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Objectives: The aim of this study was to investigate the frequency of CYP2B6 polymorphisms (accord-
ing to ethnicity) and the influence of heterozygosity and homozygosity on plasma concentrations of
efavirenz and nevirapine.

Methods: Following written informed consent, 225 Caucasians and 146 Blacks were recruited from the
German Competence Network for HIV/AIDS. Plasma concentrations of efavirenz and nevirapine were
assessed by HPLC, and genotyping for 516G>T, 983T>C and 1459T>C polymorphisms in CYP2B6 was
conducted by real-time PCR-based allelic discrimination.

Results: The minor allele frequency for 516G>T, 983T>C and 1459T>C was 0.29, 0 and 0.08 in
Caucasians and 0.34, 0.07 and 0.02 in Blacks, respectively. Two Black patients with the 983C allele
receiving efavirenz were identified and both were withdrawn from therapy within 1 week of sampling
due to toxicity. In multivariate analyses, efavirenz and nevirapine plasma concentrations were signifi-
cantly associated with 983T>C (P < 0.0001 and P 5 0.02, respectively), 516G>T (P < 0.0001 and
P 5 0.002, respectively) and time of drug analysis post-dose (P < 0.0001 for both). Body mass index
was independently related to efavirenz (P 5 0.04) but not nevirapine concentrations, and age was
related to nevirapine (P 5 0.05) but not efavirenz concentrations. Consistent with other studies,
1459C>T was not associated with plasma concentrations of either drug (P > 0.05 for both drugs).

Conclusions: This is the first report that the 983T>C genotype (part of the CYP2B6*18 haplotype)
impacts on nevirapine plasma concentrations and the first study to assess the impact of 983C homo-
zygosity on efavirenz concentrations. These data have implications for administration of non-
nucleoside reverse transcriptase inhibitors to Black patients.
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Introduction

Drug treatment in HIV disease is characterized by variable
responses, in terms of both efficacy and toxicity. Genetic and
environmental factors are important determinants of this varia-
bility, although the relative contributions are unclear and likely
to vary with different drugs (see Owen et al.1 for review).

Efavirenz and nevirapine are metabolized by CYP2B6
(although CYP3A also contributes to nevirapine metabolism).
Single nucleotide polymorphisms (SNPs) and haplotype organiz-
ation of CYP2B6 in Caucasians were originally described by
Lang et al.,2 who showed a reduced hepatic CYP2B6 protein
expression and activity in carriers of the 516G.T (rs3745274)
and 1459T.C (rs3211371) polymorphisms. However, the
association with protein expression and activity was not statisti-
cally significant for 516G.T, although the authors acknowl-
edged the limitation of the sample size. With respect to HIV, the
role of the 516G.T SNP in disposition and treatment response
to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is
now well established.3 – 9 Moreover, a recent study indicated that
efavirenz dose reduction according to 516G.T genotype was a
feasible strategy.10

Recently, the 983T.C SNP (rs28399499) was described in
Black populations. This polymorphism results in an amino acid
change in the CYP2B6 protein (Ile328Thr), and heterozygosity
has been shown to impact upon efavirenz pharmacokinetics.11,12

Furthermore, a laboratory-based assessment of this polymorph-
ism indicated that it may represent a null allele.11 Investigation
of the 983T.C polymorphism in various populations has shown
that the allele is absent in Caucasian populations, yet its fre-
quency is as high as 7.5% in African-Americans and
Ghanaians.13 However, to date, no homozygotes for this poly-
morphism have been described.

The aim of this study was to investigate the frequency of
CYP2B6 polymorphisms (516G.T, 983T.C and 1459T.C)
and the influence of heterozygosity and homozygosity for these
polymorphisms on plasma concentrations of efavirenz and nevir-
apine in a cohort of Caucasian and Black patients from the
German Competence Network for HIV/AIDS. In addition, the
association with gender, ethnicity, weight, height, alcohol con-
sumption, smoking status, glutamic oxaloacetic transaminase
(GOT) and glutamic pyruvic transaminase (GPT) was also deter-
mined. Finally, a multivariate analysis was conducted using best
subset analysis.

Patients and methods

Patients

Whole blood and plasma were provided by the German Competence

Network for HIV/AIDS. Three hundred and seventy-one patients
(225 Caucasians and 146 Blacks), with age range from 21 to 82
(median ¼ 43) years, who were on stable efavirenz- (n ¼ 186) or
nevirapine- (n ¼ 185) containing HAART for at least 3 months,
were included in the study. Median (range) CD4 counts were 487

(24–1690) cells/mm3, and 88% had undetectable plasma viral RNA.
Ethics approval was granted by the Ethics Committee of the
Ruhr-Universität Bochum, Germany, and local Ethics Committee
approval was obtained at each site. Written informed consent was
obtained.

Genotyping

Total genomic DNA was isolated using the QIAamp DNA mini

kit according to the manufacturer’s instructions. Following extrac-
tion, purity was assessed by comparing the A260 and A280 ratio.
DNA was quantified using PicoGreenw (PG) dsDNA Quantitation
Reagent (Molecular Probes, CA, USA) and normalized to 20 ng/mL.

Pre-amplification for exon 4, exon 9 and exons 7 and 8 (com-
bined) was first conducted to discriminate from the CYP2B6 pseu-
dogene (CYP2B7) by modification of previously reported
methods.2 Genotyping for 516G.T, 983T.C and 1459C.T was
then performed on the resultant amplicons by real-time PCR

allelic discrimination using standard methodology (958C for
15 min followed by 40 cycles of 958C for 15 s and 608C for
1 min) in a DNA Engine Opticonw 2 system (MJ Research Inc.,
USA). Full PCR conditions as well as primer and probe sequences
are available on request.

Quantification of drug levels

Plasma obtained from blood samples was heat-inactivated, and efa-
virenz and nevirapine concentrations were determined (median time
post-dose was 10 h) using HPLC with UV-Detection using pre-
viously validated assays as described elsewhere.14,15 The Liverpool
Laboratory participates in an external quality assurance scheme

(KKGT, The Netherlands).

Statistical analysis

All data are given as median (range), unless otherwise stated.
Genotypes were tested for Hardy–Weinberg equilibrium by x2 test
of observed versus predicted (from allele frequency) genotype fre-

quencies. Normality of the data was assessed using a Shapiro–Wilk
test. Subsequently, univariate statistical analysis was conducted by
simple linear regression (continuous data) or one-way analysis of
variance (categorical data). Missing values were imputed by
regression against efavirenz concentrations, and multivariate analysis

was conducted by multiple linear regressions using best subset
selection.

Results

Genotype frequencies

When x2 test of observed versus predicted genotype frequencies
was conducted, all polymorphisms were found to be in Hardy–
Weinberg equilibrium. The frequencies of 516G.T, 983T.C
and 1459C.T are given in Figure 1.

Efavirenz plasma concentrations

In the entire cohort, efavirenz plasma concentrations were 2077
(487–21 486) ng/mL. In the univariate analysis, 516G.T [1779
(530–26 018), 2299 (487–11 198) and 6248 (1345–23 592) ng/
mL for GG, GT and TT, respectively; P , 0.0001], 983T.C
[2068 (530–11 198), 2076 (1269–6835) and 23 418 (20 818–
26 018) ng/mL for TT, TC and CC, respectively; P , 0.0001],
body mass index (BMI) (R2 ¼ 0.02; P ¼ 0.05), alcohol con-
sumption (R2 ¼ 0.03; P ¼ 0.04) and time post-dose of drug
analysis (R2 ¼ 0.22; P , 0.0001) were all significantly associ-
ated with efavirenz plasma concentrations (Table 1). Following
multivariate analysis, only 516G.T (P , 0.0001), 983T.C
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(P , 0.0001), BMI (P ¼ 0.04), and time post-dose
(P , 0.0001) remained statistically significant (Table 1).

Neither 1459C.T [2241 (530–26 018) and 1816
(792–4357) ng/mL for CC and CT, respectively], gender [2168

(487–26 018) and 1974 (688–23 592) ng/mL for male and
female, respectively], ethnicity [2143 (669–11 198) and 1963
(487–26 018) ng/mL for Caucasian and Black, respectively],
GOT (R2 ¼ 0.01), GPT (R2 ¼ 0.002), smoking status

Figure 1. The impact of 516G.T (a and b), 1459C.T (c and d), and 983T.C (e and f) polymorphisms in CYP2B6 on efavirenz (a, c and e) and nevirapine

(b, d and f) plasma concentrations according to ethnicity (see text for experimental procedures). The genotype frequencies within each group are also given.
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(R2 ¼ 0.02), nor age (R2 ¼ 0.001) was significantly associated
with efavirenz plasma concentrations (Table 1).

Nevirapine plasma concentrations

In the entire cohort, nevirapine plasma concentrations were 5589
(149–21 026) ng/mL. In the univariate analysis, 516G.T [5184
(1894–11 158), 6132 (149–11 689) and 6699 (4164–21 026) ng/
mL for GG, GT and TT, respectively; P ¼ 0.007], 983T.C
[5483 (864–21 026) and 8685 (4890–10 294) for TT and TC,
respectively; P ¼ 0.02], age (R2 ¼ 0.03; P ¼ 0.03), and time
post-dose of drug analysis (R2 ¼ 0.09; P ¼ 0.0001) were all sig-
nificantly associated with nevirapine plasma concentrations
(Table 1). Following multivariate analysis, 516G.T (P ¼ 0.002),
983T.C (P ¼ 0.02), age (P ¼ 0.05), and time post-dose
(P ¼ 0.0004) all remained statistically significant (Table 1).

Neither 1459C.T [5670 (864–21 026) and 5243 (2230–
7436) ng/mL for CC and CT, respectively], gender [5893 (149–
11 689) and 5483 (864–21 026) ng/mL for male and female,
respectively], ethnicity [5893 (1894–11 689) and 5138 (149–
21 026) ng/mL for Caucasian and Black, respectively], BMI
(R2 ¼ 0.01), GOT (R2 ¼ 0.004), GPT (R2 ¼ 0.006), alcohol
consumption (R2 ¼ 0.002), nor smoking status (R2 ¼ 0.005)
was significantly associated with nevirapine plasma concen-
trations (Table 1).

Discussion

The CYP2B6 gene is highly polymorphic with numerous SNPs
and associated haplotypes. The association of the 516G.T SNP
with efavirenz and nevirapine pharmacokinetics is well estab-
lished, but a recent study indicated that the 516TT genotype was
not associated with the time to failure of efavirenz-containing
regimens or increases in the CD4 cell count.16 This polymorph-
ism did predict CNS adverse effects at week 1 of therapy, but
tolerance developed despite the higher plasma efavirenz
exposure.16 Nonetheless, a recent manuscript described the use
of 516G.T (along with 499C.G and 785A.G) in successful
dose reduction of efavirenz in a Japanese cohort.10 The cost-
effectiveness of this approach now requires further investigation.

Genetic variability has been assessed in different ethnicities
and a number of novel functional variants discovered,11,17

among these, the 983T.C polymorphism is a suspected null
allele. With the increasing use of NNRTIs in developing
countries, it is imperative that the functional significance of
these alleles on NNRTI therapy in different sub-populations be
assessed. The 983T.C polymorphism has only previously been
identified in Hispanic and African populations,11,12 with allele
frequencies of 1.1% in Hispanic Americans and up to 7.5% in
some African countries.13 We observed this allele with a fre-
quency of 2.6% in Blacks residing in Germany.

In agreement with previous studies, we observed a significant
gene dose effect between 516G.T and efavirenz and nevirapine
plasma concentrations. In addition, 983T.C genotype was also
associated with plasma concentrations of both drugs. Importantly,
homozygote patients in the efavirenz arm discontinued therapy 1
week after blood was collected for this study (but before drug
analysis) due to CNS toxicity. Previous studies have illustrated that
heterozygosity of this polymorphism (present in the CYP2B6*18
allele) is associated with efavirenz concentrations.12 However, no
homozygotes for this polymorphism have been previously
reported. Therefore, this is the first study to illustrate the phenoty-
pic consequence of homozygosity for efavirenz and to show an
association with nevirapine plasma concentrations. Further studies
are now required to determine the impact of 983T.C on long-
term efficacy and toxicity of this important class of drug.
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Table 1. Multivariate analysis

Covariate R2 Univariate P Multivariate P

Efavirenz

gender N/A 0.21 N/A

ethnicity N/A 0.15 0.23

516G.T N/A <0.0001 <0.0001

983T.C N/A <0.0001 <0.0001

1459C.T N/A 0.06 0.78

BMI 0.02 0.05 0.04

GOT 0.01 0.15 0.52

GPT 0.002 0.55 N/A

alcohol status 0.03 0.04 0.25

smoking status 0.02 0.09 0.35

age 0.001 0.66 N/A

time post-dose 0.22 <0.0001 <0.0001

Nevirapine

gender N/A 0.62 N/A

ethnicity N/A 0.50 N/A

516G.T N/A 0.007 0.002

983T.C N/A 0.02 0.02

1459C.T N/A 0.18 N/A

BMI 0.01 0.20 N/A

GOT 0.004 0.42 N/A

GPT 0.006 0.33 N/A

alcohol status 0.002 0.55 N/A

smoking status 0.005 0.34 N/A

age 0.03 0.03 0.05

time post-dose 0.09 0.0001 0.0004

Associations with a P value less than 0.15 in the univariate analysis and
therefore included in the multivariate analysis are shown in bold, as are
those associations with a P value less than 0.05 in the multivariate analysis.
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