1 be any real number and let �0 be a real number that
satisfies 0 < �0 < .a�1/

e
log logjGj � 1. Let

r D b.logjGj/ac and m D
l logjGj
.a � 1/ log logjGj

.1C �0/
m
:

There exists n00 > 0 such that if jGj � n00 then for any � > 0, we have

Pr
s1;:::;sr

�
.s1; : : : ; sr/ is .�;m/-faulty

�
D Pr
s1;:::;sr

�
kP ?ms1;:::;sr � U k > �

�
<

3

4�2jGj�
0 ;
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where the probability is taken over a uniformly random r-tuple .s1; : : : ; sr/ of
distinct elements of G.

Proof. We follow the proof of [11, Theorem 1]. Throughout, we omit the explicit
reference to the floor and ceiling notation that does not affect any of the conclu-
sions. It is shown in [11, p. 996] that

E
s1;:::;sr

�
kP ?ms1;:::;sr � U k

2
�
�
3

4

jGj.em/m

rm
; (4.1)

whenever jGj is sufficiently large, i.e., whenever jGj � n00 for some n00 > 0.
Letting

d D
a

a � 1

1C �0

log r
D

1C �0

.a � 1/ log logjGj
;

note that .em/m D jGjd.logdC1/ and rm D em.a�1/ log logjGj. The right side of
(4.1) becomes

3jGj.em/m

4rm
D
3elogjGjjGjd.logdC1/

4em.a�1/ log logjGj
D
3

4
jGj��

0Cd.logdC1/:

If �0 < .a�1/ log logjGj
e

�1 then log d < �1, hence, d.log dC1/ < 0 and (4.1) then
implies

E
s1;:::;sr

�
kP ?ms1;:::;sr � U k

2
�
�
3

4

1

jGj�
0�d.logdC1/

<
3

4jGj�
0 : (4.2)

Using Markov’s inequality, we obtain

Pr
s1;:::;sr

�
kP ?ms1;:::;sr � U k

2 > �2
�
<

3

4�2jGj�
0 :

Since the statistical distance is non-negative, the above inequality is equivalent to

Pr
s1;:::;sr

�
kP ?ms1;:::;sr � U k > �

�
<

3

4�2jGj�
0 :

5 Application to Pollard rho – Proof of Theorem 3.1

We prove Theorem 3.1 in two different steps: (1) we establish collision bounds
in terms of mixing times; (2) we combine the previous bounds via a simple result
from probability theory and carefully optimize for the parameters involved.
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5.1 Collision bounds and mixing times

Our proof is based on the following argument: let � > 0 and the r-tuple of
transition steps .s1; : : : ; sr/ be fixed. For notational convenience, we substitute
� D �s1;:::;sr .�/. Given t � 0, we consider the probability p.�; t; t0/ that no col-
lision has occurred after the first t0 C .t C 1/� steps of the walk. For instance, in
case t D 0, we make t0C � steps of the walk and compare the resulting end-point
with the first t0 elements of the walk. We can look at the probability p.�; 0; t0/
and by definition of the mixing time � ,

p.�; 0; t0/ � 1 �
t0.1 � 2�jGj/

jGj
:

More generally, the probability that the .t0C .t C 1/�/th element of the walk does
not collide with any of the first t0 C t� elements is at most

1 �
.t0 C t�/.1 � 2�jGj/

jGj
:

Using 1 � x � e�x for x < 1, we obtain

p.�; t; t0/ �
�
1 �

.t0 C t�/.1 � 2�jGj/

jGj

�
p.�; t � 1; t0/

� exp
�
�
.t0 C t�/.1 � 2�jGj/

jGj

�
p.�; t � 1; t0/:

By induction on t , we prove the following:

Lemma 5.1. Let � > 0 be a real number and let .s1; : : : ; sr/ be a fixed r-tuple
of distinct elements of G. Let � D �s1;:::;sr .�/ be the mixing time introduced in
Definition 4.1. For any positive integers t � 0 and t0 we have

p.�; t; t0/ � exp
�
�
.1 � 2�jGj/.t C 1/.2t0 C t�/

2jGj

�
DW B.�; t; t0/:

The above lemma bounds the probability that a collision is obtained after t0 C
.t C 1/� steps. The next step is to optimize the integer parameters t0 and t . Thus,
the probability of obtaining a collision after at most t .�; t; t0/ WD t0C .t C 1/�.�/
Pollard rho steps is lower bounded by

Pr
random walk

�
Ts1;:::;sr � t .�; t; t0/

�
� 1 � B.�; t; t0/:
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For any � < 1
2jGj

and any t0 (keeping in mind that � > 1 by hypothesis), we first
determine the minimal value of t for which the probability of failure (not obtaining
a collision after t .�; t; t0/ steps) is at most e�� . In other words,

B.�; t; t0/ D exp
�
�
.1 � 2�jGj/.t C 1/.2t0 C t�/

2jGj

�
� e��

”
�

2
t2 C

��
2
C t0

�
t C t0 �

�jGj

1 � 2�jGj
� 0:

Here, we have used the hypothesis � < 1
2jGj

which implies that the discriminant
of the above quadratic polynomial in t is positive, hence, by solving the quadratic
inequality, we obtain

t �
�. �

2
C t0/C

q
2�jGj
1�2�jGj

� C . �
2
� t0/2

�
DW t 0:

This means that tmin D dt
0e is the minimal possible value for t that yields a prob-

ability of failure smaller than e�� given �, .s1; : : : ; sr/ and t0. Hence, the number
of Pollard rho steps necessary for producing a collision can be bounded by

t .�; tmin; t0/ �

s
2�jGj

1 � 2�jGj
� C

��
2
� t0

�2
C
�

2
:

The value of t0 that minimizes the above bound is t0 D b �2c. Hence,

min
t;t0

t .�; t; t0/ �

s
2�jGj

1 � 2�jGj
� C

1

4
C
�

2
DW ts1;:::;sr .�/:

Here, we intentionally write s1; : : : ; sr in the subscript to remind the reader of the
dependency on the transition steps. Finally,

Pr
random walk

�
Ts1;:::;sr � ts1;:::;sr .�/

�
� 1 � e�� : (5.1)

5.2 Completing the proof

As we proceed with the proof, we will show what inequalities the n0 needs to
satisfy. First, suppose that n0 satisfies

a � 1

e
log logn0 � 1 > 0;



86 J. W. Bos, A. Dudeanu and D. Jetchev

as well as n0 � n00 where n00 is the bound from Lemma 4.10 and suppose that
jGj � n0. Let �0 be any real number that satisfies

0 < �0 <
a � 1

e
log logn0 � 1

(the existence of such �0 is guaranteed by the above inequality) and let

m D
j logjGj
.a � 1/ log logjGj

.1C �0/
k
:

Let � > 0 be a real number that satisfies � < 1
2jGj

. Lemma 4.10 yields a bound
on the probability of drawing an .�;m/-faulty choice of .s1; : : : ; sr/ out of all r-
tuples of distinct elements in G. To complete the proof of Theorem 3.1, we need
to combine (5.1) and (4.2) to get the desired result. We do this via standard union
bounds from probability theory by using that if A;B1 and B2 are three events such
that A) :B1 _ :B2 then

PrŒA� � PrŒ:B1�C PrŒ:B2�: (5.2)

We would like to apply (5.2) to A being the event

Event AW Ts1;:::;sr > c
p
�jGj logjGj

for some constant c > 0 that we specify below. Moreover, let B1 be the event

Event B1W Ts1;:::;sr � ts1;:::;sr .�/;

and let B2 be the event

Event B2W �s1;:::;sr .�/ � m;

where m is the value from Lemma 4.10. In order to apply (5.2), we only need to
choose the parameters � and �0 in such a way that A) :B1 _ :B2.

Assuming that the events B1 and B2 both hold, we obtain

Ts1;:::;sr �

s
2�jGj

1 � 2�jGj
mC

1

4
C
m

2
:

Since �0 < .a�1/
e

log logjGj � 1, we have m <
logjGj
e
C 1. Substituting this in the

above inequality, we obtain

Ts1;:::;sr �

s
2�jGj

e.1 � 2�jGj/
.logjGj C e/C

1

4
C

logjGj C e
2e

.�/
�

s
2�jGj

e.1 � 2�jGj/
.logjGj C 3/:
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Here, the inequality .�/ holds since we add an extra condition on n0 that is deduced
below. First let us notice that

p
a C b D

p
aC b2 C 2b

p
a, for all positive real

numbers a; b. Applying this for

a D
2�jGj

e.1 � 2�jGj/
.logjGj C e/C

1

4
and b D

logjGj C e
2e

;

we observe that in order for .�/ to hold, we need to prove that

1

4
C

� logjGj C e
2e

�2
C

logjGj C e
e

s
2�jGj

e.1 � 2�jGj/
.logjGj C e/C

1

4

<
2�jGj.3 � e/

e.1 � 2�jGj/
:

Equivalently, we need to show that

e.1 � 2�jGj/

8�jGj
C
.logjGj C e/2.1 � 2�jGj/

8e�jGj

C
.logjGj C e/3=2

p
e.1 � 2�jGj/

e
p
2�jGj

s
1C

e.1 � 2�jGj/

8�jGj.logjGj C e/
< 3 � e

and as 1 � 2�jGj < 1 and � > log 2, it suffices to show that one can choose n0
such that for any G with jGj � n0,

e

8jGj log 2
C
.logjGj C e/2

8e log 2 � jGj

C
.logjGj C e/3=2p
2e log 2 � jGj

r
1C

e

8jGj log 2.logjGj C e/
< 3 � e:

Now, if our n0 is chosen such that each term

e

8n0 log 2
<
3 � e

3
;

.logn0 C e/2

8e log 2 � n0
<
3 � e

3

.logn0 C e/3=2
p
2e log 2 � n0

r
1C

e

8n0 log 2.logn0 C e/
<
3 � e

3
;

then the above inequality holds for any G with jGj � n0.
The largest term is upper bounded by .logn0 C e/3=2=

p
n0. If we impose the

extra condition that this bound is also less than .3 � e/=3 (i.e., the extra condition
that n0 should satisfy 9.logn0 C e/3 < .3 � e/2n0), all of the above inequalities
will hold whenever jGj � n0.
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We now specify the constant c: it should be chosen such that the above upper
bound can be further bounded by c

p
�jGj logjGj. It is clear that c D 2=e is too

small. Yet, we observe that for any positive real number ı > 0 (independent of
jGj), one can use c D

p
.2C ı/=e and as long as � < .1 � 2

2Cı
/ 1
2jGj

, i.e.,

Ts1;:::;sr �

r
2C ı

e
�jGj logjGj:

Next, for the specified 
 > 0, we would like to choose � such that the upper
bound on Pr.:B2/ established in Lemma 4.10 is upper bounded by jGj�
 /, e.g.,
that

3

4�2jGj�
0 <

1

jGj


which is achieved as long as � >
p
3=4 jGj.
��

0/=2.
To summarize, if we want to choose � so that we guarantee simultaneously the

following two conditions:

(i) B1 ^ B2) :A,

(ii) Pr.:B2/ < jGj�
 ,

then we need the lower bound on � (namely,
p
3=4 jGj.
��

0/=2) to not exceed the
upper bound (namely, .1 � 2

2Cı
/ 1
2jGj

). This is achieved as long as �0 > 
 C 2.
Since the only constraint on �0 is �0 < .a � 1/=e log logjGj � 1, if we choose n0
sufficiently large so that

.a � 1/

e
log logn0 � 1 > 
 C 2; (5.3)

9 .logn0 C e/3 < .3 � e/2n0; (5.4)

n0 � n
0
0 (5.5)

(where n00 is the bound from Lemma 4.10), then for any G for which jGj � n0,
the two conditions (i) and (ii) will hold. Thus, the only conditions that we need for
n0 are the inequalities (5.3), (5.4) and (5.5).

Finally, if the events B1 and B2 both occur then

Ts1;:::;sr <

r
2C ı

e
�jGj logjGj;

so the eventA, i.e., Ts1;:::;sr >
q
2Cı
e
�jGj logjGj, is impossible. The union bound

then implies

Pr
s1;:::;sr

random walk

�
Ts1;:::;sr >

r
2C ı

e
�jGj logjGj

�
< e�� C

1

jGj

;
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i.e.,

Pr
s1;:::;sr

random walk

�
Ts1;:::;sr �

r
2C ı

e
�jGj logjGj

�
> 1 � e�� �

1

jGj

;

which concludes the proof of Theorem 3.1.

6 Conclusions

In the past few years, there has been a lot of attempts dedicated to rigorously prov-
ing the asymptotic run-time of generic algorithms to solve the discrete logarithm
problem based on the Pollard’s rho method [21–23, 26, 29]. We rigorously prove
collision bounds for general cyclic groups G of prime order for the most common
variation of Pollard rho (currently used to solve the discrete logarithm problem on
a generic elliptic curve), namely the Pollard rho method using additive walks. Us-
ing mixing time estimates from Dou and Hildebrand [11,19], we are able to prove
a collision bound of O.

p
jGj logjGj/ with probability greater than 50%. We hope

that, just as in the case of the original Pollard rho setting, this is only the first step
in rigorously proving the correct asymptotic bound for the additive Pollard rho
algorithm.
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