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SUMMARY

Geomagnetic jerks are sudden changes of trend in the geomagnetic secular variation. The
Earth’s mantle behaves as a filter for the jerks, causing a delayed and a smoothed signal at
the Earth’s surface. Backus’ mantle filter theory relies on approximating the impulse response
function (IRF) of the mantle by a Gaussian. The advantage of this theory is the linear relation
between jerks’ delay times and the mantle electrical conductivity, as expressed by kernels.
However, the limitations of this theory arise when negative delay and/or smoothing times
occur. The applicability of the mantle filter theory is examined by analysing the validity of the
Gaussian as an approximation for the composite IRF (CIRF) at a given location. We show that
the electrical conductivity of the lower mantle is mostly responsible for the jerk delay time.
Alternating sign CIRFs might cause negative delay and/or smoothing times which prevents the
use of the mantle filter theory. Adequate/inadequate Gaussian approximations to the CIRFs
give small/large differences in the convolved jerk occurrence times. Most observatories yield
positive time constants, but in most cases the difference in the jerk occurrence times exceeds
0.5 yr.

Key words: Geomagnetic induction; Magnetic and electrical properties; Rapid time

variations.

1 INTRODUCTION

The Earth’s magnetic field is comprised of contributions from inter-
nal sources originating in the liquid outer core and crust and external
fields generated in the ionosphere and magnetosphere where the so-
lar wind interacts with the magnetic field of the Earth. Temporal
fluctuations of the external field range from milliseconds to a few
decades, with the shortest periods related to the variations of the
solar magnetic field. Variations over time-scales ranging from a few
years to millions of years are due to the changes in the internal
magnetic field and are called secular variation (SV).

Geomagnetic jerks are the shortest observed variations of the
core field and are usually represented by an impulse in the third
time derivative of a component of the magnetic field (Courtillot
et al. 1978; Malin & Hodder 1982; Mandea et al. 2000; Olsen &
Mandea 2007). The physical origin of these rapid events has been
the focus of many studies in the past decade (Bloxham et al. 2002;
Holme & de Viron 2005; Olsen & Mandea 2008; Wardinski et al.
2008; Chulliat et al. 2010; Silva & Hulot 2012; Holme & de Viron
2013). Geomagnetic jerks of worldwide extent occurred in 1969,
1978 and 1991, while some localized events happened in 1913,
1925 and 2003. Regional/global jerks distinction may be obtained
by examining the consistency of the occurrence patterns (Brown
et al. 2013). Global jerks do not occur at the same time on the

Earth’s surface: some observatories registered early jerk arrivals,
while others detected late jerk occurrences. The difference between
jerk arrivals in different magnetic observatories is termed the jerk
differential delay (Pinheiro & Jackson 2008) and is typically on the
order of 2 yr. If the jerk corresponds to a simultaneous event at
the core-mantle boundary (CMB), the differential delay observed
at the Earth’s surface is likely the effect of the mantle’s electrical
conductivity.

The electrical conductivity of the mantle has been the subject of
much debate in the last decade, especially after the discovery of the
post-perovskite phase transition (Murakami et al. 2004). Ohta et al.
(2008) performed direct measurements of the post-perovskite elec-
trical conductivity at D” conditions. Their measurements indicate a
D” conductance of 4 x 107 S, corresponding to a uniform electrical
conductivity of about 140 Sm~".

Temporal variations of the external and internal geomagnetic
fields have also been used in attempts to constrain physical proper-
ties of the deep Earth. One of the earliest applications of induction
to obtain information about the electrical conductivity was that of
Labhiri & Price (1939) who considered the general theory for any ra-
dially varying electrical conductivity in a spherical geometry. They
applied their formal solution to solar diurnal and storm-time varia-
tions to estimate the mantle’s electrical conductivity up to 1000 km
depth. Olsen (1998) used two different external field sources to
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evaluate induction responses in Europe: geomagnetic daily vari-
ations generated in the ionosphere and variations caused by the
decay of magnetic storms in the magnetosphere (periods between
3 hr and 30 d). He found a monotonic increase of the electrical
conductivity from 0.01 Sm~" at 200 km depth to about 1.4Sm™!
below 1000 km depth. Olsen (1999) used longer periods (from 30 d
to 1 yr) to estimate the electrical conductivity in deeper mantle lay-
ers. Induction responses were calculated using daily mean values at
42 magnetic observatories. He inferred an increase of the electrical
conductivity from 800 km depth (c =2Sm™") to 2000km (o =3~
10 Sm™"). In general, induction studies converge to similar models
of the mantle’s electrical conductivity roughly from 0.01 Sm~! in
the upper mantle to 0.5 S m™"! at around 1400 km depth (Olsen 1998,
1999; Kuvshinov et al. 2005; Kuvshinov & Olsen 2006; Semenov &
Kuvshinov 2012). More recently, Tarits & Mandea (2010) used 32 yr
of magnetic monthly mean data and found average values from 6
to 7Sm™! in the depth range of 900-1500 km. The ability of in-
duction studies to unravel the electrical conductivity of deep lower
mantle layers is limited because the skin depth, that is the char-
acteristic length over which electromagnetic field attenuates by an
e-fold (Constable 2007), is shallow. In addition, transient induc-
tion in the metallic core caused by magnetospheric field variations
must be included in accurate portrayals of the near-Earth magnetic
environment (Velimsky & Finlay 2011).

In order to explore the electrical conductivity of the lowermost
mantle, studies involving the core field were developed. Runcorn
(1955) discussed the theory of the diffusion of the magnetic field
by considering the mantle as an infinite sheet of uniform thick-
ness and conductivity. He applied a step-like signal at the bottom
of the slab and evaluated the magnetic signal observed at the top.
McDonald (1957) used the geomagnetic SV and estimated the man-
tle electrical conductivity as 1 Sm~! at about 1000 km depth and
about 100Sm™~" in the lowermost mantle. Achache et al. (1980)
performed the same calculation as Runcorn (1955), but they used
instead a ramp-function at the bottom of the slab (2000 km). Based
on the geomagnetic jerk of 1969 they calculated responses for dif-
ferent values of electrical conductivity and obtained 60 S m~! for the
mean conductivity of the slab which corresponds to a conductance
of 1.2 x 10% S. Alexandrescu et al. (1999) modelled the 1969 jerk as
a pure singularity at the CMB and evaluated the effect caused by a
uniformly conducting mantle. Their estimated electrical conductiv-
ity is less than 10 Sm™! on average assuming a uniform conducting
lower mantle 2000 km thick and an insulating upper mantle. Nagao
et al. (2003) also solved the diffusion equation in the mantle for an
abrupt change occurring simultaneously at the CMB. They argued
that the later arrival of jerks in South Africa and South Pacific Ocean
may be explained by higher conductivities beneath these regions.
In order to explain these jerk delay times, the conductivity beneath
the South Africa and South Pacific Ocean would be greater than
200Sm~'.

The relation between mantle’s electrical conductivity and jerk
delay times was first established by Backus (1983). He developed a
theory that considers the mantle as a linear, causal and time invariant
filter. The input signal is represented by a geomagnetic jerk at the
CMB, the mantle as the filter and the output as the jerk observed
at the Earth’s surface. The effect of the mantle filter is to delay
and smooth the original signal generated in the core, as shown by
the synthetic example in Fig. 1. Pinheiro & Jackson (2008) applied
Backus’ mantle filter theory (Backus 1983) and demonstrated that a
simple 1-D mantle conductivity model is able to produce differential
jerk delay times at the Earth’s surface and even different patterns
for different jerk events.
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Figure 1. Schematic illustration of a time-serie of the secular variation of
a magnetic field component B; and the delay and smoothing caused by an
electrically conducting mantle. The blue curve represents a geomagnetic
jerk at the CMB and the red curve represents the output signal at the Earth’s
surface.

Backus’ mantle filter theory relies on a low-frequency approxi-
mation which simplifies the formalism, since the impulse response
function (IRF, see Section 2.1) F(¢) of the filter can be represented
by a Gaussian probability distribution function (PDF):

F(r) ~ 1)

1 (—(z — 1')2)

exp ,
V27 (Bo)? 2By
where t is the mean of the Gaussian corresponding to the delay
time and (B,)’ is the variance that represents the jerk smoothing
time. The delay time is defined as the time difference between jerk
occurrences at the Earth’s surface and the CMB. The consequence
ofthe Gaussian approximation is the linear relation between the jerk
delay time 7(¢) and the radial profile of the electrical conductivity
o (r) in the spherical harmonic domain (see Section 2.2). However,
there are some limitations on this approximation when representing
an IRF at a given location termed Composite IRF (CIRF, Pinheiro
& Jackson 2008). In CIRFs the delay and smoothing time constants
might be negative due to mixing of harmonics. In that case the
Gaussian approximation to the CIRF and the linear relation between
7(¢) and o (r) are no longer valid.

The causality condition requires jerks arrival at the Earth’ sur-
face after they are generated in the core (7 > 0). Jerks may be
represented by an impulse in the third time derivative of a magnetic
field component in the core, or as a V-shaped SV. Therefore, the
smoothing time of the jerk in the core would be null. Because of
the mantle’s filter effect, there is a smoothing of the V-shaped SV,
as shown in Fig. 1. At the Earth’s surface the smoothing time may
also be termed jerk duration (Nagao et al. 2003), which means the
period that the SV takes to change completely from one linear trend
to another. Thus, there would be no reasonable physical meaning
for negative smoothing time since the jerk at the surface cannot be
more instantaneous than its assumed behaviour in the core.

The calculation of the IRF is based on the exact solution of the
diffusion equation in spherical coordinates which directly stems
from Maxwell’s equations in a solid conductive mantle. However,
based on the IRF alone, the delays and smoothing times can only
be calculated numerically, not analytically. The most advantageous
aspect of the theory of Backus (1983) is the derived linear relation
between any radial mantle electrical conductivity profile and jerk
delay times. These kernels provide insight on the sensitivity of the
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Table 1. Notation of the variables used in this paper: symbols are written as functions of the
Earth’s radius (r), time (7), frequency (w), harmonic degree (¢), colatitude (0) and longitude (¢).

Symbol Function of Meaning

P r,0,0,t Poloidal scalar

py rt Poloidal scalar coefficient representing jerk amplitude at CMB
g 14 Geometrical filter

F Lt Impulse response function

F L, w Transfer function

T l Delay time

(B2)? 14 Smoothing time

Floc £,0,p,t Composite impulse response function

Tloc 0,0,¢ Local delay time

(B2 )12OC 0,0,¢ Local smoothing time

A £,6,¢ Local jerk total amplitude

o 0,0,¢ Normalized amplitude ratio

K Lr Kernel relating the delay time with electrical conductivity profile
o r Electrical conductivity profile

o Electrical conductivity value at the CMB

y Electrical conductivity power constant

mantle to a given electrical conductivity distribution in terms of
producing jerk delay times. In particular, it may indicate at which
region of the mantle the filtering effect is most prominent. Overall,
understanding the applicability and limitations of Backus’ mantle
filter theory is important in order to advance the inference of the
mantle electrical conductivity by geomagnetic SV observations and
may therefore improve the knowledge of the internal structure and
dynamics of the deep Earth.

Pinheiro & Jackson (2008) used Backus’ theory to show that a
1-D mantle conductivity model can generate jerk differential delay
times at the Earth’s surface. However, they did not explore the
applicability and limitations of this theory. Here, we calculate and
interpret kernels, which relate a radial electrical conductivity profile
with the jerk delay times. We explore the applicability of Backus’
mantle filter theory and quantify under which conditions it might
fail. Finally, we also quantify how the Gaussian approximation could
affect the calculated jerk delay times.

The paper is outlined as follows: in Section 2 we present the
theory for the time constants and for the kernels. In Section 3
we test the validity of assuming a Gaussian for the CIRFs of the
mantle filter and assess the consequences for jerk occurrence times.
We discuss the applicability and limitations of Backus’ mantle filter
theory in Section 4.

2 THEORY

2.1 Time constants

The magnetic field can be decomposed into toroidal-poloidal parts.
In a solid mantle the poloidal scalar obeys the diffusion equation:

0P, 0,6, 1
ot oo (r)

The poloidal scalar can be expanded in terms of spherical
harmonics:

P, 0.0, 0=y pl.DY/®. ), ©)

¢ m

V2P, 0, ¢, 1). (2)

where Y,"(0, ¢) are the Schmidt quasi-normalized spherical har-
monics, py'(r, t) are the corresponding poloidal scalar coefficients,

¢ is the degree and m the order. The radial magnetic field at the
CMB is given by:

1
Bye,)= = > e+ Hp(e. o). )

tm

Backus (1983) developed a theory in which the mantle behaves
as a linear, causal and time invariant filter. The input signal is
represented by a geomagnetic jerk, assumed to be a second-order
impulse, simultaneous at the CMB. The output at the Earth’s surface,
p}'(a, t), is calculated by the convolution between the CMB input,
p}'(c, t), and the following filters:

pi(a,t) =GOF(, 1) py(c,t)
= Q(E)/ F(t,t —t)p)(c, t') dr, 5)

where a is the Earth’s radius (¢ =6371 km), c is the core radius
(c =3485km), £ is the harmonic degree, G(£) = (5)Hl is the geo-
metrical filter and F(¥, 7) is the IRF representing the mantle filter.
The IRF is only dependent on the mantle conductivity model (for
more details see Appendix A). The transfer function (TF) represents
the mantle filter in the frequency domain and may be calculated by
the inverse Fourier transform of the IRF:

F(w)= / F(t)e' dt, (6)
where from hereafter the tilde denotes TFs (for definition of all
variables see Table 1).

The CIRF represents the mantle filter by considering the jerk
amplitude at each location:

L
Fie(0, 0, 1) = Y AL, 0, §)F (L, 1), ()

=1

where A(L, 0, ¢) is the amplitude at each location for each harmonic
degree (see again Table 1). Locally, jerk amplitude is defined as the
difference between the linear trends of the SV before and after
the jerk (Pinheiro et al. 2011). For each degree, the amplitude is
defined as the difference between the secular acceleration of the
corresponding Gauss coefficients before and after the jerk (Pinheiro
& Jackson 2008).
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Figure 2. Kernels of different harmonic degrees (blue, eq. 14) and a radial profile of a mantle electrical conductivity model (green), both as functions of radial

distance.

Two main constants characterize the mantle filter: the delay time
7 and the smoothing time (8,)*. The delay time for each harmonic
degree is independent of the location and calculated by the first
moment of the IRF curves:

1 o0
() = a0 /m F(¢, 1)t dr. ®)

Note that 7(£) is always positive, that is a jerk signal of a certain
degree takes a finite positive time to diffuse from the CMB to the
Earth’s surface. Similarly, the delay time at a certain location is
calculated directly by the first moment of the CIRF,

1 o0
.9 = 5 / Fuc®.6.1) 1 dt ©)

or by the sum of weighted delay times for each harmonic degree
(Backus 1983):

L

Te(0, ¢) = Y a(¢, 6, )T (0), (10)

=1

where a(¢, 0, ¢) is the ratio between the jerk amplitude for each
harmonic degree and the sum of all amplitudes A = )", A({):

AL, 0, ¢)

A@, )
Note that (£, 6, ¢) may acquire positive or negative signs, reflecting
the different possible jerk amplitude signs. As aresult, the delay time
at a certain location (10) may also be positive or negative. Finally,
the smoothing time at a certain location (B,)?%.(6, ¢) is defined as
the second central moment of the CIRF curve:

o) _ 2
O B e T

at,0,¢) = (11

(12)

2.2 Kernels

The jerk delay times for each harmonic degree, t(£), may be ex-
pressed as a function of the radial electrical conductivity profile,

o(r) by:

T(l) = /“ kL, r)o(r) dr, (13)

where the kernel is (Backus 1983):

K(l,r) = (2;1 1>r [1 - (;)Ml] , (14)

and p is the magnetic permeability. Combining eqs (13) and (14)
gives:

o a o 2641
(0= 37 / r [1 - (;) ]a(r)dr. (15)

One way to better understand the mantle’s filter behaviour is
by interpreting eq. (13). We consider a generic 1-D radial mantle
conductivity profile proposed by Lahiri & Price (1939):

(16)

c)2y+2
s

o) =0 (=

where o is the electrical conductivity of the lowermost mantle and
y is a constant. The model shown in Fig. 2 simulates an extremely
high mantle electrical conductivity (0. =1000Sm™" and y =3)
compared to previous estimates (e.g. Olsen 1999; Kuvshinov &
Olsen 2006). In this figure, we plot kernels for different harmonic
degrees that show (i) convergence to zero at the CMB, and (ii)
kernels of lower degrees are larger and thus may generate larger
delay times.

Jerk delay times, for each ¢, are calculated by the area of the
product of the two curves o (r) and «(¢, r) as shown in Fig. 3(a).
In this case (y =3), the lower mantle will mostly influence jerk
delay times. The fraction of delay time originating below the D”
ranges between 13 and 20 per cent for the three harmonics shown in
Fig. 3(a). These fractions are larger than the 10 per cent fraction of
D" depth, especially for the higher degrees. In addition, we define
critical radius as the maximum value of the curves o (r)x (¢, r) for
each harmonic degree, which we interpret as the radial distance
from the CMB that mostly influences the jerk delay times. The
curves in Fig. 3(a) peak at about »=4000 km, just above the D”
layer. We calculated the critical radius for different radial profiles
of the mantle electrical conductivity (by varying y in eq. (16)),
as shown in Fig. 3(b). This figure demonstrates that larger y gives
smaller critical radius. For y > 5 the critical radius is well within the
D" layer. In addition, higher harmonic degrees have deeper critical
radius.
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Figure 3. (a) Product between the radial profile of the electrical conductivity and the kernels for different harmonic degrees (integrand of eq. 13), as a function
of radial distance. (b) Critical radius, or maximum values in the o (r)«¢(r) curves, for different values of y for different harmonic degrees. Vertical line in (a)
and horizontal line in (b) denote an upper limit estimate of the D” radius (see Schubert e al. 2001, and references therein). In (a), the fraction of delay time
originating below the D" is 13 per cent, 17 per cent and 20 per cent for £ = 1, 3 and 5, respectively.

Table 2. Synthetic examples of delay times (7(¢) in yr), amplitudes
(A(€, 6, ¢) in nT yr=2) and the amplitude ratios (a(¢, 0, ¢)) at two ar-
bitrary locations (61, ¢1 and 65, ¢») for each harmonic degree ¢ until the
truncation degree L =3.

¢ @) AL 61,¢1) al,01,¢1) AL, 62,¢2) a(l,62,92)
1 3 4 0.1538 4 —0.6666
2 2 6 0.2308 6 —1.0000
3 1 16 0.6154 —16 2.6666
Total 26 —6

3 HOW WELL MAY A GAUSSIAN
REPRESENT THE MANTLE FILTER?

Backus (1983) applied a low-frequency approximation for the TF
which allows approximating the CIRF by a Gaussian. This approx-
imation fails when the delay time is negative which would mean
earlier jerk occurrence at Earth’s surface than on the CMB, and/or
when the smoothing time is negative which would be the equivalent
to sharper jerk behaviour at Earth’s surface than on the CMB. There-
fore, negative delay or smoothing times disable the use of Backus’
theory to represent the mantle filter. To illustrate this point, synthetic
examples of delay times at two arbitrary locations are presented in
Table 2. The IRF of each harmonic degree F(¥¢, ?) is represented
by a Gaussian with a delay time (or first moment) that decreases
with increasing harmonic degree. Each IRF curve is multiplied by
each synthetic jerk amplitude, which results in the CIRF for each
harmonic degree (eq. 7). The only difference between the two loca-
tions is the amplitude of £ = 3 and therefore «(¢, 6, ¢) is also differ-
ent (Table 2). The Gaussian is a good representation in location 1
where T1o.(01, ¢1)=1.54 yr and (82),.(61, ¢1) = 1.56 yr* are both
positive, but in location 2 it is impossible to represent the CIRF
by a Gaussian since Tioc(92, ¢2) = —1.33 yr and (82)}.(62, ¢2) =
—8.11 yr? are negative.

We consider a more realistic scenario by adopting a generic
1-D radial mantle conductivity profile (Fig. 2). Using this model

we calculate the IRFs for each harmonic degree F (¢, ¢). In addition,
in order to calculate the CIRFs, a jerk amplitude model is needed.
Jerk amplitudes were measured by fitting two straight-line segments
to the Y component of the geomagnetic SV during the 1969 jerk
based on the spherical harmonic model of Pinheiro et al. (2011),
see their fig. 14d.

We calculated the CIRFs as well as the delay and smoothing times
at 90 locations corresponding to magnetic observatories where the
1969 jerk was detected in the analysis of Pinheiro ef al. (2011).
For reference we considered median values of delay and smoothing
times since some observatories presented anomalously large values
that might bias an average. The median values of delay and smooth-
ing times were found to be (T}oc) = 6.67 yrand ((8,)3.) = 14.95yr.
We display six locations corresponding to magnetic observatories
that span the strength and limitations of Backus’ methodology
(Table 3). Observatories 2 and 3 are examples of positive delay
and smoothing times close to the median values. Observatories 1
and 4 present smaller/larger delay and smoothing times, respec-
tively. Observatories 5 and 6 are examples where Backus’ filter
theory cannot represent the CIRFs due to one or two negative time
constants.

Fig. 4 shows the IRFs and CIRFs of observatories 2 and 5 obtained
by the 1969 spherical harmonic model of Pinheiro ez al. (2011). The
area under the IRF curve represents the amplitude of the jerk for
each £. The first moment of each IRF curve represents the delay
time, which is slightly different for each ¢. The sum of all IRFs
gives the CIRF for each observatory (eq. 7). Observatory 2 is an
example of positive jerk amplitude, delay and smoothing times, its
CIRF is positive at all times and therefore may be well represented
by a Gaussian. In observatory 5 the amplitudes of different degrees
almost cancel out and the resulting CIRF alternates signs with time
and thus may not be represented by a Gaussian.

The Gaussian approximations of the CIRFs are calculated using
the delay time as the first moment and the smoothing time as the
variance (see eq. 1) of the Gaussian curves. Fig. 5 shows the CIRFs
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Table 3. Number, code and location of six magnetic observatories for the 1969 jerk (Y compo-
nent). The detection time of this jerk (fp) was taken from Pinheiro et al. (2011). The amplitude
(A innT yr~2), delay (z in yr) and smoothing times (ﬂ% in yr?) at the observatories are given.

n’ Code Latitude Longitude to A T (B2)?
1 API —13.80 188.23 1973.47 2.60 4.73 0.92
2 MBC 76.32 240.63 1974.27 1.14 6.02 12.42
3 CLF 48.02 2.27 1969.24 6.14 6.81 15.53
4 BII 40.03 116.18 1970.28 —0.80 10.27 17.71
5 GUA 13.58 144.87 1966.21 0.01 152.15 —13998.89
6 MIR —66.55 93.02 1971.00 0.22 —2.75 —122.23
0.30 : : : I=1
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Figure 4. IRF of each harmonic degree for observatories 2 and 5 (left-hand panel). The sum of all IRFs gives the CIRF for each observatory (right-hand panel).

L 7N q
0.50] 2 o8s 1]

0.60f ! \ |
0.40t / N |
0.20f / N 1
0.00 = : =

0

CIRF (1)

1.00 T T T T T
. 0.80f
0.601
0.401
0.201
0.00

-5

CIRF (t

0.05

0.00

CIRF (1)

-0.05 - ; :
0 5 10 15 20
time (yrs)

0.20

= 0.15}

& o.10}

O 0.05f

0.00L—=
-5

0.20 T T T T -

0 5 10 15 20 25 30
time (yrs)

Figure 5. Composite IRF (solid line) calculated by the 1969 spherical harmonic model of Pinheiro ef al. (2011) with a model of the radial profile of the

electrical conductivity. The dashed line represents the Gaussian.

and their Gaussian approximations. It demonstrates the potential
inadequacy of the Gaussian approximations for the CIRFs, due to
three main reasons: (i) maximum values of Gaussian curves are
dictated by its normalization and may disagree with the CIRFs; (ii)
the asymmetric character of CIRFs and (iii) CIRFs might alternate
signs, as in observatories 4-6. However, even in CIRFs that alternate
signs, the Gaussian approximation may be possible when delay and
smoothing times are positive. However, in observatories 5 and 6
the Gaussian representation is not possible because of the negative
smoothing and/or delay times.

The reason for the negative smoothing times in observatories 5
and 6 is apparent in Fig. 6 where the integrands of eq. (12) are
plotted. In the case of observatory 5 the area under the integrand
curve is close to zero, leading to an unrealistically large delay time;
In the other observatories the areas under the integrands are suffi-
ciently different than zero and their corresponding delay times are
therefore reasonable. Negative delay and/or smoothing times arise
when the contributions of different degrees to the CIRF have dis-
tinctive delays and/or opposite amplitude signs. In situations where
the CIRFs have slight opposite signs with respect to the peak but
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Figure 6. Integrands of the smoothing time constant of the six observatories shown in Table 4. Note that even a slightly sign alternating CIRF (OBS 5) might

lead to a negative smoothing time.
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Figure 7. Convolution of an arbitrary jerk with A = 1 (black line) with the CIRF (red line) and its Gaussian approximation (blue line) of the six observatories
(Table 4). The Gaussian approximations of OBS 5 and 6 are not shown due to their negative time constants (Table 3).

for a long period (see Fig. 5 OBS 5 and OBS 6), negative delay and
smoothing times might occur, since their integrands will enhance
the opposite sign part.

Next, we convolve the input (jerk signal at the CMB) with the
mantle filter (represented by the CIRF and its Gaussian) to obtain the
output (jerk at the surface). In Fig. 7 we calculated the convolution
of a simulated jerk with the Gaussian and with the CIRF in the
observatories listed in Table 3. In order to analyse the model results
in the same way as geomagnetic data is usually analysed, annual
means where evaluated for both convolved CIRF and Gaussian.
Note that the difference between the convolved CIRF and Gaussian
(Fig. 7) is much smaller than the difference between the CIRF and
the Gaussian prior to the convolution (Fig. 5). The curves were
fitted using two straight line segments by a least-squares method
(Pinheiro et al. 2011). The jerk occurrence time, defined as the
intersect of the two segments, is different for the convolved CIRF

Table 4. Jerk occurrence times detected using a least-squares fit of the
convolution between annual means of CIRF and Gaussian with a jerk.

n’ Code CIRF jerk time Gaussian jerk time Difference
1 API 1973.47 1973.34 —0.13

2 MBC 1974.27 1974.66 0.39

3 CLF 1974.58 1975.48 0.90

4 BJI 1977.36 1978.40 1.03

5 GUA 1970.81 - -

6 MIR 1971.60 - -

and the Gaussian. Fig. 7 and Table 4 show that these differences
are rather small in observatories 1 and 2 but become significant
in observatories 3 and 4, a consequence of the temporal offset
of the Gaussian approximation with respect to the CIRF in these
locations. As mentioned above, Gaussians cannot be calculated for
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Table 5. Sensitivity of convolution depending on two spherical harmonic models for
the 1969 jerk (Y component), Pinheiro ez al. (2011) and Le Huy ez al. (1998), and three
radial profiles of the mantle electrical conductivity (varying o, and y). The statistics
of the differences between the occurrence times of the convolved jerk with the CIRFs
and Gaussians of the 90 observatories are calculated. Percentages of CIRFs that are
well represented by Gaussians (A < 0.5 yr), CIRFs that are not well represented by
Gaussians (A > 0.5 yr) and CIRFs that could not be represented by Gaussians because

of negative delay and/or smoothing times are given.

Jerk model o.(Sm ™) vy A<05 A>05 Nofit Mean
Pinheiro et al. (2011) 1000 3 13 81 6 0.86
Pinheiro ef al. (2011) 3000 10 0 94 6 1.15
Pinheiro et al. (2011) 3000 11 0 97 3 1.36
Le Huy et al. (1998) 1000 3 14 74 11 0.81
Le Huy et al. (1998) 3000 10 0 92 8 1.14
Le Huy et al. (1998) 3000 11 0 93 7 1.33

observatories 5 and 6 due to their negative time constants. We
repeated this calculation for all 90 observatories. We arbitrarily
chose A =0.5 yr as a critical value distinguishing adequate and
inadequates Gaussian approximations.

We calculate global statistics of occurrence times differences.
Using the jerk morphology model of Pinheiro et al. (2011) and
a relatively flat mantle electrical conductivity model (first line in
Table 5), we found in 13 per cent of the locations that the difference
between the occurrence time of the convolved jerk with the CIRF
and with the Gaussian was smaller than 0.5 yr, that is the Gaussian
approximation is adequate. In most cases (81 per cent of the loca-
tions) this difference was greater than A =0.5 yr, that is the Gaus-
sian approximation is not adequate. In the remaining few 6 per cent
of the locations negative time constants prohibited the use of the
Gaussian approximation. We also test the sensitivity of our results to
different jerk morphology and mantle electrical conductivity models
(Table 5). In most observatories (74-97 per cent) we found relatively
large differences between the convolved jerks with CIRFs and with
Gaussians, while in less than 14 per cent this difference was smaller
than 0.5 yr and in less than 11 per cent it was impossible to calculate
Gaussians due to negative delay and/or smoothing times.

4 DISCUSSION

Geomagnetic jerks generated in the core propagate through the
mantle before arriving at the Earth’s surface. Because of the elec-
trical conductivity of the mantle, the observed jerk at the surface
is a delayed and smoother version of the original jerk in the core.
Backus (1983) developed a theory that relates radial profiles of the
mantle’s electrical conductivity with jerk delay times. This relation,
expressed by the kernels, varies for each harmonic degree and as a
function of the radial distance from the CMB. Analysis of the ker-
nels shows convergence to zero at the CMB and that lower harmonic
degrees are more delayed. Using a generic electrical conductivity
model, we demonstrated that deeper layers of the lower mantle af-
fect higher harmonic degrees. Moreover, despite the fact that the
kernels are zero on approach to the CMB (Fig. 2), the lower mantle
electrical conductivity governs jerk delay times (Fig. 3).

In this paper, we examined two main issues of the mantle filter
theory: (i) the limitation of the Gaussian approximation for calculat-
ing CIRFs and its consequences for jerk occurrence times, and (ii)
the application of the linear relation between jerk delay times and
a mantle electrical conductivity model to geomagnetic data. The
low-frequency approximation is not valid when the delay and/or

smoothing times are negative. We showed that negative smoothing
times may be caused by alternating sign CIRFs due to geomagnetic
jerks harmonic mixing for a given mantle electrical conductivity
model. An alternating sign CIRF curve may be generated by differ-
ent jerk amplitudes of different harmonic degrees (Fig. 4).

We calculated the CIRFs of locations corresponding to 90 mag-
netic observatories, using the same radial profile of mantle conduc-
tivity and the amplitude jerk model of Pinheiro et al. (2011). We
classified three scenarios (Figs 5 and 7): (i) CIRFs that are well
represented by Gaussians, (ii) CIRFs that are not well represented
by Gaussians but have positive time constants and (iii) CIRFs that
could not be represented by Gaussians because of negative delay
and/or smoothing times. Negative smoothing times might occur
when an opposite sign part of the CIRF is enhanced at times far
from the jerk occurrence (see eq. 12 and OBS 5 and OBS 6 in
Fig. 6).

‘We compared the statistics of the convolution using different jerk
morphologies (for the same mantle electrical conductivity model)
and using different electrical conductivity models (for the same
jerk morphology model). We found low sensitivity of the statistics
to the different models which may indicate that these results are
robust. In most observatories the time constants are positive, but
the difference between the occurrence times often exceeds 0.5 yr.
This means that the mantle filter theory can be implemented in most
cases, but it does not provide highly accurate occurrence times often
enough. It is important to note however that the latter result depends
strongly on the specific choice of the acceptable occurrence times
difference A.

Convolving the input jerks with the CIRFs demonstrates that the
difference between the jerk occurrence times is not significant where
the Gaussian approximation is adequate, but inadequate Gaussian
approximation might cause differences as large as 1 yr. Pinheiro &
Jackson (2008) showed that jerk differential delay times of about
2 yr may be caused by a 1-D mantle electrical conductivity model.
In data analysis, jerk differential delays are found to be also of
the order of 2 yr, but in some locations it may reach around 6 yr
(Alexandrescu et al. 1996; Le Huy et al. 1998; Pinheiro ef al. 2011).
Therefore, the differences of more than 0.5 yr in jerk occurrence
times that we detected by comparing CIRFs and Gaussians may
be significant in terms of accurately inferring mantle conductivity
models.

As shown in Table 5 the applicability of the Gaussian approxi-
mation may somewhat depend on the jerk morphology model. We
compared the models of Le Huy et al. (1998) and Pinheiro et al.
(2011) for the Y component of the 1969 jerk. In a more recent
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study, Brown et al. (2013) identified jerks in magnetic observatory
monthly mean data using temporal sliding windows. Their approach
provides histograms of jerk occurrence times based on minimal
a priori information. Although Table 5 shows low sensitivity to the
jerk morphology model, overall it is worthwhile exploring more
models for example that of Brown ef al. (2013).

It is interesting to note that despite rather large misfits between
CIRFs and Gaussians (Fig. 5), the fits between their corresponding
convolved curves are significantly superior (Fig. 7). This demon-
strates that even when the Gaussian does not seem to represent well
the CIRE it suffices to have positive and similar delay and smooth-
ing times to well reproduce the jerk’s behaviour. This may be seen
as an empirical support to the use of mantle filter theory.

Backus (1983) demonstrated that negative smoothing time occurs
due to harmonic mixing. Alternatively, he proposed the influence
of external sources. Courtillot & Le-Mouel (1984) demonstrated
this scenario by constructing a synthetic Y component SV by two
continuous parabolas with a jump in the second derivative in 1969.
They added a synthetic sunspot signal using a solar cycle period of
10 nT amplitude, obtaining (8,)* = —2.7 yr>.

The mantle filter theory may provide insights into the man-
tle’s electrical conductivity by exploring the possible radial profiles
which reproduce the observed jerk differential delays times. Such
a search may be pursued by considering a wide range of mantle
electrical conductivity models and calculating misfits between jerk
differential delays obtained by the data and by the theory. Note that
Backus’ mantle filter theory considers only 1-D radial mantle elec-
trical conductivity profiles; to incorporate lateral heterogeneities,
alternative time-domain methods should be applied (Velimsky &
Martinec 2005; Velimsky et al. 2006). The duration of a jerk or
smoothing time in observatory data is not well defined (although
attempts have been made, see Nagao et al. 2003), since jerks’ be-
haviour is not simple, but it may be reflected in the error bars of
the jerk occurrence times. However, the time in which the linear
trend of the SV changes sign (or jerk duration) usually does not last
more than 2 yr. This data information may be used to provide upper
bounds on mantle electrical conductivity models.

An alternative way to infer the time constants is to convolve a
synthetic jerk with CIRFs and calculate the delay and smoothing
times in the convolved jerk (as shown in Fig. 7) in the same way
that an observatory data set is treated. In this way the Gaussian
approximation is abandoned and as a result some alternating sign
CIRFs (that were excluded with the Gaussian approximation) can
be considered (e.g. OBS 6). Nevertheless, we recall that using the
Gaussian approximation is in general advantageous since it pro-
vides analytical expressions for the kernels and the subsequent time
constants.

Jerks detection and analysis will soon be greatly improved thanks
to the three satellites of the Swarm mission that were launched by
the European Space Agency in November 2013. These satellites cur-
rently monitor the Earth’s magnetic field with unprecedented high-
quality and globally distributed data set (Friis-Christensen et al.
2006). The expected data will provide a better characterization of
the geomagnetic SV. Specifically relevant to this study, Swarm data
may allow improving determination of jerk occurrence times and
inferring jerk duration times. The influence of the external field on
the SV data will also be better modelled by the Swarm data set.
Overall, a better understanding of the applicability of the mantle
filter theory in conjunction with new magnetic satellite data may
shed light on the structure of the deep mantle and provide insights
about the physical mechanisms responsible for geomagnetic jerks
in the core.
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APPENDIX A: TIME CONSTANTS

The effect of the mantle filter is to delay and smooth the original
signal generated at the CMB. The delay time is calculated by the
first moment of the IRF curve. The smoothing time is calculated by
the second central moment, or variance, of a Gaussian curve. The
delay time is directly proportional to electrical conductivity and
inversely proportional to the harmonic degree, while the smoothing
time depends strongly on the mixing of harmonics.
The exponential of eq. (6) can be expanded into power series,

oo

N o =1
Fo) = / F(t)Z;(zwt)”dt, (A1)
_ — n!

where 7 is the nth ordinary moment. The area under the IRF curve
is expressed by:

F(0) = /_ h F() dt. (A2)
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Substituting eq. (A2) into eq. (Al):
. Uty |
F(w) = F(0) Xg‘ —Gon)', (A3)

where (7,)" is the ordinary nth moment given by:

L— L = n
(r,) = 70 [ N F(t)t"dt. (A4)

The delay time is given by the first moment (n =1):

_ / " R dr (A5)
TEF0 ). ’

However, in order to calculate the delay time in different locations
we must consider the CIRF (Pinheiro & Jackson 2008):

‘l o0
0. ) = 5 / Foc0. . 1) 1 dt, (A6)

where A represents the sum of jerk amplitudes of all degrees and
orders: A(0, ¢) =Y, Ai(0, ¢). Since:
Fioc(€, 0,9, 1) = AL, 0, 9)F (L, 1), (AT)

then:
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and since T(¢) = [ F(£,t) ¢ dt:
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If we consider «(¢, 0, ¢) = Ajff;’;) then eq. (A9) becomes:

Te(®, ¢) = Y a(¢, 60, )T (0). (A10)
¢
Eq. (A10) is used to calculate jerk delay times in different locations.

The smoothing time is calculated by the second central moment,
which corresponds to the variance of a Gaussian:

B = / N %()—)’)zdr. (A1)

There are two general equations for the nth central moment, given
by Backus (1983):

1 o0
By = %[ F()(t —)"dt. (A12)
and
no__ . _ n—m n' m_n—m
B = 2 = e (A13)

By setting n =2 in eq. (A13):
(B =7+ 135, (A14)

and the general equation for expressing central moments as func-
tions of first moments is written as:

(B)' = —t"+71,. (A15)

APPENDIX B: LOW FREQUENCY
APPROXIMATION

The mantle filter theory proposed by Backus (1983) has the ad-
vantage to provide an analytical linear relation between jerk delay
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times and radial profiles of the mantle’s electrical conductivity. In
this appendix we aim to clarify how the IRFs and CIRFs may be
approximated by a Gaussian. Backus (1983) defined:

Fiy=F@t —1) (B1)
and therefore, F(0) = F1(0) because:

/_wF(z)dz:/_mF(t—r)dt.

00 00

By the general definition of central moments (eq. A12) it is

possible to notice that the central moments of % are the ordinary
El@).
moments of 70"
B = : / N Fi(t)"dt (B2)
F0) ) '

Since

N R |

Flw)=F0) ) —(or)', (B3)
n=0

then

o R |

Fl) = FO0) )" — (e, (B4)
n=0

We can also express F(w) as a function of F(w):

Fl(w) = F(w)e ™"

. |
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n=0 :
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n=0

Backus (1983) defines real functions 7(w) and t'(w) from the
equations:

F(w) = |F(@)]e" (B6)
and
Flw) = [Fl()le . (B7)

Comparing eqs (B5) and (B7)
T(w) = 17 + Tl (). (B8)

Next, we expand eq. (B5) in Taylor series:

Fllo) 1 )
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1 1 1
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Since | F(w)| = |Ff(w)|, then:
F(w) _ Fv(o)ezw1+l/2(zwﬁ2)2+1/6(1w/33)3+--- (B10)

If we neglect higher powers than «* in eq. (B10) then

F(w) ~ F0)e'“ e

7_‘“22(’3 )’ (B11)
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and as result 70

(B2)* > 0.

can be represented by a Gaussian when



