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Abstract. We construct a finitely presented torsion-free simple group S0, acting cocompactly on
a product of two regular trees. An infinite family of such groups was introduced by Burger and
Mozes [2], [4]. We refine their methods and construct S0 as an index 4 subgroup of a group
S < AutðT12Þ � AutðT8Þ presented by 10 generators and 24 short relations. For comparison,
the smallest virtually simple group of [4, Theorem 6.4] needs more than 18000 relations, and
the smallest simple group constructed in [4, §6.5] needs even more than 360000 relations in any
finite presentation.

0 Introduction

Burger and Mozes constructed in [2], [4] the first examples of groups which are si-
multaneously finitely presented, torsion-free and simple. Moreover, they are CAT(0),
bi-automatic, and have finite cohomological dimension. These groups can be realized
in various ways: as fundamental groups of finite square complexes, as cocompact
lattices in a product of automorphism groups of regular trees AutðT2mÞ � AutðT2nÞ
for su‰ciently large m; n A N, or as amalgams of finitely generated free groups. The
groups of Burger and Mozes have positively answered several open questions: for
example Neumann’s question ([9]) on the existence of simple amalgams of finitely
generated free groups, and a question of G. Mess (see [7, Problem 5.11 (C)]) on the
existence of finite aspherical complexes with simple fundamental group. The con-
struction is based on a ‘normal subgroup theorem’ ([4, Theorem 4.1]) which shows
for a certain class of irreducible lattices acting on a product of trees, that any non-
trivial normal subgroup has finite index. This statement and its remarkable proof
are adapted from the famous analogous theorem of Margulis ([8, Theorem IV.4.9]) in
the context of irreducible lattices in higher rank semisimple Lie groups. Another im-
portant ingredient in the construction of Burger and Mozes is a su‰cient criterion
([4, Proposition 2.1]) for the non-residual-finiteness of groups acting on a product of
trees. Even the bare existence of such non-residually-finite groups is remarkable, since
for example finitely generated linear groups, or cocompact lattices in AutðTkÞ are
always residually finite. The non-residually-finite groups of Burger and Mozes arising
from their criterion always have non-trivial normal subgroups of infinite index, but
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appropriate embeddings into groups satisfying the normal subgroup theorem imme-
diately lead to virtually simple groups. Unfortunately, these groups and their simple
subgroups have very large finite presentations. We therefore modify the constructions
by taking a small non-residually-finite group of Wise [11, §II.5], embedding it into
a group S < AutðT12Þ � AutðT8Þ satisfying the normal subgroup theorem, and de-
tecting a simple subgroup S0 < S of index 4. Several GAP programs [5] have enabled
us to find very quickly the groups S and S0. The GAP code of our programs is
documented in [10, Appendix B] for the interested reader.

1 Preliminaries

As mentioned in the Introduction, the finitely presented torsion-free simple groups
of Burger and Mozes and of this paper appear in various forms. Probably the most
comprehensible approach is to regard them as finite index subgroups of funda-
mental groups of certain 2-dimensional cell complexes which are called 1-vertex VH-
T-square complexes in [4], complete squared VH-complexes with one vertex in [11],
or ð2m; 2nÞ-complexes in [10]. As in [10], we will call these fundamental groups
ð2m; 2nÞ-groups. Let us briefly recall their definition and some properties needed
in the construction of the simple group S0. Fix m; n A N and let X be a finite 2-
dimensional cell complex satisfying the following conditions:

� Its 1-skeleton X ð1Þ consists of a single vertex x and oriented loops aG1
1 ; . . . ; aG1

m ,
bG1

1 ; . . . ; bG1
n .

� There are exactly mn geometric 2-cells attached to X ð1Þ. They are squares with
oriented boundary of the form aba 0b 0, where a; a 0 A A :¼ fa1; . . . ; amgG1 and
b; b 0 A B :¼ fb1; . . . ; bngG1. We think of the elements in A as ‘horizontal’ edges and
the elements in B as ‘vertical’ edges, and do not distinguish between squares with
boundary aba 0b 0, a 0b 0ab, a�1b 0�1a 0�1b�1 and a 0�1b�1a�1b 0�1, since they induce the
same relations in the fundamental group of X .

� The link of the vertex x in X is the complete bipartite graph K2m;2n with 2mþ 2n
vertices (where the bipartite structure is induced by the decomposition A t B of X ð1Þ

into 2m horizontal and 2n vertical edges). In other words, to any pair ða; bÞ A A� B

there is a uniquely determined pair ða 0; b 0Þ A A� B such that aba 0b 0 is the boundary
of one of the mn squares in X .

These conditions imply that the universal covering space ~XX of X is a product of
two trees T2m �T2n, where Tk denotes the k-regular tree. The fundamental group
G :¼ p1ðX ; xÞ of X is called a ð2m; 2nÞ-group. By construction, it has a finite pre-
sentation G ¼ ha1; . . . ; am; b1; . . . ; bn jRGi, where RG consists of mn relations of the
form aba 0b 0 ¼ 1 induced from the mn squares of X , and G acts freely and transi-
tively on the vertices of T2m �T2n. Moreover, it follows from the non-positive
curvature of ~XX that G is torsion-free (see [1, Theorem 4.13(2)]). Equipping AutðTkÞ
with the usual topology of simple convergence and AutðT2mÞ � AutðT2nÞ with the
product topology, G can be viewed as a cocompact lattice in AutðT2mÞ � AutðT2nÞ.
We denote by pr1 and pr2 the projections of G to the first and second factors of
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AutðT2mÞ � AutðT2nÞ, respectively, and let Hi, i ¼ 1; 2, be the closure priðGÞ. Fix a
vertex xh of T2m. For each k A N, we can associate to a ð2m; 2nÞ-group G a finite
permutation group P

ðkÞ
h ðGÞ < S2m�ð2m�1Þk�1 which describes the action of StabH1

ðxhÞ
on the k-sphere around xh in T2m. These ‘local groups’ (or at least their n generators
in S2m�ð2m�1Þk�1 ) can be directly computed, given the mn squares of X ; see [4, Chapter

1] or [10, §1.4] for details. Similarly, one defines local vertical permutation groups

P
ðkÞ
v ðGÞ < S2n�ð2n�1Þk�1 , taking the projection to the second factor AutðT2nÞ.
There are several equivalent ways to introduce the notion of ‘irreducibility’

for ð2m; 2nÞ-groups G. For example, G is called irreducible if and only if
pr2ðGÞ < AutðT2nÞ is not discrete. Very useful for our purposes is the following
criterion of Burger and Mozes, a direct consequence of [4, Proposition 1.3] and [4,
Proposition 5.2].

Proposition 1.1 (Burger and Mozes; see also [10, Proposition 1.2(1b)]). Let G be a

ð2m; 2nÞ-group such that nd 3. Suppose that P
ð1Þ
v ðGÞ is the alternating group A2n.

Then G is irreducible if and only if jPð2Þ
v ðGÞj ¼ jA2nj � jA2n�1j2n.

Given a ð2m; 2nÞ-group by its presentation G ¼ ha1; . . . ; am; b1; . . . ; bn jRGi, we
define a normal subgroup G0 of index 4 as kernel of the surjective homomorphism

G ! Z=2Z� Z=2Z

a1; . . . ; am 7! ð1 þ 2Z; 0 þ 2ZÞ;

b1; . . . ; bn 7! ð0 þ 2Z; 1 þ 2ZÞ:

Geometrically, G0 can be seen as fundamental group of a square complex with four
vertices, a 4-fold regular covering of X . The subscript ‘0’ will always refer to this
specific subgroup.

We write G � for the intersection of all finite index normal subgroups of a group G.
Note that G � is a normal subgroup of G and recall that G is called residually finite

if and only if G � is the trivial group. It does not matter whether one takes the inter-
section of all finite index subgroups or of all finite index normal subgroups, because
of the following well-known lemma.

Lemma 1.2. Let G be a group and H a subgroup of finite index ½G : H �. Then there is

a subgroup NcH such that Np G and ½G : N �c ½G : H �!; in particular G � is also

the intersection of all finite index subgroups of G.

Proof. Let k ¼ ½G : H � and write G as a union of left cosets

G ¼
Gk
i¼1

giH:
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Left multiplication giH 7! ggiH induces a homomorphism f : G ! Sk such that
N :¼ ker fcH and ½G : N �c jSkj ¼ ½G : H �! < y.

We write 5g6G to denote the normal closure of the element g A G, i.e. the inter-
section of all normal subgroups of G containing g.

2 The normal subgroup theorem of Burger and Mozes

Let T , T1, T2 be locally finite trees and let G be a ð2m; 2nÞ-group, or more generally a

subgroup of AutðT1Þ � AutðT2Þ. For i ¼ 1; 2, let Hi ¼ priðGÞ and H
ðyÞ
i be the inter-

section of all closed finite index subgroups of Hi. A subgroup H of AutðTÞ is called
locally y-transitive if StabHðxÞ acts transitively on the k-sphere around x in T for
each vertex x of T and each k A N.

The following statement is the general version of the normal subgroup theorem of
Burger and Mozes:

Theorem 2.1 ([4, Theorem 4.1]). Let G < AutðT1Þ � AutðT2Þ be a cocompact lattice

such that Hi is locally y-transitive and H
ðyÞ
i is of finite index in Hi, i ¼ 1; 2. Then, any

non-trivial normal subgroup of G has finite index.

We will use a special version of Theorem 2.1 which directly follows from the dis-
cussion in [3, Chapter 3] and [4, Chapter 5]:

Theorem 2.2 (Burger and Mozes; see also [10, Proposition 2.1]). Let G be an irre-

ducible ð2m; 2nÞ-group such that P
ð1Þ
h ðGÞ, Pð1Þ

v ðGÞ are 2-transitive, and the stabilizers

Stab
P
ð1Þ
h
ðGÞðf1gÞ, Stab

P
ð1Þ
v ðGÞðf1gÞ are non-abelian finite simple groups. Then any non-

trivial normal subgroup of G has finite index.

We can apply Theorem 2.2 for example to a group L < AutðT6Þ � AutðT6Þ, acting
‘locally like A6’.

Example 2.3. Let

RL :¼
a1b1a

�1
1 b�1

1 ; a1b2a
�1
1 b�1

3 ; a1b3a2b
�1
2 ;

a1b
�1
3 a�1

3 b2; a2b1a
�1
3 b�1

2 ; a2b2a
�1
3 b�1

3 ;

a2b3a
�1
3 b1; a2b

�1
3 a3b2; a2b

�1
1 a�1

3 b�1
1

8><
>:

9>=
>;

and L :¼ ha1; a2; a3; b1; b2; b3 jRLi the corresponding ð6; 6Þ-group.

Proposition 2.4. Any non-trivial normal subgroup of L has finite index.

Proof. We compute
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P
ð1Þ
h ðLÞ ¼ hð2; 3Þð4; 5Þ; ð1; 5; 4; 2; 3Þ; ð2; 3; 5; 4; 6ÞiGA6;

Pð1Þ
v ðLÞ ¼ hð2; 3Þð4; 5Þ; ð1; 6; 3; 2Þð4; 5Þ; ð1; 4; 5; 6Þð2; 3ÞiGA6;

and jPð2Þ
v ðLÞj ¼ 360 � 606. It follows from Proposition 1.1 that L is irreducible. Then

we apply Theorem 2.2, using that StabA6
ðf1gÞGA5 is non-abelian simple.

Computational experiments on finite index subgroups of L (for example using
quotpic [6]) lead to the following conjecture:

Conjecture 2.5. The subgroup L0 < L is simple.

3 The simple group S0

The ð8; 6Þ-group D of Example 3.1 was constructed by Wise ([11]) to give the first
examples of non-residually-finite groups in the following three important classes:
finitely presented small cancellation groups, automatic groups, and groups acting
properly discontinuously and cocompactly on CAT(0)-spaces. We embed D in a
ð12; 8Þ-group S such that S has no non-trivial normal subgroups of infinite index. The
explicit knowledge of an element in D� enables us to prove that the subgroup S0 < S
is simple.

Example 3.1. (See [11, §II.5] where D is called D.) Let

RD :¼
a1b1a

�1
2 b�1

2 ; a1b2a
�1
1 b�1

1 ; a1b3a
�1
2 b�1

3 ; a1b
�1
3 a�1

2 b2;

a1b
�1
1 a�1

2 b3; a2b2a
�1
2 b�1

1 ; a3b1a
�1
4 b�1

2 ; a3b2a
�1
3 b�1

1 ;

a3b3a
�1
4 b�1

3 ; a3b
�1
3 a�1

4 b2; a3b
�1
1 a�1

4 b3; a4b2a
�1
4 b�1

1

8><
>:

9>=
>;

and D :¼ ha1; a2; a3; a4; b1; b2; b3 jRDi the corresponding ð8; 6Þ-group.

Proposition 3.2 ([11, [Main Theorem II.5.5]). The group D is non-residually-finite and

a2a
�1
1 a3a

�1
4 A D�.

Observe that D has non-trivial normal subgroups of infinite index, for example the
commutator subgroup ½D;D� with infinite quotient D=½D;D�GZ� Z� Z. Our strat-
egy is to embed D as a subgroup in a ð2m; 2nÞ-group which satisfies the assumptions
of Theorem 2.2, and to apply the following basic lemma.

Lemma 3.3. Let G be a group and H a subgroup. Then H � cG �. In particular, if H is

non-residually-finite, then so is G.

Proof. Let h A H � and Np G any normal subgroup of finite index. It follows that
N VHp GVH ¼ H such that the index ½H : ðN VHÞ�c ½G : N � is finite. Therefore
h A N VHcN.
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Example 3.4. Let

RS :¼ RD U

a1b4a3b4; a1b
�1
4 a2b

�1
4 ; a2b4a5b4; a3b

�1
4 a�1

4 b�1
4 ;

a4b
�1
4 a5b

�1
4 ; a5b1a

�1
6 b2; a5b2a

�1
6 b�1

2 ; a5b3a
�1
5 b�1

3 ;

a5b
�1
2 a�1

6 b�1
1 ; a5b

�1
1 a�1

6 b1; a6b3a
�1
6 b�1

4 ; a6b4a
�1
6 b3

8><
>:

9>=
>;

and S :¼ ha1; a2; a3; a4; a5; a6; b1; b2; b3; b4 jRSi the corresponding ð12; 8Þ-group.

Theorem 3.5. The group S0 is finitely presented, torsion-free and simple.

Proof. Being a finite index subgroup of the ð12; 8Þ-group S, the group S0 is clearly
finitely presented and torsion-free. It remains to prove that S0 is simple.

First we show that S0 has no proper subgroups of finite index. By construction,
RS contains all twelve elements of RD. Hence by [1, Proposition II.4.14(1)], this em-
bedding induces an injection on the level of fundamental groups, i.e. D is a subgroup
of S. Let w :¼ a2a

�1
1 a3a

�1
4 A D < S. By Proposition 3.2 and Lemma 3.3, S is non-

residually-finite such that w A S� p S; hence 5w6S cS� by definition of the normal
closure. Coset enumeration using a computer algebra system like GAP [5] immedi-
ately shows that adding the relation w ¼ 1 to the presentation of S leads to a finite
group of order 4 (the group Z=2Z� Z=2Z); in other words, ½S : 5w6S� ¼ 4. It fol-
lows by definition of S� that S�

c5w6S; thus we have S� ¼ 5w6S. Since S0 is a
normal subgroup of S of index 4, and w A S0, we also get 5w6S ¼ S0. Now it is
easy to see that the group S0 ¼ 5w6S ¼ S� has no proper subgroups of finite index
as follows. Assume that H is a finite index subgroup of S�; then H has finite index
in S and by Lemma 1.2 there is a finite index normal subgroup N of S such that
NcHcS�. By definition of S� we have S�

cN, and hence N ¼ H ¼ S� ¼ S0.
Next we show that S0 has no non-trivial normal subgroups of infinite index. First,

we observe that S is irreducible. This is a direct consequence of the fact that S is non-
residually-finite, since every reducible ð2m; 2nÞ-group is virtually a direct product
of two free groups. Alternatively, we compute that P

ð2Þ
v ðSÞ has order 20160 � 25208

and apply Proposition 1.1, using

Pð1Þ
v ðSÞ ¼ hð1; 2Þð4; 5Þð6; 8; 7Þ; ð1; 2; 3Þð4; 5Þð7; 8Þ; ð1; 2Þð4; 5Þð6; 8; 7Þ;

ð1; 2; 3Þð4; 5Þð7; 8Þ; ð1; 7Þð4; 5Þ; ð2; 8Þð3; 5; 6; 4ÞiGA8:

We also compute

P
ð1Þ
h ðSÞ ¼ hð5; 6Þð7; 8Þð9; 10Þð11; 12Þ; ð1; 2Þð3; 4Þð5; 6Þð7; 8Þ;

ð1; 2Þð3; 4Þð9; 10Þð11; 12Þ; ð1; 11; 5; 9; 10Þð2; 12; 3; 4; 8ÞiGM12;

the Mathieu group which acts 5-transitively on the set f1; . . . ; 12g. Its stabilizer
StabM12

ðf1gÞ is isomorphic to the non-abelian simple group M11 of order 7920. By
Theorem 2.2, any non-trivial normal subgroup of S has finite index. Moreover,
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Table 1
List of simple groups G�

P
ð1Þ
h ðGÞ P

ð1Þ
v ðGÞ G=G� G=½G;G�

A10 A10 Z=2Z� Z=2Z ¼

A10 A10 Z=2Z� Z=2Z� Z=2Z ¼

A10 A10 Z=2Z� Z=4Z ¼

A10 A10 Z=2Z� Z=6Z ¼

A10 A10 Z=2Z� Z=2Z� Z=4Z ¼

A10 A10 Z=2Z� Z=8Z ¼

A10 A10 Z=2Z� Z=10Z ¼

A10 A10 Z=2Z� Z=2Z� Z=6Z ¼

A10 A10 Z=2Z� Z=12Z ¼

A10 A10 Z=2Z� Z=2Z� Z=8Z ¼

A10 A10 Z=2Z� Z=20Z ¼

A10 A12 Z=2Z� Z=2Z ¼

A10 A12 D6 Z=2Z� Z=2Z

A10 A12 Z=2Z� Z=2Z� Z=2Z ¼

A10 A12 S3 � Z=2Z� Z=2Z Z=2Z� Z=2Z� Z=2Z

A10 A12 Z=2Z� Z=4Z ¼

A12 A8 Z=2Z� Z=2Z ¼

A12 A8 Z=2Z� Z=4Z ¼

M12 A8 Z=2Z� Z=2Z ¼

A12 A10 Z=2Z� Z=2Z ¼

A12 A10 D6 Z=2Z� Z=2Z

A12 A10 D5 � Z=2Z Z=2Z� Z=2Z

A12 A10 Z=2Z� Z=2Z� Z=2Z ¼

A12 A10 Z=2Z� Z=4Z ¼

A12 A10 D4 � Z=2Z Z=2Z� Z=2Z� Z=2Z

A12 A10 Z=2Z� Z=6Z ¼

A12 A10 Z=2Z� Z=8Z ¼
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applying Theorem 2.1, any non-trivial normal subgroup of S0 ¼ S� has finite index.
Note that one uses here again the fact that S� has finite index in S (see the reasoning
leading to [4, Corollary 5.4]).

Remark. The simple group S0 has amalgam decompositions of the form F7 �F73
F7

and F11 �F81
F11, where Fk denotes the free group of rank k. This follows from [11,

Theorem I.1.18]; see also [10, Proposition 1.4]. The smallest candidate for being a
finitely presented torsion-free simple group in the construction of virtually simple
groups in [4, Theorem 6.4] has amalgam decompositions F349 �F75865

F349 and
F217 �F75601

F217. The amalgam decompositions of the smallest simple group con-
structed in [4, Theorem 6.5] are F7919 �F380065

F7919 and F47 �F364321
F47.

Remark. It is easy to get an explicit finite presentation of S0. Either we can take the
fundamental group of the covering space corresponding to the subgroup S0 < S, or
we take a presentation of an amalgam mentioned in the remark above (note that
its explicit construction also makes use of this covering space and additionally the
Seifert–van Kampen theorem). A third possibility is to use a computer algebra sys-
tem like GAP [5], and implement a Reidemeister–Schreier method. Applying this
method and Tietze transformations to reduce the number of generators, we get a
presentation of S0 with three generators and 62 relations of total length 4866.

4 Generalization

The proof of Theorem 3.5 shows that if we embed the non-residually-finite ð8; 6Þ-
group D in a ð2m; 2nÞ-group G such that P

ð1Þ
h ðGÞ, P

ð1Þ
v ðGÞ are 2-transitive and

Stab
P
ð1Þ
h
ðGÞðf1gÞ, Stab

P
ð1Þ
v ðGÞðf1gÞ are non-abelian simple, then the normal subgroup

5a2a
�1
1 a3a

�1
4 6G has finite index in G, and G� ¼ 5a2a

�1
1 a3a

�1
4 6G is a finitely presented

torsion-free simple group. In this way, we have constructed many more such simple

Table 1
(Continued)

P
ð1Þ
h ðGÞ P

ð1Þ
v ðGÞ G=G� G=½G;G�

A12 A10 Z=2Z� Z=10Z ¼

A12 A10 Z=2Z� Z=2Z� Z=6Z ¼

M12 A10 Z=2Z� Z=2Z ¼

A12 A12 Z=2Z� Z=2Z ¼

A12 A12 Z=2Z� Z=2Z� Z=2Z ¼

A12 A12 Z=2Z� Z=6Z ¼
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groups G� for

ð2m; 2nÞ A fð10; 10Þ; ð10; 12Þ; ð12; 8Þ; ð12; 10Þ; ð12; 12Þg;

see Table 1. In this table, Dk denotes the dihedral group of order 2k. Note that the
index ½G : G�� can be larger than 4, and that we have ½G;G� ¼ G� in most cases of
Table 1.
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