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Abstract

The identification of large regulatory and signalling networks involved in the control of crucial

cellular processes calls for proper modelling approaches. Indeed, models can help elucidate

properties of these networks, understand their behaviour and provide (testable) predictions by

performing in silico experiments. In this context, qualitative, logical frameworks have emerged as

relevant approaches, as demonstrated by a growing number of published models, along with new

methodologies and software tools. This productive activity now requires a concerted effort to

ensure model reusability and interoperability between tools.

Following an outline of the logical modelling framework, we present the most important achieve-

ments of the Consortium for Logical Models and Tools, along with future objectives. Our aim is to

advertise this open community, which welcomes contributions from all researchers interested in

logical modelling or in related mathematical and computational developments.

Contact: contact@colomoto.org

1 Motivation

The rapid development of novel biomolecular technologies has fos-

tered the study of complex regulatory systems during the last dec-

ade. Mathematical models have become invaluable tools for

understanding the dynamical behaviour of such systems. There are

various types of formalisms, which differ in the level of detail and

model complexity (de Jong, 2002; Karlebach and Shamir, 2008).

Logical (or logic), discrete models comprise the most abstract dy-

namic models and constitute nowadays a popular modelling frame-

work (for reviews see Bornholdt, 2005; Saadatpour and Albert,

2013; Samaga and Klamt, 2013). In logical models, components are

represented by discrete variables with a small range of possible val-

ues, with the most extreme case being Boolean models, where each

component can be either active or inactive (Kauffman, 1969;
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Thomas, 1973). Regulatory effects are defined by logical rules or

lookup tables. The relative simplicity of these models provides sev-

eral advantages over more complex modelling formalisms, such as

systems of differential equations. In particular, logical models do

not require precise knowledge of kinetic parameters, which makes

them suitable for large models comprising up to several hundreds of

components. Due to their qualitative nature, it is possible to incorp-

orate various kinds of information in logical models. For example,

natural-language statements from publications or expert knowledge

on regulatory interactions can easily be transformed into logical

rules (Helikar et al., 2012).

Although logical models provide a rough approximation of con-

centration levels, they can reproduce the behaviour of many biolo-

gical systems as illustrated in examples of case studies later. The

discrete step functions resulting from simulations of logical models

constitute a plausible simplification of typical sigmoidal response

curves (de Jong, 2002; Thomas and d’Ari, 1990). Biomolecular

measurements can be analysed in the discrete framework by apply-

ing specialized discretization procedures (Shmulevich and Zhang,

2002; Hopfensitz et al., 2012).

Logical models have been successfully applied to a wide range of

regulatory and signalling systems, in a variety of organisms.

Examples include: yeast cell cycle (Davidich and Bornholdt, 2008;

Fauré and Thieffry, 2009; Li et al., 2004; Orlando et al., 2008;

Todd and Helikar, 2012), pathogen–host interactions (Franke et al.,

2008; Madrahimov et al., 2012; Thakar et al., 2007), development

of the sea urchin embryo (Peter et al., 2012), development of

Drosophila melanogaster (Albert and Othmer, 2003; Sánchez and

Thieffry, 2001, 2003; Sánchez et al., 2008), mammalian cell cycle

(Fauré et al., 2006), murine cardiac development (Herrmann et al.,

2012), determination of cell fates in human (Calzone et al., 2010;

Grieco et al., 2013), multiscale signal transduction in human epithe-

lial cells (Helikar et al., 2013), human T-cell receptor signalling

(Saez-Rodriguez et al., 2007; Zhang et al., 2008) and T-cell differen-

tiation (Naldi et al., 2010).

The Consortium for Logical Models and Tools (CoLoMoTo,

http://colomoto.org) was informally launched during a meeting at

Instituto Gulbenkian de Ciência (Portugal) in November 2010 to

gather interested scientists and promote the cooperative develop-

ment of shared standards and tools. This meeting was followed by

a second one at the European Bioinformatics Institute (United

Kingdom) in March 2012, which focused more specifically on a

common standard for the exchange of logical model [the Systems

Biology Markup Language (SBML) Level 3 Qualitative Models

or ‘qual’ package, see later]. The third meeting was held at

the University of Lausanne (Switzerland) in April 2014,

bringing together 22 participants from 14 different institutions. It

included sessions devoted to scientific presentations covering

methodological and computational developments, as well as mod-

els for real case applications. In addition, the participants dis-

cussed several topics requiring community consensus, including

the development of standards, collaborative tools and model

repositories.

CoLoMoTo is an international open community that brings to-

gether modellers, curators and developers of methods and tools. It

aims at the definition of standards for model representation and

interchange, and the establishment of criteria for the comparison of

methods, models and tools. Finally, CoLoMoTo seeks to promote

these methods, tools and models.

We first outline the logical modelling approach to then present

the recent achievements of the consortium, as well as the outcomes

of the last meeting regarding future directions.

2 Logical modelling

The definition of qualitative models mainly relies on the network

architectures and does not require precise knowledge about the bio-

logical mechanisms at stake (Samaga and Klamt, 2013). This makes

the logical framework attractive for studying large interaction

networks.

Simulations and analyses of logical models can highlight the key

characteristics of the behaviour of such large systems, but they can-

not make detailed predictions on concentration levels. For such pur-

poses, more complex models, such as biochemical models, may be

more appropriate. These detailed models, in turn, are usually limited

to much smaller networks and require a high amount of information

and measurements. Hence, the purpose of logical modelling is often

to give an overview of a regulatory system and to summarize the

current state of research. They may be complemented by refined

submodels that study parts of the network in detail.

In what follows, we discuss the main distinct flavours of the lo-

gical framework, in what concerns the specification of models and

their dynamics. Properties of interest and current methods for their

analysis are then briefly reviewed.

2.1 Logical models
The development of a logical model for a regulatory and/or signal-

ling network usually starts with the definition of a graph encompass-

ing relevant regulatory components (nodes or vertices) and their

interactions (directed edges or arcs). A variable is associated

with each component to denote its concentration or activity level.

A logical function (or logical rule) defines the evolution (target value

of the corresponding variable) of each component, depending on the

levels of its regulators.

In Boolean models, all variables are binary (0 or 1), (Kauffman,

1969; Thomas, 1973; Bornholdt, 2005), whereas in multivalued

models, variables can take additional (discrete) values (Thomas,

1991). This extension is useful to account for distinct functional lev-

els of a regulator when, for instance, it targets different components.

The definition of the logical rules may be difficult as combined

effects of interactions targeting the network components are often

hard to obtain. Some models are thus limited to specific classes of

functions that derive from the network architecture. This is the case

of threshold functions successfully applied to cell cycle modelling

(Li et al., 2004; Bornholdt, 2008) or canalyzing functions as dis-

cussed in Kauffman et al. (2003). To handle uncertainty,

Shmulevich et al. (2002) proposed to randomly select the logical

functions, according to predefined specifications. Finally, Random

Boolean Networks, where both interactions and logical functions

are randomly assigned, are employed to study global properties of

certain classes of networks (Kauffman, 1993).

2.2 Logical states and dynamics
The current state of a logical model is encoded in a vector giving the

levels of all components. As the number of integer values allowed

for each variable is finite (and usually small), the state space is also

finite. The evolution of each component at a given state is deter-

mined by its logical function but may also depend on the updating

policy.

In the synchronous policy, all components are updated simultan-

eously, leading to a deterministic behaviour, where each state has at

most one successor. With the asynchronous policy, only one compo-

nent is updated at a given time i.e. a state has as many successors

as the number of components called to update. More sophisticated

policies have been proposed, which can be deterministic
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(e.g. synchronous block-sequential as in Robert, 1986; Aracena

et al., 2013), yield multiple successors (e.g. asynchronous priority

classes, Fauré et al., 2006) or introduce stochastic choices (e.g. ran-

domly selecting a successor from those enabled by the asynchronous

policy, Harvey and Bossomaier, 1997). An exhaustive list of these

policies is beyond the scope of this letter, but it is important to real-

ize that model behaviour may substantially change with the choice

of updating.

2.2.1 Logical framework extensions

Briefly described later are a few of the extensions that have been

proposed to extend the scope of the formalism.

Time delays were an early concern of R. Thomas [see Thomas

and d’Ari (1990) and Thomas (2013) for a recent discussion]. As a

matter of fact, several extensions of the logical framework intend to

integrate kinetic information. For example, Siebert and Bockmayr

(2006) considered constraints on delays associated with variables

updates. Boolean models can also be extended by associating dis-

crete time delays with the inputs of the transition functions, hence

incorporating asynchronism in a synchronous updating policy

(Helikar and Rogers, 2009; Müssel et al., 2014).

In Peter et al. (2012), temporal as well as spatial constraints are

simply expressed in the form of additional logical rules.

In classical Boolean networks, external components (input nodes

with no regulator) are fixed at 0 or 1 for the duration of the simula-

tion. Alternatively, the values of these external components can be set

according to a probabilistic distribution over time to cope with vari-

able environmental conditions. Furthermore, the activity levels of indi-

vidual model components can be defined as the ratio of 0’s and 1’s

over a number of time steps and thereby enable analyses mimicking

experimental dose–response curves (Helikar et al., 2012).

Finally, logical models can be refined and translated into con-

tinuous models with similar dynamical properties by generating

standardized ordinary differential equations based on the logical

rules (Di Cara et al., 2007; Wittmann et al., 2009; Ouattara et al.,

2010). Such continuous models introduce numerous parameters,

which then need to be defined or estimated. Alternatively, piece-

wise-linear differential equations (PLDEs) (Glass and Kauffman,

1973) approximate the switch-like properties of regulatory inter-

actions. PLDE can be simulated using the Genetic Network

Analyser (de Jong et al., 2003), provided that qualitative relation-

ships between parameters are defined.

2.3 Analysis of logical models
A first important property of a logical model is the repertoire of its

asymptotic behaviours, namely its attractors. Attractors are sets of

states from which the system cannot escape. They are often assumed

to denote biologically relevant behaviours (Hopfensitz et al., 2013).

For example, stable states may describe cell fates such as differenti-

ation or apoptosis, whereas complex attractors may represent oscil-

latory properties e.g. cell division cycle or circadian rhythms

(Huang, 1999). Alternative stable states have been associated with

multiple differentiated T-helper subtypes (Naldi et al., 2010), with

specific expression patterns associated with the different segments of

fruit fly embryo (Albert and Othmer, 2003), with different cardiac

progenitor cells (Herrmann et al., 2012) and with cell fates in re-

sponse to death receptor engagement (Calzone et al., 2010). In con-

trast, Fauré et al. (2006) associated a complex cyclic attractor with

the oscillatory behaviour of the mammalian cell cycle.

Reachability properties are also of high interest. They represent

the capability of the model to generate particular trajectories.

For example, one can analyse the model to identify a trajectory from

an initial condition towards a specific attractor. Hereafter, we pre-

sent some approaches to assess the dynamical properties of logical

models.

2.3.1 Dynamical analysis

The dynamics of a logical model can be conveniently represented by

a state transition graph (STG), where nodes denote states, whereas

arcs denote enabled state transitions. Each transition may involve

the update of one or more components, as determined by the logical

regulatory functions and the updating policy.

Dynamical properties can be obtained through the analysis of

the STG reachable from a set of initial states (or all possible states

for the complete STG). In this STG, an attractor corresponds to a

terminal strongly connected component (SCC), defined as a max-

imal set of states such that each state can be reached from all other

states and with no transition leaving this set of states.

Whenever a terminal SCC encompasses a unique state, the at-

tractor is a stable state, whereas an SCC containing at least two

states denotes a cyclic attractor. To ease the identification of attrac-

tors and the analysis of STG structures, compact representations can

be generated, including SCC graphs, or more compressed hierarch-

ical transition graphs (Bérenguier et al., 2013).

Moreover, efficient data structures greatly facilitate the identifi-

cation of the attractors in Boolean models (Garg et al., 2008).

To mitigate the combinatorial explosion of the state space, Stoll

et al. (2012) proposed a Boolean Kinetic Monte-Carlo algorithm,

which applies a continuous time Markov process to a Boolean state

space. By assigning a transition rate to each component and con-

sidering time as a real number, it uses Monte-Carlo simulations to

compute the temporal evolution of probability distributions and to

estimate the stationary distribution of logical states.

The verification of reachability properties quickly becomes time

consuming even for small models, calling for semi-automated meth-

ods. One popular approach is model checking (Clarke et al., 2000),

which has been widely used for the verification of software and

hardware systems during the last 30 years. More recently, model

checking has been successfully applied to logical models (Bernot

et al., 2004; Monteiro and Chaouiya, 2012), as well to piecewise-

linear differential models (Batt et al.,2005), and Petri nets (Gilbert

et al., 2007), among others.

2.3.2 Static analysis

Methods were proposed to deduce dynamical information from the

model itself, rather than computing explicit state transitions. In this

context, the first question of interest is the identification of attrac-

tors, which is currently the subject of intense research.

Stable states are independent of the updating policy, have a sim-

ple formal definition and can be efficiently computed using con-

straint-solving methods (Devloo et al., 2003; Naldi et al., 2007) or

polynomial algebra (Veliz-Cuba et al., 2010). In contrast, complex

attractors depend on the updating policy and are more tricky to

compute, in particular in the asynchronous case. A number of meth-

ods have been proposed recently for their identification, including

an efficient SAT-based algorithm for the synchronous case

(Dubrova and Teslenko, 2011). The notion of stability has been

generalized from single states to subspaces of states (Siebert, 2011)

with applications in model reduction and attractor detection. Like

stable states, stable subspaces are independent of the updating policy

and can be computed by constraint-solving methods (Zañudo and

Albert, 2013; Klarner et al., 2014).
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Multistability (existence of multiple attractors) or sustained os-

cillations (or homeostasis) require the presence of positive or nega-

tive regulatory circuits in the corresponding network (Thomas,

1981; Thieffry, 2007; Remy et al., 2008). The connection between

network topology and dynamics is currently studied by several

groups. It can be used to deduce dynamical properties, at least in

some specific cases (Comet et al., 2013).

Finally, model reduction techniques aim at deriving simpler

models preserving most dynamical properties. In this respect, auto-

mated reduction methods facilitate this process by properly rewrit-

ing logical rules (Naldi et al., 2011).

3 Standard and tools

While numerous independent software packages supporting logical

models have been proposed over the years, no standard existed for

exchanging models between them. The CoLoMoTo consortium was

created to foster the design of such standards. Collaborative efforts

within CoLoMoTo already led to a novel model exchange format,

SBML qual, along with a standard Java LogicalModel library to

handle logical models.

SBML qual (Qualitative Models package for SBML) is an exten-

sion of the SBML Level 3 standard (Hucka et al., 2003). It is de-

signed for the representation of multivalued qualitative models of

biological networks (Chaouiya et al., 2013a,b). After various meet-

ings and refinements by logical modelling software developers, this

new package was accepted by the SBML community in 2011 and fi-

nally approved by the SBML Editors in the spring of 2013. SBML

qual is supported in libSBML (Bornstein, 2008) and JSBML (Dräger

et al., 2011). Models encoded in SBML qual can be submitted to the

BioModels database, which also includes a branch dedicated to non-

metabolic models automatically generated from pathway resources

(Chelliah et al., 2013; Büchel et al., 2013).

The SBML qual format supports the definition of the model itself

as a list of components (or SBML species), each with a maximum

value and an optional initial value. Interactions between these com-

ponents and logical rules complete the model definition. This first

version thus accounts for generic multivalued logical models. The

extensions briefly described in Section 2 and simulation settings (e.g.

updating mode, perturbations, etc.) are not yet supported. It is the

goal of the consortium to tackle these issues.

The LogicalModel library provides a reference implementation

of logical models as supported by SBML qual, relying on logical

functions and decision diagrams. While SBML qual is the main

supported format, the API enables the definition of additional im-

port and export formats. The LogicalModel library can thus act as a

format conversion module for tools that do not support SBML qual

directly. It is freely available at https://github.com/colomoto/logical-

model. As shown in Table 1, several tools can now exchange logical

models thanks to the new SBML qual format and this conversion

tool.

4 Conclusions and prospects

Logical modelling of biological regulatory networks constitutes a

very active field involving scientists with diverse interests, ranging

from methodological developments and computational implementa-

tions to biological applications. With the aim to foster synergies be-

tween these multiples developments, the Consortium for the

development of Logical Models and Tools (CoLoMoTo) was

launched 4 years ago and already delivered the following results: (i)

the definition of the SBML Level 3 Qualitative Modelling (SBML

qual) package for the representation of multivalued qualitative mod-

els of biological networks and (ii) the implementation of the stand-

ard LogicalModel library, which can be used by various modelling

and simulation tools.

During the last meeting in April 2014, it was decided to organize

CoLoMoTo activities along four main axes.

The first axis aims at standardization. The reproducibility of re-

sults is enforced by defining and extending standards for the repre-

sentation and interchange of models and their simulation

parameters. Useful enhancements of SBML qual have already been

discussed by the community. Improvements considered include the

definition of models where rules are not (all) instantiated, models

for which timing constraints (or rates) are specified, etc. In addition,

further integration with core SBML Level 3 concepts will be needed.

In particular, such integration would facilitate support of hybrid

models, which combine features of both discrete and continuous for-

malisms. This activity is developed in close connection with the

COmputational Modeling in BIology NEtwork community, which

drives the development of standards for model interchange. One fu-

ture direction addresses the issue of exchanging simulation settings

for logical models, using the simulation experiment description

markup language (Waltemath et al., 2011). Moreover, the adoption

of the kinetic simulation algorithm ontology (KiSAO) will permit a

better description of the algorithms, their parameters and relation-

ships (Courtot et al., 2011). Finally, CoLoMoTo is currently work-

ing on the definition of a controlled vocabulary (ontology) covering

Table 1. Software tools that support the SBML qual format, either directly or through the LogicalModel library

Tool Reference Main features

BoolNet Müssel et al. (2010) R package for the construction, analysis and simulation of Boolean networks, includes a variety

of updating schemes.

The Cell Collective Helikar et al. (2012) Web-based platform for the construction, simulation, and analysis of Boolean-based models.

CellNetAnalyser Klamt et al. (2007) MATLAB toolbox providing a graphical user interface with various computational methods and

algorithms for exploring structural and functional properties of metabolic, signalling,

and regulatory networks.

CellNOpt Terfve et al. (2012) Free open-source (R/BioConductor, Python, and Cytoscape) tool to train logical models to

experimental data, using Boolean, Fuzzy-logic and ODE formalisms.

GINsim Naldi et al. (2009) Java application for the construction and analysis of multivalued logical models.

MaBoSS Stoll et al. (2012) Cþþ software for the simulation of continuous time Markov processes directly derived from

Boolean models.

BoolSim Di Cara et al. (2007) Efficient identification of all the attractors (stable states and cyclic attractors).

SQUAD Construction of continuous dynamical models from logical models.

An updated list with further descriptions and links is maintained at CoLoMoTo’s website (http://colomoto.org/software).
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the essential terms related to logical modelling, with textual defin-

itions and corresponding references.

The second axis aims at defining an umbrella model repository

with links to existing model repositories. Authors of manuscripts

describing new logical models will be encouraged to publish their

models in one of these repositories.

The third axis consists in defining benchmarks for the compari-

son of models and tools. Furthermore, successful modelling collab-

orations between experimentalists and modellers will be

documented, in order to guide novel projects.

The fourth axis is the creation of a repository of methods and

tools that are made available by the different research groups work-

ing on logical modelling. This repository should not only list the dif-

ferent features and functionalities provided by each of the tools and

methods but also provide guidelines for the selection of tools and

methods suitable for typical use cases.

A recently launched portal (http://colomoto.org) provides access

to the reports of the CoLoMoTo meetings, a list of all involved re-

search groups, as well as methods and tools available for the logical

formalism. An important current aim consists in reaching more sci-

entists and making them aware of existing models, methods and

tools, which could be used for their own research lines. We thus con-

clude this letter by warmly inviting the international community

interested in logical modelling to participate in future CoLoMoTo

activities.
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Zañudo,J.G.T. and Albert,R. (2013) An effective network reduction approach

to find the dynamical repertoire of discrete dynamic networks. Chaos, 23,

025111.

Zhang,R. et al. (2008) Network model of survival signaling in large granular

lymphocyte leukemia. Proc. Natl Acad. Sci. USA, 105, 16308–16313.

Development of logical modelling standards and tools 1159

http://cran.r-project.org/web/packages/BoolNet/index.html
http://cran.r-project.org/web/packages/BoolNet/index.html

	btv013-TF1

