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Incorporation of impurities, or dopant atoms, into semiconducting materials is a critical part in 
optimizing the performance of electronic devices. In nanoscale semiconductors such as 
nanocrystals (NCs), statistical fluctuations in the number and position of the dopant atoms can 
have a dramatic effect on the electronic and optical properties of the NCs. Hence, it is important 
to locate the position of dopant atoms. Annular dark-field scanning transmission electron 
microscopy is a powerful technique for such purpose, as demonstrated previously on various 
combinations of dopant atoms and host materials [1, 2]. However, those experiments require that 
the difference in atomic numbers between the host crystals and dopant atoms ( Z) be sufficiently 
large to yield a visible contrast in the image.  
 
In this study, we utilized a spectrum imaging technique to simultaneously record electron energy 
loss spectra (EELS) and annular dark field – scanning transmission electron microscopy (ADF-
STEM) images in order to identify Mn dopant atoms inside ZnSe NCs [3]. This enables dopant 
detection to be performed on a system of host crystals and dopant atoms which does not have a 
large Z. This technique can be an alternative method in identifying dopant atoms inside 
materials whereby conventional ADF-STEM imaging is difficult to perform due to low Z.  
 
The ZnSe NCs were synthesized using high temperature organometallic solution based route [4]. 
The Mn doping was achieved by injecting dimethylmanganese into a mixture containing 
diethylzinc and Se. The number of incorporated Mn atoms can be tuned by varying the 
concentration of dimethylmanganese. Three types of samples were examined: (1) 2.9 nm 
diameter NCs with an average of 0.7 incorporated Mn atom per NC (singly doped), (2) 3.7 nm 
NCs with an average of 6.2 Mn atoms per NC (highly doped), and (3) 2 nm undoped NCs used 
for reference.  
 
The spectrum imaging was performed using Nion aberration corrected Ultra-STEM at Cornell 
University. The accelerating voltage (100 kV) and beam current (~150 pA) were adjusted to 
minimize beam damage on the samples while still maintain a large signal to noise ratio. The 
resulting spectra were stored in 3-D matrices corresponding to the spatial (x, y) and energy loss 
data (z) and were filtered to remove counting noise. Mn L2,3-edge spectrum from bulk Mn 
samples were used to perform a linear-least-square (LLS) fitting for each of the Mn L2,3-edge 
signals from the NCs. A two-dimensional EELS map (M(i,j)) was then obtained following a 
relation M(i,j) = G(i,j)S(i,j) where G and S represent the goodness of fit and intensity scaling 
factor respectively. The presence of Mn dopant atoms corresponding to a pixel is characterized 
by large values of G and S in M(i,j) which was spatially correlated with the ADF-STEM image 
through the overlay process shown in Fig. 1a. This overlaid image is used to locate the presence 
of Mn dopant atoms in the NCs. In the case of highly doped NCs (sample 2) consistent detection 
of Mn is obtained as shown in Fig. 1b.  
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