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We establish a hierarchy of quantum dilogarithm identities associated to a sequence

of triangular shaped quivers. The tetrahedron equation plays a key role in our

construction.

1 Introduction. Main Results

Fix q ∈ (0, 1). The quantum exponential function is the following formal series:

〈x〉q =
∞∑

n=0

(−x)n

(1− q) · · · (1− qn)
. (1)

Its key functional property is the equation 〈qx〉q = (1+ x)〈x〉q due to which the quantum

exponential function appears naturally, in particular, in the theory of cluster algebras.

It is well known that if X and Y are two q-commuting indeterminates, that is

they satisfy the commutation relation

YX= qXY, (2)
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then the following identities hold:

〈X〉q〈Y〉q = 〈X+ Y〉q, (3)

〈X〉q〈XY〉q〈Y〉q = 〈Y〉q〈X〉q. (4)

The first one is due to Schützenberger [12]. The second identity was found in [3] and is

now commonly called the pentagon identity. It is also often called a quantum diloga-

rithm identity because it is closely related to the five-term dilogarithm identity [3, 4, 14].

Now take three pairwise q-commuting indeterminates X, Y, and Z,

YX= qXY, XZ= qZX, ZY= qYZ. (5)

Following [9, 13], we utilize the pentagon relation twice and find that

〈X〉q〈Z〉q〈XY〉q〈Y〉q = 〈Z〉q〈ZX〉q〈X〉q〈XY〉q〈Y〉q = 〈Z〉q〈ZX〉q〈Y〉q〈X〉q. (6)

Note that XY and Z commute. Permuting 〈XY〉q and 〈Z〉q on the l.h.s., we bring identity (6)

to the form T= ρ(T), where T= 〈X〉q〈XY〉q〈Z〉q〈Y〉q and ρ : X→ Z, Y→X, Z→Y is an order

3 automorphism of the associative algebra defined by presentation (5). Hence follows

immediately the following triple identity:

T= ρ(T)= ρ(ρ(T)), (7)

or, explicitly,

〈X〉q〈XY〉q〈Z〉q〈Y〉q = 〈Z〉q〈ZX〉q〈Y〉q〈X〉q = 〈Y〉q〈YZ〉q〈X〉q〈Z〉q. (8)

In view of (7), we will say that (8) is a cyclic quantum dilogarithm identity.

The goal of this paper is to obtain a hierarchy of cyclic quantum dilogarithm

identities in which (8) would be the first nontrivial member. For this purpose, we will

introduce an algebra TN with generators assigned to the vertices of a certain quiver QN .

In what follows, N stands for an integer number >1.

Definition 1.1. The quiver QN is an oriented graph with vertices that are labeled by

pairs of integer numbers (i, j) such that 1≤ i < j ≤ N. The directed edges go from (i, j)

to (i, j + 1), from (i, j) to (i + 1, j), and from (i + 1, j + 1) to (i, j). �
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Thus, QN has
(N

2

)
vertices. For instance, the quivers Q3 and Q4 are

Q3 :

(1,2) � (1,3)

�
��

(2,3)

�
�� Q4 :

(1,2) � (1,3)

�
��

�
��

�
��

(2,4)

� (1,4)

(2,3) �

(3,4)

�
��

�
��

�
��

Given QN , one defines in the standard way its skew-symmetric incidence matrix

B: B(i, j),(i′, j′) =−B(i′, j′),(i, j) = 1 if there is a directed edge going from (i, j) to (i′, j′), and

B(i, j),(i′, j′) = 0 if the vertices (i, j) and (i′, j′) are not connected.

Definition 1.2. The algebra TN associated with the quiver QN is a unital associative

algebra over R with
(N

2

)
generators Zi j, 1≤ i < j ≤ N, and the following defining relations:

Zi jZi′ j′ = qB(i, j),(i′ , j′)Zi′ j′Zi j. (9)
�

In particular, T2 is generated by a single generator. The algebra T3 (with genera-

tors Z12, Z13, Z23 renamed X, Z, Y) coincides with the algebra defined by presentation (5).

Remark 1.3. Let I be a subset of vertices of QN . Consider a linear homomorphism σI

such that σI (Zi j)= 0 if (i, j) ∈ I and σI (Zi j)= Zi j otherwise. Since relations (9) are homoge-

neous, σI is an algebra homomorphism from TN to its subalgebra. In particular, sending

ZiN to zero for all i, we reduce TN to TN−1. Thus, we have a chain of subalgebra inclusions:

T2 ⊂ T3 · · · ⊂ TN−1 ⊂ TN . �

Remark 1.4. The center ZN of the algebra TN has dimension N/2 if N is even and

(N − 1)/2 if N is odd. (See Section 2.2 for more details.) �

The quiver QN is mapped to itself by a clockwise rotation about its geometric

center by 2π/3. Hence, the algebra TN admits an automorphism ρ of order 3,

ρ(Zi j)= Z j−i,N+1−i. (10)

Furthermore, the quiver QN is mapped into a dual quiver (where all the arrows

are reverted) by a reflection with respect to either of its three axes of symmetry

passing through the corner vertices. Hence, the algebra TN admits three involutive
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anti-automorphisms:

μ1(Zi j)= Z j−i, j, μ2(Zi j)= ZN+1− j,N+1−i, μ3(Zi j)= Zi,N+1+i− j. (11)

Note that

μ1 ◦ μ2 =μ2 ◦ μ3 =μ3 ◦ μ1 = ρ. (12)

Let us adopt the following notations for products of noncommuting factors. Let

≺ be the lexicographic order relation of elements of a set Λ⊂Z
m. Then

−→∏
λ∈Λ fλ and←−∏

λ∈Λ fλ stand for ordered products, where fλ is put to the right (respectively, to the

left) of all fλ′ such that λ′ ≺ λ. In particular, if Λ= [1, k]⊂Z, then
−→∏

λ∈Λ fλ = f1 · · · fk and←−∏
λ∈Λ fλ = fk · · · f1.

Let ΛN ⊂Z
3 be the following discrete tetrahedron containing

(N+1
3

)
points:

ΛN = {λ= (a, b, c) |1≤ a< b < c≤ N + 1}. (13)

To each point λ= (a, b, c) ∈ΛN , we associate the following element of TN (strictly speak-

ing, of its completion):

Rλ =
〈 −→∏

0≤k≤c−b−1

Za+k,b+k

〉
q

. (14)

Now we can define an analog of the element T used in (7).

Definition 1.5. TN ∈ TN is the following lexicographically ordered product:

TN =
−→∏

λ∈ΛN

Rλ. (15)

�

In particular, we have T2 =R123 = 〈Z12〉q and T3 =R123R124R134R234 = 〈Z12〉q
〈Z12Z23〉q〈Z13〉q〈Z23〉q.

Remark 1.6. Some factors in the product (15) mutually commute, as, for example, R124

and R134 in T3. Therefore, TN admits a number of equivalent expressions obtained by

permutations of such factors. Some of these expressions are given in Lemma 2.7. �

We will say that a quantum dilogarithm identity is of the type n∼m if it involves

n quantum exponentials with monomial arguments on one side and m on the other.

For instance, (4) and (8) are of the type 2–3 and 4–4, respectively. The main result
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of the present work is a family of cyclic quantum dilogarithm identities of the type(N+1
3

)∼ (N+1
3

)
.

Theorem 1.7. Identities

TN =μ1(TN)=μ2(TN)=μ3(TN), (16)

TN = ρ(TN)= ρ(ρ(TN)), (17)

hold for any integer N ≥ 2. �

Remark 1.8. Identities (16) involve the anti-automorphism transformations μa corre-

sponding to a reflection rather than a rotation symmetry of the quiver. Nevertheless,

two of these identities are almost cyclic in the following sense. We will see below

(cf. Lemma A.2) that μ2 applied to TN acts almost as an identical transformation just

permuting some commuting quantum exponentials. (As an example, apply to (8) an anti-

automorphism that maps Z to itself and exchanges X and Y.) Along with (12) this implies

that, again up to a permutation of commuting factors, μ1 applied to TN acts as ρ, and μ3

applied to TN acts as ρ−1 = ρ ◦ ρ. �

It is clear from the definition (1) of the quantum exponential that 〈0〉q = 1. This,

along with Remark 1.3, implies the following proposition.

Proposition 1.9. Let I be a subset of the set of vertices of QN . In the identity (17), replace

with unity every quantum exponential that contains at least one Zi j with (i, j) ∈ I . The

result is a correct quantum dilogarithm identity. �

Note that the resulting reduced identity is not necessarily cyclic. For instance,

sending Z to 0 in the 4–4 identity (8), we obtain the pentagon identity (4).

Quantum dilogarithm identities associated with various quivers have close con-

nections with (quantum) cluster algebras and Y-systems; see, for example, [1, 5, 8, 10].

Quantum torus algebras of which TN is a particular example play an important role in

this context. Within the cluster algebras framework, a classical or a quantum dilog-

arithm identity is a consequence of existence of a periodic sequence of mutations of

a quiver and seeds assigned to the quiver [10, 11]. Examples of dilogarithm identities

obtained by this approach for (direct products of) Dynkin quivers are given in [7, 10].

Identities given in Theorem 1.7 can in principle be obtained by the quiver mutation

method as well. But in the present paper, we will derive them by a different representa-

tion theoretic approach related to inversions of maximal chains of higher Bruhat orders.
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Our motivation for studying a specific family of quantum dilogarithm identities

is an observation that they are accessible from the 4–4 identities (8). For instance, let

us demonstrate how to derive the equality T4 = ρ(T4) without invoking the pentagon

relation but using only the 4–4 identities (8):

T4 = 〈Z12〉q〈Z12Z23〉q〈Z12Z23Z34〉q〈Z13〉q〈Z13Z24〉q〈Z14〉q〈Z23〉q〈Z23Z34〉q〈Z24〉q〈Z34〉q

= 〈Z12〉q〈Z12Z23〉q〈Z13〉q〈Z23〉q〈Z12Z23Z34〉q〈Z13Z24〉q〈Z23Z34〉q〈Z14〉q〈Z24〉q〈Z34〉q

= 〈Z13〉q〈Z13Z12〉q〈Z23〉q〈Z12〉q〈Z12Z23Z34〉q〈Z13Z24〉q〈Z23Z34〉q〈Z14〉q〈Z24〉q〈Z34〉q

= 〈Z13〉q〈Z23〉q〈Z13Z12〉q〈Z13Z24〉q〈Z13Z24Z12〉q〈Z23Z34〉q〈Z12〉q〈Z14〉q〈Z24〉q〈Z34〉q

= 〈Z13〉q〈Z23〉q〈Z13Z24〉q〈Z13Z12〉q〈Z13Z12Z24〉q〈Z14〉q〈Z24〉q〈Z23Z34〉q〈Z34〉q〈Z12〉q

= 〈Z13〉q〈Z23〉q〈Z13Z24〉q〈Z14〉q〈Z14Z13Z12〉q〈Z24〉q〈Z13Z12〉q〈Z23Z34〉q〈Z34〉q〈Z12〉q

= 〈Z13〉q〈Z13Z24〉q〈Z14〉q〈Z14Z13Z12〉q〈Z23〉q〈Z23Z34〉q〈Z24〉q〈Z34〉q〈Z13Z12〉q〈Z12〉q

= 〈Z13〉q〈Z13Z24〉q〈Z14〉q〈Z24〉q〈Z14Z13Z12〉q〈Z24Z23〉q〈Z34〉q〈Z23〉q〈Z13Z12〉q〈Z12〉q

= 〈Z14〉q〈Z14Z13〉q〈Z24〉q〈Z13〉q〈Z14Z13Z12〉q〈Z24Z23〉q〈Z34〉q〈Z13Z12〉q〈Z23〉q〈Z12〉q

= 〈Z14〉q〈Z14Z13〉q〈Z14Z13Z12〉q〈Z24〉q〈Z24Z23〉q〈Z34〉q〈Z13〉q〈Z13Z12〉q〈Z23〉q〈Z12〉q

= ρ(T4).

The underlined terms were transformed by applying the 4–4 identities (8). The remaining

transformations changed only the order of commuting factors or the order of commuting

generators in the arguments of quantum exponentials.

We will give a proof of the identities listed in Theorem 1.7 which makes it evident

that they are accessible from the 4–4 identities (8) for all N. The origin of this accessi-

bility is that these identities stem from identities for certain words in a group whose

generators satisfy the tetrahedron equation:

RabcRabdRacdRbcd= RbcdRacdRabdRabc. (18)

The paper is organized as follows. Section 2 contains auxiliary statements which

we need to combine together in order to prove Theorem 1.7. Namely, in Section 2.1 we

consider families of groups B(n, N) whose generators satisfy the Yang–Baxter equation

(for n= 2), the tetrahedron equation (for n= 3), or their higher analogs (for n≥ 4). The two
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key technical results here are an identity for certain words containing all the generators

of the group B(n, N) and relation of these words to the element TN . In Section 2.2, we

describe the center of TN . In Section 2.3, we consider a local tensor space representation

φ for B(3, N). In Section 2.4, we explain how evaluation of the above-mentioned identity

for words of B(3, N) in the representation φ yields ultimately the desired quantum dilog-

arithm identities for an arbitrary N. Appendix contains proofs of all statements given

in Section 2.

2 Main Technical Ingredients

Below we assume that N and n are positive integers and N ≥n.

2.1 A group with n-simplex relations

Definition 2.1. B(n, N) is a group with
(N

n

)
generators Ra1,...,an, where 1≤ a1 < a2 < · · ·<

an≤ N. The group is defined by the following presentation:

(1) The generators commute,

Ra1,...,an Rb1,...,bn = Rb1,...,bn Ra1,...,an, (19)

unless the set {a1, . . . , an}
⋂{b1, . . . , bn} contains exactly (n− 1) element.

(2) If N > n, the generators satisfy the following
( N

n+1

)
relations:

−→∏
1≤ j≤n+1

Ra1,...,ǎj ,...,an+1 =
←−∏

1≤ j≤n+1

Ra1,...,ǎj ,...,an+1 , (20)

where ǎj is dropped. �

For n= 1, relations (20) imply commutativity, RaRb= RbRa, so that B(1, N) is an

abelian group with N generators.

For n= 2, relations (20) have the form of the Yang–Baxter equation,

RabRacRbc= RbcRacRab, a< b < c, (21)

and Rab commutes with Ra′b′ if they have no common index.
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For n= 3, relations (20) have the form of the tetrahedron equation,

RabcRabdRacdRbcd= RbcdRacdRabdRabc, a< b < c < d, (22)

and Rabc commutes with Ra′b′c′ unless they have exactly two common indices.

Recall that, given a set Λ⊂Z
m, we use the symbol

−→∏
λ∈Λ fλ to denote the lexico-

graphically ordered product of noncommuting factors.

Definition 2.2. The word W(n, N) ∈B(n, N) is the lexicographically ordered product of

all generators of B(n, N), that is,

W(n, N)=
−→∏

1≤a1<a2···<an≤N

Ra1,...,an. (23)

�

In particular, we have W(n, n)= R1,...,n for all n and W(1, N)= R1 · · · RN for all N.

Let ≺′ be the colexicographic order relation of elements of a set Λ⊂Z
m. That

is, components of elements of Λ are compared starting from the right. For instance,

(a, b)≺′ (c, d) iff b < d or b=d and a< c. We will denote by
−→∏ ′

λ∈Λ fλ and
←−∏ ′

λ∈Λ fλ ordered

products where fλ is put to the right (respectively, to the left) of all fλ′ such that λ′ ≺′ λ.

Lemma 2.3. Define

W′(n, N)=
−→∏′

1≤a1<a2···<an≤N

Ra1,...,an. (24)

Then we have the equality

W(n, N)=W′(n, N). (25)

�

For instance, (23) yields W(2, 4)= R12 R13 R14 R23 R24 R34 while (24) yields W′(2, 4)=
R12 R13 R23 R14 R24 R34. These two words coincide since, by (19), R14 and R23 commute. It is

also true in general that one needs to use only the commutativity relations (19) in order

to change the order of factors in (24) to match that in (23).

Let η be an involutive anti-automorphism of B(n, N) such that

η(Ra1,...,an)= Ra1,...,an (26)

for all the generators of B(n, N). Define

W̄(n, N)= η(W(n, N)), (27)
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which is a word with the order of factors reverse to that of W(n, N). Our first key tech-

nical statement is the following theorem.

Theorem 2.4. For all N ≥n, we have the equality

W(n, N)= W̄(n, N). (28)

�

Remark 2.5. A simple inspection of the proof given in the Appendix shows that the

invertibility of R’s is not really needed. Thus, Theorem 2.4 holds also if B(n, N) is a

semigroup. �

Remark 2.6. The presented proof provides a constructive recursive procedure that

transforms W(n, N) into W̄(n, N). The transformation involves trivial moves based on

(19) and moves Ra1,...,an+1 which transform the l.h.s. of (20) into its r.h.s. For instance,

R123(W(2, 4))= R23 R13 R12 R14 R24 R34. Let W(n, N) and W̄(n, N) stand for the compositions

of such moves in which R’s are ordered in the same way as R’s are ordered in W(n, N) and

W̄(n, N). A simple inspection of the proof shows that the l.h.s. of (28) is transformed into

its r.h.s. by W∗(n+ 1, N), where the star means that trivial moves are included when

necessary. Moreover, the same transformation is achieved by W̄∗(n+ 1, N) if we start

each reordering not from the left but from the right. Thus, the moves satisfy the iden-

tity W∗(n, N)= W̄∗(n, N) analogous to (28). This identity is closely related to the con-

sistency condition for inversions of maximal chains of higher Bruhat orders; see, for

example, [2]. �

Equations (23) and (24) for n= 2 and n= 3 read

W(2, N)=
−→∏

1≤a<b≤N

Rab, W′(2, N)=
−→∏′

1≤a<b≤N

Rab, (29)

W(3, N)=
−→∏

1≤a<b<c≤N

Rabc, W′(3, N)=
−→∏′

1≤a<b<c≤N

Rabc. (30)

Recall that Rabc was defined in (14). We introduce also the following elements of TN :

Rab=
−→∏

b+1≤c≤N+1

Rabc. (31)
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Let us introduce the following homomorphisms from B(2, N) and B(3, N + 1) to

TN (it should be stressed that they are not algebra homomorphisms):

	 : Rab→Rab, 
 : Rabc→Rabc, 

 : Rabc→Ra,c+a−b,c. (32)

Lemma 2.7. The element TN defined in (15) can be obtained as follows:

TN = (W(2, N))	 = (W′(2, N))	, (33)

TN = (W(3, N + 1))
 = (W′(3, N + 1))
, (34)

TN = (W(3, N + 1))

 = (W′(3, N + 1))

. (35)

�

This observation suggests that identities (28) can be recast in some quantum

dilogarithm identities. Furthermore, Remark 2.6 indicates that one needs to use the 4–4

relation (8)
(N+1

4

)
times in order to derive identity (17) for given N.

2.2 The center of TN

Let us assign to each vertex (i, j) of the quiver QN a nonnegative integer weight αi j. Let

α denote the vector composed of those weights taken in the lexicographic order. For

instance, α = (α12, α13, α23) if N = 3.

Monomials

M(α)=
−→∏

1≤i< j≤N

Zαi j

i j , α ∈Z
N(N−1)/2
≥0 (36)

constitute a basis of TN . We will say that αi j are the weights of M(α).

The algebra TN has a nontrivial center ZN . In particular, for any N, if α0 is a

vector such that α0
i j = 1, then M(α0) belongs to ZN .

Theorem 2.8. Let χ(N) stand for N/2 if N is even and for (N − 1)/2 if N is odd.

(1) If M(α) ∈ZN , then its weights have the following symmetries:

αi j = α j−i,N+1−i = α j−i, j = αN+1− j,N+1−i = αi,N+1+i− j, (37)

and M(α) is invariant under the action of ρ and μk defined in (10) and (11).

(2) If M(α), M(α′) ∈ZN , and α1 j = α′1 j for j = 2, . . . , χ(N)+1, then α = α′ and hence

M(α)=M(α′).
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(3) Given N and an arbitrary integer sequence β1, . . . , βχ(N), there exist m ∈Z≥0

and a vector α ∈Z
N(N−1)/2
≥0 such that M(α) ∈ZN and α1 j = β j−1 +m for j =

2, . . . , χ(N)+1. �

In other words, each monomial central element M(α) ∈ZN is uniquely determined

by its weights assigned to the vertices comprising a half of a boundary side of the quiver

QN . It follows also that the dimension of ZN is χ(N).

For instance, for N = 3, we have χ(3)= 1 and M(α) ∈Z3 iff α13 = α23 = α12. Thus,

Z3 is generated by Z12Z13Z23. For N = 4, we have χ(4)= 2 and M(α) ∈Z4 iff α14 = α34 = α12

and α23 = α24 = α13. Thus, Z4 is generated by Z12Z14Z34 and Z13Z23Z24.

For N = 5, we have χ(5)= 2 and M(α) ∈Z5 iff α15 = α45 = α12, α14 = α25 = α35 = α23 =
α34 = α13, and α24 = 2α13 − α12. The last relation requires that 2α13 ≥ α12.

Remark 2.9. The last part of Theorem 2.8 shows that the χ(N) weights that define

a central monomial can be taken almost arbitrary (possibly, up to a total shift by an

integer m). A direct inspection up to N = 8 suggests that in order to have m= 0, it suffices

to take a nondecreasing integer sequence, 0≤ β1 ≤ · · · ≤ βχ(N). �

Remark 2.10. The generators Zi j of TN can be constructed as exponential functions of

canonically conjugate variables pk, xk such that [xk, pk′ ]=
√−1 δkk′ . Theorem 2.8 implies

that the number of degrees of freedom of TN , that is, the minimal number of such pairs

(pk, xk) is N(N − 2)/4 if N is even and (N − 1)2/4 if N is odd. �

2.3 A local tensor space representation for tetrahedron equation

Let V be a vector space. For N ≥ 2, we define SN = V⊗N(N−1)/2. The tensor components of

SN will be labeled in the lexicographic order by pairs of integers (i, j), where 1≤ i < j ≤
N. For instance, S3 = V12 ⊗ V13 ⊗ V23, where all Vij are isomorphic to V .

For a given R ∈End (S3), we denote by Rabc its canonical extension to a linear

operator on SN which acts nontrivially only on the tensor components Vab, Vac, and Vbc.

For example, R123 =R⊗ id⊗ id⊗ id if N = 4.

Definition 2.11. Let R ∈End (S3) be invertible and let its action canonically extended to

S4 satisfy the tetrahedron equation,

R123R124R134R234 =R234R134R124R123. (38)
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A local tensor space representation of B(3, N) is a homomorphism B(3, N)→End (SN)

sending Rabc to Rabc. �

Note that the commutativity relations (19) hold by construction. Indeed, if Rabc

and Ra′b′c′ have no common pair of indices, then they act nontrivially on different tensor

components of SN and hence they commute.

Remark 2.12. An equation formally identical to (38) was considered in [6]. There, how-

ever, it was treated as an operator equation on V⊗4 with the identification R123 =R⊗ id

etc. We treat (38) as an equation on V⊗6, which is the standard Zamolodchikov’s tetrahe-

dron equation [15] but with a nonstandard (double index) labeling of the tensor compo-

nents. �

Let V be the vector space of formal series in x, x−1. Then SN is the vector space

of formal series in xij, x−1
i j , where 1≤ i < j ≤ N.

Define operators xi j, yi j ∈End (SN), 1≤ i < j ≤ N such that

(xi j f)(x12, . . . , xij, . . .)= xij f(x12, . . . , xij, . . .),

(yi j f)(x12, . . . , xij, . . .)= f(x12, . . . , qxij, . . .) (39)

for any f ∈ SN . These operators comprise
(N

2

)
q-commuting pairs,

xi jxi′ j′ = xi′ j′xi j, yi jxi′ j′ = qδii′ δ j j′xi′ j′yi j, yi jyi′ j′ = yi′ j′yi j. (40)

Consider F ∈End (S3) whose action on monomials is given by

F : xk
12 xl

13xm
23→ xk

12xm+k
13 xl−k

23 , (41)

or, equivalently, (F f)(x12, x13, x23)= f( x12x13
x23

, x23, x13). It is easy to check that

Fx12 = x12x13x−1
23 F, Fx13 = x23F, Fx23 = x13F, (42)

Fy12 = y12F, Fy13 = y12y23F, Fy23 = y−1
12 y13F. (43)

Clearly, F is invertible and F2 = id.
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Let R ∈End(S3) be the following operator:

R= F · 〈q1+γ x12x−1
23 yγ

12y−γ

13 y−1−γ

23 〉q, (44)

where γ ∈Z. A reader familiar with the Yang–Baxter equation will see in (44) an analogy

with the standard ansatz for R-matrix, R=P · Ř, where P is the permutation, P2 = id.

Lemma 2.13. Let Fabc and Rabc stand for the canonical extensions of F defined by (41) and

R defined by (44) to operators on SN . The homomorphisms θ, φγ : B(3, N)→End (SN) such

that θ(Rabc)= Fabc and φγ (Rabc)=Rabc are local tensor space representations of B(3, N).�

Remark 2.14. The above lemma generalizes two previously known solutions of the

tetrahedron equation. Namely, the case corresponding to γ = 0 was found in [13], and the

case corresponding to γ =−1 was considered in [9]. Our proof follows closely that given

in [9]. �

Lemma 2.15. Let xab, yab, 1≤a<b≤N + 1 act on SN+1 as defined in (39) and let yab≡ 1 if

a= b. Then, for all N ≥ 2, the linear homomorphism τ : TN→End(SN+1) such that

τ(Zab)= q
xab

xa+1,b+1

ya+1,b

ya+1,b+1
for 1≤a<b≤N (45)

is a faithful representation of TN . �

2.4 Proof of Theorem 1.7

One of the three symmetries of TN presented in (16) can be established by reordering

commuting factors. Namely, applying μ2 to relations (34) and (35) and using Lemma A.2

(see Appendix A.4), we obtain the following statement.

Lemma 2.16. For all N ≥ 2, we have

μ2(TN)= TN . (46)

�

Clearly, in order to establish an analogous equality involving μ1 or μ3, we will

have to use the 4–4 relation (8). To do it for μ1, we establish a connection between the

element TN evaluated in the representation τ and words from B(3, N + 1) evaluated in

the representation φγ (we will take γ = 0 for simplicity).
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Lemma 2.17. For all N ≥ 2, we have the equalities

φ0(W
′(3, N + 1))= θ(W′(3, N + 1))τ (TN), (47)

φ0(W̄
′(3, N + 1))= θ(W̄′(3, N + 1))τ (μ1(TN)). (48)

�

Invoking Theorem 2.4, we infer that τ(TN)= τ(μ1(TN)), which, by virtue of

Lemma 2.15, implies that

μ1(TN)= TN . (49)

Now, combining (46) with (49) and using (12), we conclude that ρ(TN)= (μ1 ◦ μ2)

(TN)= TN . And finally, using (12) again, we obtain μ3(TN)= (μ2 ◦ ρ)(TN)= TN .

Thus, we have obtained all relations given in Theorem 1.7.
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Appendix

A.1 Proofs of propositions of Section 2.1

Proof of Lemma 2.3. Let �W�N+1 ∈B(n, N + 1) denote the word which is obtained from

a word W ∈B(n− 1, N) by the replacement Ra1,...,an−1→ Ra1,...,an−1,N+1 applied to all factors.

A key step in proving Lemma 2.3 is to observe that the following recursive relation holds:

W(n, N)�W(n− 1, N)�N+1 =W(n, N + 1). (A.1)

For instance,

W(2, 3)�W(1, 3)�4 = R12 R13 R23�R1 R2 R3�4 = R12 R13 R14 R23 R24 R34 =W(2, 4).

For n= 2, Equation (A.1) is almost trivial since �W(1, N)�N+1 = R1,N+1 · · · RN,N+1

and for each factor Ra,N+1, a �= N the rightmost factor in W(2, N) with which it does

not commute is Ra,N . Therefore, moving all factors from �W(1, N)�N+1 to the left until

they meet their noncommuting counterparts, we obtain the lexicographically ordered
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word W(2, N + 1). Note that only the last two factors in �W(1, N)�N+1 have the same

noncommuting counterpart, namely, RN−1,N .

The proof for n≥ 3 is similar. Each factor Ra1,...,an−1,N+1 in �W(n− 1, N)�N+1

belongs to a cluster, that is, a product of consecutive lexicographically ordered fac-

tors. A cluster has length 1 if an−1 < N − 1. If an−1 ≥ N − 1, then the length of a cluster is

k+ 1, where k=max{m : an−m ≥ N −m}. If Ra1,...,an−k−1,N−k,...,N−1,N+1 is the leftmost factor

of a cluster of length k+ 1, then the rightmost noncommuting counterpart in W(n, N)

for all factors of the cluster is Ra1,...,an−k−1,N−k,...,N−1,N . Therefore, moving each cluster from

�W(n− 1, N)�N+1 to the left until it meets its counterpart, we achieve the lexicographic

order of all factors, that is, we obtain the word W(n, N + 1).

The recursive relation (A.1) implies that

W(n, N)=
−→∏

n≤k≤N

�W(n− 1, k− 1)�k, (A.2)

which in turn leads to the expression (24) for W′(n, N). �

To prove Theorem 2.4, we will need also the following statement.

Lemma A.1. Let ω be an involutive automorphism of B(n, N) such that

ω(Ra1,...,an)= RN+1−an,...,N+1−a1 , (A.3)

for all generators of B(n, N). Then, for all N ≥n, the equalities

ω(W(n, N))= η(W′(n, N)), ω(W′(n, N))= η(W(n, N)) (A.4)

hold in the strong sense, that is, their r.h.s. coincide with their l.h.s. without a permuta-

tion of commuting factors. �

Proof. Define W̄′(n, N)= η(W′(n, N)). Applying the anti-automorphism η to (24) and

(A.1), we obtain

W̄′(n, N)=
←−∏′

1≤b1<···<bn≤N

Rb1,...,bn, (A.5)

W̄′(n, N + 1)= �W̄′(n− 1, N)�N+1W̄′(n, N). (A.6)
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Applying to (A.5) the automorphism ω, and relabeling the indices by ak= N + 1− bn+1−k,

we recover the r.h.s. of formula (23). Hence we infer that ω(η(W′(n, N)))=W(n, N), which

proves the first equality in (A.4). The second equality follows then immediately since ω

and η mutually commute and both are involutive. �

Proof of Theorem 2.4. For n= 1, the statement of the theorem is obvious since all R’s

commute. For n= 2, the statement can be proved by induction on N. The base, for N = 3,

is simply the relation (20). Assume that the equality W(2, N)= W̄(2, N) has been already

established for some N ≥ 3. Then, taking into account the recursive structure of (A.1) and

(A.6), we have to prove that

⌊ −→∏
1≤a≤N

Ra

⌋
N+1

= (W(2, N))−1

⌊ ←−∏
1≤a≤N

Ra

⌋
N+1

W(2, N). (A.7)

Observe that the Yang–Baxter equation (21) can be rewritten as the following “almost

commutativity” relation for two R’s:

�RaRb�N+1 = R−1
ab �RbRa�N+1 Rab. (A.8)

Using this relation, we can move R1,N+1 in the product
−→∏

Ra,N+1 to the right, then move

R2,N+1, and so on until we obtain the reverse-ordered product
←−∏

Ra,N+1. Note that all

the extra “twisting” factors R±1
ab arising in this process commute with any Rc,N+1, c �=

a, b. Therefore, at each step these twisting factors can be moved outside of the product

�· · · �N+1. It is easy to see that these factors combine into (W(2, N))±1. Thus, we have

established the inductive step (A.7) and hence the Theorem is proved for n= 2.

For n= 3, the theorem can be proved along the same lines. The base, for N = 4,

is the relation (20). Assuming that W(3, N)= W̄(3, N) has been already established for

some N ≥ 4 and taking into account (A.1) and (A.6), we have to prove the inductive step:

�W(2, N)�N+1 = (W(3, N))−1�W̄(2, N)�N+1W(3, N). (A.9)

Observe that the tetrahedron Equation (22) can be rewritten as the following “almost

Yang–Baxter” relation for three R’s:

�RabRacRbc�N+1 = R−1
abc�RbcRacRab�N+1 Rabc, (A.10)

where a< b < c. Note that Rabc commutes with any factor in �W(2, N)�N+1 except those on

the l.h.s. of (A.10). Therefore, the factors in �W(2, N)�N+1 can be reordered exactly in the
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same way as the factors in W(2, N) and the extra twisting factors R±1
abc arising at each

step can be moved outside of the product �· · · �N+1. It is easy to see that these factors

combine into (W(3, N))±1. Since we already know that W(2, N)= W̄(2, N), it follows that

the inductive step (A.9) holds and so the theorem is proved for n= 3.

It is now clear that the proof continues by the double induction on n and N. For

a given n, relation (20) can be rewritten as “almost” the relation for n− 1. Using it, we

can reorder the factors in �W(n− 1, N)�N+1 exactly in the same way as the factors in

W(n− 1, N). At each step the extra twisting factors can be moved outside of the product

�· · · �N+1 due to relation (19). Therefore, the same line of arguments as for n= 2, 3 proves

the theorem for an arbitrary n. �

Proof of Lemma 2.7. (1) The first equality in (33) is obvious from Definition 1.5 and

Equation (31). In order to prove the second equality in (33), we consider the following

elements of TN :

TN,b=
−→∏

1≤a<k≤b

Rak, 2≤ b≤ N. (A.11)

We observe that

TN,b= TN,b−1

−→∏
1≤a<b

Rab. (A.12)

Indeed, it follows from the definition (31) that the rightmost factor in the lexicograph-

ically ordered product TN,b which does not commute with Rab is Ra,b−1. Repeating the

argument used in the proof of formula (A.1) for n= 2, we conclude that (A.12) holds. And

it is easy to see that (A.12) along with TN = TN,N implies that

TN = TN,N−1

−→∏
1≤a<N

RaN = · · · =
−→∏′

1≤a<b≤N

Rab= (W′(2, N))	. (A.13)

(2) The first equality in (34) is obvious from Definition 1.5. The second equality

in (34) is equivalent to the statement that

TN = TN−1W′(2, N), (A.14)

where W′(2, N) is given by (29) with each Rab replaced with Ra,b,N+1. Using relations (A.1)

and (A.13), we can rewrite the r.h.s. of (A.14) as follows:

W̃′(2, N − 1)W′(2, N − 1)

( −→∏
1≤e<N

ReN

)
, (A.15)
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where W̃′(2, N) is given by (29) with each Rab replaced with R
′
ab, which is an element of

TN−1 given by (31). Definition (31) implies that R
′
ab is the rightmost factor in W̃′(2, N − 1)

which does not commute with the factor Ra,b,N+1 in W′(2, N − 1). Therefore, moving all

factors from W′(2, N − 1) to the left until they meet their noncommuting counterparts

and noting that R
′
abRa,b,N+1 =Rab, we conclude that (A.15) coincides with the second

expression in (A.13) and hence relation (A.14) holds.

(3) To prove the last part of the lemma, we consider W′(2, N) introduced in (A.14).

One can check that all its factors containing ZN−1,N can be moved to the right preserv-

ing their order. Making then the same procedure with factors containing ZN−2,N , ZN−3,N ,

etc., we conclude that W′(2, N) is given by the same expression in (29) where each Rab is

replaced with Ra,N+1+a−b,N+1. With such a form of W′(2, N) formula (A.14) leads immedi-

ately to the second equality in (35).

Equivalence of the first and second expressions for TN in (35) is verified as

follows:

(W(3, N))

 =μ2((W
′(3, N))
)=μ2((W(3, N))
)= (W′(3, N))

. (A.16)

The middle equality is due to the second part of the lemma. In the first and last equali-

ties, we used Lemma A.2, which is proved below in Section A.4. �

A.2 Proof of Theorem 2.8

Recall that α ∈Z
N(N−1)/2
≥0 is a vector comprising the weights αi j assigned to the vertices

of QN ordered lexicographically. By (36), each α determines a monomial M(α) ∈ TN . Rela-

tions (9) imply that M(α) commutes with all generators of TN iff Bα = 0. Thus, we have to

study the kernel of the incidence matrix B.

(1) Let U be the symmetry transformation of the vertices of QN such that U(i, j)=
( j − i, N + 1− i), and U be the matrix of the corresponding orthogonal transformation

of the basis in Z
N(N−1)/2
≥0 . Applying ρ to (9), we infer that B commutes with U . Taking into

account that U is orthogonal and B is skew-symmetric, we conclude that if α ∈KerB,

then α is an eigenvector of U . However, U3 = 1 and so the only real eigenvalue of U is 1.

Thus, M(α) ∈ZN implies that Uα = α. Hence

αU(i, j) = αi j, (A.17)

which is the first symmetry in (37). Applying ρ to a central monomial M(α) and taking

this symmetry of its weights into account, we infer that ρ(M(α))= qε(α)M(α), where the



Tetrahedron Equation and Cyclic Quantum Dilogarithm Identities 1093

multiplicative constant appears due to reordering of the generators. However, the prop-

erty ρ ◦ ρ ◦ ρ = id implies that qε(α) = 1 and thus ρ(M(α))=M(α).

Let μ be any of the anti-homomorphisms in (11), K be the corresponding sym-

metry transformation of the vertices of QN (e.g., K(i, j)= ( j − i, j) for μ1), and K be the

matrix of the corresponding orthogonal transformation of the basis in Z
N(N−1)/2
≥0 . Apply-

ing μ to (9), we infer that K BK =−B. Hence B2 commutes with K. Taking into account

that both these matrices are real symmetric and K2 = 1, we conclude that if α ∈KerB,

then Kα=±α. But α12 = α1N = αN−1,N owing to (A.17). Therefore, Kα= α. Hence

αK(i, j) = αi j, (A.18)

which yields the remaining symmetries in (37). Applying μ to a central monomial M(α)

and taking these symmetries into account, we obtain that μ(M(α))= qε′(α)M(α). The prop-

erty μ ◦ μ= id implies that qε′(α) = 1 and thus μ(M(α))=M(α).

(2) Consider monomials M(α) and M(α′) such that α1 j = α′1 j for j = 2, . . . , N. Then,

in view of (A.17), all components of vector α′′ = α − α′ corresponding to boundary vertices

of QN vanish. Suppose that M(α) and M(α′) are central. Then M(α′′) commutes with all

generators of TN . In particular, the condition that M(α′′) commutes with all Z1 j is equiv-

alent to a system of equations: α′′2, j+1 = α′′2, j. However, we already have α′′23 = 0. Therefore,

we conclude that α′′2 j = 0 for j = 3, . . . , N. This implies, in view of (A.17), that all compo-

nents of α′′ corresponding to next to boundary vertices of QN also vanish. Continuing

this consideration similarly for Z2 j, Z3 j, etc., we conclude that α′′ = 0. Thus, M(α′)=M(α),

that is, two central monomials coincide iff they have coinciding weights at one bound-

ary of QN . Owing to the symmetry (A.18), the latter condition is equivalent to a weaker

condition: α′1 j = α1 j for j = 2, . . . , χ(N)+ 1.

(3) Let us show that, given arbitrary integers β1, . . . , βχ(N), there exists a unique

integer vector α̃ such that α̃1 j = β j−1 for j = 2, . . . , χ(N)+ 1 and M(α̃) given by (36) (where

some α̃i j can be negative) commutes with all generators Zi j. Let ∂QN stand for the

set of all boundary vertices of QN . Forgetting about the edges, we have QN = ∂QN ∪
∂QN−3 ∪ · · · .

First, given the weights α̃1 j for j = 2, . . . , χ(N)+ 1, we extend them to weights

at other vertices of ∂QN by the symmetries (A.17) and (A.18). Now, the requirement that

M(α̃) commutes with all generators assigned to ∂QN fixes uniquely all weights at ∂QN−3.

Indeed, M(α̃) commutes with Z1 j if α̃2, j+1 − α̃2 j = α̃1, j+1 − α̃1, j−1. Taking into account that

α̃23 = α̃13, this set of equations determines all α̃2 j uniquely. Moreover, the symmetry (A.18)

for α̃1 j induces the same symmetry for α̃2 j. Finally, α̃2 j can be extended to weights at

other vertices of ∂QN−3 by the symmetry (A.17).



1094 A. Bytsko and A. Volkov

Similarly, given weights at ∂Qk+3 and ∂Qk, the requirement that M(α̃) commutes

with all generators assigned to ∂Qk fixes uniquely all weights at ∂Qk−3. Indeed, M(α̃)

commutes with all Zi j for a given i if α̃i+1, j+1 − α̃i+1, j = α̃i, j+1 − α̃i, j−1 + α̃i−1, j−1 − α̃i−1, j.

These equations are resolved uniquely since we know the r.h.s. and several first values

of α̃i+1, j owing to the symmetry (A.17).

Thus, the vector α̃ is recovered uniquely from its first χ(N) components. How-

ever, it can happen that some α̃i j are negative. In this case, we take another vector,

α = α̃ +mα0, where α0 is a vector such that α0
i j = 1, and m is a sufficiently large posi-

tive number to ensure the positivity of all αi j. Then we have M(α)= qε ·M(α̃)(M(α0))m. It

remains to observe that M(α0) ∈ZN and hence M(α) ∈ZN .

A.3 Proofs of propositions of Section 2.3

Proof of Lemma 2.13. The statement of the Lemma for F follows from the fact that the

action of F123F124F134F234 and F234F134F124F123 on the monomial xa
12xb

13xc
23xd

14xe
24x f

34 yields

the same result.

Note that R given by (44) is invertible. If the argument of the quantum expo-

nential in (44) is denoted by X, then we have R−1 = 〈X〉−1
q F, where 〈x〉−1

q is the following

formal series:

〈x〉−1
q =

∑
n≥0

qn(n−1)/2 xn

(1− q) · · · (1− qn)
. (A.19)

In order to check that R satisfies the tetrahedron equation, one has to substitute

Rabc into (38), move all F’s to the left, and cancel the products of F’s on the both sides of

the equation by invoking the first part of the lemma. Then one is left with the equality

〈X〉q〈XY〉q〈Z〉q〈Y〉q = 〈Z〉q〈ZX〉q〈Y〉q〈X〉q, (A.20)

where

X= q1+γ x12x−1
23 yγ

12y−γ

13 y−1−γ

23 , Y= q1+γ x23x−1
34 yγ

23y−γ

24 y−1−γ

34 ,

Z= q1+γ x13x−1
24 yγ

13y−γ

14 y1+γ

23 y−1−γ

24 . (A.21)

These operators satisfy relations (5). Therefore, comparing the first equality in (8) with

(A.20), we conclude that equality (A.20) holds. �
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Proof of Lemma 2.15. Note that there are only six cases when τ(Zab) does not commute

with τ(Za′b′): (1) a′ = a and b′ = b± 1; (2) a′ − a=±1 and b′ = b or b′ = b+ a′ − a. It is easy

to check that in these cases τ(Zab) and τ(Za′b′) satisfy the defining relations (9).

Clearly, the representation (45) is faithful for T2 since in this case the algebra

has only one generator. The proof of faithfulness of this representation in other cases

will use the inclusion TN−1 ⊂ TN (cf. Remark 1.3). Let N be the minimal positive number

such that the representation τ is not faithful for TN . Then there exists a polynomial H in(N
2

)
variables such that H≡ H(τ (Z12), . . . , τ (ZN−1,N))= 0.

Without a loss of generality, we can assume that H has the form

H=
∑

k1,...,kN−1≥0

Bk1···kN−1τ(Zk1
1N · · ·ZkN−1

N−1,N)Hk1···kN−1, (A.22)

where Bk1···kN−1 �= 0 at least for one set {k1, . . . , kN−1} such that k1 + · · · + kN−1 > 0. Here

Hk1···kN−1 stand for polynomials in the generators of TN−1 evaluated in the representa-

tion (45).

Acting by H on f ∈ SN ⊂ SN+1, we obtain

H · f =
∑

k1···kN−1≥0

qε(k1,...,kN−1)Bk1···kN−1

(
N−1∏
a=1

(
xaN

xa+1,N+1

)ka
)

(H̃k1···kN−1 · f), (A.23)

where H̃k1···kN−1 =YNHk1···kN−1 with YN = y2N · · · yN−1,N . Note that all terms in the sum in

(A.23) are linearly independent monomials in x−1
2,N+1, . . . , x−1

N,N+1. Hence, H= 0 implies that

H̃k1···kN−1 · f = 0. Since YN is invertible, we conclude that Hk1···kN−1 annihilates an arbitrary

f from SN and, thus, Hk1···kN−1 = 0. But this contradicts the assumption that the represen-

tation τ is faithful for TN−1. �

A.4 Proof of propositions of Section 2.4

Lemma A.2. For all N ≥ 3, the equalities

μ2((W(3, N))
)= (W′(3, N))

, μ2((W
′(3, N))
)= (W(3, N))

, (A.24)

hold in the strong sense, that is their r.h.s. coincide with their l.h.s. without a permuta-

tion of commuting factors. �
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Proof. The first equality in (A.24) is checked with the help of Lemma A.1 as follows:

μ2((W(3, N))
)=μ2

( −→∏
1≤a<b<c≤N

(Rabc)



)
=

−→∏′

1≤a<b<c≤N

μ2((ω(Rabc))

)

=
−→∏′

1≤a<b<c≤N

μ2(RN+1−c,N+1−b,N+1−a)=
−→∏′

1≤a<b<c≤N

Ra,c+a−b,c= (W′(3, N))

.

The second equality can be checked in a similar way. �

Recall that the homomorphisms θ and φγ were introduced in Lemma 2.13. In this

subsection, we will use the following notations:

Rabc= φ0(Rabc)= Fabc · Řabc, Fabc= θ(Rabc), Řabc= 〈qxabx−1
bc y−1

bc 〉q. (A.25)

We will need also the following homomorphisms ϕ, ϕ′ from B(3, N) to End(SN):

ϕ(Rabc)=
〈

qxab

xa+c−b,c

c−b∏
k=1

ya+k,b+k−1

ya+k,b+k

〉
q

, (A.26)

ϕ′(Rabc)=
〈
q(

c−b∏
k=1

xb−a,b+k−1

xb−a+1,b+k
)
yb−a+1,b

yb−a+1,c

〉
q

, (A.27)

where yab≡ 1 if a= b.

Recall that the word W′(3, N) is given by (30), and that W̄′(3, N)= η(W′(3, N)) is

the word with reversely ordered factors. Let us introduce

FN = θ(W′(3, N))= θ(W̄′(3, N)), (A.28)

where the equality of the expressions is due to Theorem 2.4.

Lemma A.3. For all N ≥ 3, we have the equalities

φ0(W
′(3, N))= FN · ϕ(W′(3, N)), (A.29)

φ0(W̄
′(3, N))= FN · ϕ′(W̄′(3, N)). (A.30)

�
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Proof. Equation (A.2) implies that

φ0(W
′(3, N))=

−→∏
3≤c≤N

φ0(�W′(2, c− 1)�c). (A.31)

Consider Řabc entering the φ0(�· · · �c) part. In order to establish (A.29), it suffices to prove

that:

(i) Řabc transforms into ϕ(Rabc) when all F’s from φ0(�· · · �c) are moved to the left

of this part;

(ii) ϕ(Rabc) does not change when, for any k> c, all F’s from φ0(�W′(2, k− 1)�k)
are moved through it. �

Proof of (i). Consider Řabc which is not the rightmost one (otherwise, it already has the

form ϕ(R)). All F’s to the right of it have the form Fa′b′c, {a′, b′} �= {a, b}. By (42), they do

not change xab but act on the first index of xbc as permutations Pa′b′ . From the recursive

structure of the word W′(2, c− 1)= �W(1, 1)�2 · · · �W(1, c− 2)�c−1 it follows that xbc has

to be pulled through the following chain of permutations:

Pa+1,b · · · Pb−1,bP1,b+1 · · · Pb,b+1 · · · P1,c−1 · · · Pc−2,c−1.

The part Pa+1,b · · · Pb−1,b here is present if a< b− 1. It transforms xbc into xa+1,c. The

remaining permutations are grouped into (c− 1− b) shift operators Ud= Pd,d+1 · · · P12,

b≤d≤ c− 2. Each Ud increases the first index of xa+1,c by 1, thus transforming it into

xa+c−b,c.

Consider now ybc entering the argument of Řabc. It is first transformed by Fa+1,b,c

into ya+1,c

ya+1,b
. Note that, by (43), all F’s entering φ0(�W′(2, c− 1)�c) act nontrivially only on y’s

whose second index is c. From the recursive structure of the word W′(2, c− 1) it follows

that ya+1,c is transformed by consecutive action of pairs Fa+k,b+k,cFa+1+k,b+k,c, 1≤ k≤ c−
b− 1. Each such pair transforms ya+k,c into ya+k,b+k

ya+1+k,b+k
ya+1+k,c, which yields the product of

y’s in (A.26). �

Proof of (ii). This part is trivial for y’s since, by (43), yab commutes with any Fa′b′k if

k �= a, b. For x’s we have to consider the transformations of xab
xa′c

, where a′ ≡ a+ c− b. Note

that a< a′ < c. Therefore, xab
xa′c

is first transformed by Fabk into xabxak
xa′cxbk

. Then this expression

is pulled through all F’s between Fabk and Fa′ck. They act only on the first indices of xak
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and xbk as the following chain of permutations:

Pa+1,b · · · Pb−1,bP1,b+1 · · · Pb,b+1 · · · P1,c · · · Pa′−1,c.

The part Pa+1,b · · · Pb−1,b transforms xak
xbk

into xak
xa+1,k

. Then each of the shift operators Ud,

b≤d≤ c− 2 increases the first indices of xak and xa+1,k by 1, which yields xa′−1,k

xa′k
. The last

part, P1,c · · · Pa′−1,c, transforms xa′−1,k

xa′k
into xck

xa′k
. Finally, xabxck

xa′cxa′k
is transformed by Fa′ck into

xab
xa′c

, which then is not affected by the remaining F’s.

Thus, we have verified (i) and (ii) and therefore proved relation (A.29).

In order to establish equation (A.30), we will prove first that

φ0(W̄
′(3, N))= ϕ′′(W̄′(3, N)) · FN, (A.32)

where ϕ′′ is a homomorphism from B(3, N) to End (SN),

ϕ′′(Rabc)=
〈

qxab

xa+c−b,c

c−b−1∏
k=0

ya+k,b+k

ya+k,b+k+1

〉
q

. (A.33)

Indeed, we have

Rabc= φ0(Rabc)= R̂abc · Fabc, R̂abc= 〈qxabx−1
bc yaby−1

ac 〉q. (A.34)

Note that the x’s arguments of R̂abc and Řabc are the same. Therefore, moving all F’s

in φ0(W̄′(3, N)) to the right results in the same transformation of these arguments as

moving all F’s in φ0(W′(3, N)) to the left.

The y’s arguments of R̂abc are transformed only by those F’s that enter the

φ0(�W̄′(2, c− 1)�c) part. Specifically, yab does not change, whereas yac is transformed

by consecutive action of pairs Fa+k,b+1+k,cFa+1+k,b+1+k,c, 0≤ k≤ c− b− 1, which yields the

product of y’s in (A.33).

It remains to pull FN in (A.32) to the left. Note that F2
N = 1. Using (42) and (43),

one can verify that

FNxabFN = xb−a,b

N−b∏
k=1

xb−a,b+k

xb−a+1,b+k
, FNyabFN =

b−a∏
k=1

yk,a+k

yk,a+k−1
, (A.35)

whence
xab

xa+1,b+1
FN = FN

xb−a,b

xb−a+1,b+1
,

yab

ya,b+1
FN = FN

yb−a+1,b

yb−a+1,b+1
. (A.36)

Applying these relations to (A.33), we obtain (A.27). �
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Proof of Lemma 2.17. Using (14), (32), and (45), we find

τ(Rabc)= ϕ(Rabc), τ (μ1(Rabc))= ϕ′(Rabc). (A.37)

Therefore, invoking Lemma 2.7, we conclude that

τ(TN)= τ((W′(3, N + 1))
)= ϕ(W′(3, N + 1)), (A.38)

τ(μ1(TN))= τ(μ1((W
′(3, N + 1))
))= ϕ′(W̄′(3, N + 1)). (A.39)

These relations along with Lemma A.3 yield the statement of Lemma 2.17. �
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