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Injections of neural tracers into many mammalian neocortical areas
reveal a common patchy motif of clustered axonal projections. We
studied in simulation a mathematical model for neuronal development
in order to investigate how this patchy connectivity could arise in
layer II/III of the neocortex. In our model, individual neurons of this
layer expressed the activator–inhibitor components of a Gierer–Mein-
hardt reaction–diffusion system. The resultant steady-state reaction–
diffusion pattern across the neuronal population was approximately
hexagonal. Growth cones at the tips of extending axons used the
various morphogens secreted by intrapatch neurons as guidance cues
to direct their growth and invoke axonal arborization, so yielding a
patchy distribution of arborization across the entire layer II/III. We
found that adjustment of a single parameter yields the intriguing linear
relationship between average patch diameter and interpatch spacing
that has been observed experimentally over many cortical areas and
species. We conclude that a simple Gierer–Meinhardt system ex-
pressed by the neurons of the developing neocortex is sufficient to
explain the patterns of clustered connectivity observed experimentally.

Keywords: neural development, reaction–diffusion models, self-
organization, simulation, superficial patch system

Introduction

Focal injections of neural tracers into the neocortex result in
quasi-periodic patchy labeling of somata and axonal termin-
ations that may extend over several square millimeters within
a cortical area (Rockland and Lund 1982, 1983; Rockland
et al. 1982; Gilbert and Wiesel 1989; Lund et al. 2003;
Fig. 1A). These patches are most prominent in the superficial
layers where pyramidal neurons give rise to laterally extend-
ing intralaminar axons that support the clusters of boutons
(Kisvarday and Eysel 1992; Buzás et al. 2006; Binzegger et al.
2007), suggesting that the laminar patches are composed of
neuronal clusters (Muir and Douglas 2011).

The “patch system” (Rockland and Lund 1982; Rockland
et al. 1982) or “daisy architecture” (Douglas and Martin 2004)
is observed across many cortical areas and species. The re-
markably regular scaling of patch diameter to interpatch dis-
tance across these many areas and species (Fig. 1B) suggests
that patches are a fundamental motif of cortical organization
and function (Douglas and Martin 2004; Muir et al. 2011).
Indeed, there is good agreement between the spatial patterns
of the functional domains observed by optical imaging of the
intrinsic signal associated with cortical neuronal activity and
the spatial patterns of the anatomical patches (Muir et al.
2011). The interneighbor distances and angles indicate that
the patches form an hexagonal lattice that is relatively

periodic and isotropic in the visual cortex, but may be less so
in other areas (Muir and Douglas 2011; Muir et al. 2011).

Various explanations have been offered for how this patchy
organization could arise. For example, Mitchison and Crick
(1982) and Buzás et al. (2006) proposed mechanisms that
depend on the developing functional relationship between
neurons in the visual cortex that are already able to respond to
visual stimuli. However, these models are incomplete because
patches are found also in areas other than in visual cortex and
can be observed in a coarse form before the afferents carrying
structured electrical signals arrive in the superficial layers of the
cortex (Price 1986; Callaway and Katz 1990; Ruthazer and
Stryker 1996). These observations imply that the patchy organ-
ization is broadly prespecified, at least on a coarse scale, and
that they are refined later by the suitable patterns of afferent
electrical activity (Luhmann et al. 1986; Wong 1999; Grossberg
and Seitz 2003; Liets et al. 2003; Kanold 2004).

In this paper, we explore the possibility of genetic specifi-
cation of the patch system. Our hypothesis is that a precursor
of the patchy organization develops as early as in the cortical
preplate and that the pattern is preserved during corticogen-
esis and lamination. Neurons preserve clonal features of their
precursors in a columnar fashion due to their migration along
radial glial cells in a manner consistent with Rakic’s protomap
hypothesis (Rakic 1988).

In our model of patch formation, neuronal precursors are ge-
netically disposed to secrete a set of morphogens that are able
to diffuse through the extracellular matrix. These morphogens
are transcription factors whose interactions with the “genome”
follow Gierer–Meinhardt reaction–diffusion dynamics (Turing
1952; Gierer and Meinhardt 1972). Consequently, the precur-
sors of the preplate come to express a two-dimensional peri-
odic profile of morphogens that provides the basis for clusters
of neurons expressing similar profiles. This periodic identity is
inherited from the precursors by their daughter neurons, which
migrate radially to form the superficial cortical layers. When
these migrating neurons come to rest, they extend lateral axons
whose growth cones seek distant target neurons with similar
morphogen expression profiles to their own, so generating the
observed patchy organization.

We have explored this hypothesis using 2 different simu-
lation approaches. For most of the work we used Cx3D
(Zubler and Douglas 2009), in which the detailed physical
mechanisms of neuronal growth and cortical development
can be simulated. We used this software to demonstrate how
a reaction–diffusion system in a layer of progenitor cells leads
finally to the formation of patterned axonal lateral connec-
tions compatible with the observations.
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Our investigations show that the superficial patch system
could be specified in the very early stages of cortical develop-
ment. In particular, we show how a coarse form of this con-
nectivity pattern can be generated without any instructive
electrophysiological activity. Our simulation is in agreement
with and offers an explanation for several experimental
findings.

Materials and Methods
Simulations were performed using the open-source Java Package
Cx3D (Zubler and Douglas 2009; Zubler et al. 2011), available from

http://www.ini.uzh.ch/projects/cx3d/, and with MATLAB (Mathworks
Inc.). The computer used to run simulations had two 12-core pro-
cessors (1.9 GHz, 64 GB of RAM).

Reaction–Diffusion Parameters
We used well established mathematical tools such as linear stability
analysis to provide estimates of the regimes in the parameter space
that lead to the desired pattern class. The parameters used for the
various simulations of the pattern formation are listed in Table 1.

Reaction–Diffusion Mechanism
We used the Gierer–Meinhardt reaction–diffusion system (Gierer and
Meinhardt 1972) for simulating the pattern formation mechanism.
The system is described by the following partial differential
equations:
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where a(x,t) and h(x,t) indicate the activator and inhibitor substance
concentrations at location x and time t, Da and Dh are the morphogen
diffusion coefficients, and ρ is the production coefficient. ma and mh
are the substance decay coefficients, and ra and rh the basal pro-
duction coefficients. Appropriate parameters allow this system to
converge toward a spatially patterned equilibrium of morphogen
concentrations.

The equations for the extended secretion model in the case of mul-
tiple Gierer–Meinhardt systems can be written as follows:
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where the repulsion term
P
j

j=i

raj is subtracted from the activator term.

The indices i,j represent different activator types.

Multiagent Simulation
Cx3D provides a sophisticated framework for simulating neural devel-
opment in 3-dimensional (3D) space (Zubler and Douglas 2009).
Neurons are composed of discrete physical components such as
spheres (somata) and chains of cylinders (neurites), each located at a
particular point in 3D space. Extracellular space is also discretized
into small nonoverlapping domains, allowing for the diffusion of sig-
naling molecules. Each cell element is the center of such a space

Table 1
Reaction–diffusion parameters

Simulation
in

Framework Parameters

Figure 2 Cx3D Da= 8, Dh= 8000, μa= 0.08, μh= 0.16, ρa= 50, ρh= 50,
ρ= 20

Figure 3 Cx3D Da= 8, Dh= 9000, μa= 0.08, μh= 0.16, ρa= 50, ρh= 50,
ρ= 600 in A, ρ= 35 in B and ρ varying between 20 and 600 in
C

Figure 4 Cx3D Same parameters and patterns as used for Figure 3
Figure 6B,C Cx3D Da= 8, Dh= 9000, μa= 0.08, μh= 0.16, ρa= 50, ρh= 50,

ρ= 850, repulsion constant r among activators = 550
Figure 7A,B MATLAB Da= 0.6, Dh= 230, μa= 0.25, μh= 1, ρa= 0.2, ρh= 0.2,

ρ= 0.9
Figure 7C,D MATLAB Da= 0.6, Dh= 230, μa= 0.25, μh= 1, ρa= 0.2, ρh= 0.2,

ρ= 0.9, repulsion constant r= 0.5 in C and 2.7 in D, respectively.
Repulsion constant from inhibitor morphogen = 0 in C and 0.0075
in D, respectively

Figure 1. (A) Patchy labeling of somata and terminals in layer II/III in the macaque
visual cortex following bulk injection of the tracer cholear toxin B subunit (from Lund
et al. 2003, with permission). (B) Scaling of interpatch distance with patch diameter
observed across various cortical areas and species (from Muir et al. 2011, with
permission).
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domain. Additional space domains are added to increase the precision
of diffusion. To provide the desired cellular functionality, Cx3D users
can write biological modules, Java classes that are inserted into the
cells or cell components of the simulation. These modules lend the
cells their functional attributes.

The main difference to the classical approach of reaction–diffusion
on a regular grid is that in Cx3D we decouple the mechanisms occur-
ring in the cells (production) from the mechanisms occurring in the
extracellular space (diffusion and degradation). For instance, for the
implementation of the system given by equations (1), the terms
ra2=h, ρa, ρa

2, and ρh are coded in a “biological module” inside the
cells, releasing the amounts of substances a and h according to the
extracellular concentrations of these substances felt locally by each
cell. Diffusion and degradation of these substances are automatically
performed by the physics engine of Cx3D and occur even in the
absence of cells.

Cellular somata are modeled as spheres with a diameter of 20 μm,
placed in an irregular constellation, to form a sheet of 100 × 100 cells.
Physical interactions ensure that they redistribute themselves after in-
itialization, such that the average intersomatic distance converges to
roughly 22 μm. We add 25 000 additional space nodes for a more ac-
curate simulation of diffusion. For a detailed description of the
numerical procedure in Cx3D, we refer to the original description in
Zubler and Douglas (2009).

Regular Grid
We performed some simulations of pattern formation on regular
grids, which provide an advantage in numerical simulation perform-
ance over the irregular environment of Cx3D. Consequently, some
investigations requiring numerous trials or larger-scale simulation
were based on MATLAB simulations on regular grids.

The differential equations were solved numerically on a discretized
grid (in 2-dimensional (2D) in contrast to the 3D simulations in
Cx3D) of 150 × 150 cells with the explicit Euler method for calculating
the time evolution of the substance concentrations. Unlike in Cx3D,
we did not make a distinction between concentration and quantity,
because in this case, all domains have the same dimension. At each
time step, we solved first the diffusion, that is, we updated the value
of each bin ij based on the Fickian flux with its 4 neighbors (given by
the concentration difference multiplied by the diffusion coefficient
multiplied by the time step, dt = 0.001). Then we updated the value to
account for the reaction component, by computing the change in the
substance quantities based on the current activator and inhibitor
values, and adding it to each bin ij (explicit Euler method).

Simulation was initialized with concentration values drawn from a
uniform distribution between 0.3 and 0.7. An example script of a
Gierer–Meinhardt activator–inhibitor system with parameters leading
to patchy patterns is included in the Supplementary Material (Sup-
plementary Scripts 1).

Pattern Characterization
Quantitative analysis of the outcome of reaction–diffusion simulations
was performed in MATLAB. We defined a “patch” as an area of in-
creased concentration of a morphogenetic substance, identified by an
automated method based on the fitting of Gaussians, as described in
Muir et al. (2011). Subsequently, a graph connecting neighboring
patch locations was constructed using a Gabriel graphing technique
(Gabriel and Sokal 1969; Tanigawa et al. 2005; Muir et al. 2011). This
graph provided estimates of the patch locations, number of patches,
mean distances between patches and angles between neighboring
patches in a given pattern. These measures were used to compare
simulation results against the experimental data. The estimates
depend on the expected size of the patches, which is given as an
input to the algorithm. This input was determined using the method
described in Shen and Jung (2005). This method yields estimates of
the average size and number of patches by first segmenting the con-
centration patterns using binary thresholding and subsequently calcu-
lating standard image processing measures. Our implementation is
included in Supplementary Material (Supplementary Scripts 2).

We developed an algorithm that uses the methods described above
to classify the patterns of substance concentrations as patchy or non-
patchy. We first assessed the positions of the patches of the activator
and inhibitor substance patterns. In the ideal case, the patches of the
activator morphogen should match in position with the inhibitor
patches (see Results). If the estimated locations of the corresponding
patches in those 2 patterns deviated too much from one another, that
is, if more than 25% of the patches are separated by more than 6 grid
cells, then the pattern was classified as nonpatchy. The parameters of
the algorithm were determined heuristically to optimize its perform-
ance (Supplementary Fig. 2 for 3 example patterns that were correctly
classified).

Axonal Growth
Axonal growth was simulated as a growth cone able to sense sub-
stance concentrations and gradients (in Cx3D). When an axon bifur-
cates, its daughter branches receive a copy of the parent growth cone
(and its rules) resulting in a recursive ramification of the terminal
axon.

We used a growth rule that uses the activator substance in the
Gierer–Meinhardt system as a guidance cue. Growth direction was
defined at each time step as the weighted vectorial sum of a random
direction, the gradient of the activator substance and some measure
of the previous movement direction: d =wnoisednoise +wgraddgrad +
wprevdprev. In all simulations, we used wnoise = 0.34, wgrad = 0.03, and
wprev = 0.63. These weights have been chosen to fit the curvature of
long-range layer II/III projections as observed in the cat visual cortex
(Ruesch 2011). Outgrowth speed was constant (35 μm/h, indepen-
dent of activator concentration). The probability of an axon to bifur-
cate was computed at each time step as pbifurcate ¼ u � ca þ v, where ca
is the concentration of the activator. The constant u determines how
strongly bifurcation probability is influenced by the extracellular sub-
stance concentration, and v is added to allow bifurcation to occur also
in the space between patches. Axon diameter reduces during
elongation and at branch points. When a specified minimal diameter
is reached, growth ceases. For the growth rule of a single-patch
system (see Results for a description of the 2 growth rules), u and v
were chosen to be 2.6 × 10e−4 and 2.1 × 10e−5, respectively. In the
multiple patch systems, these values were 5 × 10e−5 and 2.1 × 10e−4.
Diameter reduction parameters due to growth and bifurcation were
−0.1% and −10% (at each step) in the first scenario, and −0.05% and
−10% in the second. In both cases, the initial diameter was 3 μm and
the minimal, diameter criteria to stop outgrowth was 0.5 μm.

Simulations with these parameters resulted in axonal arborizations
with distinct patchy projections that matched our experimental obser-
vations. For example, the number of clusters formed by a single axon
lay in the range of 1–7, and cluster diameters were between 90 and
950 μm (Binzegger et al. 2010).

Results

The Gierer–Meinhardt Model
We used the reaction–diffusion model proposed by Gierer
and Meinhardt (1972) (equation 1), because it offers the
necessary stability to generate patchy patterns, and because
its dynamics can be interpreted as the interaction of 2 mor-
phogens. Their system consists of a local autocatalytic activa-
tor a and a rapidly diffusing inhibitor h; a promotes its own
production, as well as the production of the inhibitor h,
whereas h suppresses the production of a. These 2 antagon-
istic substances can lead to regions (patches) of high activator
and inhibitor concentration (because the activator drives pro-
duction of the inhibitor), separated by regions of low mor-
phogen concentration. With a grasp of the various regimes of
this system (see Materials and Methods), we could demon-
strate the required patchy patterns in continuous space.
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Single Global Pattern in a Sheet of Cells
Patchy patterns were computed using standard numerical
methods on a regular grid. However, our question of
whether sheets of individual cells can generate a similar
patterning of their behavior brings complications that need
not be confronted in the more simple numerical/continuous
case (Bonabeau 1997). First, the generators and consumers
of morphogens are now individual cells, whose volume
and separation effectively quantize the space in which the
reaction–diffusion process will play out. Of course, mor-
phogens can diffuse between cells. This diffusion through
extracellular space is quantized more finely than the discre-
tization imposed by the cellular positions alone. Secondly,
cells are not restricted to a regular grid. They interact me-
chanically with their neighbors, and so cell locations
within a layer are perturbable. And finally, these cells must
maintain the patchy morphogen distributions during the
developmental process, when cells are migrating radially
from their birthplace in the subventricular zone to become
superficial layer neurons. It is this more complex problem
that we have explored by simulations in Cx3D, rather than
in MATLAB.

We simulated the development of a pattern of patches on a
2D sheet of cells that secrete morphogens according to the
Gierer–Meinhardt kinetics. Simulations begin with a random
distribution of morphogens across random cell body
locations. Figure 2 shows a sequence of images derived from
a Cx3D simulation in which the process of pattern formation
evolves over time. In the initial stages, symmetry-breaking
drives the initial random pattern (A) toward blurred patches
consisting of high levels of both the activator and inhibitor
morphogens. These patches become more distinct over time
and decrease in number due to the growing lateral influence

of the inhibitor substance (B–E). For appropriately chosen
parameters, the final pattern converges to a steady state (F)
that resembles strongly the observed pattern of cortical
patches. The parameters of the pattern formation kinetics
(equations 1) are listed in Table 1.

Supportive Evidence for the Gierer–Meinhardt Model

Linear Scaling of Spatial Characteristics
Analysis of experimental data from the cortical areas of many
species has shown that there is a linear relationship between
the patch diameter and mean interpatch distance (Lund et al.
1993; Binzegger et al. 2007; Muir et al. 2011), the spacing
being approximately twice the average width of the patches.
This as yet unexplained relationship can be understood in the
context of our model.

In their mathematical analysis of the Gierer–Meinhardt
model, Page et al. (2005) explored the effect of certain par-
ameters on the resulting patterns. They show analytically that
the average patch size is proportional to Da and that the inter-
patch distance is proportional to Dh. If we consider a
common scaling factor D for Da and Dh, such that Da =D·Da′
and Dh =D·Dh′, then this result explains the linear relationship
between patch diameter and interpatch distance when D and
therefore both the diffusion coefficients vary. However, the
assumption of different diffusion coefficients in different cor-
tical areas and species is not biologically plausible. The mag-
nitudes of physical variables influencing the diffusion
coefficients, such as viscosity or temperature, are not thought
to vary by large amounts. We therefore investigated what
other parameters influence the spatial profile in a similar
manner. We found both analytically and by simulation that
the linear scaling is also obtained when the production

Figure 2. Sequence of images from a Cx3D simulation showing the development of a Gierer–Meinhardt pattern over time. The neuronal cell bodies (somata) are colored
spheres. Black indicates low morphogen concentration near the cell body. Red and green indicate the presence of high levels of activator and inhibitor substance concentrations,
respectively (in the yellow patches, both morphogens are strongly concentrated). Initially, the morphogen concentrations and the locations of cell bodies are randomized over the
2-dimensional plane (A). The overabundance of patches at the earlier stages of pattern formation converges, by mutual competition, to a stable pattern of fewer and more
separated morphogen concentration peaks (B–F).
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coefficient (parameter ρ in equations 1) is varied. This
effect can be shown as follows: In the converged state
ð@a=@t ¼ @h=@t ¼ 0Þ, the decay and the basal production
(parameters μa, ρa, μh, and ρh in equations 1) can be neg-
lected as they are usually relatively small:

�r
a2

h
� D � D 0

a �
@2a
@x2

�ra2 � D � D 0
h �

@2h
@x2

ð3Þ

Together with the result from Page et al. (2005), our results
show that varying the diffusion coefficients or the production
coefficient changes the scale of the patch size and spacing. ρ
and D linearly scale the right or left-hand side term of
equations (3), so they influence the spatial characteristics of
the pattern by varying the proportion of the production
versus the diffusion term. We find that the linear relationship
for the case when the production coefficient is varied is valid
also under conditions where the basal production coefficients
are not negligible, as for example in the simulations in
Figure 3. The slope of the linear relationship is similar for our
simulations and the experimental data (approximately 2), but
depends on the parameters of the model: Different par-
ameters yield different relations. The appropriate linear
scaling was also confirmed in simulations done in MATLAB
(Supplementary Fig. 1). The MATLAB simulations showed a
more linear scaling behavior, which can be explained through
the larger simulation grid (150 × 150 cells instead of 100 × 100
in Cx3D) and the regular arrangement of substance producing
cells. Figure 3 shows 2 examples of patterns (A,B) produced
with 2 different production coefficients (ρ = 600 and ρ = 35)
and the scaling behavior across 120 patterns with different
production coefficients (B). Also note the higher density of
patches with small patch diameter and spacing, a feature that
is shared with biological data (Fig. 1B). The Gierer–Meinhardt
parameters used in these simulations are listed in Table 1.

Our interpretation is that the observed relationship of patch
size versus interpatch distance arises, because the production
rate of morphogens secreted by cells varies between cortical
areas and species.

Distribution of Interpatch Angles
We compared the distribution of angles formed between
neighboring patches in our simulations with the distributions
measured in biological data. Angles formed between sets of
neighbors within the Gabriel graph provide a sensitive statisti-
cal measure of the spatial structure inherent in the patch
layout. For example, Muir et al. (2011) have used the distri-
bution of interpatch angles to differentiate between artificial
sets of points and experimental measurements. We measured
this distribution over our simulation results and compared it
with data from the primary visual cortex in the cat and
macaque monkey (Fig. 4). Our analysis confirms that the
spatial arrangement of patches produced by our model
matches experimental observations very well. The model dis-
tribution was inferred from the same patterns composed of
100 × 100 cells that were used to demonstrate the linear
scaling relationship in the previous section.

Robustness of Patchy Patterns to Parameter Variation
An important condition for the biological plausibility of the
pattern formation process is its robustness against parameter
variations. We investigated this aspect by assessing the sensi-
tivity of the patchy patterns to the various parameters (diffu-
sion, decay, production, and basal production) of the Gierer–
Meinhardt model. For each simulation, we chose a different
set of parameters by modifying a template parameter set. This
was done as follows: P = PO + ɛσ, where P is a parameter from
the Gierer–Meinhardt model, PO is the original template par-
ameter before modification, and ɛσ is the modification vari-
able. For each parameter, this modification was drawn from a
Gaussian distribution N(0,σ2). The variance σ2 of the modifi-
cation was increased stepwise. For each level of variation, we
conducted 30 simulations in MATLAB. To treat all the par-
ameters in the same way, the standard deviation σ was chosen
to be proportional to the parameter magnitude. This implies
that the magnitude of the coefficient of variation cv = σ/μ
(where σ is the standard deviation and μ the mean, which is
equal to the original parameter magnitude) was the same for
all parameters. Our results (Supplementary Fig. 3)

Figure 3. (A) Two Gierer–Meinhardt patterns generated in Cx3D having different
characteristic patch diameters and interpatch distances. The only difference between
the 2 cases is the production coefficient: ρ= 600 for the left pattern and ρ=35 for
the right pattern. (B) Influence of the production coefficient ρ on the patch size and
interpatch spacing. Each sample point (blue) indicates a separate simulation with
different ρ. Average patch diameters and interpatch distances are linearly related. The
equation of the fitted linear interpolation (red) is y= 1.72 x + 0.15 (R2 = 0.46,
P-value <1× 10−4), approximating closely the slope of 1.65 obtained from the
experimental data (Muir et al. 2011). Note the increased density of sampling points
toward the lower left, which has also been observed in biological systems.

Cerebral Cortex February 2014, V 24 N 2 491

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs327/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs327/-/DC1


demonstrate that the patchy pattern formation process is
indeed robust. The patches form successfully for the large
levels of variation, that is, 100% of all patterns were classified
as patchy even when the standard deviation of the parameters
was at approximately 25% of the parameter magnitude itself.
From the point of view of biological stability, the robustness
of the pattern formation process is also indicated by the fact
that the irregular spatial arrangement of the neuronal somata
in Cx3D does not prevent the formation of patches.

Development From a Single Precursor Cell
So far, we have assumed that the sheet of cells across which
patches are formed is provided externally to our model. Now,
we will consider the question whether these systems can
develop from a single precursor cell in a self-organizing way.
In this case, the whole structure has to develop from rules
encoded only in the initial cell. This precursor and all sub-
sequent daughter cells divide in the horizontal plane and give
rise to a circularly arranged sheet of cells able to secrete the
necessary morphogens.

The simulated developmental process is divided into 2
phases: First, a phase of cell division that produces a sheet of
cells by mitotic replication of the mother cell, followed by a
phase during which the cells of the sheet secrete the morpho-
gens that control patch formation. These 2 phases are deter-
mined by the concentration of an intracellular signaling
molecule, produced at a constant rate by each cell. This mol-
ecular marker is passed on at each cell division by the
mother cell to its daughter cells, which continue producing it
at a constant rate. This substance therefore acts as an internal
clock. When the concentration of this signal exceeds a
chosen threshold, cellular division stops and the soma begins
releasing the activator and inhibitor substances according
to the Gierer–Meinhardt kinetics as described by equations
(1). Figure 5 confirms that the patchy patterns can also be
generated under these self-organized conditions. A video of
this self-organizing process is included as Supplementary
Movie 5.

Multiple Patch Systems
It remains an open question whether the patchy architecture
of the cortex is a single global pattern, or whether multiple
nonoverlapping or overlapping patch systems are present
(Muir and Douglas 2011). The results of our prepatterning
simulations above can explain the emergence of a single,
static patch system. However, those simulations use only a
single activator–inhibitor pair. Multiple patch systems are
possible when multiple pairs are present. Different patch
systems develop as a consequence of the separate activator–
inhibitor pairs, and if the substances of the activator–inhibitor
pairs inhibit each other (Fig. 6A), then patches of the different
systems are prevented from emerging at the same location.

The step from single to multiple patch systems is a small
one, because the interactions between activator and inhibitor
morphogens are unchanged. The developmental cost of in-
creasing the number of patch systems is also low in terms of
the extra information required in the genetic code: The code
length increases only linearly with the number of patch
systems.

We extended the secretion model to permit multiple patch
systems by including a term that reduces the activator pro-
duction in the presence of activator morphogens from other
Gierer–Meinhardt systems at the same location (equations 2).
High activator levels produce high inhibitor concentrations,
and inhibitor substances can also cross-inhibit the activators
of other systems. Both mechanisms prevent the patches of
different activator–inhibitor systems from appearing at the
same location (as for example in Fig. 6B, C).

Experimental data obtained from adjacent injections in
inferior temporal (IT) cortex of the macaque monkey suggest
that there is very little or no overlap in patch locations

Figure 4. Comparison of the probability density functions of the measured interpatch
angles from experimental data of the cat and macaque monkey (blue) and Cx3D
simulations (red). Shading corresponds to the 90% confidence interval, as estimated
by bootstrap analysis. The distributions are not different according to a 2-sample
Kolmogorov–Smirnov test at the 5% significance level.

Figure 5. Self-organized development of a patchy pattern. The initial precursor cell
divides in the 2D plane, giving rise to several daughter cells (A: early division phase,
B: progressed division phase). Cell division continues until an intracellular
concentration reaches a predefined threshold, which stops the cell division. Based on
this preplate, the Gierer–Meinhardt reaction–diffusion mechanism leads to a patchy
pattern (C). A video of the self-organization of multiple patchy patterns is included in
Supplementary Material (Supplementary Movie 5).
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(Tanigawa et al. 2005). This situation occurs in our model
when the mutual inhibition is sufficiently strong. On the other
hand, the patches of several patch systems can overlap if,
instead of the activator substance, the concentration of the
inhibitor substance defines the patches. In this case, the ap-
pearance of patches is modified, in 2 ways: They are larger
because of the larger diffusion constant (a necessary con-
dition for stationary patterns); and they are smoother because
the different inhibitory substances do not directly interact
with one another. In this model, cells can exist inside multiple
different patch systems. Figure 6C shows the inhibitory mor-
phogen patches from the same pattern as in Figure 6B.

Topography of Patch Systems
Functional maps, for example maps of orientation selectivity
in the visual cortex, are quasi-periodic and have a topo-
graphic neighborhood relation (Hubel et al. 1978; Bosking
et al. 1997). If we assume similar characteristics for the super-
ficial patch system, then the locations of the patches have to
fulfill certain conditions. The targets of projections from
nearby neurons should share common features. Neurons that
are located close to each other should make target patches in
locations that are only slightly offset (Lund et al. 2003; Muir
and Douglas 2011; Muir et al. 2011). For example, in a scen-
ario with 3 patch systems (U, V, and W), patches of system U
could be on average closer to the patches of system V than to
the patches of system W. We investigated how such a topogra-
phy could be achieved with multiple Gierer–Meinhardt
systems that interact with each other.

Our approach is as follows. We assume that there is Gaus-
sian variation in the cellular secretion dynamics. Conse-
quently, some cells have higher production and basal
production coefficients than others. This variation is sufficient
to predispose some regions to express the high levels of mor-
phogen concentration, so constituting a patch. Therefore,
with a sufficiently high variance in the cellular production,
the patches of the different activator–inhibitor systems will
fall predominantly into the same specific regions that are com-
posed of highly productive cells (Fig. 7B).

The system of equations (2) implies that substances of
different Gierer–Meinhardt systems mutually inhibit one
another. Figure 7C,D are 2 examples in which the repulsion
strength between patch systems varies (red and blue indicate
the 2 different systems). The repulsion between the morpho-
gens in Figure 7C is weaker than in D. This is reflected in the
distances between the red and blue patches, because the red
patches in (C) are usually closer to the blue patches than in
the pattern (D). Different mutual repulsion strengths influence
the average spacing that will result between patches from
different systems. Our simulations indicate that the distance
between patch systems is more consistent when the inhibitory
morphogen also inhibits the activator production of other
types, because the fast diffusion of the inhibitor substance
leads to smoother patches. The pattern in Figure 7D was gen-
erated by the same model parameters, but with a stronger re-
pulsion parameter r and an additional repulsion from the
inhibitory morphogen.

Analogously, one can extend the model to include several
types of activators and inhibitors. The set of repulsion coeffi-
cients imposes neighborhood relationships between the
several patch systems. Theoretically, this kind of topographic
relationship could also be imposed by the repulsion coeffi-
cients alone, without introducing variance in cellular pro-
duction coefficients. Cellular inhomogeneity causes the
different patch systems to compete for the most productive
regions. In addition, cells that produce very little morphogen
will not express patches and so will not participate in the
superficial patch system. There are several lines of evidence
that support the existence of such regions. For example,
some locations in the visual cortex, namely the orientation
pinwheel centers, do not collectively form long-range projec-
tions (Sharma et al. 1995; Yousef et al. 2001; Mariño et al.
2005). An early proposal for the patch system was that
neurons in some regions make long-range projections, while

Figure 6. (A) Interactions of 2 Gierer–Meinhardt systems. In addition to the basic
antagonism of the activator and inhibitor morphogens (as used in the single-patch
system scenario), the activator substances of different Gierer–Meinhardt systems
inhibit each other. Sufficiently strong inhibition between different activator
morphogens ensures that patches belonging to distinct systems do not overlap. (B)
Simulation of 4 interacting patch systems from a Cx3D simulation. Each system is
based on 2 morphogens interacting according to the Gierer–Meinhardt model. Red,
green, blue, and purple indicate the concentrations of distinct activator substances.
Repulsion constants between activators were chosen to be identical for all of the
activator pairs. (C) Multiple patch systems defined by inhibitory substances (same
simulation as in Fig. 6B). Red, green, blue, and purple indicate the concentrations of
distinct inhibitor types. In contrast to the scenario where patches are defined by the
activator substance concentration, here, there is a smooth overlap between patches
because there is no mutual inhibition between inhibitory substances. Patch systems
are still guaranteed to develop at distinct locations, because the different activator
substances compete with each other, such that also the patches of the inhibitor
concentrations are at different locations.
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neurons in other regions may not (Rockland and Lund 1982;
Rockland et al. 1982). These points can be explained by our
model by incorporating variation in morphogen production
efficacy across the cells. As described later, our (simplified)
model of axonal growth assumes that the long-range projec-
tions are made only from cells that lie inside a patch. Because
the regions that are composed of cells with low morphogen
production efficacy do not induce patches, these regions do
not participate in the superficial patch system.

Laminated Structure
Although the overall laminar organization of the patch system
is still unclear, the characteristic long-range projections have
been observed mainly in the superficial layers. We investi-
gated whether our hypothesis is consistent with patch
expression only in specific layers, by simulating the develop-
ment of a laminated structure with periodic long-range clus-
tered projections in only the superficial layers. We achieved
this by following the protomap concept of Rakic (1988). First,
the cells of the cortical plate generate a patchy system as de-
scribed above. If the activator concentration in a cell exceeds
a given threshold, it becomes imprinted as belonging to a

patch. This model can be extended to multiple patch systems
on the same plate, as will be explained later.

All the cells of the initial patterned sheet divide horizon-
tally, so that daughter cells form the next higher sheet (for
simplicity we do not model here the detailed process of corti-
cal lamination). Each division of a cell causes the decay of an
intracellular lamina signal substance, so allowing the cells to
track their radial position. Some of these cells have been im-
printed as potential secretors as a result of the earlier Gierer–
Meinhardt process, and those that reach layer II/III will
secrete the appropriate activator morphogen and so contrib-
ute to the formation of a patch. The patchy expression pattern
then provides the basis for establishing the appropriate
axonal connectivity, as shown in Figure 8.

Axonal Growth Model
With the patchy morphogen concentrations in place, the
neurons can go on to connect (for example) to like patches

Figure 8. Daisy architecture in a laminated cortical structure. Multiple patch
systems (A: diagonal top-down view, B: straight top-down view) generated from an
initial 2D sheet, which is the cortical plate before lamination of the cortex.
Information that establishes which system a cell belongs to is preserved in the
vertical direction. Red, green, blue, and purple indicate cells that belong to the 4
different patch systems. Supragranular layers are labeled gray, infragranular are black.
Cells labeled as belonging to a patch system, and located in layer II/III, continue
producing the activator substance that is used by the axonal growth cones to
establish the long-range connectivity, as shown in Figure 9B. The simulation consists
of 100 × 100 cells in a slab 18 cells thick.

Figure 7. (A and B) Effect of variation in the production efficacy on patch locations.
(A) Superimposition of the activator morphogen concentrations (red and blue label
the 2 activator types) of 2 different noninteracting Gierer–Meinhardt systems. There
is no variation, and the repulsion constant between the 2 activators is set to
0. Therefore, patches of both systems emerge at random and independent locations.
For clearer visualization, overlapping patches are indicated with white circles. (B)
Obtained when there was a nonzero variance on both the cellular production
coefficient ρ and the basal production coefficients ρa and ρh (equations 1). The
variance allows some patchy organizations to be preferred over others, because
those patches will fall predominantly onto the same highly productive locations. High
concentrations of both activator types are colored purple, because red and blue are
added. (C and D) The magnitude of the repulsion coefficients determines the
distance of the different patch systems. (C) Two superimposed concentration
patterns of the activator morphogens from interacting Gierer–Meinhardt systems with
small repulsion coefficients. In addition, production coefficients across the cells vary
in a Gaussian manner. Due to the low repulsion, the patches of the 2 systems end
up quite close to each other. (D) Two interacting Gierer–Meinhardt systems with
strong repulsion. The patches of the different patch systems repel another more from
the preferred locations than in (C). This was confirmed by calculating the average
distances between patches belonging to distinct patch systems.
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by intralaminar axonal projections under active guidance of
their growth cones. Growth cones follow the concentration
gradient of relevant morphogenic guidance cues, bifurcating
recursively as a probabilistic function of the cue concentration
(see Materials and Methods for a detailed description of the
axonal branching rules). Consequently, laterally extending
axons ramify in target patches.

We studied axon growth in the case of single and multiple
patch systems. In the first case, the lamina of cells generates
only a single global patch system. In this scenario, all (or a
randomly selected percentage of) the cells that comprise the
cortical sheet extend their axons. The axons follow the gradi-
ent of the activator morphogen to grow toward the patches
and make their arborizations, leading to the clustered axonal
long-range projections shown in Figure 9A.

In the case of multiple patch systems, axons follow the gra-
dients of different morphogens for each patch system. Axonal
outgrowth is triggered when a neuronal soma senses a supra-
threshold activator concentration, subsequently extending an
axon that follows the positive gradient of only this morpho-
gen. This simple rule leads to clustered axonal projections
over separate patch systems, as shown in Figure 9B. A video
of a simulation implementing this growth rule is included as
Supplementary Movie 6.

Additional modifications of the axonal growth patterns
could be made in the scenario of multiple patch systems. For
example, the patches could be defined by high inhibitor mor-
phogen concentrations, as discussed before. In this case, the
target regions of neurons belonging to the different patch
systems can overlap. Cells lying in an overlapping location
could randomly switch to one of the patch identities before
the initiation of neurite outgrowth. This would increase the
potential electrophysiological communication between differ-
ent patch systems (although in the separated patch systems
scenario there is no strict boundary, so there can always be
communication between different patch systems). Another
possible extension that would increase the degree of inter-
communication could involve the growth rule itself, so that
some additional patch systems could also be connected to one
another. For example, neurons in the patches of a patch
system U could project to patches belonging to systems U and
V, while the patches of system V project to systems U and
W. A mathematical analysis of the topology and activity dy-
namics in different scenarios for the superficial patch system
has been performed by Voges et al. (2010).

Our goal here was not to model the detailed biological pro-
cesses of the growth cone and the resulting morphology, but
simply to incorporate principles that lead to patchy connec-
tivity patterns and that match experimental observations
(such as the distribution of angles between neighboring
patches, addressed in the Results section).

Discussion

We have demonstrated by detailed simulation of neuronal de-
velopment how the experimentally observed superficial patch
system of the neocortex can arise on the basis of the quasi-
periodic spatial patterns produced by a Gierer–Meinhardt
type reaction–diffusion system. This entire process arises out
of the genetic-like specification inserted into a single precur-
sor cell. This progenitor cell undergoes cell division, distribut-
ing its genetic instructions to its offspring, who finally give

Figure 9. (A) Development of axonal long-range projections on a single-patch
system. Growth cones of randomly selected cells follow the gradient of an
extracellular cue secreted by cells located inside the patches. This same cue
promotes more dense arborization by increasing the probability of the axon to
bifurcate. (1) Initially, cells extend their axons in random directions. The yellowish
somata are the strongest producers of the guidance cue. Newly extended axons and
their cell bodies are colored red. (2 and 3) The region of high guidance cue
concentration (yellow cell bodies) already has denser arborizations. (4) Arborization
pattern at progressed stage. For the sake of clearer visualization, we set the
bifurcation probability outside the patches to be quite low. (B) Sequence of axonal
growth on multiple patch systems from the pattern in Figure 6B. This axonal growth
rule makes use of many patchy patterns generated by the Gierer–Meinhardt model.
In contrast to the simpler growth rule with only 1 global patch system, in this case,
the location of the soma determines the targeted activator type (different colors
indicate different types). Axons that arise from cell bodies lying in a patch will
make long-range projections only to the patches of a similar identity. Cell bodies that
are not located inside a region of high activator and inhibitor concentration levels
make only nonspecific local connections. The specificity of the resulting connections
can be controlled by the parameters of the growth model. For example, as men-
tioned in the Materials and Methods section, the probability to bifurcate is given by
pbifurcate ¼ u � ca þ v, where ca is the concentration of the activator substance and
u, v are variable parameters. Large v increases the probability to branch outside of
the patches, leading to less specific connectivity. In the scenario with multiple patch
systems, a growth cone could also target activator patches of multiple types with
different scaling parameters u, such that the communication between different patch
systems is increased. Additionally, the bifurcation could be guided by the inhibitor
substance, which increases the overlap between different patch systems (as shown
in Fig. 6B,C).
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rise to the cortical plate. The individual genetic codes instruct
the cells of the plate to secrete a small number of different
morphogens. These morphogens have either localized or
extensive extracellular diffusion; and they either activate or
suppress the production of other morphogens. Overall,
these morphogenetic network interactions express Gierer–
Meinhardt reaction–diffusion dynamics that converge to a
spatial pattern of interlaced hexagonal lattices of similarly
labeled (by their morphogen profile) neurons. These labeled
neurons then spread radially to become a more superficial
layer of neurons and then begin to extend long-range intralami-
nar axons. The direction of growth of these axons, and their
propensity to bifurcation, are determined by the gradient and
concentration of their target morphogen. Consequently, axons
have a bias to grow toward adjacent regions of like-labeled
neurons and to ramify there (Fig. 9), so giving rise to the
experimentally observed patchy connectivity.

Overall, our model demonstrates how the patchy connec-
tivity pattern of cortex can construct itself on the basis of only
local cell–cell chemical interactions and each cell’s (similar)
genetic code, without the support of external, organizing
electrical spike patterns.

Apparently Complex Structure Arising From a Simple
Mechanism
The concept that the complicated spatio-temporal patterns ob-
served in animal morphogenesis could be due to a relatively
simple underlying molecular mechanism was proposed by
Alan Turing in his seminal paper of 1952. He demonstrated
that a suitably constrained interaction between 2 fundamental
physical processes—reaction and diffusion—could give rise to
many kinds of pattern formation observed in nature. This
mechanism is based on the secretion, decay, and diffusion
dynamics of different substances that compete for control
of their sources. Small random fluctuations in the initial con-
centrations can lead to global symmetry-breaking and the
emergence of stationary spatial “Turing” patterns. Counter-
intuitively, symmetry-breaking is driven by diffusion: A
necessary condition for the symmetry-breaking is that the dif-
fusion coefficients differ between competing morphogens.
Unfortunately, Turing’s original formulation of the reaction–
diffusion system is not molecularly plausible, because it
allows negative concentrations. However, in 1972, Gierer and
Meinhardt proposed the feasible formulation that we have
chosen as a basis for inducing spatial organization. Other re-
action–diffusion models that are also based on interacting
antagonistic morphogens (e.g. the Gray–Scott [Gray and Scott
1983; McGough and Riley 2004] or Schnakenberg model
[Schnakenberg 1979; Iron et al. 2004]) may yield similar
results.

Grossberg (1976) explored the use of reaction–diffusion
systems to model neural map formation. Since then, several re-
action–diffusion systems have been used to model the develop-
ment of neural tissue. For example, Cartwright (2002), Striegel
and Hurdal (2009), Lefèvre and Mangin (2010), and
Garzón-Alvarado et al. (2011) investigated the problem of the
generation of gyri and sulci during cortical development. Other
models based on reaction–diffusion dynamics have been used
to explain ocular dominance and orientation maps (Swindale
1980; Grossberg and Olson 1994), as well as disparity selectiv-
ity (Siddiqui and Bhaumik 2011). All of those models were

essentially analytical and so differ from the detailed physical
cellular growth simulations that we report here.

Experimental Support for Reaction–Diffusion Processes
The relevance of Turing patterns as an explanation of natural
morphogenesis, and specifically cortical development, is
matter of debate. The mechanism is elegant and appealing,
but experimental verification is difficult because it requires
not only identification of the different morphogens, but also
their in vivo diffusion or cellular reaction constants, data
which are very difficult to obtain. Nevertheless, there is sub-
stantial circumstantial evidence for the role of reaction–
diffusion processes in development. Turing patterns have
been confirmed experimentally in chemical reactions (Castets
et al. 1990; De Kepper et al. 1991), and there is experimental
evidence that these systems play a role in animal develop-
ment. For example, 2 antagonistic pattern-forming substances
have been shown to be involved in the generation of the oral–
aboral axis in sea urchins (Duboc et al. 2004), and in mouse
hair follicle formation (Mou et al. 2006). It can predict the
time evolution of the skin patterns of the angelfish Poma-
canthus (Kondo and Asai 1995) and explain head regener-
ation in the freshwater coelenterate hydra (Gierer and
Meinhardt 1972), or stripes on the shells of molluscs
(Meinhardt and Klingler 1987).

Morphogens that follow dynamics of the activator–inhibitor
type do occur in development. For example, transforming
growth factor (TGF)-β signals can act as activator–inhibitor
morphogens (Schier 2009), as demonstrated in the zebrafish
blastula (Meno et al. 1999; Chen and Schier 2002; Müller et al.
2012). Müller et al. (2012) have shown that the inhibitor has a
larger effective diffusion constant than the activator, which is
a necessary condition for stationary Turing patterns. There is
evidence that TGF-type morphogens have an autocatalytic
role in vertebrate limb formation (Newman and Bhat 2007).
The sonic hedgehog (SHH) signaling molecule, which is in-
volved in various pattern formation mechanisms in the central
nervous system, acts together with fibroblast growth factor as
an activator–inhibitor system that is responsible for the for-
mation of ridges in the mammalian palate (Economou et al.
2012). The WNT/bone morphogenetic protein activator–
inhibitor pair has been implicated in hair and feather follicle
development (Sick et al. 2006; Plikus et al. 2011). Other poss-
ible candidates of morphogens are Semaphorins (Matsuoka
et al. 2011). Moreover, these morphogens have been shown
to act also as guidance cues (Webber et al. 2003; Schnorrer
and Dickson 2004; Charron and Tessier-Lavigne 2007; Zou
and Lyuksyutova 2007; Sánchez-Camacho and Bovolenta
2009; Gordon et al. 2010).

It is difficult to estimate the parameter values of the mor-
phogenetic substances in our simulations, because these
values depend also on assumptions concerning somatic diam-
eter, density of morphogen producing cells, computation of
diffusion, etc. Consequently, we have not assigned units to
the parameters. However, we are able to make qualitative esti-
mates, such as the proportions that some coefficients have
with respect to one another. For example, the inhibitor diffu-
sion coefficient is approximately 3 orders of magnitude larger
than the activator diffusion coefficient. The decay rate of the
inhibitor substance in our simulations was always larger than
the rate of the activator, by about a factor of two.
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Agreement with Experimental Data, and Concepts of
Cortical Organization and Development
The spatial patterns produced by our model are in good
agreement with experimental observations, such as the re-
markable observation of the linear relationship between
patch diameter and spacing across cortical areas and species
(Lund et al. 1993; Binzegger et al. 2007; Muir et al. 2011). It
also exhibits the correct distribution of angles between neigh-
boring patches (Muir et al. 2011). Differences in the morpho-
gen production coefficients in the different cortical areas and
species are the only assumptions required to explain this intri-
guing relationship. Our hypothesis could be confirmed by
identifying and modifying the cellular secretion efficacies of
the hypothetical morphogens.

Our reaction–diffusion model is consistent with Rakic’s
protomap concept (Rakic 1988), which is likely a central orga-
nizing principle of the much disputed “cortical column”
(Mountcastle 1957; Hubel and Wiesel 1977; da Costa and
Martin 2010). Postmitotic cells, by their migration outwards
along the radial glial cells and their formation of the cortical
lamination, project the patch lattice columnwise out of the
2-dimensional neural plate. Several studies provide evidence
for this similar ontogenetic unity along the radial dimension
(Luskin et al. 1988; Kornack and Rakic 1995; Rakic 1995),
which can be seen in the laminar organization of the patch
system (Rockland 1985; Galuske and Singer 1996; Angelucci
and Sainsbury 2006).

Of course, the original protomap hypothesis was made in
the context of the rodent brain, and there is evidence that the
superficial patch system does not exist in rodents (Van
Hooser et al. 2006; Muir and Douglas 2011). However, the
important principle here is that organizational patterns laid
down in the ventricular zone propagate radially and are elabo-
rated in the developing cortical laminations (Kennedy and
Dehay 1993). The reason why certain species do exhibit
patchy connectivity may be due to the combinations of pro-
duction and diffusion rates in vivo that do not fulfill the con-
ditions for stationary hexagonal patterns.

It remains unknown whether the superficial patches reflect
a single lattice, or whether there are several distinct or over-
lapping patch systems (Muir and Douglas 2011). Studies
based on adjacent injections using multiple tracers point in
the direction of multiple patch systems (Matsubara et al. 1987;
Tanigawa et al. 2005). Tanigawa et al. (2005) used adjacent
injections of multiple tracers to demonstrate that intra-areal
long-range projections cluster at nonoverlapping locations.
Our simulations show that nonoverlapping and partially over-
lapping patch systems can be easily realized with multiple in-
teracting Gierer–Meinhardt systems. In this scenario, the
regions targeted by an axon depend on the location of it’s
soma: Somata located in a given patch extend axons only
toward patches belonging to the same system. We have also
shown that patches in our model can overlap, if the patch
identity is conferred by the concentration of the inhibitor
substance.

These anatomical results offer a link to features of func-
tional maps [periodicity and topographic mapping, described
for example by Mitchison and Crick (1982) and Bosking et al.
(1997)]. For example, the orientation tuning of neurons inside
connected patches tends to be similar (Bosking et al. 1997;
Schmidt et al. 1997). Further work in this direction could
investigate how the transitions between patches of different

reaction–diffusion systems could provide a scaffold for estab-
lishing the connectivity of functional maps such as orientation
selectivity.

There is also evidence for a relationship between the
patch system and metabolically derived patterns. For
example, cytochrome oxidase–reactive regions and the
superficial patch system share some features (Rockland and
Lund 1983; Muir and Douglas 2011; Muir et al. 2011). We
did not address ocular dominance columns or cytochrome–
oxidase (CO) blobs in this work, because they stem from
thalamocortical projections, and we restrict ourselves to cor-
ticocortical connections. However, it is intriguing that CO
blobs in the cat visual cortex can develop in the absence of
visual input (Murphy et al. 2001), raising the possibility
that molecular markers such as those used in our model
are involved in patterning geniculocortical afferents. Bressl-
off and Oster (2010) have studied just this scenario, using a
patchy scaffold of markers which modulate synaptic plas-
ticity and promote the formation of ocular dominance
columns. Our work complements their model since it pro-
vides an explanation for the development of this periodic
specification.

Axonal Arborization Patterns
The orderly axonal projection patterns depend on simple and
biologically plausible axonal growth rules, which make use of
morphogen concentration profiles for targeting arborization
locations over long distances. This direct sensitivity to an
organizational signal makes the arborization quite specific,
rather than having an initial widespread exuberance of projec-
tions followed by pruning (Callaway and Katz 1990).

Importantly, in our model, axonal outgrowth and organiz-
ation do not depend on electrical signaling that has particular
sensory statistics (as for example proposed by Grabska-
Barwińska and von der Malsburg (2008), suggesting that
activity waves and locally periodic response patterns shape
the connectivity). Electrical signaling might be required for
refinement of the crude clusters established at the early devel-
opmental stage. This does not contradict the experiments of
Ruthazer and Stryker (1996), where suppression of spiking
activity using the sodium channel blocker tetrodotoxin pre-
vented the formation of clustered long-range projections in
the ferret. We argue that electrical activity might be permiss-
ive rather than instructive, with growth at the very early
stages of development based on the intrinsic pattern, so ac-
counting for the presence of the superficial patch system in
cortical areas that are remote from the potential organizing
properties of sensory afferents.

There is indeed evidence that neural activity has a large
impact on axonal branching (Uesaka et al. 2006). In this vein,
it has been shown in the cat visual cortex that at the very
early stages of connectivity development, long-range
intra-areal projections are not yet clustered (Price 1986;
Callaway and Katz 1990). Only at the end of the second post-
natal week is extensive clustering observed. Our interpret-
ation of these data is that axonal outgrowth is under the
control of a 2-step process. Axons initially search for their
target patches without extensive ramification. A subsequent
axonal cluster-forming process is invoked only when an axon
finds a suitable target region and the appropriate electrical
activity conditions are met. Due to retinal waves and recurrent
thalamocortical loops, animals are exposed to relatively
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structured activity possibly very early in development, which
could provide enough correlation structure for Hebbian
mechanisms to play a role (Wong 1999; Weliky and Hall 2000;
Butts 2002; Huberman et al. 2008). Studies in other species
also show that a crude form of the patch system is present at
very early stages. In the ferret patches develop before eye
opening (Durack and Katz 1996); and in macaque monkey,
the system can even be observed prenatally (Coogan, Van
Essen, et al. 1996). Consequently, we predict that as long as
the branching and axon guidance machinery is not affected,
disturbance of the pattern of electrical input to the neurons
will not abolish the development of the superficial patch
system. This has been shown to be the case for retinal activity
(Callaway and Katz 1991; Ruthazer and Stryker 1996).

Simulations of Cellular Processes in Physical 3D Space
The simulation methods used in the paper demonstrate a sub-
stantial advance in computational neuroscience. In classical
mathematical models, the environment is abstracted as a
regular 2-dimensional grid in which each discrete element of
space participates in both diffusion and reaction. In our work,
we have simulated the behavior of physical cells, behaving in
a physically realistic 3D space. Each cell is an independent
agent able to interact only with its local environment; there is
no global organizer. Such physical simulations in Cx3D (for
example) offer a novel and powerful tool for the investigation
of anatomical and developmental processes that is likely to be
at least as influential as the theoretical electrophysiological
investigations performed in simulators such as NEURON
(Hines and Carnevale 1997). Of course, dense multiagent
simulations such as ours come with a high computational cost
and also bring some interesting new questions. One of these,
relevant to the present paper, is the question of stability.

Turing patterns have been shown to be very robust against
noise (Pena and Perez-Garcia 2001; Leppänen et al. 2003).
This robustness is especially important in a biological context,
because there is inherent variation in the cellular secretion.
We have shown that Turing patterns that emerge in our simu-
lations are stable to disturbances, noise or the initial distri-
bution of morphogen concentrations. However, it is not only
the stability of the reaction–diffusion system that is at issue
here. It is important to note that the developmental process
arises by the cell division from a precursor, in which only
local morphogenetic production rules and axonal growth
rules are specified. Thus, overall stability of the patchy lattice
depends also on the developmental strategy (Zubler et al.
2011) in which the reaction–diffusion processes are
embedded.

Our goal in this paper was to describe only the principles
of developmental construction of the patch system, rather
than attack the more difficult problem of how these principles
play out when embedded in a detailed simulation of cortical
development. However, we have previously shown (Zubler
and Douglas 2009) how to produce a laminated cortical struc-
ture in an unprepared environment, and how to make layer
specific branching patterns in Cx3D. It remains to bring these
2 lines of work together, to demonstrate how the patchy pro-
tomap promotes columnar organization of inter- and intrala-
minar connections in the context of a large-scale simulation of
cortical development, a task in which we are presently
engaged.

Conclusion

In the modern interdisciplinary approach to neuroscience,
theoretical models and their simulation, such as we present
here, complement experimental neuroscience in 2 important
ways: They explore and they explain. Our model explores
implications of the assumption that the development of the
general and rather complex patterning of the cortical patch
system depends on a simple underlying molecular mechan-
ism: The presence of a cooperative–competitive interaction
of the morphogen secretion between cells. Of course, we
have not yet confirmed the existence of the crucial pro-
posed cooperative–competitive morphogens. We have,
however, presented evidence from the literature for the
probable existence of such substances. And our simulations
have shown how, on the basis of this simple assumption,
the model is able to explain a wide variety of experimental
observations such as the occurrence of the patches, their
spatial distribution, their linear scaling over areas and
species, and their independence (initially) of electrical
activity in well-formed neuronal circuits that occur only
later in development. Our model also explains how this
process can unfold from a single precursor cell, so demon-
strating how complex organization of connections could be
simply genetically encoded. Importantly, our simulations
are of physical cells in a physically realistic environment, in
which cells act as individual agents able to interact only
with their local environment. This means that our results
extend beyond the ideal of mathematical models, toward
what is physically realizable in biology and future
technology.
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