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  Abstract 
  Background : Antiepileptic drugs (AEDs) are commonly 

used in the treatment of epilepsy, psychiatric diseases 

and pain disorders. Several of these drugs influence blood 

levels of folate and vitamin B12 and, consequently, homo-

cysteine. This may be relevant for AED effects and side 

effects. However, not only folate and vitamin B12, but also 

genetic variants modify homocysteine metabolism. Here, 

we aimed to determine whether there is a pharmacoge-

netic interaction between folate, vitamin B12 and genetic 

variants and homocysteine plasma level in AED-treated 

patients. 

  Methods : In this mono-center study, we measured homo-

cysteine, folate and vitamin B12 plasma levels in a popu-

lation of 498 AED-treated adult patients with epilepsy. In 

addition, we analyzed the genotypes of seven common 

genetic variants of homocysteine metabolism: methyl-

enetetrahydrofolate reductase ( MTHFR ) c.677C  >  T and 

c.1298A  >  C, methionine synthase ( MTR ) c.2756A  >  G, dihy-

drofolate reductase ( DHFR ) c.594 + 59del19bp, cystathio-

nine  β -synthase ( CBS ) c.844_855ins68, transcobalamin 

2 ( TC2 ) c.776C  >  G and methionine synthase reductase 

( MTRR ) c.66G  >  A. 

  Results : On multivariate logistic regression, folate and 

vitamin B12 levels, but none of the genetic variants, were 

predictive for homocysteine levels. 

  Conclusions : These data suggest that, in AED-treated 

patients, folate and vitamin B12 play important roles in 

the development of hyperhomocysteinemia, whereas 

genetic variants of homocysteine metabolism do not and 

thus do not contribute to the risk of developing hyper-

homocysteinemia during AED treatment.  
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   Introduction 
 Antiepileptic drugs (AEDs) are widely used to treat epileptic 

seizures, psychiatric diseases and pain syndromes. Several 

side effects and risks limit the usage of AEDs. A character-

istic of several AEDs is a reduction of folate and vitamin B12 

serum levels accompanied by an increase of homocysteine 

plasma levels [ 1  –  4 ]. A mild to moderate increase in homo-

cysteine plasma levels has been firmly established as an 

independent risk factor for cardiovascular [ 5 ,  6 ] and neu-

rodegenerative [ 7  –  9 ] diseases in the general population. 

Epidemiologic studies show that patients with epilepsy 

have an increased risk for ischemic heart disease, fatal 

cardiovascular outcome and neurodegenerative diseases 

such as dementia and Parkinson ’ s disease, which may be 

attributed to hyperhomocysteinemia [ 10  –  13 ]. In addition, 

increased homocysteine plasma levels potentially lead to 

the aggravation of seizures, as indicated by experimental 

data [ 14 ] and in patients with alcohol withdrawal seizures 

[ 15 ]. Therefore, the effect of AEDs on vitamin and homo-

cysteine metabolism and ultimately on cardiovascular 

and neurological disease is a relevant research area in the 

patient population receiving chronic AED treatment. 

 Not only vitamin status, but also genetic variants may 

modify folate, vitamin B12 and homocysteine metabolism 
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( Figure 1 ) [ 16 ]. Several studies have reported that eleva-

tion of homocysteine plasma levels during AED treatment 

is enhanced by the presence of genetic risk factors such as 

the presence of the T allele of the common methylenetet-

rahydrofolate reductase ( MTHFR ) c.677C  >  T polymorphism 

[ 18  –  22 ]. However, these studies are limited due to their 

small study populations and the small number of genetic 

variants of homocysteine metabolism tested. In this study, 

we investigated whether there is a relevant pharmacoge-

netic relationship between folate, vitamin B12 and seven 

genetic variants of homocysteine metabolism and homo-

cysteine plasma level in 498 AED-treated patients.  

  Materials and methods 

  Patients 
 Inclusion criteria: This mono-center study included adult se-

rial in- and out-patients with epilepsy seen in the Department for 

 Epileptology of the University Hospital Bonn, Germany. The patients 

were treated with various commonly used AEDs in mono- or com-

bined therapy [ 4 ]. 

 Exclusion criteria: Patients with conditions that could potential-

ly infl uence folate, vitamin B12 or homocysteine plasma levels, such 

as renal insuffi  ciency, atrophic gastritis and alcohol or drug abuse, 

were excluded from the study. Patients who were taking vitamin sup-

plements were also excluded. 

 This study was approved by the Local Ethics Committee. All pa-

tients gave their informed written consent.  

  Laboratory investigations 
 Serum concentrations of vitamin B12 and folate were measured by 

means of a competitive chemiluminescent immunoassay with an Ac-

cess ™  Immunoassay System (Beckman Coulter, Krefeld, Germany). 

The intra-assay coeffi  cient of variation of the folate assay was 3.1% 

(mean: 14.1 nmol/L; n = 20); the inter-assay coeffi  cient of variation 

was 3.6% (mean: 14.3 nmol/L; n = 20). The intra-assay coeffi  cient of 

variation of the vitamin B12 assay was 3.8% (mean: 487 pmol/mL; 

n = 20); the inter-assay coeffi  cient was 4.2% (mean: 492 pmol/L; 

n = 20). Homocysteine was determined by fully automated particle-

enhanced immunonephelometry with a BN II System (Siemens 
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 Figure 1      Homocysteine metabolism.    

The sulfur-containing amino acid methionine is activated to S-adenosylmethionine (SAM), which is a ubiquitous methyl group donor. The 

degradation product of SAM is S-adenosylhomocysteine (SAH), which is hydrolyzed to homocysteine. Homocysteine can be remethylated 

to methionine and SAM via methionine synthase (MTR), which depends on derivatives of folate and vitamin B12 as cofactors. Lack of these 

vitamins is a common cause of hyperhomocysteinemia [ 17 ]. The folate derivative is synthesized by methylenetetrahydrofolate reductase 

(MTHFR) and dihydrofolate reductase (DHFR), and the derivative of vitamin B12 is transported by transcobalamin 2 (Tc2). Alternatively, 

homocysteine can be transsulfurated by vitamin B6 dependent cystathionine  β -synthase (CBS) and cystathionine gamma-lyase (CGL) to 

cysteine as a component of glutathione. Due to the existence of several functional variants in the genes involved in homocysteine metabo-

lism, and to differences in dietary vitamin and amino acid uptake, disorders of homocysteine metabolism exhibit marked inter-individual 

differences.
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Healthcare Diagnostics, Eschborn, Germany) by enzymatic conver-

sion to S-adenosylhomocysteine. The intra-assay coeffi  cient of vari-

ation of the homocysteine assay was 3.4% (mean: 11  μ mol/L, n = 20); 

the inter-assay coeffi  cient was 5.6% (mean:  μ mol/L, n = 20) [ 1 ]. 

 Genomic DNA prepared from peripheral leukocytes was used for 

genotyping by PCR amplifi cation and, where applicable, subsequent 

restriction analysis of the seven genetic variants of homocysteine me-

tabolism ( Table 1 ). 

    Statistical analysis 
 Plasma levels of homocysteine plasma and serum levels of folate and 

vitamin B12 were tested for normal distribution by the Kolmogorov-

Smirnov test. The distribution of genotypes was tested with a chi-

square goodness-of-fi t test (Pearson). Bivariate Pearson ’ s correlation 

was used to analyze correlations between folate, vitamin B12 and 

homocysteine levels. To analyze associations between the diff erent 

genotypes and folate and vitamin B12 levels and folate and vitamin 

B12 tertiles, univariate analysis of variance (ANOVA) and Pearson ’ s 

 χ  2 -tests were used, respectively. To analyze independent associations 

with homocysteine plasma level as the primary parameter of inter-

est, we applied multivariate linear regression analysis with homo-

cysteine plasma level as the dependent variable and with the genetic 

variants, folate and vitamin B12 plasma levels and age and sex as 

covariables. One-way ANOVA was used for exploratory comparison 

of homocysteine plasma levels between patients with the  MTHFR  

c.677C  >  T genotype treated with either carbamazepine or phenytoin. 

The threshold was defi ned as two-sided   α   = 0.05.   

  Results 
 Demographic, biochemical and genetic data from the 498 

patients (51.4% male) enrolled in this study are shown 

in  Table 2 . Genotyping succeeded for all genetic vari-

ants. Genotype distributions did not deviate from Hardy-

Weinberg equilibrium. Homocysteine plasma levels as 

well as folate and vitamin B12 serum levels were within 

the normal distribution. Thus, the data were not log-trans-

formed. First, we evaluated the relationships between 

folate and vitamin B12 levels and homocysteine level by uni-

variate analysis and found negative correlations between 

homocysteine and folate (Pearson =  − 0.334; p  <  0.001) 

and homocysteine and vitamin B12 (Pearson =  − 0.236; 

p = 0.001). Therefore, we included folate and vitamin B12 

plasma levels along with age, sex and all seven genetic 

variants as covariables for multivariate analysis of inde-

pendent associations with homocysteine plasma level as 

the dependent variable. The associations between folate 

and vitamin B12 with homocysteine level were confirmed, 

but none of the genotypes showed an association with 

homocysteine level ( Table 3 ). In addition, none of the gen-

otypes was associated with folate or vitamin B12 serum 

level (data not shown). However,  MTHFR  c.677C  >  T was 

associated with folate tertiles; i.e., patients with the TT 

genotype had a higher likelihood of having folate serum 

 Demographic/biochemical 
data 

 Mean  SD   

 Age, years  40.0  14.0   

 Vitamin B12, pmol/L  268  137   

 Folate, nmol/L  11.6  7.9   

 Homocysteine,  μ mol/L  15.5  8.6   

 Sex, n (%)  Male  Female   

   256 (51.4%)  242 (48.6%)   

 Frequency of genotype       

  MTHFR  c.677C  >  T  CC  CT  TT 

 n  (%)   219 (44%)  224 (45%)  55 (11%) 

  MTHFR c.1298A  >  C   AA  AC  CC 

 n  (%)   214 (43%)  229 (46%)  55 (11%) 

  MTR c.2756A  >  G   AA  AG  GG 

 n  (%)   349 (70%)  134 (27%)  15 (3%) 

  TC2 c.776 C  >  G   CC  CG  GG 

 n  (%)   149 (30%)  229 (46%)  120 (24%) 

  DHFR c.594 + 59del19   dd  di  ii 

 n  (%)   90 (18%)  244 (49%)  164 (33%) 

  CBS  c.844_855ins68  dd  di  ii 

 n (%)  418 (84%)  75 (15%)  5 (1%) 

  MTRR  G  >  A  GG  GA  AA 

 n (%)  100 (20%)  259 (52%)  139 (28%) 

 Table 2      Demographic and biochemical data and frequency of 

genotypes in the study population (n = 498).  

  All genotypes were in Hardy-Weinberg equilibrium. SD, standard 

deviation.  

 Genetic variant  Peptide variant  rs/Genbank no.  Reference 

  MTHFR  c.677C  >  T  A222V  rs1801133  [ 23 ] 

  MTHFR  c.1298A  >  C  E429A  rs1801131  [ 24 ] 

  MTR  c.2756A  >  G  D919G  rs1805087  [ 25 ] 

  Tc2  c.776C  >  G  P259R  rs1801198  [ 26 ] 

  DHFR  c.594 + 59del19bp  Change of transcription level?  NM_000791.3  [ 27 ] 

  CBS  c.844_855ins68  Change of transcription level?  S78267.1  [ 28 ] 

  MTRR  c.66G  >  A  M22I  rs1801394  [ 29 ] 

 Table 1      The genetic variants of homocysteine metabolism analyzed in this study.  



668      Semmler et al.: Antiepileptic drugs, genetic variants and homocysteine

levels in the lowest tertile ( χ  2  = 3.1; p = 0.011). Next, we con-

ducted an exploratory analysis of patients who received 

carbamazepine or phenytoin monotherapy (n = 76), 

looking for an association between  MTHFR  c.677C  >  T and 

homocysteine plasma level, which has been reported by 

previous studies [ 18  –  22 ]. However, we observed no signifi-

cant differences (ANOVA: F = 2.5; p = 0.091). 

     Discussion 
 In our study cohort of 498 AED-treated epilepsy patients, 

we observed no associations between any of seven genetic 

variants of homocysteine metabolism and homocysteine 

plasma level. Only folate and vitamin B12 serum levels 

were associated with homocysteine plasma level. This 

indicates that hyperhomocysteinemia during chronic AED 

treatment is driven by decreased folate and vitamin B12 

levels and not by a pharmacogenetic risk profile. 

 This is surprising, because genetic variants of homo-

cysteine metabolism are firmly established risk factors for 

hyperhomocysteinemia in the general population; e.g., 

 MTHFR  c.677C  >  T influences homocysteine plasma levels, 

with differences of approximately 2  μ mol/L (15% – 20%) 

between homozygous carriers of the wild-type C versus the 

mutant T allele [ 23 ]. In addition, the T variant also influ-

ences folate metabolism, resulting in lower total folate 

levels [ 30 ]. In our study, the association with folate level 

was weak and was significant only with folate tertiles. We 

speculate that the effects of the AEDs on folate and homo-

cysteine levels overcame the weaker effects of the genetic 

variants in our patient population. This is in contrast to 

previous studies describing genetic risk factors for hyper-

homocysteinemia during AED treatment  –  principally the 

T allele of  MTHFR  c.677 C  >  T and the C allele of  MTHFR  

c.1298A  >  C [ 18  –  22 ]  –  and may be explained by the differing 

study populations. For example, Yoo et al. described an 

association between the TT genotype of  MTHFR  c.677 C  >  T 

and higher homocysteine plasma levels in AED-treated 

patients [ 21 ]. However, the subjects enrolled in that study 

were from Korea and were younger (27.5  ±  8.5 years) and 

had lower mean homocysteine plasma levels (11.2  ±  1.5 

 μ mol/L), higher folate (18.8  ±  10.2 nmol/L) and higher 

vitamin B12 serum levels (630  ±  252 pmol/L) than the 

patients in our study ( Table 2 ). Thus, we cannot exclude 

the possibility that the small subgroup sizes of that study 

or demographic differences between the populations con-

tributed to the conflicting results. 

 In conclusion, patients undergoing chronic AED treat-

ment should be screened for folate, vitamin B12 deficiency 

and hyperhomocysteinemia on a regular basis and any 

vitamin deficiency should be corrected when necessary 

[ 4 ]. Screening for genetic variants is not feasible for the 

detection of patients at risk and should not be included in 

the clinical work-up.     
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