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Aims To compare the tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent (ZES) vs. a fluoropolymer-
coated everolimus-eluting stent (EES) at 13 months, using optical coherence tomography (OCT) in an ‘all-comers’
population of patients, in order to clarify the mechanism of eventual differences in the biocompatibility and throm-
bogenicity of the devices.

Methods
and results

Patients randomized to angiographic follow-up in the RESOLUTE All Comers trial (NCT00617084) at pre-specified
OCT sites underwent OCT follow-up at 13 months. Tissue coverage and apposition were assessed strut by strut, and
the results in both treatment groups were compared using multilevel logistic or linear regression, as appropriate, with
clustering at three different levels: patient, lesion, and stent. Fifty-eight patients (30 ZES and 28 EES), 72 lesions, 107
stents, and 23 197 struts were analysed. Eight hundred and eighty-seven and 654 uncovered struts (7.4 and 5.8%,
P ¼ 0.378), and 216 and 161 malapposed struts (1.8 and 1.4%, P ¼ 0.569) were found in the ZES and EES groups,
respectively. The mean thickness of coverage was 116+99 mm in ZES and 142+113 mm in EES (P ¼ 0.466).
No differences in per cent neointimal volume obstruction (12.5+7.9 vs. 15.0+ 10.7%) or other areas–volumetric
parameters were found between ZES and EES, respectively.

Conclusion No significant differences in tissue coverage, malapposition, or lumen/stent areas and volumes were detected by
OCT between the hydrophilic polymer-coated ZES and the fluoropolymer-coated EES at 13-month follow-up.
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Introduction
The neointimal healing response after stenting strongly determines
the long-term outcome. In the era of bare-metal stents (BMS), the
concern was focused on an exaggerated neointimal proliferation,
often leading to restenosis, that accounted for 20.0–50.3% of the
cases.1 Drug-eluting stents (DES) have reduced the restenosis
rates to 7.9–8.9%,1 due to their ability to inhibit cellular prolifer-
ation. However, since some reports suggested an eventually higher
incidence of late and very late stent thrombosis in DES,2 –5 the
concern shifted to the opposite pole: avoiding an incomplete neoin-
timal coverage of the metallic scaffold that might eventually pose a
risk for stent thrombosis.6– 10 Intense research is currently aimed
to promote optimal neointimal healing.11

The neointimal healing response can be quantified in vivo by inva-
sive imaging techniques. Intravascular ultrasound (IVUS) can quantify
neointimal hyperplasia (NIH) and discern whether it is exaggerated,
but it cannot assess the completeness of healing, because the thin
neointimal layer covering the DES struts is often below IVUS axial
resolution (100 mm). Optical coherence tomography (OCT) pro-
vides an axial resolution of 10–15 mm, thus enabling accurate evalu-
ation of tissue coverage after stenting. Optical coherence
tomography coverage correlates well with histological neointimal
healing and endothelialization after stenting in animal models,12–15

thus constituting an in vivo surrogate to estimate the completeness
of neointimal healing.14,15 Optical coherence tomography has
become an exploratory tool for the evaluation of healing in
studies comparing different types of DES.16– 18

The polymers releasing the drug play a role in the modulation of
the neointimal response after stenting. In the first-generation DES,
some polymers were believed to induce allergic reactions and
inflammation, resulting in incomplete neointimal healing and ulti-
mately stent thrombosis.10,19 The second generation of polymer
coatings is designed to enhance biocompatibility and minimize
the inflammatory reaction through different approaches.16,20 The
BioLinx polymer (Medtronic Inc., Santa Rosa, CA, USA) comprises
three different polymers: (i) the hydrophobic C10 acts as a drug
reservoir for a slow and sustained release, (ii) the hydrophilic
polyvinyl-pyrrolidinone improves biocompatibility, and (iii) C19
contains both hydrophobic and hydrophilic polyvinyl-pyrrolidinone
groups playing a role in the control of drug release and in the
biocompatibility, respectively. The blend acts as an amphiphilic
molecule, with topographic orientation of its hydrophilic
components towards the surface in contact with the cells,21,22

thus improving the biocompatibility, since hydrophilic polymers
do not induce activated monocyte adhesion,23 which is associated
with local inflammation and vascular cell proliferation.24 The
BioLinx polymer also enables a finer and more sustained drug
elution. In the porcine model, 85% of the drug content is
eluted into tissue during the first 60 days and the remainder is
completely eluted by 180 days.25 Another contemporary biocom-
patible polymer is the fluoropolymer, poly(vinylidene
fluoride-co-hexafluoropropylene). The fluoropolymer surface is
hydrophobic, but elicits a biological response known as ‘fluoropas-
sivation’ which consists of minimizing the fibrin deposition and
thrombogenicity, reducing the inflammatory reaction and enhan-
cing a faster neointimal healing.26,27 Preferential affinity of

fluorinated surfaces for albumin, with respect to fibrin, and the
inhibitory effect of fluorination on platelets adhesion/activation
or leucocytes recruitment have been postulated as mechanisms
to explain this phenomenon.

The BioLinx polymer is a component of the Resolute stent
(Medtronic), together with the Driver BMS (Medtronic) and the
antiproliferative agent zotarolimus, at a dose of 160 mg/cm2.21

The stent has proven excellent clinical and angiographic results
in selected groups.28–30 The RESOLUTE All Comers trial
(NCT00617084) compared for the first time the Resolute
zotarolimus-eluting stent (ZES) vs. another DES (XIENCE V,
Abbott Vascular, Santa Clara, CA, USA) in an ‘all-comers’ patient
population, with a non-inferiority design.31 XIENCE V is an
everolimus-eluting stent (EES) at a dose of 100 mg/cm2 of stent
surface, coated with a fluoropolymer, designed to release 80% of
the everolimus in the first 30 days after deployment.32 ZES
proved to be non-inferior to EES for target-lesion failure, a compo-
site of cardiac death, myocardial infarction, and clinically indicated
target-lesion revascularization.31 Nevertheless, the interpretation
of the stent thrombosis rates is still a matter of dispute: definite
stent thrombosis was significantly higher in ZES than in EES (1.2
vs. 0.3%) at 1 year, but there were no significant differences in defi-
nite/probable stent thrombosis.31 In order to better understand
these clinical results, this OCT substudy of the RESOLUTE All
Comers trial compares the neointimal coverage of both devices
13 months after implantation.

Methods
The design and main results from the RESOLUTE All Comers have
been published elsewhere.31 It was an international, multicentre, pro-
spective, randomized, open-label non-inferiority trial comparing the
Resolute ZES, with BioLinx polymer vs. the XIENCE V EES, with fluor-
opolymer coating. Patient eligibility followed a real-world all-comers
design, including patients with symptomatic coronary heart disease
with every possible presentation or with silent ischaemia, with one
or more coronary artery stenoses .50% in 2.25–4.00 mm diameter
vessels, susceptible to be treated with either of the two devices.
There were no limitations regarding the number of lesions or vessels
treated, or lesion length. Exclusion criteria comprised known allergy
to anti-platelet/anti-thrombotic regimes, or to any of the components
of the two stents of the study. Planned surgery in the following
6 months after PCI was also an exclusion criterion. The primary end-
point was target-lesion failure, a composite of cardiac death, myocar-
dial infarction (not clearly attributable to a non-target vessel), and
clinically indicated target-lesion revascularization at 1-year follow-up.

Twenty per cent of the patients were randomly selected for an
angiographic substudy, thus undergoing quantitative coronary angiogra-
phy (QCA) at baseline and repeat angiography at 13-month follow-up.
Optical coherence tomography was performed in patients in the
angiographic substudy from selected sites in which OCT was available.
The sample size was calculated for the angiographic substudy,31 but no
formal sample size calculation based on an endpoint hypothesis was
performed for the OCT substudy, because no evidence about the
expected magnitude of the effect was available when the trial was
designed. Based on unpublished data and on the expertise of the
investigators with other ongoing OCT trials, a minimum number of
50 patients was considered necessary to provide reliable and non-
trivial results.
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Several clinical, angiographic, and OCT variables were identified as
secondary endpoints in the main RESOLUTE All Comers trial. The
principal OCT endpoint was tissue coverage, evaluated as the comple-
teness of coverage (proportion of uncovered struts per stent) and as
the mean thickness of coverage. Additional OCT endpoints included
apposition and standard areas and volumes.

Optical coherence tomography analysis
Optical coherence tomography pullbacks were obtained at 13-month
follow-up with M2, M3, or C7 systems (Lightlab Imaging, Westford,
MA, USA), depending on the site, using an occlusive or a non-occlusive
technique, as appropriate33 (Table 1).

Optical coherence tomography pullbacks were analysed offline in a
core laboratory (Cardialysis BV, Rotterdam, The Netherlands) by inde-
pendent analysts blinded to stent-type allocation and clinical and pro-
cedural characteristics of the patients, using proprietary software
(Lightlab Imaging). Cross-sections at 1 mm intervals within the
stented segment and 5 mm proximal and distal to the stent edges
were analysed. Lumen and stent areas were drawn in each analysed
cross-section, and the derived incomplete stent apposition (ISA) or

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Characteristics of the different optical
coherence tomography systemsa in the study

M2 M3 C7

Technique Occlusive Non-occlusive Non-occlusive

Domain Time Time Fourier

Catheter ImageWire ImageWire Dragonfly

Rotation speed
(frames/s)

15.6 20 100

Pullback speed
(mm/s)

2 3 20

Patients with ZES 1 9 20

Patients with EES 2 9 17

Total 3 18 37

ZES, zotarolimus-eluting stent; EES, everolimus-eluting stent.
aAll systems and catheters from Lightlab Imaging.

Figure 1 Categories of apposition. Optical coherence tomography cross-sections showing examples of struts in the three different categories
of apposition: well-apposed (white arrows), incomplete stent apposition (orange arrows), and; NASB, non-apposed side branch.
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NIH areas were calculated as appropriate. A metallic strut typically
appears as a bright signal-intense structure with dorsal shadowing.
Apposition was assessed strut by strut by measuring the distance
between the strut marker and the lumen contour. The marker of
each strut was placed at the endoluminal leading edge, in the mid-point
of its long axis, and the distance was measured following a straight line
connecting this marker with the centre of gravity of the vessel34

(Figure 1). Struts with distance to lumen contour larger than the sum
of strut + polymer thickness were considered malapposed. This
resulted in ISA thresholds of .97 mm for ZES and .89 mm for
EES. Struts located at the ostium of side branches, with no vessel
wall behind, were labelled as non-apposed side-branch (NASB)
struts and excluded from the analysis of apposition (Figure 1).

Struts were classified as uncovered if any part of the strut was visibly
exposed to the lumen, or covered if a layer of tissue was visible over all
the reflecting surfaces. In covered struts, the thickness of coverage was
measured from the strut marker to the endoluminal edge of the tissue
coverage, following a straight line connecting the strut marker with the
centre of gravity of the vessel (Figure 2).

To summarize the spatial distribution of the uncovered struts along
the stents, ‘spread-out-vessel graphics’ were created by correlating the
longitudinal distance from the distal edge of the stent to the strut
(abscises) with the angle where the struts were located in the circular
cross-section section respect to the centre of gravity of the vessel
(ordinates). The resultant graphic represented the stented vessel, as
if it had been cut longitudinally along the reference angle 08 and
spread out on a flat surface (Figure 3).

Statistical analysis
Results are reported as mean+ standard deviation for continuous
variables and as count (%) for nominal variables. Continuous variables
with normal distribution were compared with Student’s t-test for inde-
pendent samples or with the Mann–Whitney U-test in the case that
normal distribution could not be assumed. Nominal variables were
compared with Fisher’s exact test.

In the per strut analysis, apposition was estimated through a categ-
orical variable, comprising three possible excluding categories (well

Figure 3 Spread-out-vessel graph, illustrative cases. The X-axis
represents the distance from the distal edge of the stent to the
strut; the Y-axis represents the angle where the strut is located
in the circular cross-section with respect to the centre of
gravity of the vessel. The result is a graphic representing the
spatial distribution of the non-covered struts (red spots) along
the stent, as if it had been cut along the reference angle (08)
and spread out on a flat surface.

Figure 2 Coverage. Optical coherence tomography cross-sections showing examples of covered (white arrows) and non-covered struts
(red arrows).
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apposed, ISA, or NASB). Tissue coverage was estimated through the
proportion of uncovered struts (dichotomous variable) and through
the mean thickness of coverage (continuous). Dichotomous or categ-
orical variables were analysed using multilevel logistic regression
models with random effects at four different levels: (i) treatment
arm, (ii) patient, (iii) lesion, and (iv) stent. Likewise, continuous vari-
ables were analysed using multilevel linear regression models with
random effects at the same four levels. Overlapping stents and

stents separated by a gap of ,5 mm length within the same coronary
segment were assigned to the same coronary lesion. Overlap segments
were considered separate units of clustering at the stent level for the
per strut multilevel analysis.

All statistical analyses were performed according to the
intention-to-treat as specified in the protocol, using the SAS v8.2
package (SAS Institute Inc., Cary, NC, USA). All tests were
two-sided and a P-value of ,0.05 was considered statistically
significant.

Results
Two thousand two hundred and ninety-two patients were
enrolled in the RESOLUTE All Comers trial. Fifty-eight patients
(30 ZES and 28 EES) with 107 stents in 72 lesions underwent
OCT at 13 months. Nine out of 2718 (0.33%) cross-sections
were deemed of insufficient quality for the quantitative analysis.
In total, 23 197 struts were analysed. Tables 2–4 show the base-
line characteristics of patients, procedures, and lesions, respect-
ively, in both treatment arms. The randomization produced
comparable groups, except patients who received EES had signifi-
cantly higher serum levels of creatinine and lower left ventricular
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Table 2 Baseline patient characteristics

ZES
(n 5 30)

EES
(n 5 28)

P-value

Age (years) 60.9 (12.5) 62.6 (8.9) 0.547

Males 23 (76.7%) 23 (82.1%) 0.749

BMI (kg/m2) 83.7 (18.4) 28.8 (4.8) 0.476

Cardiovascular risk factors

Hypertension 18 (60.0%) 15 (53.6%) 0.791

DM 7 (23.3%) 7 (25%) 1.000

Insulin-requiring 0 (0.0%) 2 (7.1%) 0.229

Hypercholesterolaemia 21 (70.0%) 20 (71.4%) 1.000

Smoking 18 (60.0%) 16 (57.1%) 1.000

Current smoker (,30
days)

11 (36.7%) 9 (32.1%) 0.787

Family history of CHD 7 (35.0%) 11 (50.0%) 0.366

Antecedents

Previous MI 7 (25.0%) 9 (32.1%) 0.768

Previous PCI 8 (26.7%) 4 (14.3%) 0.336

With BMS 1 (3.3%) 3 (10.7%) 0.344

With DES 5 (16.7%) 1 (3.6%) 0.195

Previous CABG 2 (6.7%) 3 (10.7%) 0.665

Clinical presentation

Stable angina 16 (53.3%) 11 (39.3%) 0.306

Unstable angina 3 (10.0%) 5 (17.9%) 0.464

Myocardial infarction 9 (30%) 10 (35.7%) 0.781

STEMI 6 (20.0%) 7 (25.0%) 0.757

Silent ischaemia 2 (6.7%) 2 (7.1%) 1.000

Serum creatinine (mmol/L) 76.2 (18.1) 87.4 (23.6) 0.048*

Ejection fraction (%) 65 (10) 55 (11) 0.041*

Angiographic characteristics

No. of diseased major
vessels

One 22 (73.3%) 22 (78.6%) 0.762

Two 7 (23.3%) 6 (21.4%) 1.000

Three 1 (3.3%) 0 (0.0%) 1.000

LM + 3 vessels 0 (0.0%) 0 (0.0%) NA

Syntax score 14.13 (12.19) 14.19 (9.10) 0.984

Data presented as no. of events (%) or mean (SD), as appropriate. BMI, body mass
index; BMS, bare-metal stent; CABG, coronary artery bypass graft; CHD, coronary
heart disease; DES, drug-eluting stent; DM, diabetes mellitus; EES,
everolimus-eluting stent; LM, left main stem; MI, myocardial infarction; PCI,
percutaneous coronary intervention; STEMI, ST elevation myocardial infarction;
ZES, zotarolimus-eluting stent.
*P ≤ 0.05.
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Table 3 Procedural characteristics (per patient)

ZES
(n 5 30)

EES
(n 5 28)

P-value

Contrast (ml) 264.0 (148.6) 265.8 (125.4) 0.962

Procedure duration
(min)

59.1 (40.3) 56.7 (41.8) 0.826

No. of vessels treated 1.30 (0.54) 1.21 (0.42) 0.501

LAD 15 (50.0%) 13 (46.4%) 0.799

LCX 8 (26.7%) 9 (32.1%) 0.775

RCA 15 (50.0%) 11 (39.3%) 0.441

LM 1 (3.3%) 1 (3.6%) 1.000

No. of lesions treated 1.4 (0.7) 1.5 (0.6) 0.711

No. of stents implanted 2.0 (1.8) 2.4 (1.2) 0.381

Total stented length
(mm)

40.1 (42.6) 47.9 (29.7) 0.428

Cross-over 0 (0.0%) 0 (0.0%) NA

On-label use 13 (43.3%) 10 (35.7%) 0.600

Long lesion (.27 mm)a 3 (12.0%) 3 (13.6%) 1.000

Small vessel (,2.5 mm
diameter)a

12 (48.0%) 15 (68.2%) 0.238

Anti-platelet therapy

Dual at 6 months 28 (93.3%) 27 (96.4%) 1.000

Dual at 12 months 27 (90.0%) 26 (92.9%) 1.000

Aspirin at 12 months 28 (93.3%) 27 (96.4%) 1.000

Clopidogrel at 12
months

29 (96.7%) 27 (96.4%) 1.000

Data presented as no. of events (%) or mean (SD), as appropriate. EES,
everolimus-eluting stent; LAD, left anterior descending; LCX, left circumflex; LM,
left main stem; RCA, right coronary artery; ZES, zotarolimus-eluting stent.
aDerived from QCA data.
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ejection fraction than those who received ZES. No clinical
events were observed in the patients in the OCT substudy,
except for a non-Q-wave myocardial infarction in the EES
group. No patient was excluded from the study on the basis
of clinical outcomes.
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Table 4 Lesions characteristics

ZES
(n 5 36)

EES
(n 5 36)

P-value

Target vessel

LM 0 (0.0%) 1 (2.8%) 1.000

LAD 14 (38.9%) 15 (41.7%) 1.000

LCX 5 (13.9%) 6 (16.7%) 1.000

RCA 17 (47.2%) 14 (38.9%) 0.634

Pre-procedural TIMI flow

0 6 (16.7%) 6 (16.7%) 1.000

I 1 (2.8%) 2 (5.6%) 1.000

II 3 (8.3%) 2 (5.6%) 1.000

III 26 (72.2%) 26 (72.2%) 1.000

Post-procedural TIMI flow

II 1 (2.8%) 0 (0.0%) 1.000

III 35 (97.2%) 36 (100.0%) 1.000

TO 6 (16.7%) 6 (16.7%) 1.000

Ostial lesion 1 (2.8%) 1 (2.8%) 1.000

Bifurcation 8 (22.2%) 12 (33.3%) 0.430

Moderate or severe
calcification

8 (22.2%) 5 (13.9%) 0.541

Angiographic edge
dissections

1 (2.8%) 0 (0.0%) 1.000

Complications 0 (0.0%) 0 (0.0%) NA

QCA characteristics

Lesion length (mm) 16.6 (9.9) 13.8 (10.0) 0.297

Pre-stenting

RVD (mm) 2.84 (0.56) 2.59 (0.54) 0.089

MLD (mm) 0.88 (0.58) 0.78 (0.51) 0.438

% diam stenosis 69 (19) 70 (19) 0.942

Post-stenting

In-stent

RVD (mm) 2.91 (0.49) 2.82 (0.45) 0.401

MLD (mm) 2.44 (0.51) 2.40 (0.48) 0.717

% diam stenosis 16 (8) 15 (7) 0.476

In-segment

RVD (mm) 2.83 (0.47) 2.66 (0.46) 0.116

MLD (mm) 2.15 (0.44) 2.01 (0.39) 0.161

% diam stenosis 24 (9) 24 (9) 0.923

Data presented as no. of events (%) or mean (SD), as appropriate. EES,
everolimus-eluting stent; LAD, left anterior descending; LCX, left circumflex; LM,
left main stem; MLD, minimal lumen diameter; QCA, quantitative coronary
angiography; RCA, right coronary artery; RVD, reference vessel diameter; TO,
total occlusion; ZES, zotarolimus-eluting stent. Lesion length and RVD were not
available for 17 lesions due to initial TIMI flow 0/I; for one lesion in the ZES group,
the pre-stenting lesion length, RVD, MLD, and % diameter stenosis could not be
determined due to overlapping vessels.
*P ≤ 0.05.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6 Areas and volumetric analysis of overlapping
segments at 13-month follow-up

19 patients,
21 lesions,
28 overlaps

ZES:
8 patients,
9 lesions,
11 overlaps

EES:
11 patients,
12 lesions,
17 overlaps

P-value

Overlap length (mm) 2.4 (2.4) 2.1 (2.7) 0.771

MLA (mm2) 5.37 (2.09) 6.67 (2.89) 0.208

Mean lumen Area (mm2) 5.61 (2.14) 6.93 (2.97) 0.213

Lumen volume (mm3) 14.1 (16.2) 16.1 (22.8) 0.805

Min stent area (mm2) 6.15 (1.70) 7.89 (3.02) 0.095

Mean stent area (mm2) 6.50 (1.68) 8.20 (3.00) 0.100

Stent volume (mm3) 15.7 (17.3) 18.5 (26.2) 0.760

% frames with ISA 3.03 (10.05) 2.94 (12.13) 0.984

Max ISA area (mm2) 0.02 (0.08) 0.02 (0.07) 0.821

ISA volume (mm3) 0.01 (0.04) 0.01 (0.04) 0.892

ISA volume (% of stent
volume)

0.10 (0.34) 0.24 (0.99) 0.601

Max NIH area (mm2) 1.16 (0.56) 1.50 (0.94) 0.297

NIH volume (mm3) 1.7 (1.5) 2.5 (3.6) 0.433

NIH volume
obstruction (%)

16.0 (12.3) 17.0 (11.8) 0.835

Data presented as mean (SD). EES, everolimus-eluting stent; ISA, incomplete stent
apposition; MLA, minimal lumen area; NIH, neointimal hyperplasia; ZES,
zotarolimus-eluting stent.
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Table 5 Areas and volumetric analysis per stent
(excluding overlapping segments) at 13-month
follow-up

58 patients,
72 lesions,
107 stents

ZES:
30 patients,
36 lesions,
50 stents

EES:
28 patients,
36 lesions,
57 stents

P-value

Stent length (mm) 18.7 (9.3) 18.6 (8.6) 0.959

MLA (mm2) 5.45 (2.39) 5.35 (2.45) 0.845

Mean lumen area (mm2) 6.89 (2.52) 6.68 (2.75) 0.681

Lumen volume (mm3) 130.1 (80.4) 123.2 (73.0) 0.641

Min stent area (mm2) 6.37 (2.41) 6.47 (2.42) 0.831

Mean stent area (mm2) 7.70 (2.38) 7.64 (2.59) 0.902

Stent volume (mm3) 145.2 (85.1) 140.8 (77.2) 0.777

% frames with ISA 5.10 (9.84) 3.18 (7.00) 0.255

Max ISA area (mm2) 0.39 (0.76) 0.49 (1.56) 0.666

ISA volume (mm3) 0.79 (1.80) 1.08 (3.90) 0.615

ISA volume
(% of stent volume)

0.58 (1.39) 0.66 (2.27) 0.835

Max NIH area (mm2) 1.73 (0.82) 1.88 (0.87) 0.367

NIH volume (mm3) 15.9 (11.6) 18.7 (14.4) 0.274

NIH volume
obstruction (%)

12.5 (7.9) 15.0 (10.7) 0.157

Data presented as mean (SD). EES, everolimus-eluting stent; ISA, incomplete stent
apposition; MLA, minimal lumen area; NIH, neointimal hyperplasia; ZES,
zotarolimus-eluting stent.
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Tables 5 and 6 show mean in-stent areas and volumes in
non-overlapping and overlapping segments, respectively, without
significant differences between both stent types. Table 7 shows
the comparative results of the variables estimating apposition
and tissue coverage. There were no significant differences in the
proportion of non-covered struts or in the mean thickness of cov-
erage between the treatment groups in multilevel analysis. Introdu-
cing the variables with imbalanced distribution (serum creatinine
and ejection fraction) in the regression model as covariates did
not translate into any significant variation in the differences in
coverage.

Figure 4 shows the spread-out-vessel graphics of the 109 stents
and corresponding overlaps.

Discussion
The main finding of this study is that OCT did not detect any
significant difference between ZES and EES in tissue coverage

at 13 months. Both DES have durable polymers, but with differ-
ent properties. The BioLinx polymer on ZES is an amphiphilic
blend of three different polymers, with a hydrophilic surface in
contact with the blood or the vessel wall. Conversely, the poly(-
vinylidene fluoride-co-hexafluoropropylene) on EES offers a
hydrophobic fluorinated surface that might induce fluoropassiva-

tion. Hydrophilicity (ZES) and fluoropassivation (EES) improve

both the biocompatibility of the corresponding intracoronary

device, as discussed previously. No significant differences were

found in the mean thickness of coverage, although it tended to

be thinner in ZES. Likewise, there were no significant differences

regarding the proportion of covered struts, a possible surrogate

for the completeness of neointimal coverage. In view of these

results, a hydrophilic polymer coating does not seem to translate

into any clear advantage in terms of neointimal coverage with

respect to a hydrophobic fluoropolymer coating. Beyond the

hydrophilicity of the polymer surface, other factors such as the

different antiproliferative drugs (with different inhibitory

. . . . . . . . . . . . . . . . . . . . . . . .
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Table 7 Analysis of apposition and coverage per strut at 13-month follow-up

All struts:
58 patients,
72 lesions,
107 stents,
23 197 struts

ZES:
30 patients,
36 lesions,
50 stents,
11 930 struts

EES:
28 patients,
36 lesions,
57 stents,
11 267 struts

Estimate 95% CI P-value

Low Up

Apposition

Apposition category

Well-apposed 11 624 (97.4%) 10 989 (97.5%) OR 0.96 0.52 1.76 0.898

ISA 216 (1.8%) 161 (1.4%) OR 1.27 0.56 2.91 0.569

NASB 90 (0.8%) 117 (1.0%) OR 0.72 0.41 1.29 0.271

Coverage

Thickness of coverage (mm) 116 (99) 142 (113) Difference 211.4 242.4 19.65 0.466

Coverage category

Covered 11 043 (92.6%) 10 613 (94.2%) OR 0.77 0.43 1.38 0.378

Uncovered 887 (7.4%) 654 (5.8%) OR 1.30 0.72 2.33

Overlapping segments:
19 patients,
21 lesions,
28 overlaps,
1251 struts

8 patients,
9 lesions,
11 overlaps,
629 struts

11 patients,
12 lesions,
17 overlaps,
622 struts

Apposition

Apposition category

Well-apposed 626 (99.5%) 618 (99.4%) OR 1.35 0.14 13.50 0.798

ISA 3 (0.5%) 1 (0.2%) OR 2.98 0.19 47.83 0.441

NASB 0 (0.0%) 3 (0.5%) OR — — — NA

Coverage

Thickness of coverage (mm) 129 (98) 171 (125) Difference 247.97 2159.37 63.44 0.376

Coverage category

Covered 588 (93.5%) 600 (96.5%) OR 0.53 0.24 1.16 0.111

Uncovered 41 (6.5%) 22 (3.5%) OR 1.89 0.86 4.17

EES, everolimus-eluting stent; ISA, incomplete stent apposition; NASB, non-apposed side branch; ZES, zotarolimus-eluting stent.
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potency and dose), the kinetics of release (more sustained

release in ZES, prolonged up to 180 days), mechanical character-

istics of the stent platform, and the polymer itself play certainly a

role in determining the neointimal coverage after stenting. Inter-

estingly, the proportion of uncovered struts in ZES in our study

is higher than in previous OCT studies on another ZES with a

phosphorylcholine polymer and different kinetics of release.18,35

This could be the consequence of the sustained drug elution,

although the absolute proportions in these studies cannot be
directly compared due to small methodological differences in
the assessment.

Since no significant differences in ISA were found between the
treatment groups, an eventual confounding effect of ISA on the
coverage can be ruled out.

Because the number of patients in the OCT substudy was
modest compared with the large numbers in the main trial, and
a sizeable number of control variables were tested, some differ-
ences appeared by chance between treatment groups in spite of
randomization. In order to control potential confusion, an
additional sensitivity analysis was performed, introducing the vari-
ables with imbalanced distribution as covariates in the multilevel
regression models, but the results did not change with respect
to the pre-specified analysis.

The results about OCT coverage seem consistent with the clini-
cal findings of the RESOLUTE All Comers trial,31 in which ZES
proved to be non-inferior to EES for target-lesion failure. Further-
more, on the basis of this OCT substudy, differences in coverage
cannot be advocated to explain the ambiguous clinical results
regarding stent thrombosis. The correlation between OCT substu-
dies and the clinical outcome of large prospective trials can
contribute to understand the predictive value of OCT. In the
LEADERS trial, the OCT substudy detected an advantage in
coverage in one of the stents at 9 months,16 but no differences
in thrombosis rates have been reported hitherto.20 Likewise,
HORIZONS-AMI found worse coverage in DES than in BMS
after primary PCI,36 but no significant difference in thrombosis.37

In RESOLUTE All Comers, there was a non-significant trend to
lower stent thrombosis in the EES group, although most of the
events occurred in the first 30 days when neointimal healing is
still unlikely to play a role.31 The results of this OCT substudy
could be interpreted as reassuring that factors other than differ-
ences in coverage are the key for these clinical results, but the
potential of OCT coverage to predict future thrombotic events
must be still properly understood.

The ‘spread-out-vessel’ summary in Figure 4 may be the best
possible graphic representation for the clustering and spatial distri-
bution of non-coverage. It clearly shows, without the need of
complex statistics, that the type of stent is not the only factor
determining coverage: concentration of uncovered struts in some
patients or in some stents within a patient or in some regions
within a stent points out clearly the relevance of individual, mech-
anical, and loco-regional factors, respectively. Among them, dia-
betes,38 levels of circulating endothelial progenitor cells,39 or
regional shear stress40,41 are known to play a role in neointimal
healing after stenting.

Limitations
The unequal distribution of some control variables in the ran-
domization has been previously addressed.

Some caution should be advised about using OCT tissue cover-
age as a surrogate of neointimal healing. Although biologically
plausible and intuitively accepted by the scientific community,
this approach cannot be fully supported by current evidence.
Optical coherence tomography tissue coverage correlates with
histological neointimal healing and endothelialization after stenting
in animal models,12– 14 but its sensitivity and specificity in human
atherosclerotic vessels are still unknown. Optical coherence tom-
ography is not able to detect thin layers of the endothelium, below
its 10–20 mm axial resolution, and cannot discern between neoin-
tima and other material, such as fibrin or thrombus. The analysis of

Figure 4 Spread-out-vessel graphics showing non-covered
struts of the 109 stents and corresponding overlaps analysed at
13 months. The graphic summarizes the spatial distribution of
non-coverage and its clustering at the four considered levels
(allocation to treatment, patient, lesion, and stent).
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optical density might be useful in the future to discern between
neointima and fibrin.15

Per strut quantitative analysis was performed at 1 mm longitudi-
nal intervals. Although this methodology has been experimentally
validated for the assessment of coverage14 and showed excellent
reproducibility,34 it might have different sensitivity to detect uncov-
ered struts than shorter longitudinal intervals. The results from
studies using different longitudinal segmentation might not be
directly comparable.

Finally, the OCT substudy of RESOLUTE All Comers did not
follow a non-inferiority design, as was done in the main trial.
Therefore, the conclusion cannot be the absence of significant
differences between the compared stents, in spite of not having
found them. The possibility of an underpowered design cannot
be strictly ruled out, although the lack of any clear trend
between the groups makes it very unlikely.

Conclusion
No significant differences in tissue coverage, malapposition, or
lumen/stent areas and volumes were detected by OCT between
the hydrophilic polymer-coated ZES and the fluoropolymer-
coated EES at 13-month follow-up.
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