
J. Plasma Physics (1983), vol. 29, part 2, pp. 299-315 299

Printed in Qreat Britain

Electrical conductivity for radio-frequency fields in
strongly magnetized plasmas with density fluctuations

By YU. S. SAYASOV AND CH. P. RITZ

Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland

(Received 16 August 1982 and in revised form 29 October 1982)

A general investigation of the electrical conductivity for radio-frequency (RF)
fields in strongly magnetized plasmas with small-scale density fluctuations is
performed within the cold plasma hydrodynamical approximation. It is shown
that in such plasmas an RF phenomenon similar to the Bohm diffusion exists:
the presence of stochastic RF electric field in a turbulent plasma can lead to a
strong enhancement of the RF currents flowing in the direction of the applied
electric field components transverse to the magnetic field. The appearance of
these turbulent drift currents favours energy transfer from the RF fields to the
plasma and thus leads to their stronger damping. This effect allows us to inter-
pret quantitatively the enhanced damping of the magnetosonic waves observed
in several experiments. The magnetized radially inhomogeneous cylindrical
plasmas in these experiments are characterized by density fluctuations due to
drift instabilities. The theory has also a number of other applications; an example
is given of the whistlers damped by the ionospheric density fluctuations.

1. Introduction
The mechanism of electrical conductivity in strongly magnetized plasmas with

density fluctuations involves an important feature (similar to Bohm diffusion)
which was first discussed for static electrical fields by Yoshikawa & Rose (1962)
and by Kadomtsev (1965). Qualitatively their arguments can be presented as
follows. Suppose a homogeneous static magnetic field Bo = (0,0, Bo) and an
electric field E = (0, Ey, 0) are applied to a homogeneous quiescent plasma of
density n (figure 1). If the plasma is strongly magnetized, i.e.

(w^ = eB0/mec is the electron cyclotron frequency, ve is the electron collision
frequency, e > 0), the electrons perform mainly drift motion directed along the
x axis and the corresponding drift current is j% = - envdx, vdx = cEy/B0. Only a
small fraction of this current transforms owing to collisions into the current
jy = jx vj(oce directed along the y axis, i.e. along the applied electric field Ey. The
situation can, however, change substantially if the electron density possesses a
small fluctuating part n', the spatial variation of the electron density being given
by n(r) = n(r) + n'(r). The applied electric field cannot remain homogeneous, and
new random field components such as E'x arise in this case. The crossed electric
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300 Yu. S. Sayasov and Ch. P. Ritz

FIGURE 1. Schematic representation of the electron motion: (a) without density fluctu-
ation, (b) with density fluctuation. j°, electron current due to E x Bo drift; j°, electron
current due to collisions; j t v , turbulent drift current.

E'x and magnetic Bo fields provoke an electron drift motion along the y axis with
drift velocity v'dy = cEx/B0. The resulting turbulent drift current can be
expressed as

')v'dv = - ec(j t y = -

(The bar means an averaging over the spatially fluctuating quantities. The term
env'dy in (1) disappears in this averaging.) Using for the fluctuating field E'x a
plausible estimate E'x ~ Eyn'/n and inserting it into (1), we get

j t y = -en{n'/nfcEy/B0 = j°(An/?i)«.

Accordingly, the ratio of the total current^ = jy+jty, flowing along the applied
field Ey, to the current $} in the quiescent plasma is

(2)

Here {kn/rif = (n /n)2 is the mean square of the relative density fluctuation
which we will assume to be small. The quantity vett = ve + (A»/»)2 o)ce is the
effective collision frequency. The ratio vett[ve can be very large if (Aw)/ri)2 > ve/(oce.
Thus, the presence of small density fluctuations in strongly magnetized plasmas
can change drastically the mechanism of the static electrical conductivity.
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Electrical conductivity 301

These considerations allow a natural generalization for RF fields, if the electron
cyclotron frequency coce greatly exceeds not only the collision frequency ve but
also the RF frequency w. In this case an electron moving in the crossed electric
E'x and magnetic Bo fields performs many loops within the RF period 2n/o).
Thus we can retain for the turbulent drift current the same estimate as above.
Comparing the turbulent drift current with the amplitude $ = j%{ve — iw)/wce of
the RF current in the quiescent plasma, we find that the ratio

fv+h

can be very big if (An/n)2 > \ve-iw\/(i)ce. (These estimates involve an assump-
tion, which is not always correct, that the ions do not influence the electron
turbulent drift motion. However, they give the right order of magnitude of the
effect.) So the presence of small density fluctuations in a strongly magnetized
plasma can change drastically the mechanism of the RF conductivity and, hence,
the corresponding RF field distribution. It means that substantial discrepancies
can be expected between experiments on RF field propagation in turbulent
plasmas and the results of calculations performed without including the density
fluctuations.

Such discrepancies were indeed found several times in experiments on the
damping of magnetosonic waves (MSW), excited in cylindrical radially inhomo-
geneous magnetized plasmas. In the papers by Lammers (1974) and Kramer
(1975) a strong reduction of the plasma admittance (as compared with that
calculated for the quiescent plasma) was observed. Anomalously low resonance
amplification of the MSW was further observed by Blackwell & Cross (1979) and
by Hoegger et al. (1980, 1981) and Schneider et al. (1980). The latter authors
supposed the anomalous damping to be due to the density fluctuations measured
in the edge region. As theoretical considerations show (see figure 5 in Timofeev &
Shvilkin (1976)), fluctuations due to drift instabilities must exist under the
conditions described by Lammers (1974) and Kramer (1975) too. In experiments
made by Ritz et al. (1982) and Vaucher et al, (1983), an investigation of the MSW
damping was performed with simultaneous measurement of the plasma turbu-
lence. It was found that the anomalously strong damping of MSW observed in
these plasmas correlates with the density fluctuations due to the drift instabilities.

It appears therefore desirable to perform a systematic investigation of such
effects by extending the theory formulated in the static case by Yoshikawa &
Rose (1962) and by Kadomtsev (1965) to RF fields. A preliminary attempt of
this kind was made by Sayasov (1981), where it was shown that the experiments
mentioned above can be interpreted by the fact that the RF conductivity tensor
for strongly magnetized plasmas changes substantially, if one accounts for the
presence of the small density fluctuations. This conclusion was confirmed by
more detailed calculations described in Ritz et al. (1982).

In the following, a derivation of the RF conductivity tensor for strongly
magnetized plasmas with density fluctuations is presented (§ 2) in a more general
form than hitherto; see Sayasov (1981) and Ritz et al. (1982). The tensor is then
applied to a systematic investigation of the electromagnetic wave (EMW)
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302 Yu. S. Sayasov and Ch. P. Eitz

propagation in such plasmas under different conditions. In §3, EMW propa-
gation transverse to the magnetic field Bo is investigated. It is shown that the
drastic discrepancies between the theory for the quiescent plasma and the experi-
ments on the damping of the MSW can be attributed to the presence of the
density fluctuations. In §4 our theory is applied to the investigation of EMW
propagation parallel to the magnetic field Bo. The particular case of ionospheric
whistlers is considered.

2. Derivation of the RF conductivity tensor for strongly magnetized
plasmas with density fluctuations

In what follows, we use some basic assumptions mainly concerning the nature
of the density fluctuations in the plasma.

(i) The fluctuations are independent of the strength of the applied RF field,
i.e. they are considered as pre-existing in the plasma and not affected by the
applied RF field.

(ii) The frequency wn of the density fluctuations is small compared with the
RF frequency w. This allows us to treat the density fluctuations as a random
function of the space co-ordinates only.

(iii) Space scales of the density fluctuations are small compared with some
effective length pertaining to the RF field. This allows us to consider the fluctu-
ating part of the RF field as being quasi-static (see Appendix A).

(iv) Space scales of the density fluctuations are big compared with the plasma
Debye length. This permits the assumption of quasi-neutrality of the plasma.
The assumptions (i)-(iv) appear to be satisfied for the plasmas studied in the
experiments mentioned above.

In addition it will be assumed that the cold plasma hydrodynamic approxi-
mation is valid. It implies some constraints on the electron and ion cyclotron
radii, which must be small compared with the relevant plasma dimensions. We
will consider a three-component magnetized plasma consisting of electrons
(mass me, charge - e, density n), ions (mass m^ charge e, density n) and neutrals.
However, to simplify the algebra, we will use a quasi two-fluid theory in which
the neutrals will be assumed to be at rest. (Their presence will be, however,
accounted for via the electron-neutral collision frequency). This assumption is
valid if the ion-neutral collision frequency vin is small compared with w, vin <̂  w.
The conditions o)n <̂  w, vin <̂  w mean that we must refrain from considering the
limit a) -> 0. We also mention that in this limit some thermal effects, e.g. the ion
viscosity, which we disregarded, may not be negligible; see Yoshikawa & Rose
(1962)). Nonlinear effects will be neglected too; this means that we will neglect
both the change in the density fluctuations and in the electron temperature under
the influence of the RF fields (Ginzburg 1961, p. 733). This is justified for the
small RF powers used in the experiments analysed in § 3. Finally we recall, as
stated in the introduction, that we treat only the case for which the electron
cyclotron frequency greatly exceeds the collision frequency and the RF frequency
(wce > ve, o)). Beyond this frequency range the influence of the density fluctuations
on the electrical conductivity remains small.
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Electrical conductivity 303

The assumption (ii), allowing us to represent the electron density as being
time-independent, in the form n(r) = n(r) + n'(r), means that the fields excited
in a plasma by a harmonic EM field of frequency w, will be harmonic too, i.e. all
the quantities considered below must vary with the time as exp( — io)t). The
Maxwell equations for the spatially dependent amplitudes E, B have accordingly
the form

curlE = i - B , curlB = - t - E + — j . (3)
c c c

These equations will be complemented by the Ohm's law (valid for vin <̂  w)

where
2 _ _f^o h _ ? o
ft - ce ci> ci ~ m ^ . jg^

(see Ginzburg 1961, p. 172).
Following Kadomtsev (1965, p. 119), we replace E, B, j , n by the sums of the

average quantities E, B,J, n and the random quantities E', B', j ' , n'. For the
latter we will use the Fourier representations

E' = SEie*-', % = £<<?*•'. (5)
k n k

Inserting the definitions E = E + E', B = B + B , j = J+ j ' , n = n + n' into (3)
and (4), we can split (3), (4) into the equations

curlE = t - B , curlB = - i - E + — J, (6)
c c c

(7)

governing the average quantities and

curlE' = »-B', curlB' = - i - E ' + — j ' , (8)
c c c

where

V = =— > 0 =&+ —

for the fluctuating quantities.
The term j t = j { +jt = <r0JL'n'/n represents the turbulent drift current. It can

be specified through the Fourier components E£, n'k (equation (5)) as follows:

T nklEkiexp[t(k1 + k8).r]). (10)
t o

k
The first term in the bracket can be identified as the mean turbulent current

Tt = *oS»-*E;. (10a)
A:
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304 Yu. S. Sayasov and Gh. P. Ritz

The neglect of the second term in the bracket jj, involving the randomly distrib-
uted phases (kt + k2). r, can be justified within the random phase approximation
(see, for example, ter Haar 1958; Krall & Trivelpiece 1973, p. 550). Except for the
neglect of this term, the splitting of the equations (3), (4) into the equations (6)-(9)
is an exact operation and we can in this way consider strong turbulence effects
in the sense that the turbulent drift_current j t in (6) does not need to be small.

To calculate explicitly the current j t , we replace the equation curl E' = i((o/c) B'
in (8) by curl E' = 0, implying that E' = — V^, where <j>' = 2k0ke*- r is an electro-
static potential (see Appendix A). Accordingly, we can represent the current j t in
(10) by

; &

(The coefficients wk possess the property wik = wk*, since n' is a real quantity.)
A connexion between the Fourier coefficients mk (considered to be known) and

the Fourier coefficients ^k will be found now, following Kadomtsev (1965, p. 122).
Equation (9) provides the Ohm's relation between the current density j " and the
quantity 8' = - V0' + (n'/n) E:

j ' = a<T, o = j - o - 2 ax O j , (12)

\ 0 0 J

0*1 = "̂  '• TTft 7w» « ^*5> =

), P = (w^ - (oci) (o, «J,e

Inserting (12) into the continuity equation div j ' = 0 (simplified under assump-
tion (iv)) and using the Fourier series (5), we get a relation between 0k and wk:

where

Xl~<rr Q'
(It is assumed that the z axis coincides with the direction of the magnetic field
Bo; repeating indices imply summation over /? = x, y, z.)

We now replace the sum over k in (11) by the integral over components of the
k vector defined in the spherical co-ordinate system as

kz = k cos 6, kx = k sin 6 cos <f>, ky = A; sin 0 sin 0.

In this way we get an explicit expression for the turbulent drift current j t :

where a,fi = x,y,z and the coefficients afi are defined by (13). In (15) q(8,<j>)
means the angular distribution of the density fluctuations

( q(d,<j>)dcosdd<f>=l. (16)
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Electrical conductivity 305

We are now able to write down the conductivity tensor at via the Ohm's law
for the average current (7), i.e. j = a tE. Inserting (15) into (7) and introducing
the tensor o - 1 inverse to o, we rewrite (7) in the form

Here I is the unit tensor. Multiplying this equation from the left by the tensor a
we find the Ohm's law j = otE with the conductivity tensor

A (17)

accounting for the density fluctuations. Note that at is also valid under conditions
when the elements of the tensor (Aw/w)2 oA are not small compared with the
corresponding elements of the tensor o for the quiescent plasma. This tensor can
be used for investigation of various electrodynamical effects provoked in the
magnetized plasma by the density fluctuations, for instance via the equation

fit yj ^Tf

curl curl E = -y etE, et = I + — ot (18)
C to

resulting from (6) and (17).
We now bring the tensor et to a workable form. The function q(0, (f>) must be

invariant relative to an inversion of the direction of the magnetic field Bo, i.e.
it must allow the property q(6, <j>) = q(^n — 8, <j)). As a consequence the terms in
the tensor A containing kxkz, kylcz disappear in the result of the integration over
6. Further simplification can be achieved if the angular distribution of the
fluctuations q(0, <j>) depends only slightly upon the angle <f>, where <f> lies in the
plane perpendicular to Bo. (The spectra investigated by Ritz et al. (1982) satisfy
approximately this requirement.) Then q(0, (j>) ~ q(6) and the integrals over <f>,
containing the products kxky, disappear. From (18) we thus get (the bars
indicating averaged values will be dropped in the following):

(19)
\ 0 0 V!

where

x+n2_p2A> y Q2-P2'

n
and

_ f"q(6) singed cos 6

The off-diagonal elements of the tensor (19) contain in fact some additional terms
proportional to (Aw/n)2. However, these terms always remain very small owing
to our basic assumption (Aw/%)2 <̂  1, and for this reason they were omitted. In
contrast, the terms containing (Aw/w)2 in the diagonal elements of (19) must be
retained since they are multiplied by a large factor J1(P

2/Q2 +1) (see AppendixB).
II PLA 29
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306 Yu. 8. Sayasov and Ch. P. Ritz

The integrals (20) can be evaluated in a general form if the frequency w greatly
exceeds the ion cyclotron frequency (oci. We then have (since P > \Q\) the
inequality \xi\ — \P2/(Q(o(b) + ive))\ ~ |wcew/(wci(w + i^e))| |> 1. (It must, how-
ever, be stressed here that, for w < o)ci, \x%\ ~ 1.) Treating cos 8 = fi as a complex
variable, we can calculate the integral ^ by means of the residue theorem as
follows:

where

) ^ f
Jr

and /i0 is a root of the equation 1 + x\ I*? — 0 having Im /i0 > 0 (it can be shown
that there is only one such root). The symbol F means integration over a half-
circle of the radius \/i\ = 1 in the upper half-plane corresponding to the complex
variable /i. The neglect of the integral over F in (21) is justified if M 4, |^2?(/*o)|
where M = max \q(/i) (1 —/*2)| on F. This condition is satisfied for the isotropic
turbulence (q = const.) and also for a quite general class of anisotropic turbulence
spectra. In the following we use, for w $> wci, the estimate (21), thus conjecturing
that the real turbulence spectra belong to this class.

The parameter / i n (21) is evidently an anisotropy factor: 1=1 for isotropic
turbulence (q = const.) and / > 1 if the density fluctuations are greatly extended
along the magnetic field Bo. Thus, the density fluctuation function q{O,<p) is
replaced in the tensor at by the two parameters (A»/w)2 and I, which can be
found experimentally.

The integral ./2 i
n (20) can be evaluated using the assumption

\ qdcos6/(1 +xlcos*6) ~ v^2 ~ 0
Jo

and the normalization (16):

Jo

J'qxlcos26dcosd f f qdcosd
^ 7 5 5-T— = 2?H qdcosd27r\ *

f qdcosd
qdcosd-27r\ „ * . ^ ~ 1. (22)
^ Jl+^lcos2^ v '

According to this estimate the turbulent current j u directed along the applied
magnetic field Bo is of the order of (Aw/n)2 and hence will be neglected.

We can now rewrite the elements of the tensor (19) under the assumption
a) > o)ci using the estimate (21) in the form

44 < ^I (23)

\ n ) 4 y?

This form of the conductivity tensor was used by Vaucher et al. (1982).
To gain some physical insight, we split this tensor into an electronic part €e

and an ionic part e{: {o)%i = 47re2»/mj)

(24)
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Electrical conductivity 307
with

£ e = 1 + e c, ( 2 g )

The tensor ee is modified for directions perpendicular to the magnetic field Bo by
the density fluctuations, while the tensor e£ corresponding to the ionic part of the
conductivity remains unaffected by the density fluctuations. However the ions
influence indirectly the electronic part ce by virtue of the quasi-neutrality of the
plasma. Note that the term (An/n)2 Ia^/Qi in (25) can be very large, even for
(An/n)2 <| 1, since / > 1 and toce/\Qi\ > 1. It means that the influence of the
density fluctuation on the electrical conductivity can be important in spite of the
smallness of (An/n)2.

3. Propagation of EM waves in turbulent plasmas transverse to the
magnetic field Bo

The propagation of a plane EMW in an infinite plasma transverse to the
applied magnetic field Bo (i.e. in the r direction) is known to be characterized by
the squared complex index of refraction

e± = c2k2/(o2 = (e2-g2)/e, where E, B oc exp (iwc^eir).

Using the tensor (19) and neglecting the displacement current (i.e.

\a%eQA/{<P-P*)\ > 1)

we can simplify e± as follows:

^ QA <u| ( l -

where w|,e/w| = c2/cA,c± = B0/(4:nn'mi)i is the Alfve"n velocity. Omitting the term
proportional to (An/n)2 we get the well-known expression

for the squared complex index of refraction. This expression corresponds to
magnetosonic waves in a quiescent plasma, valid for o) <̂  wce. The presence of the
term proportional to (An/n)2 in (26) can lead to substantial changes of the real
and imaginary part of e± and, thus, to new and important effects.

We shall now discuss e± (equation (26)) for the two cases o>ci <̂  w <̂  o)ce and
w < u)ci.

For o) > (oci we can represent ex, making use of (23), in alternative forms

c* 1 c2 1 - (ofi/aft (1 + A Be (g))
6 (27)

where

. . 7T(An\2

The quantity <r± is the effective electronic transverse conductivity. Owing to the
factor l/Ae this conductivity can be strongly reduced by the density fluctuations.
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Electrical conductivity 309

vett is the effective collision frequency which is increased, as compared with ve,
by the density fluctuations. For (oci <̂  w < wce this enhancement is given by
vett/ve = 1 + A ~ A > 1 if A > 1. On the other hand, forw <| ve, (ove > w| we get in
accordance with the estimate (2) vett/ve ~ |77-(Aw/w)2 Io)ce/ve. As follows from (27),
the fluctuations can affect the dielectric constant ex also in the limit ve -> 0, since
for A Re (£) >̂ 1 they lead to a strong shift of the cut-off frequency defined by the
equation (1 + A Re (£)) «2/w£ = 1.

Turning now to the frequency diapason o) < o)ci, we find from (19) that
\J±\ ~ 1, P[\Q\ ;$ 1 must hold. Thus, the term due to the fluctuations in (26)
appears to be of the order of (An/ra)2, i.e. its influence must be negligible. This
conclusion can be interpreted as follows. For w < coci the drift motion of the
ions is influenced strongly by the applied magnetic field Bo. Both electronic and
ionic turbulent drift currents arise now under the influence of the density
fluctuations. The ion turbulent drift current is directed opposite to the turbulent
drift current of the electrons, shown in figure 1, and hence these currents com-
pensate each other. Thus the strong electrodynamical effects due to the density
fluctuations must disappear. It means that the turbulent plasma becomes
transparent to the MSW for <o < o)ci.

These results are illustrated in figure 2 where the values of Re(e±), Im(ex),
Re (e*), Im (e|) as given by (27) are plotted against/ = (i)/(2n) for an argon plasma.
We have assumed in figure 2 that the plasma is homogeneous and ascribed to it the
same parameters of turbulence as those measured by Ritz et al. (1982) for the non-
homogeneous argon plasma: {ri) = 1-5 x 1012 cm~3, <Te> = 2-5 eV, Tt = 0-3 eV,
p0 = 0-3 mTorr, Bo = 2 kG, /ce = 5-4 GHz,/ct. = 73 kHz. <ra>, <Te> are the electron
density and temperature averaged over the radius. (It appears that these para-
meters are typical for the turbulence due to the drift instabilities.) The calcu-
lations presented in figure 2 were performed with a model-type fluctuation
spectrum |w£|2 = (in)-1 (An/n)2 AfKexV (- KK~ K \kz\) under the assumption
As/Ar > 1. (The anisotropy factor / introduced in (21) is equal to / = 2AZ/Ar

according to this model). It is evident from figure 2 that the presence of small
density fluctuations in strongly magnetized plasmas can lead to a drastic change
of the refractive index Reex and of the absorption coefficient Imei. It is seen, in
particular, that under the influence of the density fluctuations the maximum of
the absoprtion coefficient Im e* (which for An/n = 0 is situated at w ~ a)h) shifts
to lower frequencies and in the region of our first magnetosonic resonance
(l.MSR) strongly exceeds the absorption coefficient corresponding to the
quiescent plasma. In the region of the lower-hybrid frequency <oh and above it
the damping by turbulence appears to be, in contrast, not so strong as for the
quiescent plasma.

In the case of standing MSW excited in cylindrical plasmas of radius a,
magnetized by an axial magnetic field Bo, the radial distributions of the EM field
components E& (azimuthal electric component) and Bs (axial magnetic com-
ponent) are described for an infinitely long cylindrical plasma and an infinitely
long exciting coil by the equations
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FIGURE 3. Normalized amplitude BN = \Bz(0)/Bz{a)\ for an inhomogeneous argon plasma.
Theoretical calculations: (a) plasma without fluctuation, (6) with fluctuation (^n/n)m[ix =
11% (other parameters are the same as in figure 2). (c) Experiment. (For additional
details, see Ritz et al. (1982).)

As boundary condition we use the requirement that Bz{a) is equal to the vacuum
field.

In the experiments the quantities BN and <j>, defined by

were measured. A quantitative comparison of the experimental (Ritzetal. 1982)
and theoretical values of BN(OJ) and <j>{o)) for the plasma characterized by the
distributions [n(r), (Aw/n) (r), Te(r)] is obtained by solving (28) numerically. This
calculation was performed with a code written by Rauchle (1972). The result is
presented in figure 3. As it shows, the theory provides a satisfactory quantitative
explanation of the drastic discrepancies between experiment and theory for a
quiescent plasma. Further experiments and new calculations for a plasma of
finite length (Vaucher et al. 1983) confirm this agreement.

In the experiments with hydrogen plasmas (Lammers 1974; Kramer 1975) the
plasma admittance i/R, allowing the power P absorbed in the plasma to be
expressed by the formula

P = | U\*/(2R), (U = 2naE^(a) is the voltage)

was measured. For a long cylindrical plasma of length L{L^> a), excited by a coil
of the same length, the plasma admittance can be expressed through the
dimensionless surface impedance (as defined in Landau & Lifshitz 1960, §67),
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FIGURE 4. Calculated plasma admittance Re (l/Z*) of the inhomogeneous cylindrical argon
plasma. : plasma without density fluctuation, : with density fluctuation.

Z = E^(a)/Bz(a) by the formula I/It = cL/(8n2a)Re(l/Z*). Kramer (1975,
table 1) found that the maximal values of the plasma admittance are lower by a
factor 0-1-0-01 than those following from the quiescent plasma theory. Direct
comparison of the present theory with these experiments is impossible since the
parameters of the hydrogen plasma turbulence were not measured. However, we
performed calculations of the admittance of the argon plasma investigated by
Ritz et al. (1982) under the same assumptions as those explained in figure 3.
Results of these calculations presented in figure 4 show that the turbulent plasma
admittance proves to be, in general, much lower than the corresponding quantity
following from the quiescent plasma theory. As a crude estimate shows, the
maximal plasma admittance for the parameters of the turbulence in this radially
inhomogeneous plasma is lower by a factor l/[(An/7i)^ax (Ar/a) /(m^/mji] ~ 0-1
than expected by the classical theory. ((An/w)^ax is the maximal value of the
relative density fluctuation, Ar is the thickness of the sheath in which the
fluctuations occur). Moreover, the dependence l/E on the frequency w (figure 4)
does not show a pronounced periodic structure. This is again in contrast to the
quiescent plasma theory and in accordance with the measurements of Lammers
(1974). Thus, it appears that including the density fluctuations allows us to
explain qualitatively the lowering of the plasma admittance in such experiments.
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4. Propagation of EM waves in turbulent plasmas parallel to the
magnetic field Bo

In the case of a plane wave E, Bex: exp (iwc^ejz) propagating in an infinite
plasma parallel to the magnetic field Bo (z direction) the effective dielectric
constant eB is given by e, = e + g. We restrict ourselves to the case of electron
whistlers (e = e — g) and to the frequency interval toci <| w < wA <| o>ce with the
assumption vt <| w. The refractive index Re ef and the absorption coefficient
K = Imef are given now according to (23) by the formulae:

A - J^'/ft*)*. (29)±\n) \mj
As follows from (29), the presence of the density fluctuations is equivalent to an
increase of the collision frequency vc by the factor 1 + A which can be very big if
the fluctuation level An/w is high enough.

It is tempting to apply these considerations to ionospheric whistlers, which
often disappear for reasons which are not yet well known. Assuming that a
whistler propagates in the ionosphere perpendicular to the Earth's surface and
nearly parallel to the line of force of the Earth's magnetic field, we can charac-
terize the damping of the whistlers in the ionosphere by the quantity

fft.
y = (OC1 K dh.

Jo

h is the height measured from the Earth's surface and h0 ~ 103km. The factor A
in (29) can be estimated roughly assuming An/n = 01 (this is a plausible value
for the disturbed D, E and F ionospheric layers according to table 5-2 in Al'pert
(1972)), / = 50 (the fluctuations are highly extended along the lines of force of
the Earth's magnetic field, see Rawer & Suchy (1967, p. 355)), {mjm^ ~ 200.
We get in this way A ~ 100. Thus, the absorption coefficient K increases by a
factor of 100 owing to the density fluctuations in this case. Taking the average
values ve = 103 sec"1, o)pe = 5 x 107 sec"1, w B = 7 x 106 sec"1 according to table 3
in Ginzburg & Ruhadze (1975) and a typical whistler frequency o) = 2 x 104 sec"1,
we can estimate the damping of the whistlers. For a relatively quiescent iono-
spheric plasma (Aw/n = 0-01-0-001) we get y ~ 0-5. In this case the whistlers
will not be damped very much during the passage through the ionosphere. If we
assume, however, that the absorption coefficient K increases under the influence
of stronger turbulences (Aw/w ~ 0-1) by a factor A = 100, we get y ~ 50. Such
whistlers will be completely damped in the ionosphere.

Thus, this preliminary estimate seems to confirm a conjecture formulated
first by Budden (1959) that the disappearance of the whistlers may be due to the
increase of the density fluctuations in the ionosphere.

5. Conclusion
We have performed a general investigation of some qualitatively new electro-

dynamical phenomena arising in strongly magnetized plasmas under the
influence of small density fluctuations. The basic idea is that the presence of
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such fluctuations can lead to a strong redistribution of the electric currents
provoked by the RF electric field E.

In a quiescent strongly magnetized plasma the electrons perform mainly a
drift motion perpendicular to the static magnetic field Bo and to the RF field E.
The currents j directed along the E field and the electromagnetic energy transfer
to the plasma j . E are small in this case. The appearance of stochastic fields E',
directed perpendicular to Bo and E, due to density fluctuations, provokes strong
drift currents j t flowing along [E' x Bo], i.e. along E. Owing to these drift currents
the EM energy transfer j t . E to the plasma may be strongly increased.

Under the basic assumptions that the density fluctuations are not affected by
the applied EM field and that their space scales are small, we were able to derive
a general expression for the electrical conductivity tensor for such plasmas
((17), (23)). This theory allows us to interpret in a natural way results of several
experiments, in which anomalously strong damping of the magnetosonic waves
in turbulent strongly magnetized plasmas was observed (§3). The theory has
also a number of other applications, as demonstrated in § 4 for the example of
ionospheric whistlers.

We would like to express our appreciation to Dr E. Rauchle, University of
Stuttgart, who kindly made a computer program available to us. This work was
supported by the Swiss National Science Foundation.

Appendix A
To estimate errors involved in the quasi-electrostatic approximation (replace-

ment of the equation curl E' = i(o)/c) B' in (8) by curl E' = 0) we will represent
the fluctuating field components E', B' in the form E' = E; + E;, B' = B; + Bi-
Here EQ, BQ correspond to the quasi-electrostatic approximation (which will use
under conditions allowing us to neglect the displacement current). They are
governed by the equations

curlE; = 0, curlB; = — <*<§", <§" = - V f + - E . (Al)
C 71

Ej and Bj are corrections to this approximation. The vector EJ satisfies the
equation curl ~E[ = i(oj/c) H'o. Using the Fourier representations

we get the following equations for the Fourier coefficients Ejk, B'ok:

[kxEifc] = ^B; k , [kxB;k] = - ^ a ^ , *£ = - » k & + »;.E. (A2)
c c

They provide a solution

^ ) , e = | , (A3)
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for the coefficient E'lk. According to (10) the corresponding correction Sjt to the
turbulent drift current is

^ ^ J (A4)
If the electric field E possesses only components perpendicular to the static
magnetic field Bo (as is the case for cylindrical MSW investigated in § 3), the
correction Sjt can be estimated via (A 4), under the same assumptions as those
leading to the tensor (23), in the form

^ ) ' " - <A5»

Here Ar is an effective length of the density fluctuation in the direction perpendi-
cular to the magnetic field Bo. Comparison of (A 5) and of (11) gives

Under the conditions assumed in § 3 this quantity is always very small.

Appendix B
Exploiting the symmetry properties of the angular distribution q(6, <f>) assumed

in the text (q(6, <j)) is ^-independent and q(d) = q{\n - 6)) we can bring the tensor
A in (15) to the form

A 0 , (Bl)
0

where Jx, */2 are the integrals defined in (19). The product of the tensors o (12)
and A reduces now to

(B 2)
0 J

Using relation (14) Xi = cjo'i = iP/Q, we can rewrite the elements of the tensor
(B 2) also in the form

With (17) and (B 2) we can write the dielectric tensor (18) in the explicit form

e ^ °\ / /An\« \
- ^ e 0 , g = g l l + 2[ — ) A b (B3)

0 0 VJ X X n ' '
where the elements e, rj, g are defined in (19).

One must stress here the basic difference between the terms containing (An/»)2

in the diagonal and in the off-diagonal elements of (B3). In the former the
parameter (An/n)2 (which was assumed to be small from the very beginning) is
multiplied by the factor (P2/Q2+l) which remains very large in strongly
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magnetized plasmas for the frequences o> > u)ci. This factor reaches values of the
order of (o)ce/((o + ive))

2 for w > o)h or w^/w^ for w < wh. In contrast, in the off-
diagonal elements of (B 3) the parameter (An/n)2 is multiplied by the factor Ux,
having the property 2 | ^ | < 1. Thus the term containing (An/n)2 in g of (B 3) can
always safely be neglected, as was done in the expression (19).
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