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We investigate the structure of competitive equilibria in an exchange economy parametrized
by (i) endowments and (ii) restrictions on market participation. For arbitrary regular endowments,
if few consumers are restricted, there are no sunspot equilibria. If endowments are allowed to
vary, while restrictions on market participation are fixed, there is a generic set of preferences such
that sunspot equilibria exist for a non-empty subset of endowments. Our analysis extends to the
general case of an arbitrary number of restricted consumers the results of Cass and Shell for the
polar cases in which either (i) no consumers are restricted or (ii) all consumers are restricted.

1. INTRODUCTION

In actual economies, there are restrictions on market participation. Some people are able
to trade on a given market, while others are not. Some of the restrictions on market
participation are based on law or custom. For example, it is against the law in some
countries to sell alcoholic beverages to minors. In these countries, minors are restricted
from participating in the wine and beer markets. Other restrictions are inherent in the
definition of the market. For example, an actual market "meets" at some particular time.
As a consequence, only people alive and present at that time can trade on the market. All
others (including the yet unborn) are restricted from participating on the market.

A model of restricted market participation is developed in Section 2. It is essentially
the original Cass-Shell (1983) pure-exchange sunspot model, but alterations have been
made to permit continuous variations in market participation. The number of commodities
is finite. Consumers maximize von Neumann-Morgenstern utility functions. There is no
intrinsic uncertainty. There are two possible (extrinsic) states states of nature. Markets
are complete, but participation on the securities market is possibly restricted. In Section
3, we analyse consumer behaviour and equilibrium outcomes as a function of market
participation while endowments remain fixed at some regular value. There are m types of
consumers, with a continuum of individuals of each type. The economy is parameterized
by the vector A= (A), ... , Ah' ... , Am), where (1- Ah) is the "proportion" of consumers
of type h who are restricted from participating in the securities or financial markets. It is
known that for A= 0, the fully unrestricted case, there are no sunspot equilibria: see Cass
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and Shell (1983), and Balasko (1983). for regular economies, we generalize this result: if
Ais small i.e., if relatively few consumers are restricted, then there are no sunspot equilibria.
In Section 4, we analyse, for a fixed vector A representing proportions of agents whose
participation is restricted, the existence of sunspot equilibria as a function of the endow­
ments. It is known that if the endowments are Pareto optimal, then there are no sunspot
equilibria: see again Cass and Shell (1983). We show that if the endowment vector is close
to the set of Pareto-optimal allocations, then again there are no sunspot equilibria. It is
also known from Cass and Shell (1983) that for A= 1, the fully-restricted case, sunspot
equilibria exist if and only if there are multiple, non-sunspot equilibria. We extend the
sufficiency part of this result to the case of more general market participation. Hold A
fixed at any value but unity and assume that preferences are such that there are multiple
non-sunspot equilibria for some endowments, a property that is satisfied for a generic set
of preferences. Then, we show that there exist endowments for which sunspot equilibria
exist.

The research reported in this paper deals with aspects of sunspot equilibria resulting
from restrictions that refer to an absolute ban in market participation arising, for example,
from considerations of actual presence on a particular market. This approach must be
contrasted with alternative approaches that focus on the restrictions that arise from, for
example, considerations of moral hazard in fulfillingcommitments. These approaches have
led to the study of sunspot equilibria in models of imperfect financial markets for which
we refer to Cass (1992) and the mini-symposium issue of Economic Theory.

It must be stressed that the results in the present paper are based on a model in which
the role of time is only implicit. Our comparative statics consists in the analysis of how
changes in a few parameters, namely the vector of proportions of restricted consumers
and initial endowments, affect sunspot and non-sunspot equilibria. It is a different exerc­
ise-often a very different exercise-to analyse the effects of changing the same parameters
on the stationary (or even periodic) sunspot or non-sunspot equilibria in some fully articul­
ated (infinite-horizon) dynamic model. See in that regard the literature on "comparisons
of steady states" in dynamic sunspots models exemplified by Azariadis and Guesnerie
(1986) and Grandmont (1989).

2. THE PURE EXCHANGE SUNSPOT MODEL: DEFINITIONS,
ASSUMPTIONS AND NOTATION

We consider pure exchange economies with / commodities and two states of nature,
denoted a and (3, and having probabilities 1l'(a) and 1l'({3). (Therefore, there exists 2/
contingent commodities.) There are m households or consumers. We denote by H the set
of consumers. The preferences of consumer heH are defined by way of a Von Neumann­
Morgenstern utility function taking the form

uh(x/r(a), x/r({3» = 1l'(a)v/r(x/r(a» + 1l'({3)v/r(x/r({3».

The functions u" and u« are assumed to be concave besides satisfying the standard
assumptions of smooth consumer theory. (See, e.g., Balasko (1988».

Let n = (!R2/)'n denote the set of endowments of the m consumers. We also consider
the set .Q consisting of symmetric endowments, i.e., mEn is equivalent to m,,(a) = m,,(/3)=
ro" for h= 1, 2, ... , m. Note that the set .Q can be identified with !RIm.

The price vector p = (p( a), p(f3» is not normalized (in order to avoid any artificial
breach in the symmetry of the model). Let S= IR~+. Then S= S x S denotes the set of
strictly positive (non-normalized) prices.
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The main feature of the sunspot model is that consumer h is facing one or two budget
constraints, depending on whether he has or has not access to an insurance market whose
role is to transfer wealth across states of nature.

If consumer h is unrestricted, he then faces only one budget constraint equal to

p(a)· xh(a)+p({J)· Xh({J) = (p(a) +p(fJ» . mh=Wh.

The demand fh(p(a), p(fJ), Wh) of the unrestricted consumer h is the standard Walrasian
individual demand function. The individual excess demand is denoted by z(p, cOh) =
fh(p(a),p(fJ),p(a)+p(fJ»· mh)-(mh, mh).

From the restricted consumer to the fictitious consumers.

If consumer h is restricted, then he faces two separate budget constraints, namely

p( a) . Xh( a ) =p( a) . CO"'}
p(fJ) . Xh({J) =p({J) . coh.

This maximization problem decomposes into two separate problems, namely "to maximize
vh(x,,(a» subject to p(a)· xh(a)=p(a)· cOh=wh(a)" and "to maximize Vh(X,,({J» subject
to p({J) . Xh(fJ) = p({J) . £0h=w,,(fJ)"·

Let j;, denote the (Walrasian) demand of a fictitious consumer h whose preferences
are defined in the commodity space IR' through the utility function Vh: IR'-. IR and who
faces only the standard (and therefore unique) budget constraint with respect to the
commodity space IR ', Then the demand function of the restricted consumer is related to
the demand of the fictitious consumer as follows.

fi,(p(a),p({J), wh(a), w,,(!3» = (f,,(p(a), wh(a»,J,,(p({3), Wh({3») .

. We also find it convenient to consider the individual excess demand function

Zh(P, mh)=J,,(p, P . £0,,) - £0"

of the fictitious consumer.

Symmetric individual demand and prices

It turns out that the symmetric individual demand of consumer h, i.e.,

x" = (x,,(a), Xh({J»,

where x,,(a) =Xh(fJ), for a price vector p =(p( a), ({J», is independent of whether the
consumer h is restricted or unrestricted. This is described precisely in the following lemma.

Lemma 2.1. The individualdemand x,,= (x,,(a), x,,(fJ» is symmetric if theprice vector
p=(p(a),p({J» is equal to (n(a)p, n({J)p) for some price vector peS and, then, i,,=
xh(a) =Xh(f3)=f,,(p, P . £0,,).

Note that the above relationship does not depend on whether consumer h is restricted or
not.

Proof The property stated in Lemma 1 is obvious if h is restricted. In the case of the
unrestricted consumer, it follows from the strict-concavity of the utility function
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u,,(x,,(a), x,,(P» =1Z'(a)v,,(x,,(x,,(a» +1Z'(f3)v"(x,,P». The reasoning goes as follows. All
one has to prove is the equality

x" = fi,(1Z'(a )p, 1Z'(P)p, (1Z'(a)p +1Z'(f3)p) . ro,,) = (J,,(p, p . m,,),J,,(p, p . ro,,».
Suppose that x,,= (x,,(a), x,,(P» maximizes 1Z'(a)v,,(a» +1Z'(P)v,,(x,,(P» subject to the con­
staint p' (1Z'(a)x,,(a) +1Z'(P)x,,(fj» =p' ro". It is symmetric for the foJIowing reason.
Assume the contrary: the symmetric allocation (x, x), where x= 1Z'(a)x,,(a) +1Z'(P)x,,(P),
satisfies the budget constraint and, given the strict concavity of the utility function v",
also satisfies v,,(x) > 1Z'(a)v,,(x,,(a» +1Z'(fJ)v,,(x,,(P» because x,,(a) i:x,,(P). This inequality
contradicts the definition of (x, = (x,,(a), x,,(P» as the solution of the maximization prob­
lem of consumer h. Therefore, x" = x,,(a) =x,,(P) maximizes v,,(x,,) subject to the constraint
p . x" = p . m", and conversely. II

From restricted consumers to quasi- Walrasian consumers

Consider the excess demand of the restricted consumer h

(z,,(p(a), mIl»~' Zh(P(P), m,,»EIR2
/.

Each expression zh(p(a), mh) and z,,(p(f3), ro,,) is the excess demand of some fictitious
consumer h for the price vectors p( a) and p(f3), respectively. One can therefore introduce
the quasi-Walrasian consumers h(a) and h(f3) where the excess demand of h(a) is
(z,,(p(a), mIl),0) while h(P)'s excess demand is (0, z,,(p(P), roll»~' Quasi-Walrasian consu­
mers are studied in Appendix A. Here, it suffices to say that each of them faces a single
budget constraint, the modifier "quasi" expressing the fact the consumption space has
dimensionality strictly smaller than that of the underlying consumption space. For the
quasi-Walrasian consumers, endowments belong to and preferences are defined on the
smaller consumption space. One reason for introducing this terminology takes its origin
in the emphasis put by smooth consumer theory on having all commodities as arguments of
the utility function which, in our terminology, would correspond to a Walrasian consumer.
Therefore a quasi-Walrasian consumer can be regarded as being a Walrasian consumer
with a smaller consumption space. Another reason that justifies the use of specificterminol­
ogy to distinguish quasi-Walrasian consumers from Walrasian ones is to remind us that
these consumers are fictitious and that a pair of them represents a single, real consumer
whose participation in financial markets is restricted. One can substitute for every restricted
consumer h (that has to face therefore two budget constraints) a pair of quasi-Walrasian
consumers h(a) and h(P)

Remark. Incorporating quasi-Walrasian consumers in the general equilibrium model
is not new. For example, Arrow and Hahn's (1971) study of the existence of equilibria
encompasses the case of quasi-Walrasian consumers. The overlapping-generations model
offers another example of quasi-Walrasian consumers, their life span being finite compared
to the infinite duration of the economy. One readily sees (cf. Appendix A) that most
proofs of the standard model can easily be adapted to accommodate quasi-Walrasian
consumers. In other words, the properties of the general equilibrium model with quasi­
Walrasian consumers are essentially the same as those of the same model with only
Walrasian consumers. In particular, we will make crucial use of the structure of the set
of Pareto optima as a set parametrized by the utility levels of every consumer but one
(for fixed total resources), a property that remains true in the setup of quasi-Walrasian
consumers.
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The sunspot model reformulated

Substituting two quasi-Walrasian consumers for a consumer facing two budget constraints
yields a model that is very similar to a Walrasian pure exchange economy. Specificfeatures
in terms, for example, of the symmetries of the model require, however, treatment of their
own.

Consumer h(a) is defined as follows: the consumption space is IR' x {O}, the prefer­
ences on IR' x {O} (identified with IR') are defined by the utility function v" while the initial
endowments are OJ,,(a) = (COh, 0). A parallel formulation with {3 instead of a and {O} x IR'
instead of IR' x {O} defines consumer h({3). Let Zh(a) and z"«(3) denote the individual excess
demand functions of these consumers h(a) and h({3). Using previous notation, we can
write

and

Zh«(3)(p(a),p({3), COla) =(0, ZIa(p({3), COh»

Consequently, from now on, instead of considering economies consisting of consumers
facing one or two budget constraints, we are going to consider only economies consisting
of Walrasian and quasi-Walrasian consumers. The quasi-Walrasian consumers are, by
construction, not symmetric but, in the models we are dealing with, substituting {3 for a
will amount to exchanging the quasi-Walrasian consumers between one another so that
the economy as a whole remains symmetric with respect to a and {3.

Sunspot equilibria

The simplest way to define a sunspot equilibrium is to consider the equilibrium allocation
x=(x(a), x({3» where x(a) = (x,,(a»h and x({3)= (X,,(f3»h. Such an equilibrium alloca­
tion is associated with some price vector p= (p(a),p({3». Then,

Definition 2.2. The price vector p=(p(a),p({3» is a sunspot equilibrium price vector if
the corresponding equilibrium allocation x= (x(a), x({3» satisfies x(a) :Fx({3).

In other words, a sunspot equilibrium allocation is the same thing as an asymmetric
equilibrium allocation. It follows from Cass and Shell (1983) and Balasko (1983)-see
also Lemmas 2 and 3 below-that if there is no quasi-Walrasian agent (i.e., market
participation is not restricted), then there exists no sunspot equilibrium. On the other
hand, if no consumer is purely Walrasian (because of the lack of, e.g., insurance markets)
and if n denotes the number of non-sunspot equilibria, there exist n2

- n sunspot equilibria.
These results suggest that the extent of the restrictions on market participation is likely
to play a key role in the existence of sunspot equilibria.

3. VARIABLE RESTRICTIONS ON MARKET PARTICIPATION

Modeling variable restriction

The concept of the extent of restricted market participation is defined within the setup of
economies with fixed types of consumers by having a variable number of agents within
each type. More specifically, one associates three different types of consumers with a given
pair of preferences and initial endowments: the Walrasian type (simply denoted by the
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subscript h) and two quasi-Walrasian types (denoted by the subscripts h(a) and h(P),
respectively). Therefore, starting with m pairs defined by given preferences and initial
endowments, the m consumers whose status with respect to market participation may vary
yield an economy consisting of 3m types of consumers. Consider now k replicas of this
economy. Let k(h) be the number of those replicas for which the h-th consumer cannot
participate in every market; the economy then consists of k - k(h) consumers of type h
and of k(h) consumers of type h(a) and h({J), respectively. The equilibrium equation of
this replicated economy becomes

r:=1 «k-k(h»Zh(P, mh)+k(h)«Zh(a)(P, mh)+zh(P)(P, mh») =0.

Divide by k and let Ah=k(h)jk be the ratio of those h-th consumers that are restricted
to the total number of h-th consumers. Then, the equilibrium equation becomes

(1)

From now on, the vector of restricted participations A= (A) , ... , A,n) is going to vary in
the set A=[O, I]". The value A=O=(O, ... , 0) corresponds to the purely Walrasian case,
i.e., to full market participation. The value A= 1= (1, 1, ... , 1) corresponds to the polar
case of fully restricted market participation.

It will be convenient to consider the open set

A E = {A= (A), . . . ,~)ElRml- e<Aj< 1+ e.]> 1, ... , m}

where e> 0 is usually small. The set A E is useful when dealing with questions involving
the boundary of the set A.

We want to make apparent from the notation what parameters are variable for the
sake of the analysis in contrast to those that are fixed. The economic model e(A) consists
of the economies defined by m consumers and the associated vector A of market participa­
tion where preferences are fixed, but where initial endowments can vary, provided they
remain symmetric. The relevant set of initial endowments, or economies, associated with
the model e(A) is, therefore, the set Q=(1R /)m, where the m-tuple of initial endowments
(m I , m2, ... ,min) represents the symmetric components of every consumer's initial
endowments.

EQUILIBRIUM PRICE VECTORS AND EQUILIBRIUM ALLOCATIONS.
REGULAR ECONOMIES

Equilibrium equation (I) can be rewritten as

z(p, A, m)=z(p, m)+r~n=1 Aj«Zh(a)(P, mh)+zh(P)(P, mh)-zh(P, mh»=O (2)

where z(p, 01) denotes the aggregate excess demand for the purely Walrasian case. Let
E()", 01) denote the set of price solutions p= (p(a),p(p»ES to equation (2). The set
E(A, 01) consists of the equilibrium price vectors associated with the vector of restricted
participation AEA and the initial endowments o1EQ. The properties of equilibria, including
the sunspot equilibria, as a function of market participation are all embodied in the
equilibrium correspondence A. -+ E (A., ro), with co fixed. Because of the lack of any nor­
malization for the price vector P =(p(a), p({J» E S, it follows that, if p is an equilibrium
price vector associated with the pair (A, w), then any scalar multiple JlP, with Jl > 0, is also
an equilibrium price vector. This means that non-normalized equilibrium price vectors are
never isolated. A standard way to cope with this problem when one wants to define regular
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equilibria is to use normalization assumptions. An alternative, but nevertheless equivalent
route, is to consider the set of equilibrium allocations. Let A(A, m) denote therefore the
set of equilibrium allocations

x= (Xh)heH E(IR2J
X 1R2i )m

associated with the economy parametrized by AE A and co En. The equation system that
x must satisfy in order to be an equilibrium allocation of the economy (A, co) is obtained
by writing down the first-order conditions that each Xh must satisfy plus the total resource
constraint. (We will see explicit computations displaying these equations later.) This equa­
tion system is equivalent to the equation system (2) in the sense that any solution of (2)
yields an equilibrium allocation, and conversely. Furthermore, the transformations that
enable one to go from one of these equation systems to the other can be shown to be
smooth. Therefore, this enables one to define regularity directly in terms of the equation
system defining A(A, m). Though this is equivalent to the standard approach utilizing
aggregate excess demand and normalized prices, it will tum out later that the direct study
of the equation system defining A(A, co) will lend itself to simpler, more direct, computa­
tions in dealing with the regularity of equilibria in the sunspot model.

At this stage, the following notation is introduced. When Ais fixed, the set of regular
symmetric economies 9l( A) en is defined as the set of regular values of the parameter
co En. (Recall the basic intuition that co is a regular value if the equilibrium equation has
no root with multiplicity higher than one, i.e., no double, triple, etc., roots.) The set of
singular (symmetric) economies I(A) is the complement of 9l()") in n.

The certainty economy

The model 8(A) is closely related to a reduced-form model that we define as follows and
that does not depend on the parameter A. There are I commodities, m Walrasian consumers
defined by the utility functions Vh and initial endowments iiJh for h = I, 2, ... ,m. Let j
denote the model defined by these economies, g, and t their set of regular and singular
economies respectively. Let z(p, m) =r:= I z,,(p, iiJh ) be the aggregate excess demand of
the certainty economy. Let E(ro) denote the set of equilibrium price vectors associated
with a given mEn, and A(ro) the corresponding set of equilibrium allocations.

The non-existence of sunspot equilibria for unrestricted participation

The following lemma recalls an important property of the purely Walrasian case, namely,
the lack of sunspot equilibria when there are no restrictions on market participation.

Lemma 3.1. The equilibrium allocation x= (x(a), x(P» belongs to A(O, co) if and
only ifx is symmetric, i.e., x(a) =x(fJ) =x, where x belongs to the set A(co).

This lemma can be re-phrased with the help of the following formula

A(O, iiJ)=(A(m) x A(m» nA

where A denotes the diagonal of the Cartesian production nx n.
Outline of the proof Given ),,=0, we have a Walrasian economy. Therefore, the first

welfare theorem holds true, i.e., every equilibrium allocation x= (x(a), x(P» is a Pareto
optimum. Now, every Pareto optimum is symmetric. Assume the contrary, i.e., X:FX

u
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where XU is the image of x by the symmetry that exchanges a and 13. Then the allocation
(x+ x U ) / 2 is Pareto superior to x, hence a contradiction.

Now, given Lemma 1, we have zh(H(a)p, H(fJ)p, Wh)=(Zh(P, Wh, Zh(P, Wh». There­
fore, the equilibrium equation for the purely Walrasian economy,

(3)

is equivalent to

(4)

(5)

which is the equilibrium equation of the certainty economy, i.e., jiEE(w), and therefore
x belongs to A(w). II

Lemma 3.2. The set A(I, w) is equal to the Cartesianproduct A(w) x A(w).

Proof The equilibrium equation defining the equilibrium price vector pEE(I, w)
can be written as

z(p, I, w) = L:= I (Zh(a)(P, Wh) +Zh(fJ)(P, Wh»=OEIR2
' ,

which is equivalent to

z(p, I, CO)=«L:~I zh(p(a), COh»(L:=1 Zh(P(f3), COh») = (0, O)EIR'x 1R 1 (6)

and, therefore, to havingz(p(a), w»=z(p(f3), w»=O, i.e., top(a) andp(f3)EE(w). This
implies that the corresponding allocations x(a) and x(f3) both belong to A(w). The con­
verse is obvious. II

This result, first observed by Cass and Shell (1983), readily implies that if n denotes
the number of elements of A(w), then the Cartesian product A(w) x A(co) contains n2

elements, only n of which are symmetric, which implies that there exist n2
- n sunspot

equilibria. Therefore, one can expect from these two lemmas that, when Avaries between
the two polar cases defined by A=0 and A= I, the equilibrium set is likely to vary as a
function of Ain order to change from a set containing only n elements into another one
containing n2 elements. (This analysis makes sense only if n is strictly larger than one.)
The next lemma shows that, incidentally, the set of non-sunspot equilibrium allocations
does not depend on the parameter A:

Lemma 3.3. We have

A(O, w) = A(A, co) n L\ for every AEA.

Proof Let p = (p, p) E L\. We have z,,(p, co,,) = (Zh(P, COl,), Zh(P, COh», Zh(a)(P, COh) =
(Zh(P, Wh), 0) and Zh(fJ»(P, COh) = (0, Zh(P, WI,». Thus, equation (2) becomes

z(p, A, iii) = z(p, co) + L~n= I Ah«Zh(P, iiih), 0) + (0, Zh(p, COh» - (Zh(p, COh), Zh(P, COh») =0

so

zi p, A, co)=z(p, co)=O

for every AE A. Therefore, wheneverp is symmetric, z(p, A, co) = 0 is equivalent to z(p, co) =
0, i.e., E(A, co)nl\=E(O, w). II
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It follows from Lemmas 2 to 4 that, when A varies between the two polar cases
defined by A=OeA and A= leA, changes in the set of equilibrium allocations A(A, m)
(particularly the number of its elements) involve only the sunspot equilibria, not the non­
sunspot equilibria. A natural question to ask is whether the properties stated in Lemmas
2 and 3 are robust to perturbations, and, therefore, whether they remain true for Avarying
in neighbourhoods of 0 and 1 respectively.

The non-existence of sunspot equilibria when the restrictions on market participation are
small enough

The following theorem describes how the equilibria of an economy are affected when only
a small fraction of the agents are restricted. In fact, there exist no sunspot equilibria for
such economies, a property which can also be understood as a statement about the robust­
ness of the non-existence of sunspot equilibria and about the extent to which the economy
can absorb agents facing restrictions in market participation without the overall equilib­
rium outcome being affected at all.

Theorem 2.4. Let mE#} be a regular economy (of the certainty model 1). There exists
an open neighbourhood V of0= (0,0, ... ,0) in A& such that, for AEV, we have A(A, m)=
A(O, m).

Proof This theorem is a statement about the shape of the graph of the equilibrium
correspondence A -+ A(A, m) in a neighbourhood of the origin 0 = (0, ... ,0) for fixed m.
We already known from Lemma 2 that A(A, m) contains A(O, m) for any AEA. Therefore,
all we have to prove is that the graph of A-+A(A, w) contains in a neighbourhood of 0=
(0, ... ,0) no other branches except for the constant branches that originate from the
elements of A(O, m). With the notation used in Appendix A, consider the equilibrium set
A = {(x, A, ill)Enx (At: x n) [x is an equilibrium allocation associated with Aand ill} and
the projection 1C: A -+ A& x n where, by definition, n = Q x Q represents not necessarily
symmetric endowments.

The property stated in the theorem will be proved if we can show that the mapping
1C:A -+ A&x n defines a finite covering in a neighbourhood of {OJ x ill where ill = (m, m)
(see, e.g., Balasko (1988,4.2.3». Since A is a smooth manifold and 1C a proper mapping
(cf., Appendix A), it suffices to show that (0, (0) is a regular economy, which is equivalent
to showing that no equilibrium (x, 0, (0) is critical, i.e., that (O=(m, m) is a regular econ­
omy or, equivalently, that mbelongs to the subset 9t(0) of regular (symmetric) economies
in Q. II

Lemma 3.5. The sets of regular economies 9t(0) and ~ are identical.

Proof The idea of the proof is to show that the equilibrium «i, i), 0, (m, m» is
regular if and only if the equilibrium (i, m) of the certainty economy is itself regular.
Regularity means that suitably defined determinants (for the sunspot economy and for
the certainty economy, respectively) are not equal to zero. The proof will then follow from
the observation that these determinants are equal to zero simultaneously. An equilibrium
of the sunspot economy satisfies the following equation system, where the unknowns are
the allocations x(a) and x(P), and the Lagrange multipliers P2, ... 'Pm associated with
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the utility constraints (used in the definition of a Pareto optimum):

Lh xh(a)-f=O

JJ2Dv2(x2(a» - DVI(x,(a» =0

JJmDvm(xm(a» - Dv,(x,(a» =0

1
Lh Xh({3) - f= 0

/12 DV,(X2(fJ)) -;DV'(X'(fJ)) =0

JJmDvm(xm({3» - DVI(xl({3» = 0

{

1l'(a )DV2(X2(a))(X2(a) - m2) + 1l'(fJ)DV2(X2({3))(X2(fJ)- m2) = 0

Ir( a )Dvm(xm(a»(Xm(a) - Wm) + ;(fJ)DVm(Xm(fJ))(Xm(fJ) - Wm) =O.

The Jacobian matrix associated with these equations taken with respect to XI(a.), ... ,
xm(a), XI({3), ... xm({3) and JJ2, ... ,JJm is made up of three parts that reflect the structure
of the equation system.

[

A(X(a» 0 D(X(a»]
o A(x({3» D(x({3» =d(x(a), x({3».

B(x(a» B(x({3» 0

At a non-sunspot equilibrium, we have x(a)=x({3)=x. It follows that A(x(a»=
A(x({3»=A, that B(x(a»=B(x({3»=B, and that D(x(a» =D(x({3»=D. The Jacobian
matrix is therefore equal to

[
A 0 D]

.sd(X,X)= ~ ; ~ .

Similarly, the conditions satisfied by an equilibrium of the certainty economy take the
form

l
L hx,,-f=O

JJ2Dv2(X2) - Dv,(xd =0

JJmDvm(xm) ~Dv,(xd =0

{

DV2(X2)(X2 - m2) = 0

DVm(Xm)(X,~ - mm) = o.
Straightforward computations of the Jacobian matrix with respect to x and Jl2, ... , Jlm
show that this matrix is equal to

[
1 jj] -
B (0) =d(x)
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where A, Band D have been defined previously. It is clear that regularity of (x, x), (0),
(01,01» is equivalent to det d(x,x);/:O while regularity of (x, 01) is equivalent to
det d(x) ;/:0. It suffices to establish that det d(x, x) = 0 if and only if det d(x) = O.

Assume det d(x, x)=O. The row vectors of d(x, x) are linearly dependent: let
aka' akp and ble be the coefficients associated with the rows k«, kp and k' in some linear
dependence relation, respectively. Let 'ka, 'kp and 'k' denote these row vectors. By defini­
tion, we have

L aka n, +L akp n, +L bk,'k' =O.

Let 'k, 'k' denote the row vectors of the matrix d(x). The above linear dependence relation
implies that the coefficients (aka) and (bk,) define a linear dependence relation for the rows
of the matrix

while (akp) and (bk,) define a similar linear dependence relation for the rows of the matrix

and, similarly, aka + akp a linear dependence relation for the rows of D.
It follows from 1r(a) + 1r(f3) = 1 that the coefficients defined by the (coordinates of

the) vectors (aka +akp) and (bk,) define a linear dependence relation for the rows of the
matrix

(A D) -
jj 0 =d(x)

which show det d(x) = O.
Assume now the converse, namely det d(x) = O. Let (ak) and (bk,) be the coefficients

of a linear dependence relation between the rows of

It suffices to take aka=1t(a)ak and akp=1t(p)ak to have the coefficients (akJ, (akp) and
(bk .) define a linear dependence relation between the rows of the matrix

which implies det d(x, x) = O.

o 15)
A D,

1r(f3)B 0

Since the writing of the first version of this paper, alternative proofs of Lemma 5
using the Jacobian matrix of aggregate demand have been obtained independently by
Prechac (1988) and Villanacci (1988). For a more "geometrical" proof, i.e., one that is
almost calculation-free, see Appendix B.

We have seen that sunspot equilibria exist for some economies and some level of
restrictions on market participation. We have also seen that they do not exist always.
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Therefore, the study of the existence of sunspot equilibria for arbitrarily fixed restrictions
on market participation has two facets, at least: the study of economies without sunspot
equilibria on the one hand, and the study of the economies with sunspot equilibria on the
other. The study of these questions, the existence issue especially, requires us to go through
a thorough analysis of the sunspot model for fixed restrictions on market participation.
This analysis is carried out in the next section.

4. A REFORMULATION OF THE MODEL 4(1). ANALYSIS OF THE MODEL
OF RESTRICTED MARKET PARTICIPATION

Let AEA be fixed. The study of the model «f(A) goes through a reformulation that yields
an equation system related to the equation system of standard general equilibrium theory.

Reformulation of the model «f(A)

We need only to study the model «f(A) for values of A= (AI, ... , A,") that are m-tuples of
rational numbers because a straightforward continuity argument enables us to extend to
any AEA the existence statement proved for A rational.

Therefore, let A= (kdk, ... ,km/k). The model 8(A) becomes equivalent to the model
defined by a finite number of consumers who, besides satisfying the obvious symmetry
requirements, are facing either one or two different budget constraints. It turns out to be
helpful to introduce the following notation. Let J denote the set of Walrasian, or uncon­
strained consumers, and J the set of constrained consumers. The polar cases A= 0 and
A=l have been analyzed in Cass-Shell (1983). Therefore we assume from now on that
consumer 1 is always unrestricted, i.e., {l} EJ, which therefore excludes the case A= 1.

In order to simplify the analysis, we denote by tf(l, J, r) the economic model consist­
ing of economies defined by initial endowments OJ = (cO;, cO) )iel.}eJ satisfying the total
resources requirements, i.e., Liel cOi+ L

j E
) cO} = i, the utility functions being defined as in the

previous sections (i.e., u,,(x,,(a),xh({3»=tr(a)vh(x,,(a»+tr({3)Vh(X,,(fJ» for hEJUJ)
while the consumer's budget constraints depend on whether he belongs to the set J or to
the set J.

The certainty model 8(H, f) and the set of Pareto optima P(H, f)

Many properties of the model 8(1, J, f) depend on those of the certainty model 8(H, f)
where the set H = J u J denotes the set of households, either unrestricted or restricted, the
number of commodities in 8(H, f) being I, and consumer hE IR'" being characterized by
the utility function Vh: IR'-+ R and the endowments rohER'.

Let P(H, f) denote the set of Pareto optima in the model «f(H, r). There is an almost
obvious relationship between the Pareto optima of the model tf(J, J, f) (which do not
depend on how the set of consumers H decomposes into the subsets J and J) and the
Pareto optima P(H, f) of the model si«, f).

Lemma 4.1. The allocation x= (x(a), x(fJ» is a Pareto optimum of 8(1, J, f) if and
only if:

1. x(a ) = x({3) ;
2. The allocation x defined by x=x(a)=x(fJ) belongs to P(H, f).
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In other words, the set of Pareto optima of 8(1, J, f) is the diagonal of the Cartesian
product P(H, f) x P(H, f) and is, therefore, diffeomorphic to P(H, f).

Proof The first statement of the lemma follows from the observation already made
in the proof of Lemma 2 that every Pareto optimal allocation is symmetric. The second
statement of the lemma then follows immediately. II

It follows from this lemma that the intersection of the set of the Pareto optima of
If(l, J, f) with the diagonal can be identified with the set of Pareto optima P(H, f). We
know that sunspot equilibria can exist only if the first welfare theorem does not hold true,
i.e., if the set of equilibrium allocations of the model 8(1, J, f) is strictly larger than (i.e.,
in the set-theoretic sense, includes) the set of Pareto optima. The study of the set of
equilibrium allocations follows from an alternative interpretation of the model 8(/, J, f).

The set ofequilibrium allocations of the model 8(1, J, f) and the set of Pareto optima
P(H, f)

Based on the observation (cf. Section 2) that a consumer h restricted from participating
in the suitable markets is formally equivalent to two quasi-Walrasian consumers h(a) and
h({3), we define the model F(/, J(a) u J({3), f) as follows. It consists of the consumers
hue/, hr(a)eJ(a) and hr({3)eJ«(3), consumers hr(a) and hr«(3) now being quasi-Walrasian.
This model is mathematically equivalent to 8(1, J, f) in the sense that it defines the same
set of equilibrium equations. There is, however, an important difference between these
two models. The first welfare theorem holds true for the model F(/, J(a) u J«(3), f),
which implies that there is an identity between the equilibrium allocations of
F(I, J(a) uJ({3), f) (and, for that matter, of 8(/, J, f) and the Pareto optima of
$' (I, J (a) u J (13), r ). Therefore, the first part of the programme, namely the study of the
equilibrium allocations, becomes the simpler one of studying the Pareto optima of the
model F(I, J(a) uJ({3), f).

The structure of the set of Pareto optima P(H, f) is well understood (cf. Balasko
(1988, 5.2.4) and the discussion at the beginning of Section 5.2). This set is diffeomorphic
to nr- I by being parameterized by the utility levels of all but one agent. It is also possible,
when preferences are defined by strictly smooth concave utility functions (here denoted
Vi) to define an alternative diffeomorphism between the set of Pareto optima P(H, f)
and nr- I by considering the set of Lagrange multipliers associated with the constraints
V;(Xi)-Vi=O for i=2, ... ,m when maximizing VI(XI). This diffeomorphism is going to
playa crucial role in the forthcoming analysis. (See Appendix C for details.)

The structure of the set of Pareto optima ofF (I, J(a) u J«(3), f)

Let us denote by P(I, J (a) u J «(3), f) the set of Pareto optima of the model
oF(I, J(a) u J({3), f). Recall that the element {I} belongs to the set I.

Let <Dr: P(H, f) -+ IR!~-I denote the smooth mapping whose value is defined by the
Lagrange multipliers associated with the unrestricted consumers i with the exception of
consumer 1, i.e., for iel\{l}. Note that <Dr represents the first (#1) -1 coordinates of
the diffeomorphism <D defined in Appendix B between the set of Pareto optima and urn-I.
Therefore, the preimage by <Dr of an arbitrary element of IR!~-I is diffeomorphic to
IR!~ because it is parametrized by the multipliers Jij for jeJ, as follows from Proposition
B.l in Appendix B.
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We then have the following description of the set of Pareto optima
P(I, J(a) u J(P), r) and of the supporting price vector associated with such element:

Theorem 4.2. The allocation x=(x(a), x(f3» belongs to P(I, J(a) uJ(P), r) if and
only if:

I. x(a) and x(P) belong to PCB, r) ;
2. <J)/(x(a» = <J)/(X(P»·

Then, the supporting price vector (tr(a)p(a), tr(P)p(P» =DUI(x,(a), XI(P» is such that the
component pea) =DVI(xI(a» (resp. pcP) =DVI(xI(P») supports the Pareto optimum x(a)
(resp. x(P»EP(H, f).

Proof The allocation x= (x(a), x(P» is a Pareto optimum if and only if the first­
order conditions associated with the maximization problem:

Maximize

subject to

iE/\{I},

are satisfied. Let Pi, Pja ,JjjP, and p = (tr(a)p(a), tr(P)p(P» be the Lagrange multipliers
associated with the respective constraints. The Lagrangean can be written in the following
way:

9'(x(a, x(P), (p;);, (Pja)ja, (Pjp)jP, tr(a)p(a), tr(P)p(p»=tr(a)vI(xI(a»

+ tr(P)VI(X,(P» +Lie/\{I} pj(tr(a)vjx;(a» + tr(P)v;(x;(f3» - jii)

+LjeJ (Pja H(a)(Vj(Xj (a) - Vja)+Pjptr(f3)(Vj(Xj(f3» - Vjp)

-tr(a)p(a)' (Lhe/VJ xh(a)-f)-tr(f3)p(P)' (Lhe/VJx,,(f3)-f).

The first-order conditions then take the following form where the role of the a and P
components are highlighted:

subject to

Consider next the problem:

Maximize VI(xd

{
Vh(Xh) =_Vh~ _

Lhe/vJ Xh - r,

he/uJ\{I},
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that characterizes the elements of P(H, f). The first-order conditions become

hE[uJ\{I},

They are identical to (*a) (resp. (*P» for p'=p(a), pi=pi' and pi=pia (resp.
p' = p(P), pi = Pi, and pi = pip) This shows that conditions (*a) and (*P) are equivalent
to having the respective Lagrange multipliers associated with x(a) and x(P) (as Pareto
optima of the model 8(H, r» being equal for the unrestricted consumers. Then, the
price vectors p(a) and (p({J) defined by the relationships p( a ) = DVI(x I ( a» and p(P) =
DVI(xl(P» are such that the price vector p = (n(a)p(a), n(p)p(p» supports
(x(a), x(P»· II

5. EXISTENCE OF SUNSPOT EQUILIBRIA

Our goal in this section is to establish two properties regarding the existence of sunspot
equilibria. The first result is that if cO En is sufficiently close to the set of Pareto optima
P(H, f) or, equivalently, if m= (cO, cO) is sufficiently close to the set of Pareto optima of
the model 8 (I, J, f), i.e., the set of Pareto optima defined for the set of households
H=/uJ, households defined on (1R /) x (1R /) by the utility function uh(xh(a), Xh(fJ» =
n(a)vh(xh(a» +n(p)vh(P», then no sunspot equilibrium exists. The second result pro­
vides sufficient conditions for the existence of sunspot equilibria for suitably chosen econ­
omies cO En.

The non-existence ofsunspot equilibria when mEn is close to the set of Pareto optima
P(H, r)

Let us consider the model 8(/, J, f). Recall that initial endowments m=(cO, m) are symmet­
ric. Therefore saying that cO is close to P(H, f) is the same thing as saying that m = (cO, cO)
is close to the set of Pareto optima of 8 (I, J, f). We then have:

Theorem 5.1. There exists an open neighbourhood U of P(H, r) in n such that for
any cO E U there are no sunspot equilibria.

Proof. Allow for the moment symmetric endowments that are not necessarily sym­
metric provided that total resources are symmetric and fixed. We can readily apply to this
framework the standard results of general equilibrium theory. Then, there exists an open
dense set of regular economies (endowments). Furthermore an open connected component
V of this set contains the set of Pareto optima and the equilibrium is unique for m in this
component V. The intersection of the open set V with the diagonal A of nx n can be
written as VuA= u« U. The set U is open, nonempty and contains P(M~ f). Now, the
set of equilibrium allocations for the certainty model tf (I, J, r) is non-empty for any cO En.
Furthermore, the equilibrium is unique for mE U. Therefore, there can exist only one non­
sunspot equilibrium and no sunspot equilibria for cO E U. II

Theorem 5.1 is actually a special case of a similar property satisfied in the more
general setup of equivariant general equilibrium theory; see Balasko (1990).



506 REVIEW OF ECONOMIC STUDIES

Symmetric initial endowments compatible with an equilibrium allocation

We have studied in Section 4 the set of equilibrium allocations of the model 8 (I, J, f).
This set can be identified with the set of Pareto optima P(/, J(a) u J(p), r). It is quite
obvious that every such allocation is the equilibrium allocation of at least one economy.
(It suffices to take as an example of an economy the allocation itself, i.e., to take OJ equal
to x.) The difficulty, however, is that we are only interested in the equilibrium allocations
that are associated with symmetric endowments and, in particular, in the asymmetric
allocations that are associated with symmetric endowments. Then, it is not at all clear that
an arbitrarily chosen element of P(I, J (a) u J (13), f) can be an asymmetric equilibrium
associated with some symmetric endowment (or economy). Our next result characterizes
the allocations that are compatible with symmetric economies. Let x =
(x(a), x(p» EP(I, J(a) u J(p), f) and letp(a) =Dvl(xl(a» andp(p) =Dvl(xl(p» be the
supporting price vectors for x(a) and x(p). Recall that (tr(a)p(a), tr(p)p(p» then sup­
ports the allocation XE 1R2

/. We have:

Theorem 5.2. There exists a symmetric endowment OJ= (cO, cO) compatible with the
equilibrium allocation x = (x( a), x({3» if and only if the linear equation system

{
p (a ) . cOj =p(a) . xAa),

p({3) . cOj =p(p) . Xj(p), jEJ,

has a solution for every jEJ.

Proof Let cO = (cO;), (cOj»;el.jeJ represent the unknown symmetric component. It
has to satisfy the following linear equations that represent resource and budget constraints:

(i) L;el m+LjeJmj =r,
(ii) (tr(a)p(a) + tr(p)p(fJ» . m;= tr(a)p(a) . x;(a) + tr(fJ)p(p) . x;(p), iE/,
(iiia) p(a) . cOj=p{a) . xj(a), jEJ,
(iiip) p(p) . cOj =p(fJ) . xA(3),

This system of linear equations has a solution if and only if equations (iiia) and (iii{3)
can be solved for every jEJ. If (iiia) and (iiiP) have no solutions for at least one jeJ,
there clearly cannot be an cO compatible with x= (x(a), x(p». On the other hand, let cOj
denote a solution to (iiia) and (iiip) for every jeJ. Obviously, one can then find solutions
cO; to (ii) for every iel \ {I}. It then suffices to compute COl by equation (i). The solution
COl then satisfies equation (ii); this follows from adding together the inner product by
tr(a)p(a) ofli.elvJx,,(a)=fand by tr({3)p(fJ) OCf;lelvJX,,({3)=f, respectively, combined
with (ii), (iiia) and (HifJ) for all ie/\{l} and alljeJ. II

Corollary 5.3. A sufficient condition for the existence of symmetric endowments OJ =
(m, cO) compatible with the equilibrium allocation x= (x(a), x(P», where x(a) i=x(p), is

rank(Dvl(xl(a», DVI(xl(fJ») =2.

Proof Obvious. II

Theorem 5.2 and its corollary reduce the analysis of economies having sunspot equilibria
into a problem that can be studied by looking at the simpler certainty model j (H, f),
which consists of I commodities, total resources f and consumer h (with heH=/u J)
defined by the utility function Vh: IR / -+ IR.
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Existence ofsunspot equilibria

Consider the certainty model 8(H, f). Define in n the subset

n~2 = {cO en Ithere exist at least two equilibria associated with cO}

of economies with multiple equilibria. We consider only the models for which this set n~2
is non-empty. (Recall that, from Balasko (1988, 7·3·9), models where the equilibrium
price vector p associated with cO En is unique are such that p is in fact constant, which
also means that the supporting price vector of every Pareto optimum xeP(H, f) is then
the constant price vector p; it is not difficult to check that the complement of the set
generated by these models is open dense.)

We then have the following result on the existence of the sunspot equilibria:

Theorem 5.4. Assume n~2# 0 (i.e., there exists at least one economy cO with multiple
equilibria). There exists at least one consumer jEH,j# 1, such that restricting him implies
that the subset ofn consisting of economies with sunspot equilibria is non-empty.

Proof It follows from Corollary 5.3 to Theorem 5.2 that the existence of sunspot
equilibria depends on the variation of the supporting price vector associated with every
Pareto optimum when the welfare weights are varied. Using an arbitrary normalization
convention (e.g., the numeraire assumption), existence of sunspot equilibria then depends
on whether the supporting price vector is constant, or not. It is constant when the welfare
weights are varied if and only if there exists no economy cO with multiple equilibria. On
the other hand, if fi~2 is # 0, this means that there exists at least one combination of
the welfare weights Jl = (Jl! , ... ,Jl:) such that the associated supporting price vector is
not locally constant. Then there necessarily exists a pair of multipliers Jlj and Jll with
Jlj:F Jl; such that the price vectors supporting the Pareto optima associated with

* * * *) d ( * * I * *) diff t ThiJl2 , ... ,Pj-I, I1h I1j+l, ... , 11m an 112,·'" ui-«, Jlh I1j+I, . . . , 11m are 1 eren. IS

property is sufficient to imply the existence of sunspot equilibria for any set J of restricted
households that contains the element j. II

The proof of Theorem 5.4 highlights the importance of those consumers that have
the property that changing their welfare weights induces a change in the supporting price
vector of the associated Pareto optimum. Define these consumers to be price-potent consu­
mers. These consumers exist if and only if the price vector that supports the Pareto optima
is not constant, total resources being kept fixed. This property is equivalent to the existence
in the certainty model of endowments (sign restrictions being excluded) for which there
exist multiple equilibria. The latter property is known to be satisfied for a generic set of
preferences.

We have therefore shown in this paper that restricting market participation of the
price-potent consumers that exist generically creates sunspot equilibria for suitably chosen
endowments.

APPENDICES

A. WALRASIAN AND QUASI-WALRASIAN CONSUMERS

In this appendix, we recall the setup of economies where types of agents are fixed; we also recall the properties
of these models that are useful in the main text of this paper. Here, the notation departs at places from that in
the main text in order to be consistent with that of Balsko (1988).
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The equilibrium model with Walrasian consumers

A consumer of type i is defined by his smooth preferences and initial endowments (J);. We assume that every
standard hypothesis is satisfied (cf., for example, Balsko (1988», so that we can represent his demand given the
price vector p by j;(p,p' (J);), and his excess demand by j;(p,p' OJ;) - OJ;. Assume that n, consumers of type i
exist. Then, the equilibrium equation becomes

I:=l n;(j;(p,p' OJ)-(J);)=O.

The solutions of this equation do not depend on having the equation multiplied by some arbitrary factor. For
example, one could multiply it by 111: n, and, therefore, the equation would become equivalent to

z(p, A, OJ) = E"= I A;(j; (p, p . OJ;) - OJ;) = 0

where A; = n,IIn, then represents the ratio of the number of agents of type i to the total number of consumers.
Though the A; should, in principle, be rational numbers, there is no mathematical difficulty in considering a
more general model where A=(A;) would simply belong to the n-simplex (i.e., A;~O, for i=I, ... ,m and
I A;= I) without the coordinates A; necessarily being rational numbers. (Note that, depending on the context,
there may exist more natural ways of weighting the various types of agents. Such is the case in the third section
of the main text of the paper where weights are defined with respect to' triples of consumers).

Therefore, in order to cover the variety of aU possible settings, we consider a set of parameters A which
is convex and relatively open as a convex subset of IRm

• Note that closed convex sets can always be embedded
into relatively open larger convex sets, so that the above assumption is sufficient for most practical purposes.

We define an economy by the vector parameter (A, (J) =(A., ... ,A.,,,, OJI,... ,OJ",)eA x Q where Q=R,)m
denotes the space of initial endowments. Let S be the set of price vectors. We define the equilibrium set

E= {(p, A,OJ)eS x A x QlpeSis an equilibrium price vector associated with (A, OJ)}

and

n : E-+AxQ

the natural projection. We have:

Theorem A.t. The equilibrium set is a smooth sub-manifold embedded in S x A x Q. The natural projection
n : E -+A x 0 is proper.

Proof The proof parallels the one for the set up of the general equilibrium model; adding the extra
parameter AeA changes nothing in the analysis. (cf., BaJasko (1988). Chapter IV.) II

Remark. It should be clear from the argument that some assumptions about the parameter set A could
easily be relaxed if necessary.

Equilibrium and Pareto optima with Walrasian and quasi-Walrasian consumers.

We now consider quais-Walrasian consumers. Define for consumer i the set Supp(i) of commodities that consti­
tute his consumption space where L= {I, 2, ... , I} is the set of commodities. The equality Supp(i)=L means
that consumer i is Walrasian. We now define the following property of the model 4'(A) associated with A (for
variable (J). We say that the model is indecomposable if the aggregate excess demand function p -+ z(p, A,OJ)
cannot be decomposed in the following sense: it is not possible to find a partition of the commodity set into
two subsets such that the components of the aggregate excess demand associated with this partition z(p, A, (J) =
(Zl (p, A,OJ), ...l(p, A, (J) are such that Zl (resp. Z2) depends only on the component i of the price vector (resp.
p2) where p = (p!,p2). Clearly, the decomposability property crucially depends on whether there exist enough
agents whose consumption spaces overlap so that their union is the whole commodity space. Note that the
indecomposability property is trivially satisfied whenever there exists at least one (or a positively weighted)
Walrasian consumer.

Let us define the subset A. of A by

A. = {AeA such that the model is indecomposable}.

Then, the following extension of Theorem A.l is true.

Theorem A.2. The set ofequilibria (p, A, OJ) over A. x RSI1
PP( J) is a smooth manifold; the restriction of the

natural projection to this manifold is proper.
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Proof The main ingredient in the proof is simply the observation that, under the indecomposability
assumption, the regular value theorem used in establishing the smooth sub-manifold property (See Balasko
(1988), Chapter IV.) still works. Properness is straightforward. II

Note that, if the indecomposability property is not satisfied, which incidentally turns out to be the case in
the example where all the agents are restricted, a case met in Section 3 for A. = I, we cannot apply Theorem A.2
any more.

TheoremA.3. The set of Pareto optima for fixed total resources is diffeomorphic to R'" - I where m denotes
the total number Ofagents, Walrasian or quasi- Walrasian.

Proof It suffices to reproduce the one for the purely Walrasian case. See, e.g., Balasko (1988),
Section 5.2. \I

B. PARETO OPTIMA AND THE WELFARE WEIGHTS

The aim of this appendix is to recall some properties of Pareto optima of pure exchange economies and to give
an explicit proof of a property used in this paper for which we have not been able to find appropriate references.

Using the notation of the paper, the set of Pareto optima P(H, f) is diffeomorphic to Rm
-

I
. (See, for

example, Balasko (1988, 5.2.4) and the discussion at the beginning of Section (5.2).) When preferences are defined
by smooth strictly-concave utility functions (here denoted Vh), then Pareto optima can also be characterized as
the solutions to the following maximization problem:

Maximize

subject to

!l'(XI, ... ,Xm, J,l2, ... ,J,lm)= vl(xd +J,l2 V2(X2) +... + J,lmvm(xm)

Lh xh=i

with J.l2, P3 ... , J,lm>O. For convenience, we write PI = I. It is assumed from now on that each utility function
is bounded from above, which can always be achieved by way of a concave, bounded from above, monotone
transformation, a transformation that does not alter the set of Pareto optima P(H, f).

We also recall that since every utility function is defined on the whole commodity space, every indifference
set Vh-'(c) is bounded from below for every h. (In Remark I, we discuss the changes brought by considering
consumption spaces reduced to being the strictly positive orthant.) Given J,l E {I} x R'~ -+1 , this maximization
problem has a solution and the solution is unique. Uniqueness is obvious. To establish existence, note that there
exists bh for every h such that Vh(Xh) ~ b; .

Let x· = (xt) that satisfies LX: = f. Then, the problem of maximizing !l'((Xh), J,l) subject to L Xh= f is
equivalent to:

Maximise

subject to the two constraints
LXh=i

!l'«Xh), J,l) ~ !l'«xt), J,l).

The latter inequality is equivalent to

VI(X~) + J,l2 V2(X~) +... + J,lm vm(x:) ~ v.(xd + J,l2 V2(X2) +... + J,lm vm(:tm).

For h arbitrary, one has

V,(XI) +... +J,lhVh(Xh) +... +J,lmvm(xm) ~b. +... +J,lh-I bh- I +J,lh Vh(Xh) +... + J,lmbm

which, combined with the former inequality, yields

IlhVh(Xh) ~ !l'(x*, II) - L:"h Illcblc •

This implies that each Xh is bounded from below. Combined with LXh= i, one is left with the problem of
maximizing !l'(x, p) on a compact set, a problem with an obvious solution.

Define the map'll: If:~ I -+ fi that associates with (J,l2,... , J,lm) E R'~ ~' the solution to the maximization
of !l'(x,J,l) subject to ~xh=i. It is well-known that this map is a homeomorphism between 1f:~1 and the set
of Pareto optima P(H, f): it establishes a continuous bijection, with a continuous inverse, between these two
sets. See, e.g., Varian (1984, Section 5.7). On the other hand, the following property, which is necessary for our
analysis, does not scm to have been stated in the literature.
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Proposition B.1. The map 'P: 1R~-:;..I-+p(H, f) is a diffeomorphism.

Proof The inverse of 'P is the map <1>: P(H, r) -+ IR'~ -:;..1 that associates with the Pareto optimum x = (Xh)
the welfare weights Jl2, ... , Jim' They can be defined by the formula

Jlh= oVI(.~I) IoV'I(~h) h=2, ... , m,
ax ax

which follows from the first-order conditions. Therefore the map x= (Xl, ... ,xm)e(R')m -+ (P2' ' , , ,Pm) is
smooth and its restriction to the sub-manifold P(M, f) is also smooth.

It remains to show that the map <1>: IR'~ -:;..1 -+ Q itself is smooth, This will follow from the application of
the implicit function theorem to the first-order conditions applied to the maximization problem defining the
map 'P. These first-order conditions take the form

It then suffices to check then that the Jacobian matrix of the first-order equation system with respect to the
variables XI , ... , X m is invertible. This matrix takes the form

[

- D2~I(Xl) P2D2:2(X2) ~
- D2vI(XI) 0 P3D2V3(X3)

· . .· .· .
- D2Vl(XI) 0 0

-.

I ]
o
o .

PmD2~m(Xm)

It is possible to subtract the first block column from the others, which yields.

[
~ D2VI+:2D2V2 D~VI
* UVI D2vI+P3D2v3
.. ... .. .
* tr», D2v I

This matrix has the same determinant as the matrix

[

D2VI+P2D2V2 D2vI

D
2vI

D
2vI+P3D2V3

K=, .. .. .
D2vI D2vI

D

2

v I ]
D2v I

D
2vI+PmD2vm

This symmetric matrix is associated with the quadratic form 'XKX which is the sum of the quadratic forms
defined by the matrices

[dO'
D2vI dO,]

D2v D2vI D2vI
H= ,I

tr», tr», tr»,

and

H,=[P'f
0

nH'-U
0

n0 P3D2V3

0 0
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Let the vector X be decomposed into the block components X 2, ••• , X m which yields the following decomposition
of the row vector

Then, it follows readily from elementary matrix algebra that one has

Furthermore, one has

as follows from the block structure of H. These computations imply the equality

'XKX='(L.;:2 X,,)(D2V.)(L.~2X,,) +I."~2 JI"('X"D
2v,,X,,).

Each term of this sum is ~O and at least one is <0 for X #0. This implies that the matrix K is associated with
a negative definite quadratic form. Its determinant form is therefore #0. II

C. ALTERNATIVE PROOF OF THE IDENTITY BETWEEN THE REGULAR
ECONOMIES FOR THE UNRESTRICTED MODEL AND THE

CERTAINTY ECONOMY

The allocation x = (x( a), x(fJ» is an equilibrium allocation associated with A. = 0 and ro= (m, m) if and only if
it is a solution of the following extended equation system.

Dv,,(x,,(a» - JI" DV,(XI (a» == 0, h ~ I,

Dv"(x,, (p» - JI"Dv.(x.(P» ==0, h~ I,

(.) 1l'(a)Dv,,(x,,(a»(x,,(a) - m,,) + 1l'(fJ)Dv,,(x,,(P»(x,,(P) - m,,) =0, h# I,
I. (x,,(a) - m,,) =0,

I. (x, (P) - v,,) = O.

Similarly, the allocation .~ is an equilibrium allocation associated with the certainty economy mif and only if it
solves the equation system

_ {DV" (:,,) ~ ji,,~VI('~I)=0,
(.) Dv"(x,,)(x,, - ro,,) = 0,

I. ('~h - m,,) = o.

h¢l,

Let A= {(.~, w) I .~ is a solution of (i)}. It follows from standard equilibrium theory that A is a smooth sub­
manifold of 0 x n, that menis a regular economy ifand only ifit is a regular value ofthe projection (.~, m) -+ m
restricted to A. Let

A = {(x(a), x(P), m) Ix= (a), x(P» is a solution of {.} enx n.
Then the map (x, m)-+ (.~, x, m) from nx 0 into (n x 0) x 0 is a smooth embedding. Its restriction to the sub­
manifold A defines a smooth embedding denoted by ; from A into (0 x 0) x O. It follows from Lemma 2 that
the image of this embedding is precisely the set A. This establishes that the set A itself is a sub-manifold of
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(0 x 0) x 0 diffeomorphic to A by a mapping i. The inverse of the map i: (.t', cQ) -+ (.t', _t', cQ) is simply defined
by the formula j (x, X, cQ) =(x, cQ). Therefore, the following diagram of smooth maps is commutative

Let (x, cQ)eA be a regular point of it. This means that the tangent map T.i..m)it is onto. From it = itoi follows
that T(.i..m)it = T(.i ..i.d)1r oT(x.cil)i is also onto, which implies that T(.i..i.tiJ)tr is onto and, therefore, that (.~,x,cQ) is a
regular value of x, Conversely, it follows from tr= itoj that T(.i ..i.d)tr= T.i..ti»itoT(.i ..i.ti»j, so that, if (x,.i,cQ) is a
regular point of tr, then T('i-i.ti)1r is onto; this implies that T(.i..ti)tr itself is onto and, consequently, that (x, m)
is a regular point for it. II
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