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Abstract

The Clostridium-related poultry disease, necrotic enteritis (NE), causes substantial economic losses on a global scale. In the present study, a

mixture of two plant-derived phytonutrients, Capsicum oleoresin and turmeric oleoresin (XT), was evaluated for its effects on local and

systemic immune responses using a co-infection model of experimental NE in commercial broilers. Chickens were fed from hatch with

a diet supplemented with XT, or with a non-supplemented control diet, and either uninfected or orally challenged with virulent Eimeria

maxima oocysts at 14 d and Clostridium perfringens at 18 d of age. Parameters of protective immunity were as follows: (1) body weight; (2)

gut lesions; (3) serum levels of C. perfringens a-toxin and NE B-like (NetB) toxin; (4) serum levels of antibodies to a-toxin and NetB toxin;

(5) levels of gene transcripts encoding pro-inflammatory cytokines and chemokines in the intestine and spleen. Infected chickens fed the

XT-supplemented diet had increased body weight and reduced gut lesion scores compared with infected birds given the non-sup-

plemented diet. The XT-fed group also displayed decreased serum a-toxin levels and reduced intestinal IL-8, lipopolysaccharide-induced

TNF-a factor (LITAF), IL-17A and IL-17F mRNA levels, while cytokine/chemokine levels in splenocytes increased in the XT-fed group,

compared with the animals fed the control diet. In conclusion, the present study documents the molecular and cellular immune changes

following dietary supplementation with extracts of Capsicum and turmeric that may be relevant to protective immunity against avian NE.
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Necrotic enteritis (NE) and avian coccidiosis are among the

most important infectious diseases in commercial poultry

production, both resulting in field outbreaks with substantial

mortality(1–4). The aetiological agent of NE is Clostridium

perfringens, a Gram-positive, anaerobic, spore-forming bacter-

ium that is transmitted by the faecal–oral route as well as

through contaminated feed, water, housing structures and

insects(5–8). The worldwide incidence of C. perfringens-

associated NE has significantly increased in the last decade,

primarily related to the decreasing use of in-feed antibiotics

as growth promoters and antimicrobials. NE costs the inter-

national poultry industry approximately 2 billion US dollars

annually because of medical treatments and impaired body-

weight gain(4,9,10). NE is difficult to reproduce experimentally

by infection with C. perfringens alone(11,12) and several factors

that promote the development of experimental disease have

been identified, including a high-protein diet and co-infection

with Eimeria, the aetiological agent of coccidiosis. Better

understanding of pathogen–pathogen (Clostridium–Eimeria)

as well as host–pathogen interactions is needed to develop

rational, alternative and integrated management strategies to

prevent both NE and coccidiosis(8,13).

NE and coccidiosis have traditionally been prevented by

antibiotics and coccidiostats(14–17). However, recent interest

has focused on developing drug-free disease control strategies

due to the emergence of drug-resistant pathogens. Vaccination

with attenuated strains of C. perfringens offers one approach

to control avian NE(18). Alternatively, potentiating immune

effector mechanisms against NE using dietary phytonutrients

may be feasible, although this approach has not been reported
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in the literature. Previously, we showed that in vitro prolifer-

ation of splenocytes, a marker of cell-mediated immunity, was

increased upon culture with an extract of turmeric compared

with cells treated with vehicle alone(19). Further, a dietary mix-

ture of Capsicum oleoresin and turmeric oleoresin increased

body weight and antibody responses to a recombinant

Eimeria protein in Eimeria tenella-infected chickens com-

pared with a non-supplemented diet(1). Therefore, we hypoth-

esised that this phytochemical mixture also would enhance

protective immunity in chickens against NE following exper-

imental Eimeria and Clostridium co-infection. To test this

hypothesis, chickens were fed from hatch with a normal diet

or with a diet supplemented with Capsicum and turmeric

oleoresins, and immunity against NE was compared between

the experimental and control groups.

Materials and methods

Experimental animals and diets

Broiler chickens (1 d old, Ross/Ross, Longenecker’s Hatchery)

were housed in Petersime starter brooder units and randomly

assigned to three groups (n 15 per group). Chickens were

maintained in a temperature-controlled environment at 308C

for the first 2 d of growth followed by a gradual reduction in

the temperature to 238C until the end of the experiment,

and continuously fed from hatch with a standard diet or the

standard diet supplemented with XT (4 mg Capsicum oleore-

sin/kg and 4 mg turmeric oleoresin/kg) ad libitum for 20 d.

The concentration of the supplements in the diet was based

on our previous report(1). To facilitate the development of

NE, birds were fed an antibiotic-free, certified organic starter

diet containing 17 % crude protein and 61 % carbohydrate

between days 1 and 18 after hatching and a standard

grower diet containing 24 % crude protein and 54 % carbo-

hydrate between days 18 and 20. All the diets contained

15 % vitamin and mineral mixture, 4·7 % fat and 2·4 %

fibre (US Department of Agriculture/Feed Mill). All the exper-

iments were approved by the US Department of Agriculture–

Agricultural Research Service Institutional Animal Care and

Use Committee.

Necrotic enteritis disease model

Chickens were kept in brooder pens in an Eimeria-free facility

for 14 d post-hatch and transferred into large hanging cages

(n 2 birds per cage) at a separate location where they were

infected and kept until the end of the experimental period.

Chickens were orally infected on day 14 with Eimeria

maxima strain 41A (1·0£104 oocysts/bird) and on day 18

with C. perfringens strain Del-1 (1·0£109 colony-forming

units/bird), a field isolate from a commercial poultry flock

with endemic NE and a strain used in the NE disease model,

which produces NE B-like (NetB) toxin(12,13,20).

Body weight and gut lesion scores

Body weights were measured at day 14 (before infection with

E. maxima) and day 20 post-hatch (day 6 post-infection

with E. maxima and day 2 post-infection with C. perfringens)

as described previously(2). Cervical dislocation was used to

euthanise the birds by well-trained personnel. At day 20

post-hatch, two equal sections of 10 cm located anterior and

posterior to the diverticulum were collected for gut lesion

scoring to evaluate the severity of NE symptoms on a scale

of 0 (none) to 4 (high) in a blinded fashion by three indepen-

dent observers as described earlier(21).

Preparation of serum for clostridial toxin and toxin
antibody levels

Blood samples (n 4 birds per group) were collected by cardiac

puncture immediately following euthanasia and sera were

prepared by centrifugation at 1000 rpm for 20 min at 48C.

Sera in each group were used in ELISA to measure a-toxin

and NetB toxin levels, and toxin-specific antibody levels as

described previously(22).

Cloning, expression and purification of recombinant
Clostridium perfringens proteins

Full-length coding sequences for genes encoding C. perfringens

(ATCC 13 124; American Type Culture Collection) a-toxin

and NetB toxin were cloned by PCR into the pET32a(þ)

vector with an NH2-terminal polyhistidine epitope tag as

described previously(12,20). Cloned genes were transformed

into BL21(DE3) chemically competent E. coli (Invitrogen).

The bacteria were cultured for 16 h at 378C, and induced for

5 h at 378C with 1·0 mM-isopropyl b-D-thiogalactopyranoside

(Amresco). Thereafter, the bacteria were harvested by centri-

fugation at 10 000 rpm for 10 min at 48C, resuspended in PBS,

disrupted by sonication and centrifuged at 10 000 rpm for

15 min. The supernatant was incubated for 1 h at 228C with

Ni-NTA agarose (Qiagen), the resin was washed with PBS and

purified clostridial proteins were eluted with 250 mM-imidazole

in PBS (pH 9·2). Protein purity was confirmed by Coomassie

blue-stained SDS–acrylamide gels.

Monoclonal antibody production and validation of
antigen specificity by ELISA

Mouse monoclonal antibody (mAb) were produced using the

previously described protocol(23–25). BALB/c mice (National

Cancer Institute) were immunised biweekly by intraperitoneal

and subcutaneous injections with 50mg of recombinant pro-

teins in 50 % (v/v) Freund’s complete adjuvant (Sigma), and

a final boost injection was given intravenously with 25mg of

each protein without the adjuvant 3 d before fusion. Mice pro-

ducing high serum antibody titres were selected by a-toxin- or

NetB toxin-specific ELISA, their splenic lymphocytes fused

with SP2/0 cells (American Type Culture Collection) and

hybridomas selected in medium supplemented with hypox-

anthine, aminopterin and thymidine (all from Sigma) with a

final confirmation of binding in ELISA as described pre-

viously(23–25). Briefly, ninety-six-well microtitre plates (Nunc)

were coated overnight with 1·0mg/well of purified recombi-

nant a-toxin or NetB toxin proteins. The plates were washed
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with PBS containing 0·05 % Tween (PBS-T) and blocked with

PBS containing 1 % bovine serum albumin. The mAb (100ml/

well) were incubated with agitation for 1 h at room tempera-

ture, washed with PBS-T and bound antibodies detected

with peroxidase-conjugated rabbit anti-mouse IgG secondary

antibody, 3,30,5,50-tetramethylbenzidine and H2O2 (all from

Sigma). Optical densities at 450 nm were determined with a

microplate reader (Bio-Rad). Each mAb was purified using

the Protein A IgG Purification Kit (Thermo Scientific) and

diluted to 5·0mg/ml in 50 mM-carbonate buffer (pH 9·6).

mAb to a-toxin or NetB toxin were used for the development

of a-toxin or NetB toxin capture ELISA.

Production of polyclonal antisera to recombinant a-toxin
and necrotic enteritis B-like toxin proteins

Rabbits were injected subcutaneously with 50mg of recombi-

nant chicken a-toxin or NetB toxin emulsified in 50 % (v/v)

Freund’s complete adjuvant. At 4 weeks later, rabbits were

injected intramuscularly with 50mg a-toxin or NetB toxin

emulsified in 50 % (v/v) Freund’s incomplete adjuvant

(Sigma). Rabbits were screened for anti-a-toxin or NetB

toxin antibodies by ELISA as described previously(26). Once

the anti-a-toxin or NetB toxin titre had peaked, immune

sera were collected and stored at 2208C. Rabbit anti-a-toxin

or -NetB toxin sera were conjugated with peroxidase using

the EZ Link Plus Activated Peroxidase Kit (Thermo Scientific)

following antibody purification using the Protein A IgG Purifi-

cation Kit (Thermo Scientific).

Capture ELISA for determining a-toxin or necrotic enteritis
B-like toxin concentrations

mAb to a-toxin or NetB toxin were coated at 0·5mg/well onto

ninety-six well microtitre plates overnight at 48C. The

plates were blocked and washed as described previously.

Chicken sera were diluted 1:2 in PBS-T, 100ml added

to the wells and incubated for 2 h at room temperature.

The plates were washed with PBS-T, and 100ml/well

of peroxidase-conjugated rabbit anti-a-toxin or NetB toxin anti-

bodies were added and incubated for 30min followed by devel-

opment with 3,30,5,50-tetramethylbenzidine substrate as

described previously(26,27). Optical densities at 450 nm were

measured and serum a-toxin or NetB toxin concentrations

were determined using a standard curve generated with

known concentrations of each purified recombinant protein.

Serum antibody levels to a-toxin and necrotic enteritis
B-like toxin

Sera were used in ELISA to measure a-toxin- and NetB

toxin-specific antibody levels as described previously(22).

Briefly, ninety-six-well microtitre plates were coated overnight

with 1·0mg/well of purified recombinant a-toxin or NetB toxin

proteins. The plates were washed with PBS-T and blocked

with PBS containing 1 % bovine serum albumin. Serum

samples were diluted 1:20, 100ml/well incubated with agita-

tion for 2 h at room temperature and washed with PBS-T.

Bound antibodies were detected with peroxidase-conjugated

rabbit anti-chicken IgG secondary antibody and 3,30,5,50-tetra-

methylbenzidine substrate.

Cytokine/chemokine transcript levels in the intestine and
spleen

At 2 d post-infection with C. perfringens, 20 cm-long jejunum

tissues located proximal to the Meckel’s diverticulum and

spleens were collected. The jejunum was cut open longitu-

dinally, gently washed with ice-cold Hank’s balanced salt

solution (Sigma) and the mucosal layer was carefully scraped

away using a surgical scalpel. Spleens collected on the same

day were used for the preparation of single-cell suspensions.

Whole spleens were washed with Hank’s balanced salt

solution, pressed gently through stainless-steel screens

Table 1. Oligonucleotide primers used for quantitative RT-PCR

RNA target Primer sequences PCR product size (bp) GenBank accession no.

GAPDH
Forward 50-GGTGGTGCTAAGCGTGTTAT-30 264 K01458
Reverse 50-ACCTCTGTCATCTCTCCACA-30

IL-8
Forward 50-GGCTTGCTAGGGGAAATGA-30 200 AJ009800
Reverse 50-AGCTGACTCTGACTAGGAAACTGT-30

LITAF
Forward 50-TGTGTATGTGCAGCAACCCGTAGT-30 229 AY765397
Reverse 50-GGCATTGCAATTTGGACAGAAGT-30

TNFSF15
Forward 50-CCTGAGTATTCCAGCAACGCA-30 292 NM_01024578
Reverse 50-ATCCACCAGCTTGATGTCACTAAC-30

IL-17A
Forward 50-CTCCGATCCCTTATTCTCCTC-30 292 AJ493595
Reverse 50-AAGCGGTTGTGGTCCTCAT-30

IL-17F
Forward 50-TGAAGACTGCCTGAACCA-30 117 JQ776598
Reverse 50-AGAGACCGATTCCTGATGT-30

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; LITAF, lipopolysaccharide-induced TNF-a factor; TNFSF15, TNF superfamily 15.
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(Bio-World) into a Petri dish containing Hank’s balanced

salt solution and flushed through a cell strainer (BD Falcon)

into a tube. Total RNA from the jejunum and spleen cells was

extracted using TRIzol (Invitrogen). Then, 5mg of total RNA

were treated with 1·0 U of DNase I and 1·0ml of 10 £ reaction

buffer (Sigma), incubated for 15 min at room temperature,

1·0ml of stop solution was added to inactivate DNase I and

the mixture was heated for 10 min at 708C. RNA was reverse-

transcribed using the StrataScript first-strand synthesis system

(Stratagene) according to the manufacturer’s recommen-

dations. Pro-inflammatory cytokine/chemokine transcript

levels, which regulate host immunity against multiple patho-

gens, were analysed. Quantitative RT-PCR oligonucleotide

primers for chicken IL-8, lipopolysaccharide-induced TNF-a

factor (LITAF), TNF superfamily 15 (TNFSF15), IL-17A, IL-17F

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as

an internal control are listed in Table 1. Amplification and

detection were carried out using equivalent amounts of

total RNA with the Mx3000P system and Brilliant SYBR

Green qPCR master mix (Stratagene). Standard curves were

generated using log10 diluted standard RNA and the levels of

individual transcripts were normalised to those of GAPDH

by the Q-gene program (http://www.gene-quantification.de/

download.html#qgene)(28). Each sample was analysed in tri-

plicate. To normalise individual replicates, logarithmic-scaled

threshold cycle (Ct) values were transformed to linear units

of normalised expression before calculating means and stan-

dard errors for references and individual targets, followed by

the determination of mean normalised expression using the

Q-gene program.

Statistical analysis

All data were subjected to one-way ANOVA using SPSS 15.0

for Windows (SPSS, Inc.). Mean values of the treatment

groups were compared using Duncan’s multiple range test

or the t test, and differences were considered as statistically

significant at P,0·05.
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Fig. 1. Effect of dietary Capsicum oleoresin and turmeric oleoresin (XT) on

(A) body weights and (B) intestinal lesion scores. Chickens were fed from

hatch with a non-supplemented diet (Con) or a diet supplemented with 4 mg

Capsicum oleoresin/kg and 4 mg turmeric oleoresin/kg. At 14 d post-hatch,

chickens were uninfected (Con) or orally infected with 1·0 £ 104 sporulated

oocysts of Eimeria maxima (necrotic enteritis (NE), NE-XT). At 18 d

post-hatch, E. maxima-infected chickens were orally infected with 1·0 £ 109

colony-forming units of Clostridium perfringens. (A) Body weights were

measured at day 20. (B) Gut lesion scores were determined at day 20.

Values are means, with their standard errors represented by vertical bars

(n 15). a,b Mean values with unlike letters were significantly different

(P,0·05; Duncan’s multiple range test). * Mean value was significantly differ-

ent from that of the NE group (P,0·05).

Table 2. Effect of dietary Capsicum oleoresin and turmeric oleoresin (XT) on the levels of serum
a-toxin, necrotic enteritis (NE) B-like (NetB) toxin and antibodies to a-toxin and NetB toxin

(Mean values with their standard errors, n 4)

Toxin† Ab titre‡

a-Toxin (ng/ml) NetB (ng/ml) a-Toxin (OD) NetB (OD)

Groups Mean SEM Mean SEM Mean SEM Mean SEM

NE 780·8 112·4 931·6 72·9 0·95 0·14 0·87 0·04
NE-XT 382·9* 64·3 886·3 100·5 1·22 0·10 1·01 0·09

Ab, antibody; OD, optical density.
* Mean value was significantly different from that of the NE group (P,0·05).
† Chickens were fed with the non-supplemented or XT-supplemented diet and co-infected with Clostridium

perfringens and Eimeria maxima. Sera were collected at day 20 and used to measure the levels of a-toxin
and NetB toxin by ELISA.

‡ Chickens were fed with the non-supplemented or XT-supplemented diet and co-infected with Clostridium
perfringens and Eimeria maxima. Sera were collected at day 20 and used to measure the levels of antibodies
to a-toxin and NetB toxin by ELISA.
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Results

Effects of dietary supplementation with Capsicum
oleoresin and turmeric oleoresin on body weights and
intestinal lesion scores

Initially, we determined that chickens fed the XT phyto-

nutrient mixture did not exhibit gross pathological effects

when used at the denoted concentrations. Further, continuous

feeding with the XT-supplemented diet during the first 14 d

post-hatch and before E. maxima infection did not affect

body weight compared with the non-supplemented diet

group (data not shown). Chickens fed the XT-supplemented

diet and co-infected with E. maxima and C. perfringens exhib-

ited increased body weight at 20 d post-hatch compared with

the infected animals given the non-supplemented diet

(Fig. 1(A)). Indeed, there was no significant difference in

weight between the non-supplemented, non-infected controls

and the infected chickens fed the XT-supplemented diet. Birds

fed the XT diet and co-infected with E. maxima and C. per-

fringens also showed significantly reduced intestinal lesion

scores at 2 d post-infection with C. perfringens compared

with the non-supplemented and infected controls (Fig. 1(B)).

Effect of dietary supplementation with Capsicum oleoresin
and turmeric oleoresin on serum toxin and toxin antibody
levels

The a-toxin and NetB toxin were not detected in the serum of

the control groups (data not shown). Serum a-toxin levels

were significantly lower in the infected XT group compared

with the non-supplemented and infected controls (Table 2).

However, no significant difference was found in serum NetB

toxin levels between the two groups (Table 2). While there

was a trend towards higher serum antibody titres against the

a-toxin and NetB toxin in the XT group compared with the

non-supplemented and infected groups, these differences

were not statistically significant (Table 2).

Effect of dietary supplementation with Capsicum oleoresin
and turmeric oleoresin on cytokine/chemokine transcript
levels

IL-8, LITAF, TNFSF15, IL-17A and IL-17F transcript levels in the

intestinal jejunum were increased in E. maxima/C. perfringens

co-infected chickens on the non-supplemented diet compared

with the non-supplemented, uninfected controls (Fig. 2). With

the exception of TNFSF15 transcripts, all intestinal transcript

levels were significantly reduced in infected chickens fed the

XT-supplemented diet compared with the non-supplemented,

infected controls. By contrast, in the spleen, only IL-17A

transcripts were increased in E. maxima/C. perfringens

co-infected chickens on the non-supplemented diet compared

with the non-supplemented, uninfected controls, and the

infected chickens fed the XT diet had increased levels of all

transcripts compared with the non-supplemented, infected

controls (Fig. 3).
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Fig. 2. Effect of dietary Capsicum oleoresin and turmeric oleoresin (XT) on

the levels of cytokine/chemokine transcripts in the intestine. Chickens were

fed with the non-supplemented (Con) or XT-supplemented diet and unin-

fected or co-infected with Clostridium perfringens and Eimeria maxima as

described in Fig. 1. Jejunum intestinal epithelia were collected at day 20 and

used to measure the levels of transcripts for (A) IL-8, (B) lipopolysaccharide-

induced TNF-a factor (LITAF), (C) TNF superfamily 15 (TNFSF15), (D)

IL-17A and (E) IL-17F by quantitative RT-PCR. Individual transcript levels

were normalised to glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

transcripts. Values are means (n 4), with their standard errors represented

by vertical bars. a,b,c Mean values with unlike letters were significantly differ-

ent (P,0·05; Duncan’s multiple range test). NE, necrotic enteritis.
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Discussion

The present study was conducted to evaluate the effect of

dietary extracts of Capsicum and turmeric oleoresins on

local and systemic immune responses against experimental

NE using a Clostridium/Eimeria co-infection model system

in commercial broilers. To induce NE symptoms approxi-

mating those seen in field infections, the C. perfringens

strain, co-infection with Eimeria, and dietary factors were

utilised(8,12,18). Chickens fed the XT-supplemented diet and

co-infected with C. perfringens and E. maxima showed sig-

nificantly (1) increased body weight, (2) reduced gut lesions,

(3) decreased serum a-toxin levels and (4) reduced IL-8,

LITAF, IL-17A and IL-17F mRNA levels in the intestine, but

increased cytokine/chemokine mRNA levels in splenocytes,

compared with infected chickens given the non-sup-

plemented control diet. These collective results suggest that

XT has a protective effect against experimental NE. The pro-

tective properties of dietary XT against NE were originally

hypothesised on the basis of our previous reports of direct

cytotoxic effects against Eimeria and the heightened

immune responses against avian coccidiosis by certain phyto-

nutrients, including Capsicum and turmeric oleoresins(1,29).

The XT group showed slightly higher body weights com-

pared with the control group at 14 d and before infection

with E. maxima and C. perfringens (data not shown). Follow-

ing infection, however, the XT group exhibited significantly

increased weight compared with the unsupplemented control

group (P,0·05). Increased body weight and/or decreased

intestinal lesions in the XT-fed group may be attributable

to improved intestinal physiology, allowing for greater

nutrient absorption compared with chickens given the non-

supplemented control diet. A similar effect was proposed

previously to account for the protective effect of XT on

vaccine-stimulated immunity in broiler chickens against infec-

tion by Eimeria tenella (1).

C. perfringens a-toxin, while initially reported as a major

virulence factor in chickens(5,30), is now considered as

non-essential for producing disease(5). Nevertheless, chicken

antibodies against a-toxin may be considered as markers of

infection(31), which is consistent with the observed decrease

in serum a-toxin levels in XT-fed birds compared with the

non-supplemented controls. Given that a-toxin antibody

levels were equal in the two groups, it is unlikely that the

diminished a-toxin levels can be attributed to host antibodies

masking the capture and/or detection antibodies used in the

ELISA protocol. This possibility, however, may be relevant to

the situation with NetB toxin levels where no differences

between the experimental and control groups were noted.

Another consideration may relate to differential kinetics of

the two antibody responses, and examination of toxin anti-

body levels at greater times post-infection may reveal altered

NetB toxin levels in the XT-supplemented group v. controls.

The intestinal microflora plays a critical role in inflammatory

gut diseases of humans and animals. More specifically, an

imbalance in the mucosal cytokine profile causes transient

intestinal inflammation following initial exposure to faecal

bacteria or their antigens(32). The present results suggest that
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Fig. 3. Effect of dietary Capsicum oleoresin and turmeric oleoresin (XT) on

the levels of cytokine/chemokine transcripts in the spleen. Chickens were fed

with the non-supplemented (Con) or XT-supplemented diet and uninfected or

co-infected with Clostridium perfringens and Eimeria maxima as described in

Fig. 1. Spleen cells were collected at day 20 and used to measure the levels

of transcripts for (A) IL-8, (B) lipopolysaccharide-induced TNF-a factor

(LITAF), (C) TNF superfamily 15 (TNFSF15), (D) IL-17A and (E) IL-17F

by quantitative RT-PCR. Individual transcript levels were normalised to

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) transcripts. Values

are means (n 4), with their standard errors represented by vertical bars.
a,b,c Mean values with unlike letters were significantly different (P,0·05;

Duncan’s multiple range test). NE, necrotic enteritis.
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XT regulates cellular immunity by altering the expression

levels of these pro-inflammatory cytokine and chemokine

genes in the intestine of infected animals. This is consistent

with previous studies which demonstrated that dietary sup-

plementation of chickens with Capsicum oleoresin reduced

coccidiosis symptoms and altered the in vivo expression of a

family of innate immune response genes compared with

chickens fed a non-supplemented diet(1,29,33). Some of the

transcripts encoded by these genes were included for analysis

in the present report. IL-8 is a CXC chemokine that attracts

leucocytes, primarily neutrophils, to mucosal sites of inflam-

mation. LITAF is a pro-inflammatory cytokine expressed by

lymphoid cells, including peripheral blood, lymph node and

intestinal leucocytes, that regulates host immunity against mul-

tiple pathogens(34). TNFSF15 is also abundantly expressed by

immune cells and is significantly involved in their differen-

tiation, proliferation and apoptosis(35). IL-17A is a pro-inflam-

matory cytokine produced by activated T cells, which controls

the activation of NF-kB and mitogen-activated protein kinases,

stimulates the expression of IL-6 and cyclo-oxygenase-2 and

enhances the production of NO. High levels of IL-17A are

associated with several chronic inflammatory diseases(36–38).

Another member of the IL-17 family, IL-17F, is expressed

by activated T cells that acts by stimulating the production

of IL-6, IL-8 and granulocyte macrophage colony-stimulating

factor (GM-CSF)(39,40).

Pro-inflammatory cytokines/chemokines regulate host

immunity against multiple pathogens through immune cell

differentiation, proliferation, apoptosis and NO production.

Their continuous high levels may lead to intestinal damage

and increased energy consumption. While all of the aforemen-

tioned mediators appear to act in the context of heightened

inflammation, we observed that XT decreased their corre-

sponding mRNA levels in the gut epithelium. Accordingly,

their decreased intestinal levels may be related to the protec-

tive effect of XT treatment on improving intestinal health in

the context of NE. Differential kinetics of expression of the

individual cytokine/chemokine, their sites of production

within the intestinal tract and their relative activities during

avian NE may be relevant here. Interestingly, however, their

expression levels significantly increased in the spleen. This

result showed that expression of innate immune response

genes works differently in different organs or systematically

to maintain homeostasis in chickens exposed to NE disease.

In summary, a mixture of Capsicum and turmeric oleoresins

was identified as an effective phytonutrient against clinical

signs of experimental avian NE when supplied in dietary

form. Future studies are needed to further define the

molecular and cellular characteristics of this phytochemical

combination for the control of NE in the field.
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