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Equilibrium strategies in random-demand procurement auctions
with sunk costs
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We address an auction model which captures basic features of balancing markets for electricity. The exis-
tence and uniqueness of equilibrium are examined and a method for explicit calculation of bid strategies
is presented.

Keywords: auctions; equilibrium; electricity markets; risk management.

1. Introduction

Over the last two decades, a process has been underway worldwide to privatize state enterprises and
to liberalize markets for services of infrastructure industries, such as electricity, gas, telecommunica-
tions, transport and water. As a rule, privatization and liberalization are effected by the introduction of
competitive wholesale markets, organized by an appropriate auction principle. The perspective of game
theory provides a suitable framework to analyse their properties. In this work, we focus on multi-unit
procurement auctions with random demand and sunk costs which reflect the key structure of real-time
electricity trading.

To explain how our models are to range into the framework of auction theory, let us first give a short
overview on related auction modelling. The optimal behaviour in auction games and their equilibria
have attracted research interests since a long time. The interested reader will find in Klemperer (1999)
a comprehensive survey on auction theory including valuable references to the most important work in
this field. Moreover, the recent book of Krishna (2002) gives a state-of-the-art summary on basic results
in modern auction theory. However, a typical issue of auction games is that minor changes in game
rules may lead to another auction type, which requires a modified approach. As a result, auction theory
deals with numerous observations, in general, not transferable from one auction format to another. In
particular, the efforts in electricity auction modelling have followed various approaches, the more as
each country has adopted its own solution when restructuring the electricity industry. Let us recall some
common auction mechanisms.

1.1 Classical auctions

Consider a situation in which multiple identical objects are for sale. There are many options to arrange
the trading: typically, all objects go into the same process, but are not necessarily sold to the same
bidder. For instance, in the Dutch auction, the auctioneer begins by calling out a price high enough
so that no bidder is willing to buy any unit. The price is then lowered until some bidder wishes to
buy one unit, which is then sold at this price. Thereafter, the auctioneer continues lowering the price
and the same procedure is repeated until all objects are sold. In the English auction, the auctioneer
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begins by calling out a low price and then gradually raises it. Each bidder indicates the number of units
he/she is willing to buy at that price. As the price raises, the bidders reduce their bid numbers. The
auction stops at the first price where the total number of units demanded matches the number of units
being sold. All units are sold at this price. Another auction format is referred to as the Ausubel auction.
Similar to the English auction, the price is continuously raised, but the selling price is effected by a more
complicated procedure (see Krishna, 2002). For these auctions, the bids are publicly available (oral-bid
auctions), contrary to the sealed-bid auctions, where the agents cannot observe the bid behaviour of
their competitors. The sealed-bid counterparts of the Dutch, English and Ausubel auctions are known as
the discriminatory, the uniform and the Vickery auctions, respectively. Under the private value model,
one supposes that the value of the objects to the bidders is modelled by independent random variables.
In view of this independence, the competitor’s behaviour is not relevant and so a sealed-bid auction is
seen to be equivalent to its open-format counterpart. To give the reader an understanding of how the
auctions considered in this work differ from classical forms, we follow Klemperer (1999) on sketching
a mathematical description to the latter.

EXAMPLE 1 (SINGLE OBJECT, PRIVATE VALUE MODEL) Assume that N + 1 identical bidders i =
0, . . . , N compete for the possession of a single object. The object value Vi to the bidder i is random and
(Vi )

N
i=0 are non-negative, independent and identically distributed with continuous distribution function.

The bid behaviour is based only on the own value estimation. Thus, agent i observes the realization v of
the private value Vi to submit the bid βi = bi (v), where bid strategy bi is chosen from

S =
{
b continuous on [0, ∞[, strictly increasing, b(0) = 0, E

(
b
(

maxN
j=1 Vj

))
< ∞

}
.

The payment Ci (β0, . . . , βN ) of each bidder i depends on the bids β0, . . . , βN and is calculated by the
same rule for each player. For example, in the Dutch auction, the winner has to pay his/her own bid

Ci (β0, . . . , βN ) =
{

βi , if βi = maxN
j=0 β j ,

0, else.

Consider auction mechanisms where the highest bid always wins the object and choose, without lost of
generality, the viewpoint of the agent i = 0. If all competitors follow b ∈ S and the agent observes
realization v of the private value, then the agent submits a bid maximizing the own expected profit

β �→ Gb(v, β) := E
(

V01{β>maxN
j=1 b(Vj )} − C0(β, b(V1), . . . , b(VN ))|V0 = v

)
.

An equilibrium strategy b∗ ∈ S is characterized by the property that if all competitors follow b∗ ∈ S,
then the agent’s best choice is to choose b∗, too: Gb∗

(v, b∗(v)) � Gb∗
(v, b(v)) for all v ∈ [0, ∞[ and

b ∈ S.

Note that the only source of randomness in this modelling is effected by the agent’s inconclusiveness
about the object’s value. This circumstance is fully justified if one considers auctioning of a painting.
However, for electricity, the object value (production costs) is known, whereas the randomness is in-
duced by the demand uncertainty. Responding to this issue, a realistic description of electricity trading
shall go beyond classical formats.

1.2 Electricity auctions

Ignoring a huge variety of technical effects (startup costs, ramping constraints, transmission constraints,
etc.), a simplified model for electricity auction is described as follows: each producer submits for each
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hour of the next day schedules consisting of a bid quantity and a bid price for power which the producer
is willing to sell at least at this price. The system operator arranges the bids for each hour in the increas-
ing price order. The system price set for the current hour equals to the bid price of the last generator
needed to meet the demand. Each producer who is in merit (i.e. whose bid price was below or equal to
the system price) supplies power and sells it at a price depending on its bid price, electricity demand and
auction type. Then, each producer receives a payment, depending on the auction type, as follows: for
the case of discriminatory, uniform and Vickery auctions, each participant obtains the own bid price, the
system price, and for the those system price, which would be dispatched with the own bid, respectively.
Other producers (with bid price above the system price) suffer a loss since they have to pay fixed costs
for their idle production units.

Although electricity auctions seem similar to classical ones, there are several specialties which pre-
vent the classical framework to be adapted easily. Besides the minor difference that each electricity
auction is a procurement auction (bidders are sellers rather than buyers), the main problem is the value
of production to the bidder. In the case the agent produces, the agent earns the auction price less full
production costs, otherwise the fixed costs are to be paid. That is, there is no randomness involved in
the estimate of the object value, since the cost structure is deterministic. On the other hand, there is
a demand uncertainty to be considered (in particular for long-lived bids, see Fabra et al., 2002) since
electricity load is not known in advance. Another important issue of all electricity auctions is that there
is a price limitation, meaning that the system operator does not accept bids with bid price above a pre-
determined level, the so-called price cap. If the electricity demand exceeds all submitted production
capacities, then the system price is set at the price cap and the demand is to be met by additionally
running reserves from ancillary services. Our analysis shows that the price cap plays a significant role.

EXAMPLE 2 (UNIFORM AUCTION, SUPPLY FUNCTION MODELS) A number of authors, among them
Rudkevich (2003), Baldick et al. (2001), Anderson & Philpott and Anderson & Xu (2005), have fol-
lowed the concept of supply functions in their study of uniform auctions for electricity trading.
A supply function (see Klemperer & Meyer, 1989) gives the energy amount offered by a generator
depending on the sales price. Considering continuous supply functions, one implicitly assumes an in-
finite number of infinitesimal bids which gives a simplification of the real-world situation. For instance,
in Anderson & Xu (2005), the bid behaviour of a specified agent is modeled by a parameterized curve
{(q(τ ), p(τ )): 0 � τ � T } in R2 where q(τ ) stands for energy amount which the producer is willing
to sell at price p(τ ). The market is described by an exogenously given mapping (p, q) �→ ψ(p, q)
describing the probability that the generator is not fully dispatched if it offers an amount of generation
q at price p. The profit of the generator producing q (MWh) at price p (USD/MWh) is modelled by
a function (q, p) �→ R(q, p). The work of Anderson & Xu (2005) deals with calculation of optimal
supply function (maximizing generator’s profit), given ψ and R.

EXAMPLE 3 (DISCRIMINATORY AUCTION, SINGLE ORAL-BID MODEL) Another model (Hinz,
2003a,b) considers competition of production technologies within discriminatory auction to understand
the so-called supply stack. Assuming that the bids are publicly available, the supply stack is modelled
by a deterministic function I where I(p) stands for the total energy offered at the bid price less or
equal to p. Given random demand Q and N ∈ N different production technologies with pf

i > 0 fixed,
pv

i � 0 variable production costs (i = 1, . . . , N ), one compares two strategies: to rent one small
unit of the technology i ∈ {1, . . . , N } with capacity c > 0 and to submit a schedule at the price p
which yields a random gain GI(p, i) := c(p − pv

i )1{Q>I(p)} − cpf
i or to be idle which gives a non-

random gain of zero: GI(idle) = 0. The equilibrium supply stack I∗ is characterized by the property
that a marginal producer (with a pre-specified utility function U ) is indifferent about both strategies
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E(U (GI∗
(p, i))) = E(U (GI∗

(idle))) = U (0) for i = 1, . . . , N . Under additional assumptions, the
existence and uniqueness of I∗ are shown in Hinz (2003b); moreover, Hinz (2003c) illustrates how, in
equilibrium, to calculate production capacity allocation along different technologies.

Let us mention some related work. Variations in electricity market design are discussed in Wilson
(2002). For a comprehensive overview of economic issues behind real-world electricity auctions, we re-
fer the reader to Fabra et al. (2002, 2005) and to the literature cited therein. There has been a lively debate
on the merits of the uniform or discriminatory pricing rules in electricity markets, whose discussion is
given by Fabra et al. (2002, 2005). In conformance with our revenue equivalence theorem (Hinz, 2004),
these authors find out that no support can be given to the presumption that by changing the auction for-
mat from uniform to discriminatory, a significant improvement in market performance can be achieved.
Furthermore, Fabra et al. illustrate that energy costs could be less important in practice than the auction
vulnerability with respect to collusion. Some auction theorists argue that uniform auctions are more
subject to strategic manipulations by large traders than are discriminatory auctions, being actually the
reason for the implementation of the discriminatory mechanism in England and Wales in March 2001.

In this work, we discuss an auction class that is designed to match energy demand and supply to
continuously maintain equilibrium of the electrical network. To simplify the framework for a compre-
hensive model analysis, we omit some technical features of electricity production and trading. In our
model, each bid is made at a single price, which does not match actual electricity markets: for instance,
in Fabra et al. (2005), the authors report that in Spain an agent may submit up to 25 price-quantity bids.
Moreover, we assume that each unit is dispatched either completely or not at all. This assumption sim-
plifies that in reality a part of the offer may be dispatched. In spite of these limitations, we approximately
describe a market consisting of similar players using the same technology with narrow dispatch inter-
vals. The incremental contribution of our work is to analyse a general auction class, however, restricted
to single bid per agent (giving the opposite simplification than supply function models). Our approach
also gives an extension of models from Example 3 to the case of the sealed-bid auctions.

2. An auction model

Let us agree with the following notations. Denote by M1(X) the set of all probability measures on the
σ -algebra B(X) of Borel measurable subsets of X . The Dirac measure of a point p ∈ X is denoted εp.
For ν ∈ M1(X) and N ∈ N, we write νN for the product measure νN := ν ⊗ · · · ⊗ ν ∈ M1(X N ). The
maximum and the minimum of a, b ∈ R are denoted by a ∨ b and a ∧ b, respectively. The derivative of
a function g is denoted by ġ or ∂g, and ∂−g, ∂+g stand for its left and the right derivatives, respectively.

Let Q > 0 (MWh within 1 h of the next day) be the random electricity demand modelled on a
probability space (Ω,F, P) and denote by J =]0, sup J [, the interval of all prices accepted by the
system operator. With this notation, sup J stands for the price cap. Suppose that N + 1 � 2 producers
i = 0, . . . , N compete at the electricity market. Each agent owns one of the N + 1 identical electricity
production units of the capacity c > 0 (MWh). Bidding at the electricity auction, the agent offers the
entire production of c MWh for the corresponding hour at a single bid price p (USD/MWh). Given
submitted bids 
x = (x0, . . . , xN ) ∈ J {0,...,N }, the probability that the agent j ∈ {0, . . . , N } is in merit
depends on the number of bids placed in front of the own bid. Let us explain how it is to be determined.
The system operator places in front of agents j bid x j , all bids xi with prices xi < x j and after x j

those xi with xi > x j . For competitors i bidding at the same price xi = x j , a sharing rule has to be
applied. The procedure proposed here is to decide randomly giving all bidders the same chance, e.g. to
draw lots establishing a priority order of scheduling. Let us formally define such a sharing rule: after
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receiving the bids x0, . . . , xN , the system operator generates the priority numbers z0, . . . , zN ∈ [0, 1]
taking a realization of independent uniformly on [0, 1] distributed random variables (Z0, . . . , ZN ) = 
Z
independent from the future demand Q. The system operator arranges the bids in the increasing price
order, and in the case of price coincidence xi = x j , the bid with the lower priority number is placed
first. Since the distribution of priority numbers is continuous, this procedure establishes almost surely a
well-defined bid list. To make this concept precise, we introduce the rank r j (
x, 
z) of the agent j , given
the bid prices 
x := (xi )

N
i=0 ∈ J {0,...,N } and priority numbers 
z := (zi )

N
i=0 ∈ [0, 1]{0,...,N } by

r j (
x, 
z) := |{i ∈ {0, . . . , N }: xi < x j }| + |{i ∈ {0, . . . , N }: xi = x j , zi < z j }|.
Note that the ranks satisfy

rρ(i)(
x, 
z) := ri (
xρ, 
zρ), for all i = 0, . . . , N , (1)

for each ρ from the set of all permutations SN+1 of {0, . . . , N } acting as


wρ := (wρ(0), . . . , wρ(N )), for all 
w = (w0, . . . , wN ) ∈ R{0,...,N }.

Suppose that within 1 h, the production unit incurs the fixed costs pf ∈ J (USD/MWh), the variable
production costs pv ∈ J (USD/MWh) and full production costs pfv := pf + pv ∈ J . For submitted bids

x ∈ J {0,...,N }, the gain of the agent j is given by

G j (
x) := c(Π j (
x, Q) − pfv)1{Q>cr j (
x, 
Z)} − cpf1{Q�cr j (
x, 
Z)}, j = 0, . . . , N . (2)

Here, the payment prices

Π j : J {0,...,N } × [0, ∞[→]0, sup J ] (
x, q) �→ Π j (
x, q), j = 0, . . . , N (3)

are symmetric, similar to (1):

Πρ(i)(
x, q) = Πi (
xρ, q), for all ρ ∈ SN+1, q ∈ [0, ∞[. (4)

Given a strictly increasing, convex utility function U ∈ C1(R), we define the loss functions u0, . . . , uN

by u j (
x) := E(U (G j (
x))) for all 
x ∈ J {0,...,N } and j = 0, . . . , N to write the non-cooperative game
model of electricity auction as

Γ := (J {0,...,N }, u0, . . . , uN ). (5)

Note that we cannot use general game-theoretic results to automatically ensure the equilibrium ex-
istence since u0, . . . , uN are in general not continuous. For this reason, we work out mild conditions
guaranteeing existence and uniqueness of the symmetric equilibrium for mixed strategies. In this con-
text, the price cap seems to be an essential model ingredient. To clarify why the cap is important,
consider a discriminatory auction with J =]0, ∞[. Here, in the case of possible production capacity
shortage P(Q > cN ) > 0, the bidder infinitely increases his/her own utility by raising the bid p ↑ ∞.
So, the probability of being scheduled converges to P(Q > cN ) > 0, whereas the profit rises as
c(p − pfv) ↑ ∞. That is, for arbitrary bid behaviour of competitors, the agent will not able to find a
strategy which maximizes his/her own profit. In other words, if there is no price cap, then in general, a
Nash equilibrium does not exists.

In view of (1) and (4), we focus on symmetric equilibria (ν∗, . . . , ν∗) of Γ , and call such ν∗ ∈
M1(J ) equilibrium strategy. Since our model is symmetric, it suffices to choose the viewpoint of the
first agent to decide, whereas ν ∈ M1(J ) is an equilibrium strategy.

For j ∈ {0, . . . , N }, fix some ρ ∈ SN+1 with ρ( j) = 0 to consider for (p, x) ∈ J {0,...,N } the gain
G j ((p, x)ρ) of the agent j bidding p ∈ J , whereas the competitors ρ−1(1), . . . , ρ−1(N ) submit the
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bids x = (x1, . . . , xN ) ∈ J N . Define for all p ∈ J and x ∈ J N

πx (p) := Π0((p, x), Q),

Ix (p) := cr0((p, x), 
Z),

Gx (p) := c(πx (p) − pfv)1{Q>Ix (p)} − cpf1{Q�Ix (p)}.

Obviously, the left and the right limits of p �→ Ix (p) do exist:

I+
x (p) := lim

b↓p
Ix (b) = c

N∑
i=1

1[xi ,sup J [(p), for all p ∈ J , (6)

I−
x (p) := lim

a↑p
Ix (a) = c

N∑
i=1

1]xi ,sup J [(p), for all p ∈ J . (7)

For p ∈ J , we agree to denote by Q, π(p), I(p), I−(p), I+(p), G(p) the random variables on the
measure space (Ω × J N ,F ⊗ B(J N )) which map each (ω, x) ∈ Ω × J N to

Q(ω), πx (p)(ω), Ix (p)(ω), I−
x (p)(ω), I+

x (p)(ω), Gx (p)(ω),

respectively. Define

U(p, ν) := EP⊗νN (U (G(p))), for all p ∈ J , ν ∈ M1(J ),

S(ν) := sup
y∈J
U(y, ν), for all ν ∈ M1(J ). (8)

With these notations, we obtain the following characterization of equilibrium strategies:

LEMMA 1 ν∗ ∈ M1(J ) is an equilibrium strategy if and only if

ν∗({p ∈ J : U(p, ν∗) < S(ν∗)}) = 0. (9)

Proof. Observe that for p ∈ J, x ∈ J N and ρ ∈ SN+1 with ρ( j) = 0,

G j ((p, x)ρ) and Gx (p) follow the same distribution. (10)

Indeed, by (1) and (4), we have

G j ((p, x)ρ) = c(Π j ((p, x)ρ, Q) − pfv)1{Q>cr j ((p,x)ρ , 
Z)} − cpf1{Q�cr j ((p,x)ρ , 
Z)}
= c(Π0((p, x), Q) − pfv)1{Q>cr0((p,x), 
Zρ−1

)} − cpf1{Q�cr0((p,x), 
Zρ−1
)}.

On the other hand, we have

Gx (p) = c(Π0((p, x), Q) − pfv)1{Q>cr0((p,x), 
Z)} − cpf1{Q�cr0((p,x), 
Z)}

and (10) follows since the distribution of (Q, 
Zρ−1
) equals to that of (Q, 
Z). Using (10), the expected

loss of the agent j following the strategy ν ∈ M1(J ), whereas all competitors follow ν∗ ∈ M1(J ) is∫
J

∫
J N

E(U (G j ((p, x)ρ)))ν∗N (dx)ν(dp) =
∫

J

∫
J N

E(U (Gx (p)))ν∗N (dx)ν(dp)

=
∫

J
U(p, ν∗)ν(dp).
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Now it remains to prove that the equilibrium property of (ν∗, . . . , ν∗) for Γ

∫
J
U(p, ν∗)ν(dp) �

∫
J
U(p, ν∗)ν∗(dp), for all ν ∈ M1(J ), (11)

is equivalent to (9). If ν∗ ∈ M1(J ) fulfils (11), then ν∗({p ∈ J : U(p, ν∗) < S(ν∗)}) > 0 is impossible,
since otherwise we obtain

∫
J U(p, ν∗)ν∗(dp) < S(ν∗); hence, there would exist a z ∈ J with

∫
J
U(p, ν∗)ν∗(dp) < U(z, ν∗) =

∫
J
U(p, ν∗)εz(dp)

contradicting to (11). On the other hand, if (9) holds, then U(p, ν∗) = S(ν∗) for ν∗-almost all p ∈ J ,
i.e. ∫

J
U(p, ν∗)ν∗(dp) = S(ν∗). (12)

�
The remaining part of our work presents a method to discuss the existence and uniqueness, and to

obtain an explicit calculation of equilibrium strategies for a general class of electricity auctions speci-
fied below. The idea comes from the following specialty of this class: for equilibrium strategy ν∗, the
function U(·, ν∗) is always continuous and there exists ρ ∈ [0, sup J [ with

{p ∈ J : U(p, ν∗) = S(ν∗)} = [ρ, sup J [ ∩ J. (13)

In other words, U(·, ν∗) stays at the maximum level once it has been reached, as illustrated in Fig. 1
(which qualitatively shows a typical shape of U(·, ν∗), whereas Fig. 2 gives quantitative examples).
Thus, the derivative vanishes ∂U(p, ν∗) = 0 for all p ∈ ]ρ, sup J [. This property yields a differential
equation for p �→ ν∗(]0, p]) on ]ρ, sup J [, giving a framework to discuss the existence, the uniqueness
and the explicit form of equilibrium strategies.

EXAMPLE 4 For the case of production capacity surplus P(Q � cN ) = 1, it turns out that εpv is an
equilibrium strategy for the uniform, discriminatory and Vickery auctions. Let us show this. Assume

FIG. 1. The function U(·, ν∗) in the case ν∗ is an equilibrium strategy.
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FIG. 2. The functions U(·, εpv ) for the case P(Q � cN ) = 1 and U (x) = x for all x ∈ R.

that all competitors bid at pv, then for bidding at p < pv, the agent produces in any case:

U(p, εpv) = U (c(p − pfv)), for the discriminatory auction,

U(p, εpv) = U (c(p − pfv))P(Q � c) + U (c(pv − pfv)︸ ︷︷ ︸
−cpf

)P(Q > c), for the uniform auction and

U(p, εpv) = U (c(pv − pfv)︸ ︷︷ ︸
−cpf

), for the Vickery auction.

Further, if the agent submits the bid at p = pv, then, in case of production, the paid price is pv ,
thus U(pv, εpv) = U (−cpf). If the bid price is p > pv, then the agent never produces: U(pv, εpv) =
U (−cpf) (for all three auction mechanisms). Thus, Fig. 2 depicts U(·, εpv) and Lemma 1 shows that εpv

is, indeed, an equilibrium strategy.

Another interesting consequence of (13) is that S(ν∗) = limp↑sup J U(p, ν∗), where the limit de-
pends neither on the auction type nor on its particular equilibrium, as the explicit expression

S(ν∗) = lim
p↑sup J

U(p, ν∗) = U (c(sup J − pfv))P(Q > cN ) + U (−cp f )P(Q � cN ) (14)

shows. Due to (12), the utility of an energy producer∫
J
U(p, ν∗)ν∗(dp) = S(ν∗) (15)

at the equilibrium is independent of the auction format. This property is used in Hinz (2004) to derive
a revenue equivalence theorem for electricity auctions, stating that if the energy producers are not risk-
averse U (r) = r for all r ∈ R, then at the equilibrium, each auction yields the same expected payment
for produced electricity.

We shall point out that the price cap significantly influences the auction itself, since the expected
utility of electricity producers in (14), (15) depends on sup J . That is, given a cap sup J , the auction will
attract (quench) additional production until the number of participants N reaches some level N ′ with
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utility of the marginal producer

U (c(sup J − pfv))P(Q > cN ′) + U (−cpf)P(Q � cN ′)

near zero.
Our main application is to show that for positive probability

P(exactly k + 1 generators are on-line) = P(Q/c ∈ ]k, k + 1]) > 0, k = 0, . . . , N ,

there exists a unique symmetric auction equilibrium and to present a method for calculating the corre-
sponding bid strategies. To give the reader an intuition why this condition is relevant, we consider on the
contrary the case P(Q > c(N + 1)) = 1 that the price cap is always reached. For the uniform auction,
we obtain that each producer is paid sup J independently on the own bid, showing that each ν ∈ M1(J )
gives an equilibrium strategy. Hence, no equilibrium uniqueness is available in this case.

3. Equilibrium strategies

In the present work, we study electricity auctions, where the paid price is increasing

πx (a) � πx (b), for all x ∈ J N , a, b ∈ J with a � b. (16)

We also assume that it never falls below the own bid price

πx (p)1{Q>I−
x (p)} � p1{Q>I−

x (p)}, for all p ∈ J , x ∈ J N , (17)

and cannot exceed those system price, which would be dispatched without agent’s bid

πx (p)1{Q>I−
x (p)} � inf{y ∈ J : I+

x (y) � Q}1{Q>I−
x (p)}, for all p ∈ J , x ∈ J N . (18)

Further, we assume that the paid price depends Lipschitz-continuously on the own bid price with a
global constant C ∈ ]0, ∞[

|πx (b)(ω) − πx (a)(ω)| � C |b − a|, for all b, a ∈ J , x ∈ J N , ω ∈ Ω , (19)

and for all x = (x1, . . . , xN ) ∈ J N , ω ∈ Ω fulfils

πx (·)(ω) is differentiable on J\{x1, . . . , xN }. (20)

Note that (17) and (18) together imply for all a � b ∈ J , x ∈ J N that

a1{I−
x (a)<Q�I+

x (b)} � πx (p)1{I−
x (p)<Q�I+

x (p′)} � b1{I−
x (a)<Q�I+

x (b)}, (21)

which gives

πx (p)1{I−
x (p)<Q�I+

x (p)} = p1{I−
x (p)<Q�I+

x (p)}, for all p ∈ J , x ∈ J N . (22)

The payment prices for our auctions are for all p ∈ J , x = (x1, . . . , xN ) ∈ J N and ω ∈ Ω given by

πx (p)(ω) = p (discriminatory auction),

πx (p)(ω) = inf

{
y ∈ J :

(
N∑

i=1

1[xi ,sup J [ + 1[p,sup J [

)
(y) � Q(ω)/c

}
(uniform auction),

πx (p)(ω) = inf

{
y ∈ J :

N∑
i=1

1[xi ,sup J [(y) � Q(ω)/c

}
(Vickery auction).

They meet the conditions (16)–(20).
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LEMMA 2 Let ν ∈ M1(J ).

(i) For a, b ∈ J with a < b holds: if ν([a, b]) = 0, then U(a, ν) � U(b, ν).

(ii) For all p ∈ J , there exist the limits

U+(p, ν) := lim
y↓p
U(y, ν), U−(p, ν) := lim

y↑p
U(y, ν).

(iii) For p ∈ J holds: if ν({p}) = 0, then U(·, ν) is continuous on p.

(iv) U(·, ν) is continuous on pv.

(v) If U(·, ν) is not continuous on p ∈ J\{pv}, then

U(p, ν) > U+(p, ν) and U−(p, ν) > U(p, ν), if p ∈ ]pv, sup J [, (23)

U(p, ν) < U+(p, ν) and U−(p, ν) < U(p, ν), if p ∈ ]0, pv[. (24)

Proof.

(i) For ω ∈ Ω , the function y �→ Ix (y)(ω) is constant on [a, b] for all x ∈ (J\[a, b])N . Since
νN ((J \ [a, b])N ) = 1, the equality I(a) = I(b) holds P ⊗ νN -almost surely. Using (16), we
obtain

U (G(a)) = U (c(π(a) − pfv))1{Q>I(a)} + U (−cpf)1{Q�I(a)}
� U (c(π(b) − pfv))1{Q>I(b)} + U (−cpf)1{Q�I(b)} = U (G(b))

which gives U(a, ν) = EP⊗νN (U (G(a))) � EP⊗νN (U (G(b))) = U(b, ν).

(ii) For later use of Lebesgue’s dominated convergence theorem, we point out that (U (G(p)))p∈J

are bounded

|U (G(p))| � |U (c(sup J − pfv))| ∨ |U (−cpf)|, for all p ∈ J . (25)

Since for all x ∈ J and ω ∈ Ω , the function Ix (·)(ω) takes a finite number of values, we obtain

lim
y↓p

1{Q>Ix (y)} = 1{Q>I+
x (p)}, lim

y↑p
1{Q>Ix (y)} = 1{Q>I−

x (p)},

P-almost surely for each x ∈ J N . From (19), we have the P ⊗ νN -almost sure convergence

lim
y↓p

U (G(y)) = U (c(π(p) − pfv))1{Q>I+(p)} + U (−cpf)1{Q�I+(p)}, (26)

lim
y↑p

U (G(y)) = U (c(π(p) − pfv))1{Q>I−(p)} + U (−cpf)1{Q�I−(p)}. (27)

Thus, (25) and dominated convergence yield the assertion.

(iii) If x ∈ (J\{p})N , then we have with (19) the continuity on p:

lim
y→p

U (Gx (y)) = U (c(πx (p) − pfv))1{Q>Ix (p)} + U (−cpf)1{Q�Ix (p)} P-almost surely.
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Since νN ((J\{p})N ) = 1, we have with (25) the dominated P ⊗ νN -almost sure convergence in

lim
y→p

U (G(y)) = U (c(π(p) − pfv))1{Q>I(p)} + U (−cpf)1{Q�I(p)},

giving limy→p U(y, ν) = limy→p EP⊗νN (U (G(y))) = EP⊗νN (U (G(p))) = U(p, ν).

(iv) For x ∈ J N and a, b ∈ J with a < b, we calculate

U (Gx (b)) − U (Gx (a)) = (U (−cpf) − U (c(πx (a) − pfv)))1{Ix (a)<Q�Ix (b)}
+ (U (c(πx (b) − pfv)) − U (c(πx (a) − pfv)))1{Q>Ix (b)}, (28)

which gives with (19) and (22) the right and the left limits

lim
b↓p

[U (Gx (b)) − U (Gx (p))] = (U (−cpf) − U (c(πx (p) − pfv)))1{Ix (p)<Q�I+
x (p)}

= (U (−cpf) − U (c(p − pfv)))1{Ix (p)<Q�I+
x (p)}, (29)

lim
a↑p

[U (Gx (p)) − U (Gx (a))] = (U (−cpf) − U (c(p − pfv)))1{I−
x (p)<Q�Ix (p)}. (30)

If p = pv, then we have U (−cpf) − U (c(p − pfv)) = 0, hence for all x ∈ J N P-almost surely
holds

lim
b↓pv

[U (Gx (b)) − U (Gx (pv))] = 0, lim
a↑pv

[U (Gx (a)) − U (Gx (pv))] = 0

and with (25) we obtain by U+(pv, ν) = U(pv, ν), U−(pv, ν) = U(pv, ν) the continuity of
U(·, ν) on pv.

(v) To prove (23), we suppose first that p > pv and assume that U(·, ν) is not right continuous
on p. By (29), it follows that

U+(p, ν) − U(p, ν) = (U (−cpf) − U (c(p − pfv)))

∫
J N

P(Ix (p) < Q � I+
x (p))νN (dx) (31)

which, by assumption, is not equal to zero. From p > pv, we have U (−cpf) − U (c(p − pfv)) < 0 and
consequently the first inequality of (23). Moreover, (31) also yields the strict positivity

0 <

∫
J N

P(Ix (p) < Q � I+
x (p))νN (dx) �

∫
J N

P(I−
x (p) < Q � I+

x (p))νN (dx). (32)

To show the second inequality of (23), we calculate similar to (31) from (30) that

U(p, ν) − U−(p, ν) = (U (−cpf) − U (c(p − pfv)))

∫
J N

P(I−
x (p) < Q � Ix (p))νN (dx). (33)

Further, we need for x ∈ J N the estimation

P(I−
x (p) < Q � Ix (p)) � P

(
I−

x (p) < Q � Ix (p), Z0 >
N

max
j=1

Z j

)

� P

(
I−

x (p) < Q � I+
x (p)|Z0 >

N
max
j=1

Z j

)
P

(
Z0 >

N
max
j=1

Z j

)
� P(I−

x (p) < Q � I+
x (p)) · (N + 1)−1, (34)
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where the second inequality holds due to

Ix (p)1{Z0>maxN
j=1 Z j } = I+

x (p)1{Z0>maxN
j=1 Z j }, p ∈ J, x ∈ J N

and in the third inequality, we use P(Z0 > maxN
j=1 Z j ) = (N + 1)−1 and the independence of

(I−
x (p), Q, I+

x (p)) and 
Z , see (7) and (6). Combine now (34) with positivity (32) to obtain∫
J N

P(I−
x (p) < Q � Ix (p))νN (dx) �

∫
J N

P(I−
x (p) < Q � I+

x (p))νN (dx)(N + 1)−1 > 0,

showing that (33) is in fact negative, which yields the second inequality of (23).
Now we assume that that U(·, ν) is not left continuous on p > pv. Then (33) is not equal to zero,

giving the second inequality of (23) and showing the strict positivity

0 <

∫
J N

P(I−
x (p) < Q � Ix (p))νN (dx) �

∫
J N

P(I−
x (p) < Q � I+

x (p))νN (dx). (35)

To show the first inequality, we estimate exactly as in (34)

P(Ix (p) < Q � I+
x (p)) � P

(
Ix (p) < Q � I+

x (p), Z0 <
N

min
j=1

Z j

)

� P

(
I−

x (p) < Q � I+
x (p)|Z0 <

N
min
j=1

Z j

)
P

(
Z0 <

N
min
j=1

Z j

)
� P(I−

x (p) < Q � I+
x (p)) · (N + 1)−1 (36)

to obtain∫
J N

P(Ix (p) < Q � I+
x (p))νN (dx) �

∫
J N

P(I−
x (p) < Q � I+

x (p))νN (dx)(N + 1)−1 > 0.

Hence, (31) is in fact negative, which yields the first inequality of (23). The assertion (24) is shown in
analogous way to (23). �
LEMMA 3 If ν∗ is an equilibrium strategy, then the following holds:

(i) J → R, p �→ U(p, ν∗) is continuous.

(ii) If ν∗(]0, p]) > 0, then U(p, ν∗) = S(ν∗).

(iii) If P(Q � cN ) > 0, then
ν∗({p}) = 0 for all p ∈ J\{pv}. (37)

(iv) If P(Q � cN ) > 0, then ν∗(]0, pv[) = 0.

Proof.

(i) Suppose on the contrary that U(·, ν∗) is discontinuous on p ∈ J , then by (iv) and (iii) of
the previous lemma, we have p �= pv and ν∗({p}) > 0. By (9), ν∗({p}) > 0 implies that
U(p, ν∗) = S(ν∗). By (v) of the previous lemma, the case p > pv yields a contradiction to
(8) by U−(p, ν∗) > S(ν∗) from (23), whereas the case p < pv gives a contradiction to (8) by
U+(p, ν∗) > S(ν∗) from (24).
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(ii) Since ν∗ is an equilibrium strategy, M := {y ∈ J : U(y, ν∗) = S(ν∗)} �= ∅ satisfies by (9)
ν∗(J\M) = 0. It suffices to prove that

M forms an interval with sup M = sup J , (38)

proceeding by the following argument: If p ∈ J satisfies ν∗(]0, p]) > 0, then ]0, p] ⊆ J\M
is impossible in view of ν∗(J\M) = 0. Thus, ]0, p] ∩ M �= ∅ and (38) implies that p ∈ M
showing (ii). Let us prove (38), by supposing on the contrary that there exist z, b ∈ J with z < b
and

U(z, ν∗) = S(ν∗), U(b, ν∗) < S(ν∗). (39)

Since (i) ensures that U(·, ν∗) is continuous, the infimum

p := inf{a ∈ [z, b]: U(y, ν∗) < S(ν∗) for all y ∈ [a, b]}
satisfies U(p, ν∗) = S(ν∗) such that U(y, ν∗) < S(ν∗) for y ∈]p, b], giving with (9) that

ν∗([a, b]) = 0, for all a ∈ ]p, b]. (40)

Now, (i) of the previous lemma is applied to (40) to conclude that U(a, ν∗) � U(b, ν∗) for all
a ∈ ]p, b]. Passing through the right limit a ↓ p, we obtain with continuity of U(·, ν∗) that

S(ν∗) = U(p, ν∗) = lim
a↓p
U(a, ν∗) � U(b, ν∗),

contradicting to the inequality in (39).

(iii) If P(Q � cN ) > 0, p �= pv and ν∗({p}) > 0, then for p ∈ J , we estimate as in (36)

P ⊗ ν∗N (I(p) < Q � I+(p)) � P ⊗ ν∗N (Q � cN , I(p) = 0, I+(p) = cN )

� P ⊗ ν∗N (Q � cN , I−(p) = 0, I+(p) = cN )/(N + 1)

� P(Q � cN )ν∗({p})N /(N + 1) > 0,

which shows with (31), (32) and (34) that for p > pv, we have a discontinuity (23) and for
p < pv a discontinuity (24) on p contradicting (i).

(iv) To show ν∗(]0, pv[) = 0, we suppose on the contrary that ν∗(]0, pv[) > 0, then (37) yields
0 < a < b < pv with

ν∗(]0, a]) > 0, ν∗(]a, b[) > 0. (41)

The first inequality ensures by (ii) that

U(a, ν∗) = S(ν∗), (42)

whereas the second yields

P ⊗ ν∗N (I(a) < Q � I(b)) � P ⊗ ν∗N (Q � cN , I(a) = 0, I(b) = cN )

� ν∗(]a, b[)N P(Q � cN ) > 0. (43)

As in (28), we write
U (G(b)) − U (G(a)) = T1(b, a) + T2(b, a), (44)
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where

T1(b, a) := (U (−cpf) − U (c(π(a) − pfv)))1{I(a)<Q�I(b)}, (45)

T2(b, a) := (U (c(π(b) − pfv)) − U (c(π(a) − pfv)))1{Q>I(b)}. (46)

T2(b, a) is non-negative due to a < b and (16). The estimation (21) shows that T1(b, a) is non-negative

T1(b, a) � (U (−cpf) − U (c(b − pfv)))1{I(a)<Q�I(b)} � 0

and is due to b < pv strictly positive U (−cpf) − U (c(b − pfv)) > 0 on the set {I(a) < Q � I(b)}
of positive (43) measure. That is, the difference (44) is non-negative and strictly positive on a set of
positive measure, hence with (42) we obtain a contradiction to (8)

U(a, ν∗) = EP⊗ν∗N (U (G(a))) < EP⊗ν∗N (U (G(b))) = U(b, ν∗).

�
To formulate the main result, we introduce the notation

αk := P(Q/c ∈]k, k + 1]), for k = 0, . . . , N , (47)

H(q) :=
N−1∑
k=0

(
N − 1

k

)
αkqk(1 − q)N−1−k, for all q ∈ [0, 1]. (48)

PROPOSITION 1 Suppose P(Q � cN ) > 0, then for the distribution function F of an equilibrium
strategy ν∗, the following holds: if p > pv and F(p) > 0, then ∂F(p) exists and fulfils

EP⊗ν∗N (U̇ (c(π(p)− pfv))cπ̇(p)1{Q>I(p)}) = ∂F(p)(U (c(p− pfv)−U (−cpf)))N H(F(p)). (49)

Proof. If ν∗ is an equilibrium strategy, then F is continuous on p ∈ ]pv, sup J [ due to (37) and (iii)
of Lemma 2. Hence, F(p) > 0 ensures that F is positive in a neighbourhood of p. From (ii) of the
Lemma 3, we have ∂U(p, ν∗) = 0. Let us use the notations (45), (46) to derive (49) from

0 = ∂−U(p, ν∗) = lim
a↑p

EP⊗ν∗N (T1(p, a))/(p − a) + lim
a↑p

EP⊗ν∗N (T2(p, a))/(p − a), (50)

0 = ∂+U(p, ν∗) = lim
b↓p

EP⊗ν∗N (T1(b, p))/(b − p) + lim
b↓p

EP⊗ν∗N (T2(b, p))/(b − p). (51)

Consider the first term on the right of (50) for a ∈ ]pv, p[. By (21), T1(p, a) is bounded

EP⊗ν∗N (T1(p, a)) � (U (−cpf) − U (c(a − pfv)))P ⊗ ν∗N (I(a) < Q � I(p)), (52)

EP⊗ν∗N (T1(p, a)) � (U (−cpf) − U (c(p − pfv)))P ⊗ ν∗N (I(a) < Q � I(p)). (53)

Moreover, due to P ⊗ ν∗N -independence of Q and (I(a), I(p)), we have

P ⊗ ν∗N (I(a) < Q � I(p)) =
N−1∑
k=0

N−k∑
j=1

P ⊗ ν∗N (Q/c ∈ ]k, k + j])

· P ⊗ ν∗N (I(a) = ck, I(p) = c(k + j)), (54)
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where we utilize (37) to obtain

P ⊗ ν∗N (I(a) = ck, I(p) = c(k + j))

= N !

k! j!(N − k − j)!
ν∗(]0, a])kν∗(]a, p]) jν∗(]p, sup J [)N−k− j .

Approaching the point p from the left a ↑ p, we conclude that the limit

lim
a↑p

P ⊗ ν∗N (I(a) < Q � I(p))

p − a

exists and is equal to

∂−F(p)

N−1∑
k=0

N !

k!(N − k − 1)!
P

(
Q

c
∈ ]k, k + 1]

)
F(p)k(1 − F(p))N−k−1 = ∂−F(p)N H(F(p)),

if and only if ∂−F(p) exists, since the continuity of F on p ensures that the asymptotic is determined
by those summands of (54) where j = 1. Finally, we use the bounds (52) and (53) to see that

lim
a↑p

EP⊗ν∗N (T1(p, a))

p − a
= ∂−F(p)(U (−cpf) − U (c(p − pfv)))N H(F(p)), (55)

where both sides exist simultaneously. Now, we turn to the second term on the right of (50). Here,
(37) ensures that ν∗N ((J\{p})N ) = 1 giving with (19) and (20) the bounded P ⊗ ν∗N -almost sure
convergence in

lim
a↑p

T2(p, a)

p − a
= cU̇ (c(π(p) − pfv))π̇(p)1{Q>I(p)}.

Thus,

lim
a↑p

EP⊗ν∗N (T2(p, a))

p − a
= EP⊗ν∗N (U̇ (c(π(p) − pfv))cπ̇(p)1{Q>I(p)}) (56)

is fulfilled. Because of (50), the sum of (55) and (56) vanishes, showing that

EP⊗ν∗N (U̇ (c(π(p) − pfv))cπ̇(p)1{Q>I(p)}) = −∂−F(p)(U (−cpf) − U (c(p − pfv)))N H(F(p)),

in particular, ∂−F(p) exists. The same derivation is repeated for (51) to obtain

EP⊗ν∗N (U̇ (c(π(p) − pfv))cπ̇(p)1{Q>I+(p)}) = −∂+F(p)(U (−cpf) − U (c(p − pfv)))N H(F(p)).

Finally, we use I(p) = I+(p) resulting from (37) to obtain (49). �

4. Application

PROPOSITION 2 For discriminatory, uniform and Vickery auctions, the following holds: if αk > 0 for
all k = 0, . . . , N , then there exists a unique equilibrium strategy.

Proof. The requirement of the Proposition 1 is fulfilled as

P(Q � cN ) =
N−1∑
k=0

αk > 0.
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Consider the uniform auction. First, we show uniqueness. Introduce the bid price px (k) of the k-th
generator within a list scheduled from the bids x ∈ J N as

px (k) = inf{y ∈ J : ck � Ix (y)}, for k = 0, . . . , N .

With this notation, the payment price for the uniform auction is written as

πx (p) =
N∑

k=0

1{Q/c∈]k,k+1]}(px (k)1{Ix (p)<ck} + p1{Ix (p)=ck} + px (k + 1)1{I(p)>ck})

for all x ∈ J N and p ∈ J . We have therefore

π̇x (p) =
N∑

k=0

1{Ix (p)=k}1{Q/c∈]k,k+1]}, x = (x1, . . . , xn) ∈ J N , p ∈ J\{x1, . . . , xN }. (57)

Now, we use (57) to calculate for p > pv

U̇ (c(π(p) − pfv))cπ̇(p)1{Q>I(p)} = cU̇ (c(p − pfv))

N∑
k=0

1{I(p)=k}1{Q/c∈]k,k+1]}

and so for all p > pv the left side of (49) is

EP⊗ν∗N (U̇ (c(π(p) − pfv))cπ̇(p)1{Q>I(p)})

= cU̇ (c(p − pfv))

N∑
k=0

P ⊗ ν∗N (I(p) = k) · P ⊗ ν∗N (Q/c ∈ ]k, k + 1])

= cU̇ (c(p − pfv))L(F(p)), (58)

where F(p) = ν∗(]0, p]) for p ∈ J and

L(q) =
N∑

k=0

(
N

k

)
αkqk(1 − q)N−k, q ∈ [0, 1]. (59)

Rewrite now (49) using (58) as

∂F(p) = cU̇ (c(p − pfv))

U (c(p − pfv)) − U (−cpf)

L(F(p))

N H(F(p))
, for p > pv, F(p) > 0, (60)

where the positivity of the denominator is ensured by p > pv and by

1 � H(q) �
N−1
min
k=0

αk > 0, for all q ∈ [0, 1]. (61)

Similarly, we obtain the bound

m := min
q∈[0,1]

L(q)

N H(q)
�

minN
k=0 αk

N · 1
> 0. (62)
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Define now

f : ]pv, sup J ] × [0, 1] → R, (p, q) �→ cU̇ (c(p − pfv))

(U (c(p − pfv)) − U (−cpf))

L(q)

N H(q)
,

to deduce from (60) that on {p > pv: F(p) > 0}, F is a solution to

F(sup J ) = 1, ∂F(p) = f (p, F(p)), (63)

which is unique since the partial derivative (p, q) �→ ∂(0,1) f (p, q) is continuous ensuring the Lipschitz
condition. This gives the uniqueness of the equilibrium strategy. Let us show the existence. Consider the
global solution F̃ : [ρ, sup J ] → [0, 1] to

F̃(sup J ) = 1, ∂ F̃(p) = f (p, F̃(p)).

Then F̃(ρ) = 0, as the following estimation for p ∈ [ρ, sup J ] shows:

F̃(p) = −
∫ sup J

p
f (s, F̃(s)) ds + 1

� −
∫ sup J

p

cU̇ (c(s − pfv))

(U (c(s − pfv)) − U (−csf))
m ds + 1

� m ln

(
U (c(p − pfv)) − U (−cpf)

U (c(sup J − pfv)) − U (−cpf)

)
+ 1.

Given F̃ , the distribution ν∗ on J is well defined by

ν∗(]0, p]) =
⎧⎨
⎩

0, if p � ρ,

F̃(p), if p > ρ,

since F̃ is continuous and non-decreasing. To show the equilibrium property (9) of ν∗, it suffices to
prove that

U(·, ν∗) is constant on [ρ, sup J [, (64)

because from (i) of the Lemma 2, we have U(p, ν∗) � U(ρ, ν∗) for all p � ρ and combine this estimate
with (64) to obtain U(ρ, ν∗) = S(ν∗) giving the equilibrium property (9):

{p ∈ J : U(p, ν∗) < S(ν∗)}⊆ ]0, ρ] ⇒ ν∗({p ∈ J : U(p, ν∗) < S(ν∗)}) � ν∗(]0, ρ]) = 0.

The assertion (64) is verified by calculating the derivative ∂U(p, ν∗) exactly as in the proof of the
Proposition 1, we thus obtain

∂U(p, ν∗) = −cU̇ (c(p − pfv))L(F̃(p)) + ∂ F̃(p)(U (c(p − pfv) − U (−cpf)))H(F̃(p)) = 0,

for all p ∈ ]ρ, sup J [, since F̃ solves by construction (63) on ]ρ, sup J [.
For the discriminatory auction, we repeat the above argumentation, replacing (57) by

π̇x (p) = 1, for all x ∈ J N , p ∈ J ,
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in this case, we have

L(q) :=
N∑

k=0

(
N

k

) ⎛
⎝1 −

k−1∑
j=0

α j

⎞
⎠ qk(1 − q)N−k, m �

(1 − ∑N−1
j=0 α j )

N
� αN

N
> 0. (65)

For the Vickery auction, the derivative is

π̇x (p) = 0, for all x ∈ J N , p ∈ J .

Therefore, the left side of (49) vanishes and the differential equation (63) in this case is

F(sup J ) = 1, ∂F(p) = 0.

That is, if F is the distribution function of an equilibrium strategy, then F(p) = 1 for all p ∈ ]pv, sup J [.
On the other hand, (iv) of Lemma 3 shows that F(p) = 0 for all p ∈ ]0, pv[, hence, F = 1[pv,sup J [,
implying that there is a single candidate εpv for the equilibrium strategy. A direct calculation shows that
U(·, εpv) is constant

U(p, εpv) = U (−cpf)P(Q � cN ) + U (c(sup J − pfv))P(Q/c > N ), for all p ∈ J ,

which proves the equilibrium property (9) of εpv . �

5. Case study: symmetric equilibrium in a two-agent market

Let us illustrate1 the use of the differential equation (63) calculating equilibrium strategies for our auc-
tion formats in the case of two competing energy producers

N = 1, α0 > 0, α1 > 0. (66)

The conditions of Proposition 1 are fulfilled and we have H(q) = α0 for all q ∈ [0, 1]. According to
(59), we obtain for the uniform auction

L(q) = α0(1 − q) + α1q, for all q ∈ [0, 1].

Hence, (60) yields with α = α1/α0

∂F(p) = U̇ (c(p − pfv))c

U (c(p − pfv)) − U (−cpf)
(1 − F(p)(1 − α)), for p > pv, F(p) > 0.

Solving this equation with initial condition F(sup J ) = 1, we obtain for α �= 1 the distribution of the
unique equilibrium strategy for the uniform auction as

F(p) =
⎧⎨
⎩

(
1

1−α − α
1−α

(
U (c(sup J−pfv))−U (−cpf)

U (c(p−pfv))−U (−cpf)

)1−α
)

∨ 0, for p ∈ ]pv, sup J [,

0, for p ∈ ]0, pv],
(67)

1The author thanks anonymous referees for suggestions on visual illustration.
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and for α = 1 as

F(p) =
{(

1 − ln
(

U (c(sup J−pfv))−U (−cpf)

U (c(p−pfv))−U (−cpf)

))
∨ 0, for p ∈ ]pv, sup J [,

0, for p ∈ ]0, pv].
(68)

Now, we turn to the discriminatory auction. According to (65), we have

L(q) = (1 − q) + (1 − α0)q, for all q ∈ [0, 1].

Hence, (60) yields

∂F(p) = U̇ (c(p − pfv))c

U (c(p − pfv)) − U (−cpf)
(1/α0 − F(p)), for p > pv, F(p) > 0.

Thus, the distribution of the unique equilibrium strategy for the discriminatory auction is

F(p) =
{(

1
α0

− 1−α0
α0

U (c(sup J−pfv))−U (−cpf)

U (c(p−pfv))−U(−cpf)

)
∨ 0, for p ∈ ]pv, sup J [,

0, for p ∈ ]0, pv].
(69)

For the Vickery auction, the distribution function of the unique equilibrium strategy is F(p) =
1[pv,sup J [(p) for all p ∈ J , as explained in the proof of the Proposition 2.

FIG. 3. Strategies (67) for U : x �→ x and α = 1/6, 2 and 6, denoted by �, ◦ and �, respectively.

FIG. 4. Strategies (67) for U : x �→
√

x + cpf and α = 1/6, 2 and 6, denoted by �, ◦ and �, respectively.
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FIG. 5. Strategies (69) for U : x �→ x and α0 = 0.7, 0.5 and 0.3, denoted by �, ◦ and �, respectively.

FIG. 6. Strategies (69) for U : x �→
√

x + cpf and α0 = 0.7, 0.5 and 0.3, denoted by �, ◦ and �, respectively.

To give the reader a visual interpretation of equilibrium in uniform and discriminatory auction, we
finally include a numerical illustration of expressions (67) and (69) choosing the price interval J :=
]0, 100[, capacity c := 1 and production costs pf := 15, pv := 10.

Let us start with uniform auction assuming first U (x) = x for all x ∈ R, which means that the agents
are not risk averse. According to (67) and (68), the unique equilibrium strategy depends on α = α1/α0
being the probability that two generators are needed to cover the demand divided by the probability that
one generator is sufficient. If this fraction is low (small α), then the equilibrium bids are concentrated at
lower prices. This is seen from the upper curve in Fig. 3 (marked by �) which shows the shape of (67)
for α = 1/6. In the opposite case (for α = 6), bids are to place at higher prices, as one observes from
the lower curve in Fig. 3, labelled by �. For α = 2, we find equidistant bid distribution, marked by ◦
in this picture. The effect of risk aversion is illustrated in Fig. 4, where the same situation is plotted for
the case of utility function U (x) = √

x + cpf for all x ∈ ]− cpf, ∞[. As expected, risk-averse agents bid
less aggressive, so we recognize in this picture the strategies from Fig. 3, shifted towards lower prices.

Now, we turn to the discriminatory auction. Here, (69) shows that the probability α0 is essential.
Note that lowering α0, we automatically increase 1−α0, which is the probability to be scheduled despite
being the most expansive bidder. Hence, the lower is α0, the more attractive are higher bid prices. This
intuition is validated by Fig. 5, where, in the case of not risk-averse agents, we plot (69) for α0 = 0.3,
0.5 and 0.7, labelled by �, ◦ and �, respectively. The last picture, Fig. 6, depicts the same situation for
utility function U (x) = √

x + cpf for all x ∈ ]− cpf, ∞[. Here, we observe the same effect of the risk
aversion as in the case of uniform auction.
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