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In this work we determine the expected number of vertices of degree k = k(n) in a graph

with n vertices that is drawn uniformly at random from a subcritical graph class. Examples

of such classes are outerplanar, series-parallel, cactus and clique graphs. Moreover, we

provide exponentially small bounds for the probability that the quantities in question

deviate from their expected values.

1. Introduction and results

One of the central questions of interest in theoretical computer science is the analysis of

algorithms. Here one usually distinguishes between worst-case analysis and average-case

analysis. From a practical point of view, an average-case analysis is particularly important

when the worst-case analysis does not result in satisfactory quality characteristics about

the given algorithm: it is possible that the algorithm is efficient in real-world scenarios (the

‘typical case’), although a bad worst-case behaviour can be mathematically shown. In order

to prove qualitatively strong and meaningful results about the average-case behaviour of

a particular algorithm, we usually require precise knowledge about properties of ‘typical’

input instances.

In the context of graph algorithms, an average-case analysis can often easily be achieved

if we assume the uniform distribution on the set of all graphs with a given number of

vertices: one can then model a ‘typical’ input by the classical Erdős–Rényi random graph,

and thus use the wide and extensive knowledge about random graphs (see the two excellent

monographs [5] and [15]), to derive properties that can be used to analyse performance

measures such as running time or approximation ratios.

†Parts of this work appeared as an extended abstract in N. Bernasconi, K. Panagiotou and A. Steger,

‘On the degree sequences of random outerplanar and series-parallel graphs’, in APPROX-RANDOM 2008 ,

pp. 303–316.
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The picture changes dramatically if we are interested in natural graph classes. A

standard example that has evolved over the last decade as a reference model in this

context is the class of planar graphs. The random planar graph Rn was first investigated

in [7] by Denise, Vasconcellos and Welsh and has attracted considerable attention since

then. We mention selectively a few results. McDiarmid, Steger and Welsh [16] showed

the surprising fact that Rn does not share the 0–1 law known from standard random

graph theory: the probability of connectedness is bounded away from 0 and 1 by positive

constant values; moreover, the situation is similar if the average degree is fixed [13].

These results relied on a (crude) counting of the number of planar graphs with n vertices.

A breakthrough occurred with the recent results of Giménez and Noy [14], who not

only managed to determine the asymptotic value of the number of planar graphs with

n vertices, but also showed that the number of edges in Rn is asymptotically normally

distributed. Moreover, they studied the number of connected and 2-connected components

in Rn. The proofs of these results are based on singularity analysis of generating functions,

a powerful method from analytic combinatorics that has led to many beautiful results:

see the book by Flajolet and Sedgewick [10].

Our results. In this paper we further elaborate and extend significantly an approach that

was used in [3] to obtain the degree sequence and subgraph counts of random dissections of

convex polygons. More precisely, we exploit the so-called Boltzmann sampler framework

by Duchon, Flajolet, Louchard and Schaeffer [9] to reduce the study of degree sequences

to properties of sequences of independent and identically distributed random variables.

Hence, we can – and do – use many tools developed in classical random graph theory to

obtain extremely tight results.

Our first main contribution is a general framework that allows us to derive mechanically

the degree distribution of random graphs from certain ‘nice’ graph classes, which are

‘subcritical’ in a well-defined analytic sense: see Section 3 for details. Our framework

can be readily applied to obtain the degree sequence of random graphs from ‘simple’

classes, such as Cayley trees – i.e., (non-plane) labelled trees – or graphs which have

the property that their maximal 2-connected components (or equivalently, blocks) have a

simple structure. We mention as examples cactus graphs, where the blocks are cycles, and

clique graphs, where the blocks are complete graphs. The main contribution of our work

consists of two involved applications of this framework.

A graph is called series-parallel (SP) if it does not contain a subdivision of the complete

graph K4, or equivalently if it does not contain K4 as a minor. Hence, the class of SP

graphs is a subclass of all planar graphs. Moreover, an outerplanar graph is a planar

graph that can be embedded in the plane so that all vertices are incident to the outer face.

Outerplanar graphs are characterized as those graphs that do not contain a K4 or a K2,3

minor. The classes of outerplanar and SP graphs are often used as the first non-trivial

test cases for results about the class of all planar graphs.

As two important applications of our framework we derive the degree distribution of

random outerplanar and random SP graphs, and show that the number of vertices of

degree k = k(n) (where k is not allowed to grow too fast) is concentrated around a specific

value with very high probability. In particular, we show the following result, where we
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The Degree Sequence of Random Graphs from Subcritical Classes 649

write ‘deg(k; G)’ for the number of vertices of degree k in G, and ‘(1± α)X’ for the interval

((1− α)X, (1 + α)X).

Theorem 1.1. Let On be a graph drawn uniformly at random from the set of all labelled

connected outerplanar graphs with n vertices. There are constants COP , c > 0 and a function

op : N→ R such that, for any 0 < ε, δ < 1, the following is true. Let 1 � k � (COP −
δ) log n. Then, for sufficiently large n,

P
[
deg(k; On) ∈ (1± ε) op(k)n

]
� 1− e−c

ε2

(log(ε−1)+k)2
op(k)n
k .

The same is true for random SP graphs, for a suitably chosen function sp : N→ R and a

constant CSP > 0.

We want to remark at this point that we determine explicitly the functions op and

sp in the above theorem, and refer the reader to Sections 5 and 6 for a more precise

formulation of the results. Moreover, by deriving precise asymptotics for the behaviour

when k →∞, we give strong evidence that the constants COP and CSP are best possible.

In other words, we conjecture that the maximum degree of a random outerplanar graph

is ∼ COP log n and that the maximum degree of a random SP graph is ∼ CSP log n.

The number of vertices of a given degree in random outerplanar and series-parallel

graphs is also studied by Drmota, Giménez and Noy [8], independently from our work.

Using different techniques, the authors show for fixed k that the number of vertices of

degree k is asymptotically normally distributed, with expectation and variance linear in n.

Techniques. All graph classes considered in this paper allow a so-called decomposition ,

which is a description of the class in terms of general-purpose combinatorial constructions.

These constructions appear frequently in modern systematic approaches to asymptotic

enumeration and random sampling of combinatorial structures. It is beyond the scope of

this work to survey these results, and we refer the reader to [10] and references therein

for a detailed exposition.

One benefit of the knowledge of the decomposition is that it allows us to develop

mechanically algorithms that sample objects from the graph class in question by using the

framework of Boltzmann samplers. This framework was introduced by Duchon, Flajolet,

Louchard and Schaeffer in [9], and was extended by Fusy [12] to obtain an (expected)

linear-time approximate-size sampler for planar graphs. Here we just present the basic

ideas of this framework. Let G be a class of labelled graphs, and let |γ| denote the number

of labelled vertices in any γ ∈ G. In the Boltzmann model of parameter x, we assign to

any object γ ∈ G the probability

Px[γ] =
1

G(x)

x|γ|

|γ|! , (1.1)

if the expression above is well defined, where G(x) is the exponential generating function

enumerating the elements of G. It is easy to see that the expected size of an object in

G under this probability distribution is xG′(x)
G(x)

. A Boltzmann sampler ΓG(x) for G is an

algorithm that generates graphs from G according to (1.1). In [9, 12] several general
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650 N. Bernasconi, K. Panagiotou and A. Steger

procedures which translate common combinatorial construction rules such as union, set,

etc., into Boltzmann samplers are given. Notice that the probability above only depends

on the choice of x and on the size of γ, so every object of the same size has the same

probability of being generated. This means that if we condition on the output being of a

certain size n, then the Boltzmann sampler ΓG(x) is a uniform sampler of the class Gn.

Outline. In Section 3 we introduce the notion of a ‘nice’ class, and relate it to the

concept of analytic subcriticality. By exploiting the Boltzmann sampling framework we

then develop a generic algorithm that samples uniformly at random graphs with n vertices

from any nice class of graphs. The main result of Section 3 is Theorem 3.3, which gives an

almost complete picture of the degree distribution of such random graphs, and is hence

at the heart of our work. Section 4 presents some sample applications of Theorem 3.3,

and provides some tools that considerably simplify its utilization. In Section 5 we use

this result to derive the degree distribution of a random outerplanar graph. Finally, in

Section 6 we first present a new method to derive the degree distribution of random

2-connected series-parallel (SP) graphs and then apply Theorem 3.3 in order to obtain

the degree distribution of a random SP graph.

2. Preliminaries

In our proofs we will often need to bound the probability that certain random variables

assume values far away from their expectation. The following two lemmas will be

very helpful for the case where the variables are binomial or Poisson-distributed; the

presentation is as in [15].

Lemma 2.1 (Chernoff bounds). Let X be a binomially distributed random variable and let

t > 0. Then

P[|X − E[X]| > t] � 2 exp

(
− t2

2(E[X] + t/3)

)
. (2.1)

Lemma 2.2. Let X be distributed like a Poisson variable with mean μ > 1. There exists a

constant C > 0 such that, for every 0 < ε < 1,

P[|X − μ| � εμ] � 1− e−Cε2μ.

A more general tool that we shall apply several times is Talagrand’s inequality: see

the book by Janson, �Luczak and Ruciński [15] for a detailed introduction. Intuitively, it

provides strong bounds for the probability that a function defined on a set of independent

random variables deviates significantly from its expectation, when the value of the function

is not affected much by small changes in each one of its arguments.

Theorem 2.3 (Talagrand’s inequality). Let Z1, . . . , ZN be independent random variables tak-

ing values in the sets Λ1, . . . ,ΛN respectively. Let Λ = Λ1 × · · · × ΛN . Let f : Λ→ R be
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The Degree Sequence of Random Graphs from Subcritical Classes 651

a function and set X = f(Z1, . . . , ZN). Assume that there are quantities ck , k = 1, . . . , N

satisfying the following.

(a) If z, z′ ∈ Λ differ only in the kth coordinate, then |f(z)− f(z′)| � ck .

(b) There is an increasing function ψ satisfying the following. Let z ∈ Λ and r ∈ R such that

f(z) � r. Then there exists a set J ⊆ {1, . . . , N} with
∑

i∈J c
2
i � ψ(r), such that, for all

y ∈ Λ with yi = zi when i ∈ J , we have f(y) � r.

Then, if M[X] denotes the median of X, for every t � 0 we have

P[|X −M[X]| � t] � 4 exp

(
− t2

4ψ(M[X] + t)

)
. (2.2)

The following technical lemma is needed in the proof of Theorem 5.1. Its proof uses the

well-known saddle point method for complex integrals and can be found in the Appendix.

Lemma 2.4. Let α, β, γ be constants such that α+ β � 0. For large n,

[zn]

(
e
αz+βz2

1−z · 1

(1− z)γ

)
= (1 + o(1))e2

√
(α+β)n · n

γ
2−

3
4 · e− α

2−
3β
2 (α+ β)−

γ
2 + 1

4 π−
1
2 2−1. (2.3)

Notation. Let us introduce some notation that will be used extensively in the following

sections. Let G be a class of labelled graphs. We denote by Gn the subset of graphs in

G that have precisely n labelled vertices, and assume without loss of generality that the

labels are from {1, . . . , n}. We set gn := |Gn|. Moreover, we write G(x) =
∑

n�0 gn
xn

n!
for the

corresponding exponential generating function (egf).

In the following we will frequently use the pointing and derivative operators. Given

a class G, we define G• as the class of pointed (or rooted ) graphs, where a vertex is

distinguished from all other vertices. The derived class G ′n−1 is obtained by removing

the label n from every object in Gn, such that the obtained objects have n− 1 labelled

vertices, i.e., vertex n can be considered as a distinguished vertex that does not contribute

to the size. Consequently, there is a bijection between the classes G ′n−1 and Gn. We set

G ′ :=
⋃
n�0 G ′n. On a generating function level, the pointing operation corresponds to

taking the derivative with respect to x, and multiplying it by x, that is, G•(x) = xG′(x).

Similarly, the egf of G ′ is simply G′(x). Finally, we denote by ρG the dominant singularity

of G, which will be in all considered cases unique, and we write |G| for the number of

labelled vertices in G ∈ G.

3. A framework for nice graph classes

The aim of this section is to develop a general framework that will allow us mechanically

to give tight bounds for the number of vertices of degree k in a random graph drawn

from a graph class that satisfies certain technical assumptions. Before we state our main

result formally, let us introduce some notation. We denote by Z the graph class consisting

of one single labelled vertex. Furthermore, for two graph classes X and Y , we denote

by A = X × Y the Cartesian product of X and Y followed by a relabelling step, so as to
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guarantee that all labels are distinct. Note that the relation ‘A = X × Y ’ expresses the fact

that there is a bijection between the elements of A and pairs of elements from X and Y ,

but it does not provide any information about what this bijection looks like, i.e., how to

construct a graph in A from two graphs in X and Y . The same is true for the operators

described below. We denote by Set(X ) the graph class such that each object in it is an

unordered collection of graphs in X . Finally, the class X ◦ Y consists of all graphs that

are obtained from graphs from X , where each vertex is replaced by a graph from Y . Here

we will usually assume that Y is a class of rooted graphs, which simply means that we

attach a graph Gv from Y at each vertex v by identifying the root of Gv with v. This set of

combinatorial operators (Cartesian product, set, and substitution) appears frequently in

modern theories of combinatorial analysis [10, 2, 18] as well as in systematic approaches

to random generation of combinatorial objects [9, 11]. For a very detailed description of

these operators and numerous applications, we refer to [10].

With this notation we may now define the graph classes we are going to consider. Here

we say that a graph is biconnected if is either 2-connected, or isomorphic to a single edge.

Definition 1. Let G be a class of labelled graphs, and let B = B(G) ⊂ G be the subclass

of biconnected graphs in G. We say that G is nice if it fulfils the following two conditions.

(i) G• satisfies

G• = Z × Set(B′ ◦ G•). (3.1)

(ii) The egf B(x) enumerating B has a unique singularity at ρB and satisfies ρBB
′′(ρB) > 1.

This definition states that nice classes allow the following decomposition: a rooted

graph is a collection of rooted biconnected graphs, which are ‘glued’ together at their

roots, and every non-root vertex in them is again substituted by some graph from the

class. Note that all graphs from a nice class have the property that all their blocks are

contained in B. Moreover, if B is any class of biconnected graphs, and G is the class of

all connected graphs all of whose blocks (i.e., maximal biconnected subgraphs) are in B,

then G• satisfies (3.1).

Probably the most prominent examples that fit into this framework are classes with

forbidden biconnected minors, such as (connected) planar, outerplanar, and series-parallel

graphs, or cactus, block graphs and many kinds of trees (like Cayley trees). On the other

hand, the second condition in the above definition is more restrictive. In particular, it

says that the composition schema described in (3.1) is subcritical , thus imposing heavy

restrictions on the analytic behaviour of G•(x). As we shall see later, planar graphs are not

nice in the above sense, but, for example, outerplanar graphs and series-parallel graphs are.

The following statement gives us precise asymptotic information about the number of

graphs in a nice class. The proof is straightforward.

Lemma 3.1. Suppose that the egf G•(x) of a nice class G• is aperiodic.1 Then G•(x)

has a unique finite singularity ρG and there exists a c > 0 such that g•n ∼ cn−3/2 · ρ−nG · n!.
Moreover, G•(ρG) < ρB .

1 A function f(z) is called aperiodic if there is no h(z) such that f(z) = h(zd), where d ∈ {2, 3, . . . }.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548309990368
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:34:54, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548309990368
https:/www.cambridge.org/core
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Proof. It is easily verified that G•(x) belongs to the implicit function schema , as it is

defined in [10, p. 467]. In particular, condition (ii) in Definition 1 and the positivity of

the coefficients of B(x) guarantee a solution to the characteristic system

r · eB′(s) = s, r · B′′(s) · eB′(s) = 1,

where r = ρG and s = G•(ρG). In particular, s < ρB , as ρBB
′′(ρB) > 1. The result follows

by applying Theorem VII.3 from [10].

The remainder of this section is structured as follows. In the next subsection we shall

define an algorithm that generates graphs from a nice class G according to the Boltzmann

model for G. This sampler will provide us with the necessary intuition about how the

number of vertices in a random graph from Gn evolves during its generation. Then, in

Section 3.2 we exploit this sampler to prove our main result (Theorem 3.3) for nice

classes.

3.1. A sampler for nice graph classes

Recall that due to (3.1) a rooted graph from a nice class G• of graphs can be viewed as

a set of rooted biconnected graphs, which are ‘glued’ together at their roots, and every

vertex in them is substituted by a rooted connected graph. A sampler for G• reverses

this description: it starts with a single vertex, attaches to it a random set of biconnected

graphs, and proceeds recursively to substitute every newly generated vertex by a rooted

connected graph.

Let us now define formally the generic sampler. For this we need some additional

notation. Let ρG and ρB be the singularities of the egfs enumerating G and B. Define

λG := B′(G•(ρG)),

and let ΓB′(x) be a Boltzmann sampler for B′, i.e., ΓB′(x) samples according to the

Boltzmann distribution (1.1) with parameter x for B′. Note that λG < ∞, as, due to

Lemma 3.1, G•(ρG) < ρB . The sampler ΓG• for G• is defined recursively as follows:

ΓG•: γ ← a single node r

k ← Po(λG) (�)

for (j = 1, . . . , k)

γ′ ← ΓB′(G•(ρG)), discard the labels of γ′ (��)

γ ← merge γ and γ′ at their roots

foreach vertex v = r of γ

γv ← ΓG•, discard the labels of γv (∗)
replace all nodes v = r of γ with γv
label the vertices of γ uniformly at random

return γ

The following lemma is an immediate consequence of the compilation rules in [9, 12].

Lemma 3.2. Let γ ∈ G•. Then

P[ΓG• = γ] =
ρ
|γ|
G

|γ|!G•(ρG)
.
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3.2. Degree sequence

Our goal is to analyse the execution of ΓG• so as to obtain information on the degree

sequence of random graphs from G•n . Before we proceed let us make a few important

observations. Note that every vertex v different from the root goes through two phases.

In the first phase, v is generated in a biconnected graph (i.e., in a call to ΓB′ in the line

marked with (��)), and has a specific degree. We will also say that v was born with this

degree. In the second phase, when ΓG• is recursively called, a certain number of new

biconnected graphs will be attached to v, such that its degree increases by the sum of

the degrees of the roots of those graphs. After this, the degree will not change further,

so the final degree is the sum of the degrees in the two phases. Hence, to count vertices

of a given degree k, we will fix a 1 � � � k and count how many vertices are born with

degree �. Let B� be the number of such vertices. Then, we will compute the fraction of

vertices among those B� that will receive k − � neighbours in their second phase. Let us

call this fraction sk−�. The total number of vertices with degree k is then the sum of these

numbers over all possible �, namely
∑k

�=1 B�sk−�.

In order to make these ideas precise we first define suitable generating functions. Let B′

denote a random graph from B′, drawn according to the Boltzmann distribution with

parameter x = G•(ρG), and denote by deg′(�; B′) the number of non-root vertices of B′

that have degree �. Set

IB′(z) =
∑
��1

E[deg′(�; B′)]z� =:
∑
��1

b�z
�. (3.2)

Now let us turn to sk−�. Clearly, this value is the probability that a given vertex gets

degree exactly k − � in the second phase. Let

SG(z) =
∑
��1

s�z
�

be the probability generating function for the degree distribution of a vertex in the second

phase. Recall that this degree is the sum of the root degrees of Po(λG) many graphs

B′1,B
′
2, . . . , from B′, drawn independently according to the Boltzmann distribution with

parameter x = G•(ρG). That is, if we define

RB′(z) =
∑
��1

P
[
rd(B′) = �

]
z�,

where rd(B′) denotes the root degree of B′, and recall that the probability generating

function of a Po(λ)-distributed random variable is p(z) = eλ(z−1), then we see that

SG(z) = eλG (RB′ (z)−1). (3.3)

Having the functions IB′ (z) and SG(z) at hand, we now let

DG(z) := IB′(z) · SG(z) = IB′(z) · eλG (RB′ (z)−1) and gk :=

k∑
�=1

b�sk−� = [zk]DG(z). (3.4)

Observe that this implies that we have reason to believe that gk should be equal to the

expected fraction of vertices of degree k in a graph Gn that is drawn uniformly at random
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The Degree Sequence of Random Graphs from Subcritical Classes 655

from G•n (or equivalently, from Gn). The next theorem, which is our main result, describes

the conditions under which this intuition is indeed true.

Theorem 3.3. Let n ∈ N and k = k(n) be an integer function of n. Let G be a nice class

of graphs such that G•(x) is aperiodic, and let B be the class that contains all biconnected

graphs in G. Denote by B′ a graph from B′ that is drawn according to the Boltzmann model

with parameter x = G•(ρG). Suppose that

∀1 � � � k : [z�]IB′(z) = E[deg′(�; B′)] is either 0 or � (n/2)−1log4(n/2), (3.5)

and set m = min{[z�]IB′(z) | 1 � � � k and [z�]IB′(z) > 0}. Then there is a C > 0 such that,

for any (log n)−1/3 < ε < 1 and sufficiently large n,

P
[
deg(k; Gn) ∈ (1± ε)λGgkn

]
� 1− n5e

−Cε2 gkk
n

max{1,log2(ε−1m−1)} ,

where gk is given in (3.4).

We split up the proof of the theorem into three parts. First, we show that if the total

number of vertices of degree �, where 1 � � � k, in many independent graphs from B′
is sufficiently concentrated around its expected value, then the conclusion of the above

theorem is true.

Lemma 3.4. There is a C > 0 such that the following is true for sufficiently large n. Let k =

k(n) be an integer function of n. Let G be a nice class of graphs such that G•(x) is aperiodic

and let B be the class that contains all biconnected graphs in G. Suppose that there is a

bounded and non-decreasing function f(δ) = f(δ; n) that has the following property.

(B) Let B′1, . . . ,B
′
N be graphs drawn independently according to the Boltzmann model for B′

with parameter x = G•(ρG). Set b� = E[deg′(�; B′1)]. Then, for any n
2

� N � 3n
2

and δ >

(logN)−1/2,

∀ 1 � � � k : P

[∣∣∣∣
N∑
i=1

deg′(�; B′i)− b�N
∣∣∣∣ � δb�N

]
� e−

δ2

1+δ b�N·f(δ; n). (3.6)

Then, for every (log n)−1/3 < ε < 1 and sufficiently large n,

P
[
deg(k; Gn) ∈ (1± ε)λGgkn

]
� 1− n5e−Cε

2 gkn

k f( ε
10 ; n), (3.7)

where gk is given in (3.4).

In order to apply the above lemma we need to check if condition (B) is fulfilled

for the class of graphs in question. The following statement provides us with a generic

concentration result.

Lemma 3.5. Let B1, . . . ,BN be graphs drawn independently from a class B according to

the Boltzmann model with parameter 0 < x < ρB . There is a C = C(x) > 0 such that the

following holds. Let X = X(N) : B → N be any function with the property X(G) � |G|
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656 N. Bernasconi, K. Panagiotou and A. Steger

for every G ∈ B. Set μ = μ(N) = E[X(Bi)], and suppose that μ � log4 N
N

. Then, for any

ε = ε(N) > (logN)−1/2 and sufficiently large N,

pε := P

[∣∣∣∣
N∑
i=1

X(Bi)− μN
∣∣∣∣ � εμN

]
� e

−C ε2

1+ε
μN

(max{1,log(ε−1μ−1)})2 .

An auxiliary tool that we will exploit in the proof of the above lemma is the following

statement, which gives a Chernoff-type bound for the total number of vertices in many

graphs drawn independently according to the Boltzmann model. Its proof uses standard

analytic tools and can be found for completeness in the Appendix.

Lemma 3.6. Let G1, . . . ,GN be random graphs from a class G, drawn independently accord-

ing to the Boltzmann model with parameter 0 < x < ρG . Let ν = ν(x) = E[|Gi|]. Then, there

is a C = C(x) > 0 such that, for any ε = ε(N) > 0,

P

[ N∑
i=1

|Gi| � (1 + ε)νN

]
� e−C( ε2

1+ε νN−1−ε−1).

With all the above tools at hand we are ready to prove our main result for nice classes.

Proof of Theorem 3.3. By applying Lemma 3.1 we obtain that G•(ρG) < ρB . Let 1 � � � k.

By applying Lemma 3.5, where we set x = G•(ρG) and X(B′) = deg′(�; B′), we obtain for
n
2

� N � 3n
2

P

[∣∣∣∣
N∑
i=1

deg′(�,Bi)− b�N
∣∣∣∣ � εb�N

]
� e

−C ε2

1+ε b�N·max{1,log( 1
εb�

)}−2

,

where b� = [z�]IB′(z). Set

f(ε; n) = C min
1���k

max

{
1, log

(
1

εb�

)}−2

.

Note that f(ε; n) = C max{1, log
(

1
εm

)
}−2, and moreover that property (B) in Lemma 3.4

is satisfied with this f. The result follows using the uniform estimate

εb� � εIB′(1) = ε
xB′′(x)

B′(x)
= O(1).

What remains is to prove Lemma 3.4 and Lemma 3.5.

Proof of Lemma 3.4. Call a graph G ∈ G•n bad if deg
(
k; G

)
∈ (1± ε)λGgkn. As the output

distribution of ΓG• is uniform for each n (see Lemma 3.2) and P[|ΓG•| = n] = Θ(n−3/2),

which follows from Lemma 3.1, we infer that

P[Gn is bad] =
P[(ΓG• is bad) ∧ (|ΓG•| = n)]

P[|ΓG•| = n]
= O(n3/2)P[(ΓG• is bad) ∧ (|ΓG•| = n)].

(3.8)
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We shall show that the latter probability is at most n3e−Cε
2 gkn

k f( ε
10 ), which completes the

proof of the lemma.

Recall that every vertex v (different from the root) goes through two phases when

constructed by ΓG•. In the first phase, v is generated in a biconnected graph (i.e., in a

call to ΓB′), and has a specific degree. We shall also say that v was born with this degree.

In the second phase, when the sampler is recursively called, a certain number of new

biconnected graphs will be attached to v, such that its degree increases by the sum of

the degrees of the roots of those graphs. Hence, the degree of a vertex is the sum of two

terms: the degree with which it was born, and the number of edges that it acquired in its

second phase.

Let BORN
(
�; n

)
be the set of vertices in the output of ΓG• that were born with

degree �, and let 2PHASE
(
k − �; n

)
be the set of vertices that have the property that

their degree increased by k − � in their second phase. In order to estimate the probability

in (3.8), we are going to show that with probability at most n2e−C
′′ gk
k nf( ε

10 ),

||BORN
(
�; n

)
∩ 2PHASE

(
k − �; n

)
| − λG · b� · sk−� · n| �

ε

3

(
λGb�sk−� +

gk

k

)
n. (3.9)

Then, by summing over all 1 � � � k (and by adding at most one for the root vertex,

which may also have degree k), we obtain for large n that the last probability in (3.8) is

at most kn2e−C
′′ gk
k nf( ε

10 ), and the proof is complete.

Henceforth let 1 � � � k. It will turn out to be very convenient for the analysis to define

a slightly modified, but equivalent version (in the sense that the output distributions of

both samplers are the same) of the sampler ΓG•. Observe that ΓG• makes random choices

at two points during its execution: first, when it calculates a random number according

to a Poisson distribution in line (�), and second, when it calls the sampler ΓB′ in line (��).

We adapt the sampler ΓG• by making the random choices in advance, and by providing

them as part of the sampler’s input. Clearly, this does not alter the probability distribution

of the output of the sampler. More precisely, the adapted algorithm ΓG•(S=�, S =�) takes

as input two infinite lists of random values, S=� and S =�, which are composed as follows:

S=� =
(
(p1; b1,1, . . . , b1,p1

), (p2; b2,1, . . . , b2,p2
), . . . , (pn; bn,1, . . . , bn,pn ), . . .

)
. (3.10)

Here the pi are independent Po(λG)-distributed variables and all bi,j are independent

random graphs according to the Boltzmann distribution for B′ with parameter x = G•(ρG)

(or equivalently, graphs generated by independent calls to ΓB′(G•(ρG))). We call every

(pi; bi,1, . . . , bi,pi ) a block of the list. S =� is composed in the same way. ΓG•(S=�, S =�) then

proceeds as ΓG•, and in the two lines (�) and (��) uses the values of the two lists,

according to the following rules.

(R1) The first block is read from S =�.

(R2) Suppose that the algorithm reaches the line marked with (∗), and let dv be the degree

of v. In that line, a recursive call to the sampler is initiated. If dv = �, then this call

will read the next unused block from S=�, and otherwise from S =�.

Note that for every generated vertex there is precisely one (recursive) call to the sampler.

Hence, by construction, the number of vertices in the output of ΓG•(S=�, S =�) that were

born with degree � equals precisely the number of blocks that the sampler read from S=�.
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658 N. Bernasconi, K. Panagiotou and A. Steger

Note that the samplers ΓG• and ΓG•(S=�, S =�) are equivalent in the sense that

P[ΓG• = γ] = P[ΓG•(S=�, S =�) = γ]

for every γ ∈ G• (where the first probability is taken over the random choices that ΓG•

makes, and the second one over the two random lists).

We shall now define two events that allow us to estimate the probability for (3.9).

(B) For 1 � x � n, let T (x) be the list composed of the first x blocks of S=�, followed

by the first n− x blocks of S =�. Let (p(x)
j ; b(x)

j,1 , . . . ) be the jth block of it. Moreover,

define the random variable

B(x) :=

n∑
j=1

p
(x)
j∑

m=1

deg′
(
�; b(x)

j,m

)
.

Then

|B(x) − λG · b� · n| �
ε

9

(
λGb� +

gk

k

)
n

for every 1 � x � n.

(R) Denote by (pj; bj,1, . . . ) the jth block of S=�. Then, for every � � k, and n′ ∈ λGb�n±
ε
9
(λGb� + gk

k
)n, the random variable Rn′ defined below satisfies

Rn′ :=

∣∣∣∣
{

1 � j � n′
∣∣∣

pj∑
x=1

rd(bj,x) = k − �
}∣∣∣∣ ∈ sk−�n′ ± ε

9

(
sk−�n

′ +
gk

k
n

)
.

Suppose now that B and R occur simultaneously. Then the event ‘(3.9) ∧ (|ΓG•| = n)’

implies that the sampler ΓG•(S=�, S =�) constructed a graph from G•n . As for every generated

vertex there was precisely one recursive call to ΓG•(S=�, S =�), we may deduce that

ΓG•(S=�, S =�) used in total exactly n blocks out of the lists S=� and S =�. Hence there is

an x � 0 such that ΓG•(S=�, S =�) read precisely x blocks from S=�, and the remaining

ones from S =�. But then B implies that the number of vertices born with degree � is in

the interval (1± ε
9
)b�λGn± ε

9
gk
k
n, as every vertex except the root vertex of the sampled

2-connected rooted graphs is born exactly when this graph is picked by ΓG•(S=�, S =�)

from one of the two lists. (Note that the root vertex is identified with an already existing

vertex). Finally, since ΓG•(S=�, S =�) uses, in a recursive call, values from the list S=� only

if the root of the generated graph is identified with a vertex of degree �, it follows with R

that the number of vertices born with degree �, and with k − � additional adjacent vertices

in their second phase, is in(
1± ε

9

)
sk−� ·

(
λGb� ±

ε

9

(
λGb� +

gk

k

))
n± ε

9

gk

k
n ⊂ λGb�sk−�n±

ε

3

(
λGb�sk−� +

gk

k

)
n.

This is precisely the complement of (3.9). So,

P[(3.9) ∧ (|ΓG•| = n)] = P[(3.9) ∧ (|ΓG•| = n) | B or R] · P[B or R] � P[B] + P[R].

(3.11)

In the remaining proof we shall bound P[B] and P[R]. To bound the probability for B we

exploit assumption (B) of the lemma. As
∑n

j=1 p
(x)
j is distributed like Po(λGn), Lemma 2.2
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implies, for a suitable C ′ > 0,

n∑
j=1

p
(x)
j ∈

(
1± ε

90

)
λGn with probability at least 1− e−C ′ε2n.

Note that B(x), conditioned on the outcome of
∑n

j=1 p
(x)
j , is distributed like the sum of

random variables given in (3.6). Let us abbreviate

ξ =
ε

9

(
λGb� +

gk

k

)
n and ξ′ = ξ − ε

90
λGb�n =

ε

10

(
λGb� +

10

9

gk

k

)
n.

We obtain, for large n,

P
[
B(x) ∈ λGb�n± ξ

]
�

∑
N∈(1± ε

90 )λGn

P

[
B(x) ∈ b�N ± ξ′

∣∣∣
n∑
j=1

p
(x)
j = N

]
+ e−C

′ε2n,

which is seen to be at most n · e−C ′′ε2
gk
k n·f( ε

10 ) as follows, where C ′′ > 0 is suitably chosen.

Let us fix any N ∈ (1± ε
90

)λGn, and define α through 10
9
gk
k

= α · λGb�. Then

ξ′ =
ε

10
(1 + α)λGb�n,

and the bounds in (B) imply, for large N with δ = ε
10

(1 + α) > (logN)−1/2,

P

[
B(x) ∈ b�N ± ξ′

∣∣∣
n∑
j=1

p
(x)
j = N

]
� exp

{
− 1

10

ε2(1 + α)2

10 + ε(1 + α)
b�Nf

(
ε

10

)}
. (3.12)

But the expression

ε2(1 + α)2

10 + ε(1 + α)

is easily seen to be of order at least ε2α if, say, α � 1, and otherwise, if 0 < α < 1, it is

of order ε2. This yields with the definition of α the claimed bound. The above discussion

implies

P[B] � P
[
∃1 � x � n : B(x) ∈ λGb�n± ξ

]
� n2e−C

′′ε2
gk
k n·f( ε

10 ).

Finally, to bound R we proceed as follows. Recall that

P

[ pj∑
x=1

rd(bj,x) = k − �
]

= [zk−�]SG(z) = sk−�,

where SG(z) is as defined in (3.3). Hence the distribution of Rn′ is the same as Bin(n′, sk−�),

and Lemma 2.1 yields with a calculation similar to (3.12) that there is a C ′ > 0 such that

P

[
Rn′ ∈

(
1± ε

9

)
sk−�n

′ ± ε

9

gk

k
n

]
� e−C

′ε2
gk
k ·n. (3.13)

We readily obtain P[R] � n · e−C ′ε2
gk
k ·n, and the proof is completed with (3.11). �

Proof of Lemma 3.5. Let us first consider the case εμ � 2ν, where ν = E[|B1|] > 0. As, tri-

vially, μ � ν, this can only hold if ε � 2. In this case, the event ‘|
∑N

i=1 X(Bi)− μN| � εμN’
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is thus equivalent to ‘
∑N

i=1 X(Bi) � (1 + ε)μN’. Moreover, as

(1 + ε)μN � εμN

2
+
εμN

2
� νN

(
1 +

εμ

2ν

)
,

we have

P

[ N∑
i=1

X(Bi) � (1 + ε)μN

]
� P

[ N∑
i=1

|Bi| � (1 + ε)μN

]
� P

[ N∑
i=1

|Bi| �
(

1 +
εμ

2ν

)
νN

]

and thus obtain the claimed statement by applying Lemma 3.6, where we use for ε the

quantity εμ
2ν

� 1. The remaining proof deals with the case εμ � 2ν, from which we deduce

with plenty of room to spare that ε � N.

Before we proceed, note that if B contains just graphs with the same number of labelled

vertices, then the statement follows immediately from the Chernoff bounds. On the other

hand, if B contains graphs with at least two different sizes, then for any s ∈ N we have

P[|Bi| = s] = Θ

(
|Bs|xs
s!

)
.

This implies for ρB < ∞ that, up to sub-exponential terms, |Bs| � ρ−sB s!, and otherwise

|Bs| = o(1)ss!. We infer that there is a c > 1 such that P[|Bi| = s] � c−s.

Our first aim is to bound the probability that the total number of vertices that are

contained in ‘reasonably large’ graphs Bi is too large. To make this precise, we first need

to define what we mean by ‘reasonably large’. Observe that we may assume without loss

of generality that c � 2 and hence log c < 1. We then define

s0 :=
64

(log c)2
·max

{
1, log

(
5e

εμ

)}
.

As we have log(ex) � √x for all x � 12, this definition immediately implies that

log(es0)

s0
� 1
√
s0

� 1

8
log(c), (3.14)

and similarly

log
(

5es0
εμ

)
s0

=
log(s0)

s0
+

log
(

5e
εμ

)
s0

�

⎧⎪⎪⎨
⎪⎪⎩

log(s0)

s0
� 1

8
log(c), if

5e

εμ
� 1,

log(s0)

s0
+

1

64/(log c)2
� 1

4
log(c), otherwise,

(3.15)

Having defined s0 we denote by E the event that the total number of vertices in Bi that

contain more than s0 vertices is greater than εμN/5. In order to bound the probability

for E , suppose that there are n Bis with at least s0 vertices, and suppose that the sum of

their sizes is t � εμN/5. Note that we may assume that n � t/s0. Observe that there are(
N
n

)
ways to choose the index set corresponding to the Bis containing at least s0 vertices,

and
(
t−ns0+n−1

n−1

)
ways to choose the actual size |Bi| of these Bi (observe that we just have

to distribute the ‘excess’ above s0). Hence, we can bound

P[E] �
∑

t�εμN/5
c−t ·

∑
n�t/s0

(
N

n

)(
t− ns0 + n− 1

n− 1

)
.
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In order to bound this sum we write n = βt/s0 for some 0 < β � 1 and bound the second

binomial coefficient as follows:(
t− ns0 + n− 1

n− 1

)
�

(
t

n− 1

)
�

(
t

n

)
�

(
et

n

)n

= e
β log(es0/β)· ts0 .

As s0 � 3, one can easily check that x ln(s0/x) is increasing for 0 � x � 1. Hence, we have

(
t− ns0 + n− 1

n− 1

)
� e

log(es0)· ts0
(3.14)

� ct/8.

Moreover, for n � t/s0 and εμN/5 � t � Ns0/2 we trivially have

(
N

n

)
�

(
N

t/s0

)
�

(
eN

t/s0

)t/s0

�
(

5es0
εμ

)t/s0

= e
log(

5es0
εμ )· ts0

(3.15)

� ct/4.

On the other hand, if t � Ns0/2, then also
(
N
n

)
� 2N � ct/4. Thus, we deduce that

P[E] �
∑

t�εμN/5
c−t · t

s0
· ct/8 · ct/4.

By the assumptions on the lower bounds on ε = ε(N) and μ = μ(N), we have that

5t � εμN � (logN)2, from which we deduce that t � ct/8 whenever N is sufficiently large.

Hence, we have

P[E] �
∑

t�εμN/5
c−t/2 = e−Ω(εμN).

In other words, with very high probability, the total number of vertices in large Bis is

negligible.

With these definitions we are ready to prove the bound for pε. Set Yi = X(Bi)1[|Bi|�s0],

where 1[E] is the indicator function for the event E. Moreover, set S ′ =
∑N

i=1 Yi and

S =
∑N

i=1 Xi and let M ′ = M[S ′] denote the median of S ′. Finally, let E ′ = E
[
S ′

]
and

observe that, trivially,

pε = P[|S − μN| � εμN]

� P

[
|S − S ′| � εμN

5

]
+ P

[
|S ′ −M ′| � εμN

5

]

+ P

[
|M ′ − E ′| � εμN

5

]
+ P

[
|E ′ − μN| � 2εμN

5

]
.

We will now bound each of the four terms. Firstly, recall that by assumption X(G) � |G|
for all G ∈ B. Hence, we have

P

[
|S − S ′| � εμN

5

]
� P[E] = e−Ω(εμN)

and thus also

μN − E ′ = E[S − S ′] � E[S − S ′ | E] +N · P[E] � 2εμN

5
,
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with room to spare. We infer that

P

[
|E ′ − μN| � 2εμN

5

]
= 0.

In order to bound the remaining two terms we apply Theorem 2.3 with respect to the

variables Y1, . . . , YN and S ′ =
∑N

i=1 Yi. By the definition of the Yi and the assumption on

X(G), we immediately deduce that the effect of the ith coordinate on S ′ is bounded from

above by s0. In other words, we can set ci = s0 in Theorem 2.3. Moreover, if S ′ � t, then

there is an index set T containing at most t entries such that
∑

i∈T Yi � t. Hence, we can

apply Theorem 2.3 with ψ(x) = x · s20 to deduce that

P
[
|S ′ −M ′| � t

]
� 4 exp

{
− t2

4(M ′ + t)s20

}
. (3.16)

Below we argue that |E ′ −M ′| = O(s0
√
E ′), which has the following consequences. Observe

that the definition of s0 implies that there exists a constant C ′ = C ′(x) such that s0 � C ′ ·
max{1, log(ε−1μ−1)}. As by our assumptions we have εμ � 1/N, we deduce s0 � C ′ logN

and thus s0
√
E ′ = o(εμN). This implies that

P

[
|M ′ − E ′| � 1

5
εμN

]
= 0, whenever N is sufficiently large,

and, with room to spare, also M ′ � 2μN. Hence, we deduce from (3.16) that

P

[
|S ′ −M ′| � 1

5
εμN

]
� 4 exp

{
− 1

200

ε2

(1 + ε)s20
μN

}
.

The proof of |E ′ −M ′| = O(s0
√
E ′) is actually very similar to the one in [15, p. 42],

where it is performed for the special case ψ(x) = x; we thus sketch only the most important

ideas. First, note that

|E ′ −M ′| � E[|S ′ −M ′|] �
∑
t�1

P[|S ′ −M ′| � t].

By using (3.16), this is easily seen to be of order at most s0
√
M ′. Finally, as M ′/2 �

M ′P[S ′ � M ′] � E ′, we obtain |E ′ −M ′| = O(s0
√
E ′), as desired.

4. Applications

The main ingredient for a successful application of Theorem 3.3 to a specified nice class

of graphs is the computation of the following two functions: first, RB′(z), which is the

probability generating function for the root degree of a graph from B′, drawn according

to the Boltzmann model, and second, IB′(z), whose �th coefficient is the expected number

of non-root vertices of degree � in such a random graph. Before we proceed to specific

applications, we demonstrate that for many natural classes of graphs it is sufficient just

to determine RB′(z), and IB′(z) is then readily obtained.

Before we describe the classes we will consider, let us fix some notation. Let B′ be a

class consisting of labelled derived graphs. Let B′ be a graph from B′, drawn according to

the Boltzmann distribution with parameter x, and denote by rd(B′) the degree of the root
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vertex of B′. Then we write RB′(z; x) for the probability generating function of rd(B′),

and IB′(z; x) for the function whose �th coefficient is equal to E[deg′(�; B′)], i.e.,

RB′(z; x) :=
∑
k�0

P[rd(B′) = k]zk and IB′(z; x) :=
∑
k�0

E[deg′(�; B′)]zk.

We will use this notation throughout the paper without further reference.

Definition 2. Let B′ be any class of labelled derived graphs. B′ is called isothermic if, for

any n, any 0 � k < n, and any vertex v ∈ {1, . . . , n}, we have

P[degB′n
(v) = k] = P[rd(B′n) = k],

where B′n denotes a graph drawn uniformly at random from B′n.

In words, isothermic random graphs are symmetric with respect to the degree distribu-

tion of their vertices. It is easily verified that for example labelled 2-connected outerplanar

and series-parallel graphs form isothermic classes, as every relabelling of the vertex set

yields again a member of the corresponding graph class.

The next lemma provides us with an explicit relation for RB′(z; x) and IB′ (z; x). Here

we write |B′| for the number of non-root vertices of any B′ ∈ B′.

Lemma 4.1. Let B′ be an isothermic class of derived graphs and let B′ be a random graph

drawn according to the Boltzmann distribution with parameter 0 � x < ρB′ . Then

IB′(z; x) = x
∂

∂x
RB′(z; x) + E[|B′|]RB′ (z; x).

Proof. From the definition of IB′(z; x) and the assumption that B′ is isothermic we infer

that

IB′(z; x) =
∑
��0

z� ·
∑
n�0

b′nx
n

n!B′(x)
· nP[rd(B′n) = �].

Note that

nxn−1

B′(x)
=

∂

∂x

(
xn

B′(x)

)
+
xn ∂

∂x
B′(x)

B′(x)2
.

We obtain

IB′(z; x) = x
∑
��0

z�
∑
n�0

b′n
n!
·
(
∂

∂x

(
xn

B′(x)

)
+
xn ∂

∂x
B′(x)

B′(x)2

)
P[rd(B′n) = �]

= x
∑
��0

z� ·
(

[z�]
∂

∂x
RB′(z; x) +

∂
∂x
B′(x)

B′(x)
[z�]RB′(z; x)

)
.

The proof concludes with the observation

E[|B′|] =
x ∂
∂x
B′(x)

B′(x)
.
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This section closes with two immediate applications of Theorem 3.3 and of the concept

of isothermic classes: Cayley trees and cactus graphs.

4.1. Labelled trees

Let T denote the class of all labelled trees, and denote by B the set of graphs in T that

are biconnected. It is well known (see, e.g., [10]) that the egf enumerating T • has a unique

dominant singularity at ρT = e−1 and that T •(ρT ) = 1.

Clearly, B consists of only one graph, i.e., a single edge. Thus RB′(z; x) = z, and by

Lemma 4.1 also IB′(z; x) = z. Hence, we can immediately apply Theorem 3.3 and obtain,

for a tree Tn drawn uniformly at random from Tn,

P
[
deg(k; Tn) ∈ (1± ε)tkn

]
� 1− n5e

−C ε2

log2(ε−1)

tk
k n, where tk = [zk]zez−1 =

1

e(k − 1)!
.

In other words, we obtain exponentially small tail bounds for the number of vertices of

degree k � (1− o(1)) log n
log log n

in Tn. Note that the maximum degree of Tn is ∼ log n
log log n

, by

Moon’s result [17]. Consequently, Theorem 3.3 provides us with a concentration result for

all desirable values of k.

4.2. Cactus graphs

We say that a labelled connected graph is a cactus if all its maximal biconnected

components are cycles or edges. Let C be the class that contains all cactus graphs, and

let B be the class that contains all labelled cycles and a single edge. In this subsection

we will use Theorem 3.3 to show large deviation estimates for the number of vertices of

degree k in graph Cn that is drawn uniformly at random from Cn.
In [20] an explicit expression for C•0 := C•(ρC)

·
= 0.4563 was derived, and it was shown

that ρBB
′′(ρB) > 1. Moreover, it is easily seen that

B(x) = −1

2
log(1− x) +

1

4
x2 − 1

2
x and B′(x) =

x(2− x)

2(1− x)
.

With those facts we readily obtain that

RB′ (z; x) =
1

B′(x)

(
xz + (B′(x)− x)z2

)
=
z(2− 2x+ xz)

2− x .

Additionally, Lemma 4.1 implies that

IB′(z; x) =
2(1− x)

2− x z +
x

1− xz
2.

With this information at hand, we can immediately apply Theorem 3.3 and obtain

P
[
deg(k; Cn) ∈ (1± ε)λCckn

]
� 1− n5e

−C ε2

(log(ε−1)+2)2

ck
k n

and ck = [zk]IB′(z; C
•
0 )eλC (RB′ (z;C

•
0 )−1).

The asymptotic form of the ck ’s can be derived with some technical work. We omit the

details and present just the final result. There are constants C1, C2, C3 > 0 such that

ck = (C1 + o(1)) · k−k/2 · Ck
2 · C

√
k

3 · k
1/2.
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In other words, we obtain exponentially small tail bounds for the number of vertices

of degree k � (2− o(1)) log n
log log n

in Cn. Note that the maximum degree of Cn is ∼ 2 log n
log log n

,

by the results in [20]. Consequently, Theorem 3.3 provides us also in this case with a

concentration result for all desirable values of k.

5. Outerplanar graphs

In this section we determine the degree sequence of large random outerplanar graphs. Let

O be the class of all labelled connected outerplanar graphs, and B the class of labelled

biconnected outerplanar graphs. Bodirsky, Giménez, Kang and Noy [4] showed that O
is nice. We will argue that the remaining preconditions of Theorem 3.3 are fulfilled. In

particular, we show the following theorem, where ‘
·

=’ means that the quantity on the right

side is truncated to the digits shown.

Theorem 5.1. There are explicitly given constants μ
·

= 0.38081 and λO
·

= 0.22327 such that

the class of labelled connected outerplanar graphs satisfies the preconditions of Theorem 3.3

for any k � log1/μ n− 5 log1/μ log n. Consequently, there is a C > 0 such that if we denote

by On a random graph from On, then we have for any 0 < ε < 1 that

P
[
deg(k; On) ∈ (1± ε)okn

]
� 1− e−C

ε2

(log(ε−1)+k)2

ok
k n,

and ok = [zk]λODO(z), where DO(z) is given by (3.4), RB′(z) is given by Lemma 5.4 below,

and then IB′(z) by Lemma 4.1. Moreover,

o1
·

= 0.13659, o2
·

= 0.28753, o3
·

= 0.24287,

o4
·

= 0.15507, o5
·

= 0.08743, . . .

and, for large k,

ok = (c1 + o(1)) · μk · ec2

√
k · k1/4,

where c1, c2 > 0 are analytically given.

The formula in the above theorem strongly indicates that the maximum degree Δ(On) of

a random outerplanar graph On is roughly log1/μ n. Unfortunately, our current techniques

are not strong enough to prove this, although we come very close to this value. We thus

formulate it as a conjecture.

Conjecture 5.2. For any ε > 0, we have limn→∞ P[Δ(On) ∈ (1± ε) log1/μ n] = 1.

In order to prove the theorem we are first going to derive explicit expressions for the

functions DO(z), RB′ (z) and IB′(z), which encode the degree distribution in large random

outerplanar graphs, and the root degree and degree distributions in random graphs from

the Boltzmann model, respectively. Then, we will derive appropriate asymptotics for the

coefficients of those functions, which will enable us to apply Theorem 3.3.

First we shall determine the function RB′(z). In order to achieve this we will investigate

an auxiliary graph class. Note that an outerplanar graph is 2-connected if and only if
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Figure 1. Recursive decomposition of the class of dissections.

it has a unique Hamilton cycle. Hence any 2-connected outerplanar graph is in fact

equivalent to a dissection of a convex polygon , where the boundary of the polygon is

the (unique) Hamilton cycle. Therefore, the class of 2-connected outerplanar graphs is

essentially equivalent to the class of dissections of convex polygons. Below we make this

connection explicit.

Let P be a convex polygon with n unlabelled vertices and fix an edge e of P . A

dissection of P is then either this single edge or an ordered sequence of � � 2 dissections

along the face containing e, where �− 1 pairs of vertices are identified: see Figure 1. Thus

the ordinary generating function D(x) for polygon dissections, which are rooted at an

edge e of the outer face, where x marks the vertices, satisfies

D(x) = x2 +
D(x)2

x
+
D(x)3

x2
+ · · · = x

4

(
1 + x−

√
x2 − 6x+ 1

)
. (5.1)

Henceforth we are going to make use of the following simple proposition. A similar

statement was proved in [4], but for the sake of completion we give here a self-contained

proof.

Proposition 5.3. The egf enumerating rooted labelled 2-connected outerplanar graphs satis-

fies

B•(x) = xB′(x) =
1

2

(
D(x) + x2

)
,

where D(x) is the ordinary generating function enumerating unlabelled edge-rooted dissec-

tions.

Proof. Let

B•(x) =
∑
n�2

b•n
n!
xn and D(x) =

∑
n�2

dnx
n.

The claim can be seen as follows. For n � 3, every edge-rooted dissection gives rise to

(n− 1)!/2 distinct 2-connected outerplanar graphs, and therefore to n!/2 distinct rooted

biconnected outerplanar graphs. For the special case n = 2, d2 = 1 and b•2 = 2. With this

we obtain that

B•(x) = x2 +
∑
n�3

dn

2
xn = x2 +

1

2

∑
n�2

dnx
n − 1

2
d2x

2 =
1

2
(D(x) + x2).

We are now ready to derive an explicit expression for RB′(z).
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Lemma 5.4. Let B′ be a graph from B′, drawn according to the Boltzmann model with

parameter 0 � x � ρB . Then

P[rd(B′) = �] = [z�]RB′(z; x) = [z�]
x

B′(x)
· (2B′(x)− x)z + (x− B′(x))z2

(2B′(x)− x)− 2(B′(x)− x)z
.

Proof. Let D be a dissection, drawn according to the Boltzmann model with parameter

x. Following the recursive decomposition for D, D can be constructed according to the

compilation rules for Boltzmann samplers in [9] with the following simple algorithm:

ΓD(x): choose a random value L ∈ N such that P[L = 1] = x2

D(x)

and P[L = s] =
(
D(x)
x

)s−1
for s � 2

if � = 1 return a single edge

else γ1 ← ΓD(x), . . . , γL−1 ← ΓD(x) (independent recursive calls)

return a dissection composed out of γ1, . . . , γL−1, as in Figure 1

We refer the reader also to [3], where this algorithm is discussed in great detail. Let the

root vertex of D be the tail of the root edge, as indicated in Figure 1. We immediately

obtain

P[rd(D) = 1] =
x2

D(x)
,

as rd(D) = 1 if and only if ΓD(x) chooses L = 1. Moreover, D has root degree k � 2 if

and only if L � 2 and rd(γ1) = k − 1. A simple inductive argument then shows that

P[rd(D) = k] =
x2

D(x)

(
1− x2

D(x)

)k−1

.

In order to study the root degree distribution of random graphs from B′, we design in

the next step a Boltzmann sampler ΓB′(x). We start by describing a sampler ΓB•(x) that

generates rooted 2-connected outerplanar graphs. Let Ber(p) be a Bernoulli variable that

obtains the value 1 with probability p. Then

ΓB•(x): if (Ber( x2

2B•(x)
) = 1) then γ ← a single rooted edge

else γ ← ΓD(x)

root γ at the tail of its root edge

label the vertices of γ uniformly at random

return γ

Now we prove that

P[ΓB•(x) = γ] =
x|γ|

|γ|!B•(x)

for γ ∈ B•, i.e., ΓB•(x) is a Boltzmann sampler for B•. We distinguish two cases. If γ is

a single rooted edge, then it can be generated in two ways: either the Bernoulli variable

evaluates to 1, or otherwise ΓD(x) outputs an edge. By exploiting Proposition 5.3 and by
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abbreviating t(x) = x2

2B•(x)
, we obtain

P[ΓB•(x) = γ] =
1

2!
·
(
t(x) + (1− t(x))

x2

D(x)

)
=

1

2!

x2

B•(x)
. (5.2)

On the other hand, if |γ| � 3, then γ can only be generated if the Bernoulli variable

evaluates to 0. Furthermore, there are either two edge-rooted dissections, which if correctly

labelled yield γ, or there is a unique edge-rooted dissection which can be labelled in two

different ways to obtain γ. Hence,

P[ΓB•(x) = γ] = 2 · 1

|γ|! · (1− t(x)) · x
|γ|

D(x)
=

x|γ|

|γ|!B•(x)
.

Hence, ΓB•(x) is indeed a Boltzmann sampler for B•.
Note that we can exploit ΓB•(x) to obtain random graphs from B′ by removing the

label from the root vertex of its output γ, and by relabelling the other vertices such that

they have labels from {1, . . . , |γ| − 1}. This can be obviously done in a unique way, e.g., by

relabelling them while preserving their order. Now, as for every γ′ ∈ B′ there are precisely

|γ′|+ 1 distinct graphs γ1, γ2, . . . in B• such that we can obtain by the above procedure γ′,

we infer that

P[γ′ was drawn] =

|γ′ |+1∑
i=1

P[ΓB•(x) = γi] =

|γ′ |+1∑
i=1

x|γ
′ |+1

(|γ′|+ 1)!B•(x)
=

x|γ
′ |

|γ′|!B′(x)
.

It follows that the root degree distributions of ΓB•(x) and ΓB′(x) are the same. But then,

P[rd(ΓB′(x)) = 1] = P[ΓB•(x) outputs a rooted edge] = 2t(x), by the same argument as

in (5.2). Moreover, rd(ΓB′(x)) = k if and only if the Bernoulli variable evaluates to 0

and ΓD(x) returns a dissection with root degree k. Hence,

P[rd(ΓB′(x)) = k] = (1− t(x))
x2

D(x)

(
1− x2

D(x)

)k−1

.

The proof is completed by summing up these expressions and using Proposition 5.3.

Proof of Theorem 5.1. As already discussed previously, in [4] it was shown that the class

O is nice. What remains is to check (3.5). Let us abbreviate O•0 = O•(ρO). Note that the

class B′ is isothermic. By applying Lemma 4.1 we obtain

IB′(z) = O•0R
′
B′(z) +

O•0B
′′(O•0)

B′(O•0)
· RB′ (z),

where

RB′(z) = RB′ (z; O
•
0), R′B′ (z) =

∂

∂x
RB′ (z; x)|x=O•0

,

and all other derivatives are taken with respect to x. A straightforward analysis shows

that [z�]RB′ (z) = Θ(μ�) and [z�]R′B′ (z) = Θ(�μ�), where

μ =
2(B′(O•0)− O•0)

2B′(O•0)− O•0
.
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Hence,

[z�]IB′ (z) = Θ(�μ�),

which implies that Theorem 3.3 can be applied whenever, say, k � log1/μ n− 5 log1/μ log n.

This gives us that DO(z) = IB′(z) · eλO(RB′ (z)−1), where λO = B′(O•0). Furthermore we

observe that in general for a function f(z) we have [zk]f(a · z) = ak · [zk]f(z), and hence

we can apply Lemma 2.4 to calculate the asymptotic form of ok for large values of k.

The numerical values claimed in the theorem were calculated with the help of Maple,

by using the explicit expression for the function B′(x) from Proposition 5.3 and the value

of O•0 from [4]. �

6. Series-parallel graphs

In this section we determine the degree sequence of graphs drawn uniformly at random

from the class SP of labelled connected series-parallel (SP) graphs. For the remainder of

the section we will denote by B the class of labelled biconnected SP graphs. Bodirsky,

Giménez, Kang and Noy [4] showed that SP is nice. As in the previous section, we

now argue that the remaining preconditions of Theorem 3.3 are fulfilled, and prove the

following statement.

Theorem 6.1. There are explicitly given constants μ
·

= 0.75041 and λSP
·

= 0.14937 such

that the class of labelled connected series-parallel graphs satisfies the preconditions of The-

orem 3.3 for any k � log1/μ n− 20 log1/μ log n. Consequently, there is a C > 0 such that if

we denote by SPn a random graph from SPn, then we have for any 0 < ε < 1 that

P
[
deg(k; SPn) ∈ (1± ε)spkn

]
� 1− e−C

ε2

(log(ε−1)+k)2

spk
k n,

and spk = [zk]DSP (z), where DSP (z) is given by (3.4), RB′(z) is given by Lemma 6.3 below,

and then IB′(z) by Lemma 4.1. Moreover, we have

sp1
·

= 0.11021, sp2
·

= 0.35637, sp3
·

= 0.22335,

sp4
·

= 0.12576, sp5
·

= 0.07172, . . .

and, for large k,

spk = (c1 + o(1)) · μk · k−3/2,

where c1 is analytically given.

As in the case of outerplanar graphs, the above formula for spk suggests the following

conjecture for the maximum degree Δ(SPn) of SPn.

Conjecture 6.2. For any ε > 0, we have limn→∞ P[Δ(SPn) ∈ (1± ε) log1/μ n] = 1.

In order to prove the theorem we are first going to derive explicit expressions for

the functions DSP (z), RB′(z) and IB′(z), and then we will derive appropriate asymptotics
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for the coefficients of those functions. We begin with the function RB′(z). Before we

proceed, let us introduce an auxiliary graph class, which plays an important role in the

decomposition of 2-connected series-parallel graphs. Following [19, 4], we define a network

as a connected graph with two distinguished vertices, called the left and the right pole,

such that adding the edge between the poles the resulting (multi)graph is 2-connected.

Let D be the class of series-parallel networks, such that Dn contains all networks with n

non-pole vertices. We write for brevity D0 ≡ e for the network consisting of a single edge.

Let �B be the class containing all graphs in B rooted at any of their edges, where the root

edge is oriented. Then, due to the definition of D, the classes B and D are related as

follows (see also [19]):

(D + 1)× Z2 × e = (1 + e)× �B. (6.1)

Although this decomposition can be used to obtain detailed information about the

generating function enumerating B (see, e.g., [1]), as well as the degree sequence of a

‘typical’ graph from �B, it turns out that it is quite involved to derive from it information

about the degree sequence of a random graph from B. This difficulty is mainly due to

the fact that the number of ways to root a graph at an edge varies for graphs of the

same size (with respect to the number of vertices), and would require to perform a very

laborious integration. We attack this problem differently: we exploit a very general result

by Chapuy, Fusy, Kang and Shoilekova [6], which allows us to decompose families of

2-connected graphs in a direct combinatorial way (again based on networks), but avoiding

the often complicated and intractable integration steps.

Given this, the distribution of the root degree of random graphs from B′ is as follows.

Lemma 6.3. Let B′ be a graph drawn from B′ according to the Boltzmann distribution with

parameter 0 � x � ρB′ . Then

P[rd(B′) = �] = [z�]RB′(z; x) := [z�]
RD(z; x)(xD(x)2RD(z; x)− 2)

xD(x)2 − 2
, (6.2)

where D(x) is the egf enumerating series-parallel networks, and RD(z) satisfies

RD(z; x) =
1

D(x)

(
−1 + (1 + z)

(
1 + D(x)

2

)RD(z; x))
. (6.3)

We defer the proof of this and the following corollary to Section 6.1 and use the

remainder of this section to explain the main ideas of our approach. A further ingredient

that is needed for the application of Theorem 3.3 is the evaluation of the coefficients of

the function IB′(z; x), whose �th coefficient is the expected number of non-root vertices

of degree � in a random graph from B′, drawn according to the Boltzmann model with

parameter x. As the class B′ is easily seen to be isothermic, we can apply Lemma 4.1 to

obtain an explicit expression for IB′ (z; x) in terms of ∂
∂x
RB′ (z; x). The following corollary

gives the singular expansions of RB′(z; x) and ∂
∂x
RB′(z; x) that will become very handy

in the proof of Theorem 6.1, where we will extract information about the growth rate of

the coefficients.
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Corollary 6.4. Let 0 � x � ρB′ . Then RB′(z; x) and IB′(z; x) have a unique dominant sin-

gularity ρ(x) and admit singular expansions of the form

RB′ (z; x) = R0(x) + R1(x)(1− z/ρ) + R2(x)(1− z/ρ)3/2 + o
(
(1− z/ρ)3/2

)
,

∂

∂x
RB′ (z; x) = R̂0(x) + R̂1(x)(1− z/ρ)1/2 + o

(
(1− z/ρ)1/2

)
,

where ρ(x) and the Ri(x) and R̂i(x) are analytically given. In particular, for x = SP (ρSP ) =

SP•0 we have

ρ
.

= 1.33259, R0
.

= 1.46913, R1
.

= −2.56404, R2
.

= 1.82717,

and R̂0
.

= 169.8389, R̂1
.

= −621.4279.

Proof of Theorem 6.1. As discussed previously, in [4] it was shown that the class SP is

nice. What remains is to check (3.5). Let us abbreviate SP•0 = SP•(ρSP ).

Note that the class B′ is isothermic. By applying Lemma 4.1 we readily obtain that

IB′(z) = SP•0 ·
∂

∂x
RB′ (z; SP•0) +

SP•0 B
′′(SP•0)

B′(SP•0)
RB′ (z; SP•0),

where RB′ (z; x) is given in Lemma 6.3. By applying Corollary 6.4 we infer that IB′(z) has

a unique dominant singularity at ρ = ρ(SP•0), and that it admits a singular expansion of

the form

IB′(z) = I0 + I1(1− z/ρ)1/2 + o
(
(1− z/ρ)1/2

)
,

where I0, I1 are analytically given, and I0
·

= 31.5669 and I1
·

= −79.5238. By applying the

Transfer Theorem (e.g., Corollary VI.1 in [10]) to the singular expansion of IB′(z) from

Corollary 6.4 for x = SP•0, we infer that there is a c > 0 such that

[z�]IB′(z) = (c+ o(1))μ��−3/2, where μ := 1/ρ.

Thus, Theorem 3.3 can be applied whenever, say, k � log1/μ n− 20 log1/μ log n. This

gives us that DSP (z) = IB′(z) · eλSP (RB′ (z)−1), where λSP = B′(SP•0). The numerical values

claimed in the theorem were calculated with the help of Maple by using the expres-

sion for SP•0 from [4], by solving (6.6a) to determine D(SP•0) and by using (6.12) to

determine λSP . �

6.1. Proofs

6.1.1. Series-parallel networks

Lemma 6.5 ([19]). The class D of SP networks satisfies the equation

D = e+ S + P , (6.4)

where e is the class of networks consisting of a single edge, and (cf. Figure 2)

S = (e+ P)× Z ×D and P = e× Set�1
(S) + Set�2

(S).
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Figure 2. The decomposition of series and parallel networks.

Let D(x), S(x) and P (x) be the egfs of D, S and P , where x marks the non-pole vertices.

From now on we assume that x is a fixed value, and we will always write D for D(x), and

analogously S and P . The above lemma then implies

D = 1 + S + P , S = (1 + P )xD and P = 2eS − 2− S. (6.5)

It can be shown [4] that D, S and P satisfy the following relations, which can be derived

straightforwardly from the above decomposition, and which we will use several times in

our calculations:

S =
xD2

1 + xD
= log

(
1 + D

2

)
, (6.6a)

P + 1 =
D

1 + xD
, (6.6b)

D′ = 2S ′eS =
D2(1 + D)

1− 2xD2 − x2D3
. (6.6c)

Let D be a graph drawn according to the Boltzmann distribution for D with parameter

x, and denote by rd(D) the degree of the left pole of D. The following lemma says that D

is in a well-defined sense ‘symmetric’.

Lemma 6.6. Let N be an element drawn according to the Boltzmann distribution with

parameter x from one of the classes D, e, S , P , e+ P . Then the distribution of the

degree of the left pole of N is the same as the distribution of the degree of the right pole

of N.

Proof. Let N ∈ D, and let ref(N) be the network obtained by fixing any embedding of

N and reflecting N at its left pole. Then we have either ref(N) = N or ref(ref(N)) = N.

Moreover, we clearly have that if N ∈ X , then also ref(N) ∈ X , where X is one of

D, e, S , P , e+ P . This implies that ref is a bijection between the elements of X . But

then, as ref interchanges the degree of the right and of the left pole of all graphs in

X , and the probability mass of N ∈ X is equal to the probability mass of ref(N), the

statements follows immediately.

Below we will write RD(z) for the probability generating function for rd(D), i.e., RD(z) =∑
��1 P[rd(D) = �]z�. Similarly, we define the functions RS (z), RP (z) and Re+P (z) for

random graphs drawn from S , P , and e+ P . The following lemma describes the relations

between these four functions.
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Lemma 6.7. RD(z) satisfies (6.3). Moreover,

RD(z) = Re+P (z) = RS (z) and RP (z) =
1

P

(
(1 + P )RD(z)− z

)
. (6.7)

Proof. According to the decomposition of D, a random graph from D is from S with

probability S
D

, and in this case the probability that its left pole has a specific root degree is

given by the corresponding coefficient in RS (z). Otherwise it is an element of e+ P (with

probability 1+P
D

), and the degree of its left pole is given by Re+P (z). That is,

DRD(z) = SRS (z) + (1 + P )Re+P (z). (6.8)

Similarly, by considering random graphs from S , we obtain

SRS (z) = zxD + xDPRP (z). (6.9)

Furthermore, we have Re+P (z) = 1
1+P

(z + PRP (z)), from which by rearranging we obtain

PRP (z) = (1 + P )Re+P (z)− z. (6.10)

Then we obtain from (6.8)

DRD(z)
(6.9)
= zxD + xDPRP (z) + (1 + P )Re+P (z)

(6.10)
= zxD + xD((1 + P )Re+P (z)− z) + (1 + P )Re+P (z)

= (1 + xD)(1 + P )Re+P (z)
(6.6b)
= DRe+P (z),

which proves the first equality of (6.7). To prove the second equality, we substitute

Re+P (z) = RD(z) in (6.8), and obtain SRS (z) = (D − 1− P )RD(z) = SRD(z), due to (6.5).

To prove the last statement in (6.7), we now simply substitute Re+P (z) = RD(z) in (6.10).

It remains to show (6.3). Recall that a graph from P is either an edge merged at its poles

with a set consisting of at least one S network (type I), or a set of � 2 S networks, merged

at their poles (type II). We treat the two cases separately. The Boltzmann probability that

a random graph from P is of type I and consists of exactly i S networks is Si

i!P
. In

this case, the probability that the degree of its left pole is exactly � is given by the

(�− 1)st coefficient of RS (z)i. Similarly, the probability that the left pole of a type II

graph consisting of i S networks has degree � is the �th coefficient of RS (z)i. This implies

that RP (z) is related to RS (x) as follows:

RP (z) =
∑
��0

(∑
i�1

[z�−1]RS (z)i
S i

P

1

i!
+

∑
i�2

[z�]RS (z)i
S i

P

1

i!

)
z�.

This, due to RS (z) = RD(z), easily simplifies to

RP (z) =
1

P

(
(z + 1)(eSRD(z) − 1)− SRD(z)

)
. (6.11)

By combining (6.7) and (6.11), we obtain, by applying (6.6a) and (6.6b),

(1 + P )RD(z)− z = (z + 1)

((
1 + D

2

)RD(z)

− 1

)
− xD(1 + P )RD(z),

from which (6.3) follows after rearrangement, together with (6.6b).
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Figure 3. The decomposition of B′(R) and B′(RM) (the void vertex denotes the root).

Figure 4. The decomposition of B′(M) (the void vertex denotes the root).

6.1.2. 2-connected series-parallel graphs. An important tool needed in the proof of

Lemma 6.3 is the following fact, which describes how the class B′ can be directly

decomposed in terms of series-parallel networks.

Lemma 6.8. The class B′ has the decomposition

B′ = e× Z + B′(R) + B′(M) − B′(RM),

where e is the class of networks consisting of a single edge, and (cf. Figures 3 and 4)

B′(R) =Z2× (e+P)2×D, B′(M) =Z ×
(
e× Set�2(S) + Set�3(S)

)
,

B′(RM) =Z ×P ×S ,

where Z2 is the class consisting of a single graph with two labelled isolated vertices.

Proof. The proof follows directly from the main result in [6], and the fact that there are

no 3-connected series-parallel graphs.

From the above decomposition we can immediately derive the following relations for

the generating functions, which we can simplify and express in terms of D by exploiting

(6.6a) and (6.6b):

B′(R)(x) =
x2

2
(P + 1)2D =

D3x2

2(1 + xD)2
,

B′(M)(x) = x(eS − 1− S) + x

(
eS − 1− S2

2
− S

)

= x

(
D − 2

xD2

1 + xD
− 1− 1

2

x2D4

(1 + xD)2

)
,

B′(RM)(x) = x2(1 + P )DP =
x2D2(D − 1− xD)

(1 + xD)2
.
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With this we can reproduce the result from [4], where B′(x) was determined by using

(6.1):

B′(x) = x+ B′(R)(x) + B′(M)(x)− B′(RM)(x) = −xD(xD2 − 2)

2(1 + xD)
. (6.12)

Proof of Lemma 6.3. First, note that the second statement of the lemma was already

proved in Lemma 6.7. The remaining proof uses ideas similar to the proof of Lemma 6.7;

we shall therefore concentrate on the main steps. From the decomposition of B′ and the

auxiliary classes B′(R), B′(M) and B′(RM) (Figures 3 and 4), we obtain

RB′(R)
(z) = Re+P (z)2 (6.7)

= RD(z)2,

RB′(RM)
(z) = RP (z)RS (z)

(6.7)
= RP (z)RD(z). (6.13)

From (6.7) it follows that RP (z) = 1+P
P
RD(z)− z

P
, and therefore we can express RB′(RM)

(z)

as a function of only RD(z) and D, namely

RB′(RM)
(z) =

1 + P

P
RD(z)2 − z

P
RD(z)

(6.6)
=

RD(z)((1 + xD)z − DRD(z))

1 + xD − D .

Furthermore,

[z�]RB′(M)
(z) =

∑
i�2

[z�−1]RS (z)i
1

B′(M)

Si

i!
x+

∑
i�3

[z�]RS (z)i
1

B′(M)

Si

i!
x

=
x

B′(M)

(∑
i�2

[z�]z
(SRS (z))i

i!
+

∑
i�3

[z�]
(SRS (z))i

i!

)

=
x

B′(M)

[z�]

(
(z + 1)(eSRD(z) − 1− SRD(z))− (SRD(z))2

2

)
. (6.14)

We obtain an expression for RB′(M)
(z) by summing up the above term for all �. This can be

written in terms of only RD(z) and D as follows. Note that (z + 1)eSRD(z) = DRD(z) + 1,

due to (6.3) and (6.6a). Then we obtain

RB′(M)
(z) =

x

B′(M)

(
(z + 1)eSRD(z) − (z + 1)(1 + SRD(z))− (SRD(z))2

2

)

=
x

B′(M)

(
DRD(z)− z − (z + 1)

xD2

1 + xD
RD(z)− x2D4

2(1 + xD)2
RD(z)2

)
.

Putting everything together, we obtain

RB′(z) =
1

B′
(
xz + B′(R)RB′(R)

(z) + B′(M)RB′(M)
(z)− B′(RM)RB′(RM)

(z)
)
, (6.15)

which simplifies to the form stated in the lemma. �
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6.2. Remaining proofs

Proof of Corollary 6.4. Solving (6.3) yields the explicit form (as usual we write D for

D(x), and recall identity (6.6a)):

RD(z; x) = T

(
xDe−

xD
1+xD

1 + xD
(z + 1)

)
1 + xD

xD2
− 1

D
=: T (α(z + 1))β + γ (6.16)

for RD(z; x), with T (z) the tree function , which satisfies T (z) = zeT (z). T (z) has a unique

dominant singularity at z = e−1, and therefore the singularity ρ(x) of RD(z; x) is obtained

by setting α(z + 1) equal to e−1. By solving this equation we obtain

ρ = ρ(x) = e−
1

1+xD

(
1 +

1

xD

)
− 1.

It is also well known (see, e.g., [10]) that the singular expansion of the tree function is

T (z) = 1 + t1(1− ez)1/2 + t2(1− ez) + t3(1− ez)3/2 + o
(
(1− ez)2

)
,

where

t1 = −
√

2, t2 =
2

3
and t3 = −11

36

√
2.

Moreover, an easy calculation shows that

T ′(z) =
T (z)

z(1− T (z))
,

which implies

T ′(z) = t′−1(1− ez)−1/2 + t′0 + t′1(1− ez)1/2 + o(1− ez), (6.17)

where

t′−1 =
e√
2
, t′0 = −2e

3
and t′1 =

11
√

2e

24
.

We note that, due to 1− eα(z + 1) = (1− eα)(1− z/ρ), we have that α(z + 1)→ 1
e

is

equivalent to z → ρ. If we therefore substitute z with α(z + 1) in the expansion above, we

obtain the singular expansion for T (α(z + 1)):

T (α(z + 1)) = 1 + t1
(
1− eα(z + 1)

)1/2
+ t2

(
1− eα(z + 1)

)
+ t3

(
1− eα(z + 1)

)3/2
+ · · ·

=: r̃0 + r̃1(1− z/ρ)1/2 + r̃2(1− z/ρ) + r̃3(1− z/ρ)3/2 + o
(
(1− z/ρ)2

)
,

where r̃i = ti(1− eα)i/2, for 0 � i � 3. Given this, and knowing that RD(z) = T (α(z +

1))β + γ, the singular expansion

RD(z) = r0 + r1(1− z/ρ)1/2 + r2(1− z/ρ) + r3(1− z/ρ)3/2 + o
(
(1− z/ρ)2

)
of RD(z; x) is easy to calculate, with r0 = r̃0 · β + γ and ri = r̃iβ for 1 � i � 3. Finally,

to compute the singular expansion of RB′ (z; x) we recall (6.2). Notice that RB′ (z; x)

and RD(z; x) have the same singularity ρ(x). Then, by plugging into (6.2) the singular

expansion of RD(z; x) derived above, we readily obtain the expansion of RB′ (z; x). To see

why the term (1− z/ρ)1/2 is missing, observe that 2r0r1xD
2 − 2r1 = 0.
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Next we derive the singular expansion of ∂
∂x
RD(z; x). By taking the derivative of the

expression (6.16), we obtain

∂

∂x
RD(z; x) = T ′(α(z + 1))(z + 1)α′β + T (α(z + 1))β′ + γ′.

Together with (6.17) and the fact that

z + 1 =
1− (1− eα)(1− z/ρ)

eα
,

this yields

∂

∂x
RD(z; x) = r′−1(1− z/ρ)−1/2 + r′0 + r′1(1− z/ρ)1/2 + o

(
(1− z/ρ)1/2

)
,

where

r′−1 =
t−1(1− eα)−1/2α′β

eα
, r′0 =

t′0α
′β

eα
+ β′r̃0 + γ′

and r′1 =
(t′1 − t′−1)(1− eα)1/2α′β

eα
+ β′r̃1.

Finally, to compute the singular expansion of ∂
∂x
RB′(z; x) we take the derivative of the

right-hand side of (6.2) with respect to x, and use the singular expansion of ∂
∂x
RD(z; x).

An easy (but lengthy) computation shows also in this case that the coefficient of the term

(1− z/ρ)−1/2 vanishes in the expansion of ∂
∂x
RB′ (z; x).

The approximate numerical values in the statement of the corollary were obtained

with the help of Maple, where we plugged into the above equations the value x = SP•0
from [4], and we obtained D(SP•0) by solving (6.6a) numerically for D. �

Appendix

Proof of Lemma 2.4. Let

f(z) := e
αz+βz2

1−z · 1

(1− z)γ .

By the Cauchy integral formula we have

[zn]f(z) =
1

2iπ

∮
C

f(z)

zn+1
dz =

1

2iπ

∮
C
elog f(z)−(n+1) log zdz =:

1

2iπ

∮
C
eh(z)dz, (A.1)

where C is any contour enclosing the origin, and lying completely in the domain of f.

To estimate the integral we will use the saddle point method , which is commonly used

when one wants to determine the asymptotic behaviour of integrals that involve a large

parameter, and are simultaneously subject to huge variations. For an excellent overview

and numerous applications we refer the reader to [10].

The main idea of the saddle point method is to choose C such that the integrand

has a unique maximum on C, and the main contribution to the integral comes from

a small neighbourhood of this maximum. Let r = r(n) := 1−
√

(α+ β)/n, and choose

C := {reiθ | θ ∈ (−π, π]}, i.e., C is the cycle with radius r with centre in the origin.

(The choice of r might seem at this point somewhat arbitrary. However, r is an
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approximate solution of h′(z) = 0, and hence the actual (global) maximum of the function

is located very near to r. As we shall see later, this approximation will suffice for our

purpose.)

Our aim is now to ‘split’ C into two disjoint parts C0 and C1 such that the contribution

of
∮
C0

to
∮
C is negligible, and

∮
C1

is so well behaved, that we can approximate it quite

precisely. For this, let θ0 = θ0(n) := n−17/24, and let C1 := {reiθ | |θ| < θ0} and C0 := C \ C1.

First we show an upper bound for
∮
C0

f(z)
zn+1 dz. For |θ| � θ0 we have

|e
αz+βz2

1−z |z=reiθ = |eR( αz+βz
2

1−z )|z=reiθ

= exp

(
(2βr cos(θ)2 + α cos(θ)− r2β cos(θ)− rβ − rα)r

1− 2r cos(θ) + r2

)
.

Denote the exponent in the above expression by q = q(θ), and abbreviate c = cos(θ).

By differentiating q we see that it becomes maximal either when sin(θ) = 0, i.e., θ = π

(as |θ| � θ0), or when

4βrc− 4βr2c2 + 4βr3c+ α− αr2 − 3βr2 − βr4 = 0↔ c =
βr2 + β ±

√
β(β + α)(1− r2)

2βr
.

Denote the above two values of c by c+ and c−. Then a straightforward calculation shows

that

q(π) =
r(rβ − α)

1 + r
and q(arccos(c±)) = −1

2
(r2β + 2β + α)∓

√
β(β + α)(1− r2),

which are all Θ(1). Hence |e αz+βz
2

1−z | becomes maximal at θ = θ0, and with the estimate

cos(θ0) = 1− n−17/12

2
+ Θ(n−17/6)

we obtain

|e
αz+βz2

1−z |z=reiθ � eq(θ0) � e
√

(α+β)n−Ω(n1/12), θ ∈ (−π, π] \ [−θ0, θ0].

With this, the integral over C0 is at most∮
C0

f(z)

zn+1
dz � ‖C‖ ·max

z∈C0

|f(z)| � Θ(1) ·max
z∈C0

|e
αz+βz2

1−z | · |(1− z)−γ| · |z−n−1|

� e
√

(α+β)n−Ω(n1/12) · nΘ(1) ·
(

1−
√
α+ β

n

)−n−1

= e2
√

(α+β)n−Ω(n1/12). (A.2)

In words,
∮
C0

is exponentially smaller than e2
√

(α+β)n. Next we determine the asymptotic

value of
∮
C1

f(z)
zn+1 dz. Let us collect some basic properties of h. Note that

h(r) = 2
√

(α+ β)n+
1

2
γ log n− 1

2
(3β + α+ γ log(α+ β)) + o(1), and

h′(r) =
γ − α− β√
α+ β

√
n+ Θ(1), h′′(r) =

2√
α+ β

n3/2 + Θ(n).
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Moreover, note that |h′′′(z)| = O(n2), as h′′′ is proportional to (1− z)−4 for z ∈ C. For the

remainder, let |θ| � θ0. Since for z ∈ C1 we have z − r = r(eiθ − 1) = irθ + Θ(θ2), we may

approximate h with its Taylor series,

h(z) = h(r) + h′(r)(z − r) +
1

2
h′′(r)(z − r)2 + Θ

(
max
z∈C1

h′′′(z)(z − r)3
)

(z=reiθ)
= h(r)− n3/2 r2θ2

√
α+ β

+ o(1 + i).

Write x ∼ y if x = (1 + o(1))y for n→ ∞. With the above approximation, we obtain

∮
C1

f(z)

zn+1
dz ∼ eh(r) · i ·

θ0∫
−θ0

e
−n3/2 r2θ2

√
α+β dθ

= eh(r) · i ·
n1/24∫

−n1/24

e
− r2√

α+β
x2

n−3/4dx ∼ ieh(r)n−3/4π1/2(α+ β)1/4.

Hence, a simple calculation shows that 1
2iπ

∮
C1

is, up to polynomial factors, equal to

e2
√

(α+β)n, i.e., due to (A.2), it is asymptotically much larger than
∮
C0

. Finally, by plugging

in the precise value of h(r), we immediately obtain (2.3). �

Proof of Lemma 3.6. Let δ � 0 be such that x+ δ � x+ρG
2

. Then, as G(z) has only non-

negative coefficients and is analytic in its disc of convergence, there is an absolute constant

c > 0 such that

G(x+ δ) � G(x) + δG′(x) + δ2c.

Here, one might, for example, choose c = 1
2
G′′( x+ρG

2
). A straightforward induction argu-

ment over N shows that, for any t,

P

[ N∑
i=1

|Gi| = t

]
=
xt[zt]G(z)N

G(x)N
.

Note that as G(z) has only non-negative coefficients, then for any 0 < r < ρG we have

that [zn]G(z)N � G(r)Nr−n. Let s = (1 + ε)νN. Using the above facts, we obtain for any

x < r � (x+ ρG)/2

ps := P

[ N∑
i=1

|Gi| � s

]
�

(
x

r

)s(
G(r)

G(x)

)N
r

r − x . (A 3)

Write r = x+ δ. Then we may estimate(
x

r

)s

� exp

{
− δs

x+ δ

}
� exp

{
−δs
x

+
δ2s

x2

}
.

Moreover, by exploiting the Taylor expansion of G around x, we obtain(
G(r)

G(x)

)N

�
(

1 + δ
G′(x)

G(x)
+ δ2 c

G(x)

)N

� exp

{(
δ
G′(x)

G(x)
+ δ2 c

G(x)

)
N

}
.
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Recalling that ν = xG′(x)
G(x)

, we can combine the above estimates and deduce from (A 3) that

log ps � δ
G′(x)

G(x)

(
−ε+ δ

(
1 + ε

x
+

c

G′(x)

))
N + log(r/(r − x)).

All the above bounds are true for any δ � 0 such that x+ δ � (x+ ρG)/2. For the

remaining calculation we set

δ = min

{
ε

2( 1+ε
x

+ c
G′(x)

)
,
x+ ρG

2
− x

}
.

Observe that this implies that there exist constants C1 = C1(x) and C2 = C2(x) such that

δ � C1εx/(1 + ε) and log(r/(r − x)) = log(1 + x/δ) � C2(1 + 1/ε). Hence, we obtain

log ps � −δG
′(x)

G(x)

ε

2
N + log(r/(r − x)) � −C1

ε2

1 + ε

xG′(x)

G(x)
N + C2(1 + 1/ε),

and the proof is complete. �
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[12] Fusy, É. (2005) Quadratic exact-size and linear approximate-size random generation of planar

graphs. In 2005 International Conference on Analysis of Algorithms (C. Martı́nez, ed.), Vol. AD

of DMTCS Proceedings , pp. 125–138.

[13] Gerke, S., McDiarmid, C., Steger, A. and Weißl, A. (2005) Random planar graphs with n

nodes and a fixed number of edges. In Proc. 16th Annual ACM–SIAM Symposium on Discrete

Algorithms, pp. 999–1007, ACM, New York.
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