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Abstract. We construct a finitely presented torsion-free simple group X, acting cocompactly on
a product of two regular trees. An infinite family of such groups was introduced by Burger and
Mozes [2], [4]. We refine their methods and construct Xy as an index 4 subgroup of a group
Y < Aut(J712) x Aut(73) presented by 10 generators and 24 short relations. For comparison,
the smallest virtually simple group of [4, Theorem 6.4] needs more than 18000 relations, and
the smallest simple group constructed in [4, §6.5] needs even more than 360000 relations in any
finite presentation.

0 Introduction

Burger and Mozes constructed in [2], [4] the first examples of groups which are si-
multaneously finitely presented, torsion-free and simple. Moreover, they are CAT(0),
bi-automatic, and have finite cohomological dimension. These groups can be realized
in various ways: as fundamental groups of finite square complexes, as cocompact
lattices in a product of automorphism groups of regular trees Aut(7,) X Aut(T2,)
for sufficiently large m,n € N, or as amalgams of finitely generated free groups. The
groups of Burger and Mozes have positively answered several open questions: for
example Neumann’s question ([9]) on the existence of simple amalgams of finitely
generated free groups, and a question of G. Mess (see [7, Problem 5.11 (C)]) on the
existence of finite aspherical complexes with simple fundamental group. The con-
struction is based on a ‘normal subgroup theorem’ ([4, Theorem 4.1]) which shows
for a certain class of irreducible lattices acting on a product of trees, that any non-
trivial normal subgroup has finite index. This statement and its remarkable proof
are adapted from the famous analogous theorem of Margulis ([8, Theorem 1V.4.9]) in
the context of irreducible lattices in higher rank semisimple Lie groups. Another im-
portant ingredient in the construction of Burger and Mozes is a sufficient criterion
([4, Proposition 2.1]) for the non-residual-finiteness of groups acting on a product of
trees. Even the bare existence of such non-residually-finite groups is remarkable, since
for example finitely generated linear groups, or cocompact lattices in Aut(J) are
always residually finite. The non-residually-finite groups of Burger and Mozes arising
from their criterion always have non-trivial normal subgroups of infinite index, but
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appropriate embeddings into groups satisfying the normal subgroup theorem imme-
diately lead to virtually simple groups. Unfortunately, these groups and their simple
subgroups have very large finite presentations. We therefore modify the constructions
by taking a small non-residually-finite group of Wise [11, §IL.5], embedding it into
a group T < Aut(J12) x Aut(J3) satisfying the normal subgroup theorem, and de-
tecting a simple subgroup X < X of index 4. Several GAP programs [5] have enabled
us to find very quickly the groups ¥ and Xj,. The GAP code of our programs is
documented in [10, Appendix B] for the interested reader.

1 Preliminaries

As mentioned in the Introduction, the finitely presented torsion-free simple groups
of Burger and Mozes and of this paper appear in various forms. Probably the most
comprehensible approach is to regard them as finite index subgroups of funda-
mental groups of certain 2-dimensional cell complexes which are called 1-vertex VH-
T-square complexes in [4], complete squared VH-complexes with one vertex in [11],
or (2m,2n)-complexes in [10]. As in [10], we will call these fundamental groups
(2m, 2n)-groups. Let us briefly recall their definition and some properties needed
in the construction of the simple group Xy. Fix m,n e N and let X be a finite 2-
dimensional cell complex satisfying the following conditions:

« Its 1-skeleton X)) consists of a single vertex x and oriented loops ai', ..., at!,

b, b

' n

« There are exactly mn geometric 2-cells attached to X(). They are squares with
oriented boundary of the form aba’b’, where a,a’ € A :={ay,... ,am}il and
b,b' € B:={by,...,b,}*". We think of the elements in A as ‘horizontal’ edges and
the elements in B as ‘vertical’ edges, and do not distinguish between squares with
boundary aba'b’, a’b’ab, a='b'""'a’~'p~! and a’~'b~'a'b'"!, since they induce the
same relations in the fundamental group of X.

* The link of the vertex x in X is the complete bipartite graph K>, 2, with 2m + 2n
vertices (where the bipartite structure is induced by the decomposition 4 LI B of X!
into 2m horizontal and 2n vertical edges). In other words, to any pair (a¢,b) € A x B
there is a uniquely determined pair (a’,b’) € A x B such that aba’b’ is the boundary
of one of the mn squares in X.

These conditions imply that the universal covering space X of X is a product of
two trees o, X Jo,, Where 7 denotes the k-regular tree. The fundamental group
I':=m(X,x) of X is called a (2m,2n)-group. By construction, it has a finite pre-
sentation I' = {ay,...,am,b1,...,b,| Rry, where Rr consists of mn relations of the
form aba’b’ =1 induced from the mn squares of X, and I' acts freely and transi-
tively on the vertices of I3, X J3,. Moreover, it follows from the non-positive
curvature of X that I is torsion-free (see [1, Theorem 4.13(2)]). Equipping Aut(7%)
with the usual topology of simple convergence and Aut(J,,) x Aut(7,,) with the
product topology, I can be viewed as a cocompact lattice in Aut(75,,) x Aut(F>,).
We denote by pr; and pr, the projections of I to the first and second factors of
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Aut(To,) X Aut(T>,), respectively, and let H;, i = 1,2, be the closure pr;(I"). Fix a
vertex x;, of 75,,. For each k € N, we can associate to a (2m,2n)-group I' a finite
permutation group P,Sk)(l“ ) < Som(am-1y-1 Which describes the action of Staby, (xn)
on the k-sphere around x;, in 75,,. These ‘local groups’ (or at least their n generators
in Sznr(zm_])k—l) can be directly computed, given the mn squares of X; see [4, Chapter
1] or [10, §1.4] for details. Similarly, one defines local vertical permutation groups
Pl )(F) <85, (20 1)1, taking the projection to the second factor Aut(T7,).

There are several equivalent ways to introduce the notion of ‘irreducibility’
for (2m,2n)-groups I'. For example, I' is called irreducible if and only if
pr,(I') < Aut(73,) is not discrete. Very useful for our purposes is the following
criterion of Burger and Mozes, a direct consequence of [4, Proposition 1.3] and [4,
Proposition 5.2].

Proposition 1.1 (Burger and Mozes; see also [10, Proposition 1.2(1b)]). Let I be a
(2m, 2n)-group such that n = 3. Suppose that PS,I)(I“) is the alternating group Aj,.
Then T is irreducible if and only if|P§2)(F)| = |Agy| - |[Agn_1|™.

Given a (2m,2n)-group by its presentation I' = {ay,...,dp,b1,...,b,| Rry, we
define a normal subgroup Iy of index 4 as kernel of the surjective homomorphism

I'—-Z/2Z xZ/2Z
ayy...,am— (14+27Z,0427Z),
bi,....by— (0+2Z,1+27Z).

Geometrically, I'y can be seen as fundamental group of a square complex with four
vertices, a 4-fold regular covering of X. The subscript ‘0’ will always refer to this
specific subgroup.

We write G* for the intersection of all finite index normal subgroups of a group G.
Note that G* is a normal subgroup of G and recall that G is called residually finite
if and only if G* is the trivial group. It does not matter whether one takes the inter-
section of all finite index subgroups or of all finite index normal subgroups, because
of the following well-known lemma.

Lemma 1.2. Let G be a group and H a subgroup of finite index [G : H|. Then there is
a subgroup N < H such that N < G and [G : N] < [G : H|!; in particular G* is also

the intersection of all finite index subgroups of G.

Proof. Let k = [G : H] and write G as a union of left cosets

k
i=1
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Left multiplication g;H — gg;H induces a homomorphism ¢ : G — S; such that
N:=ker¢ < Hand [G: N| < |S| =[G: H]! < .

We write gy to denote the normal closure of the element g € G, i.e. the inter-
section of all normal subgroups of G containing g.

2 The normal subgroup theorem of Burger and Mozes

Let 7, T}, T be locally finite trees and let I" be a (2m1, 2n)-group, or more generally a
subgroup of Aut(7}) x Aut(7»). Fori=1,2, let H; = pr;(I') and Hl.(%) be the inter-
section of all closed finite index subgroups of H;. A subgroup H of Aut(T) is called
locally oco-transitive if Staby(x) acts transitively on the k-sphere around x in 7" for
each vertex x of 7" and each k € N.

The following statement is the general version of the normal subgroup theorem of
Burger and Mozes:

Theorem 2.1 ([4, Theorem 4.1]). Let I' < Aut(7T)) x Aut(7») be a cocompact lattice
such that H; is locally co-transitive and wa is of finite index in H;, i = 1,2. Then, any
non-trivial normal subgroup of T has finite index.

We will use a special version of Theorem 2.1 which directly follows from the dis-
cussion in [3, Chapter 3] and [4, Chapter 5]

Theorem 2.2 (Burger and Mozes; see also [10, Proposition 2.1]). Let I" be an irre-

ducible (2m,2n)-group such that Pﬁll)(l"), Pﬁl)(r) are 2-transitive, and the stabilizers

Stabpm(r)({l}), Stame(r)({l}) are non-abelian finite simple groups. Then any non-
h v

trivial normal subgroup of T has finite index.

7

We can apply Theorem 2.2 for example to a group A < Aut(Zs) x Aut(J), acting
‘locally like Ag’.

Example 2.3. Let

alblal‘lbl‘l, albza]_lb3_17 a1b3a2b2_],
Ry = albglaglbz, azblcl;]bz_l, azbzailbgl,
a2b3a§1b1, azbglaﬂ)z, azbflaglbfl
and A := {ay,az, a3, b1, by, b3 | R ) the corresponding (6, 6)-group.

Proposition 2.4. Any non-trivial normal subgroup of A has finite index.

Proof. We compute
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P(A) = ((2.3)(4.5),(1,5,4,2,3),(2,3,5,4.6)) = 4q,
PIV(A) =<(2,3)(4,5),(1,6,3,2)(4,5),(1,4,5,6)(2,3)) = A,

and |P,(J2) (A)] =360 - 60°. 1t follows from Proposition 1.1 that A is irreducible. Then
we apply Theorem 2.2, using that Stab,, ({1}) = 45 is non-abelian simple.

Computational experiments on finite index subgroups of A (for example using
quotpic [6]) lead to the following conjecture:

Conjecture 2.5. The subgroup Ay < A is simple.

3 The simple group Xy

The (8,6)-group A of Example 3.1 was constructed by Wise ([11]) to give the first
examples of non-residually-finite groups in the following three important classes:
finitely presented small cancellation groups, automatic groups, and groups acting
properly discontinuously and cocompactly on CAT(0)-spaces. We embed A in a
(12,8)-group X such that ¥ has no non-trivial normal subgroups of infinite index. The
explicit knowledge of an element in A* enables us to prove that the subgroup £y < X
is simple.

Example 3.1. (See [11, §I1.5] where A is called D.) Let

—17-1 —1p—-1 —17-1 -1 -1
aibia; by, aibra'byt, aibay b3y, aibyay b,

— -1, -1 —1p—-1 —17-1 —1p—-1
RA = a1b1 ay b3, a2b2a2 bl s a3b1a4 b2 ; a3b2a3 bl 5
—17-1 -1 -1 —-1,-1 —17-1

a3b3a4 b3 y a3b3 a, bz, a3b1 ay b3, a4b2a4 bl

and A := {ay, ay,as,as,b1, by, b3 | Rp) the corresponding (8, 6)-group.

Proposition 3.2 ([11, [Main Theorem 11.5.5]). The group A is non-residually-finite and
way'aza;! e A

Observe that A has non-trivial normal subgroups of infinite index, for example the
commutator subgroup [A, A] with infinite quotient A/[A,A] = Z x Z x Z. Our strat-
egy is to embed A as a subgroup in a (2m, 2n)-group which satisfies the assumptions
of Theorem 2.2, and to apply the following basic lemma.

Lemma 3.3. Let G be a group and H a subgroup. Then H* < G*. In particular, if H is
non-residually-finite, then so is G.

Proof. Let he H* and N < G any normal subgroup of finite index. It follows that
NNH < GNH = H such that the index [H : (NN H)] < [G : N] is finite. Therefore
he NNH <N.
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Example 3.4. Let

-1 —1 —1,—-1p-1
a1b4a3b4, a1b4 a2b4 s a2b4a5b4, a3b4 ay b4 s
Rs := R, U a4b;1a5b;1, a5b1aglb2, a5b2a6’1b2’1, a5b3a5’1b3’1,
—1,-17-1 -1, -1 —1p—-1 -1
a5b2 dg bl y asbl dg bl, a6b3a6 b4 s Cl(,b4a6 b3

and X := {ay, ay, as,au, as, ag, b1, by, b3, ba | Ry the corresponding (12, 8)-group.
Theorem 3.5. The group X is finitely presented, torsion-free and simple.

Proof. Being a finite index subgroup of the (12, 8)-group X, the group X is clearly
finitely presented and torsion-free. It remains to prove that X is simple.

First we show that Xy has no proper subgroups of finite index. By construction,
Ry contains all twelve elements of Rx. Hence by [1, Proposition 11.4.14(1)], this em-
bedding induces an injection on the level of fundamental groups, i.e. A is a subgroup
of =. Let w := aray'aza;' € A < . By Proposition 3.2 and Lemma 3.3, ¥ is non-
residually-finite such that w € * <o X; hence {w)y < X* by definition of the normal
closure. Coset enumeration using a computer algebra system like GAP [5] immedi-
ately shows that adding the relation w = 1 to the presentation of X leads to a finite
group of order 4 (the group Z/2Z x Z/27Z); in other words, [X : {w)s| = 4. It fol-
lows by definition of £* that £* < {w)s; thus we have £* = {w)s. Since Z; is a
normal subgroup of ¥ of index 4, and w e Xy, we also get {w)s = Xy. Now it is
easy to see that the group £y = {w)y = X* has no proper subgroups of finite index
as follows. Assume that H is a finite index subgroup of £*; then H has finite index
in ¥ and by Lemma 1.2 there is a finite index normal subgroup N of X such that
N < H <X". By definition of X* we have X* < N, and hence N = H = X" = X,.

Next we show that X has no non-trivial normal subgroups of infinite index. First,
we observe that X is irreducible. This is a direct consequence of the fact that X is non-
residually-finite, since every reducible (2m,2n)-group is virtually a direct product
of two free groups. Alternatively, we compute that Py (X) has order 20160 - 25208
and apply Proposition 1.1, using

P(Z) = ((1,2)(4,5)(6,8,7),(1,2,3)(4,5)(7,8), (1,2)(4,5)(6,8,7),
(1’ 2’ 3)(4a 5)(71 8)7 (17 7)(47 5)7 (27 8)(37 57 674)> = A8~

We also compute

P (E) = ((5,6)(7,8)(9, 10)(11,12), (1,2)(3,4)(5,6)(7.8).
(1,2)(3,4)(9,10)(11,12),(1,11,5,9,10)(2,12,3,4,8)> =~ M3,
the Mathieu group which acts 5-transitively on the set {1,...,12}. Its stabilizer

Stabyy,, ({1}) is isomorphic to the non-abelian simple group M, of order 7920. By
Theorem 2.2, any non-trivial normal subgroup of X has finite index. Moreover,
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Table 1
List of simple groups I'*
PYT) | PV r/r* I/[T,T]

Ao Ao Z)2Z x 1)2Z _

Ao Ao Z2Z x Z)2Z x Z/2Z =

Ao Ao Z/2Z x Z/AZ =

Ao Ao Z)27 x /6L _

Ato A | ZPZx 222 x 2)4Z -

Ao Ao Z/2Z x Z/8Z =

Ao Ao Z)27Z x Z/10Z =

Ato A | zZpzZxz)2I*2/6L -

Ao Ao Z)2Z x Z)12Z —

Ao Ay | zZpzxz)22x2)/82 -

Ao Ay Z/27Z x Z/20Z =

Ao A Z)2Z x Z)2Z =

Ao Ap D¢ Z)27 x Z)2Z
A An | zZpzx2)22 %222 —

Ao A Sy x Z2LXZ2Z | Z)2Z x Z)2Z x Z)2Z
A1 A Z)2Z x Z)AZ —

A Ag Z)2Z x Z)2Z —

A As Z)2Z x Z)4Z -

M, As Z)2Z x L)2Z =

A Ao Z2Z x Z/2Z =

A Ao D¢ Z)2Z x Z)2Z
A Ao Ds x Z)2Z Z)2Z % Z)2Z
A A | Z2Z < Z)2Z x 222 —

A Ao Z)27 x Z)AZ —

A Ao Dy xZ)2Z Z)2Z x Z)2Z x Z)2Z
Az Ao Z2Z xZ/6Z =

Aiz Ao Z/2Z x Z/8Z =

369
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Table 1
(Continued)

P | PI(D) r/r /[l 1]
A Ao Z/2Z x Z/10Z =
A Ao Z2Z x Z)2Z x Z/6Z =
M, Ao Z/2Z x Z/2Z =
A A Z/2Z x Z)2Z =
A A | Z2Z X Z/2Z x Z/2Z =
A A Z)2Z x Z/6Z =

applying Theorem 2.1, any non-trivial normal subgroup of £, = X* has finite index.
Note that one uses here again the fact that X* has finite index in X (see the reasoning
leading to [4, Corollary 5.4]).

Remark. The simple group X, has amalgam decompositions of the form F; *p, F;
and Fi; *p, F11, where Fy denotes the free group of rank k. This follows from [11,
Theorem 1.1.18]; see also [10, Proposition 1.4]. The smallest candidate for being a
finitely presented torsion-free simple group in the construction of virtually simple
groups in [4, Theorem 6.4] has amalgam decompositions F349 % F3a9 and
F517 %pg, F217. The amalgam decompositions of the smallest simple group con-
structed in [4, Theorem 6.5] are F919 *py0es F7919 and Fa7 % gy, Fa7.

Remark. It is easy to get an explicit finite presentation of X. Either we can take the
fundamental group of the covering space corresponding to the subgroup Xy < X, or
we take a presentation of an amalgam mentioned in the remark above (note that
its explicit construction also makes use of this covering space and additionally the
Seifert—van Kampen theorem). A third possibility is to use a computer algebra sys-
tem like GAP [5], and implement a Reidemeister—Schreier method. Applying this
method and Tietze transformations to reduce the number of generators, we get a
presentation of Xy with three generators and 62 relations of total length 4866.

4 Generalization

The proof of Theorem 3.5 shows that if we embed the non-residually-finite (8,6)-
group A in a (2m,2n)-group T such that P( )(1"), Pﬂl)(l") are 2-transitive and
Stame ({1}) Stabp(l ({1}) are non- abehan simple, then the normal subgroup

<<a2a1 a3a4 'St has ﬁnlte 1ndex in T, and T'* = aza; 'aza; 'Yy is a finitely presented
torsion-free simple group. In this way, we have constructed many more such simple
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groups I'* for
(2m,2n) € {(107 10), (10, 12), (12,8), (12, 10), (12, 12)}7

see Table 1. In this table, D, denotes the dihedral group of order 2k. Note that the
index [I" : T'*] can be larger than 4, and that we have [I',I'] = I'" in most cases of
Table 1.
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