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ABSTRACT

Functional partnerships between proteins are at
the core of complex cellular phenotypes, and the
networks formed by interacting proteins provide
researchers with crucial scaffolds for modeling,
data reduction and annotation. STRING is a data-
base and web resource dedicated to protein—-protein
interactions, including both physical and functional
interactions. It weights and integrates information
from numerous sources, including experimental
repositories, computational prediction methods
and public text collections, thus acting as a meta-
database that maps all interaction evidence onto
a common set of genomes and proteins. The most
important new developments in STRING 8 over pre-
vious releases include a URL-based programming
interface, which can be used to query STRING
from other resources, improved interaction predic-
tion via genomic neighborhood in prokaryotes, and
the inclusion of protein structures. Version 8.0 of
STRING covers about 2.5 million proteins from 630
organisms, providing the most comprehensive view
on protein-protein interactions currently available.
STRING can be reached at http://string-db.org/.

INTRODUCTION

In contrast to genome sequences, which are quickly
becoming a commodity, the functional connectivity
within a proteome is a much more challenging problem.
The various protein complexes, transient interactions and
functional pathways are all context-dependent, and the

experimental techniques for their elucidation are diverse,
often not directly comparable, and less reliable than
genome sequencing. Nevertheless, protein—protein interac-
tion networks (or also ‘association networks’ in case func-
tional associations are included) are a crucial ingredient
for any system-level understanding of cellular machineries
(1-5). Furthermore, protein networks can serve very con-
crete, practical purposes such as filtering and assessing
high-throughput functional genomics data, and providing
intuitive visual scaffolds for annotating the structural,
functional and evolutionary properties of proteins.

The database and web-tool STRING (Search Tool for
the Retrieval of Interacting Genes/Proteins) is a meta-
resource that aggregates most of the available information
on protein—protein associations, scores and weights it, and
augments it with predicted interactions, as well as with the
results of automatic literature-mining searches. Since its
first release in 2000 (6), it has grown into the most com-
prehensive resource of its type. It builds upon and extends
the excellent, manual annotation efforts undertaken at
primary protein interaction databases (7-12) and at data-
bases of curated pathway knowledge (13-15). Here, we
describe new features that have been added since our
report on the previous release, STRING 7 (16).

EXTENDING THE SOURCES OF INTERACTION
INFORMATION

The basic interaction unit in STRING is the ‘functional
association’, which is defined in this database as the spe-
cific and meaningful interaction between two proteins that
jointly contribute to the same functional process. With
respect to the interacting proteins, STRING does not con-
sider any specific splicing isoforms or posttranslational
modifications, but instead represents each protein-coding
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locus in a genome by a single protein (the longest iso-
form). Thus, and because STRING aggregates data and
predictions stemming from a wide spectrum of cell types
and environmental conditions, it aims to represent the
union of all possible protein—protein links. From this
union, the actual network for any given spatio-temporal
snapshot of the cell can in principle be deduced by projec-
tion, for example by removing proteins known to be not
expressed or not active under the conditions studied (17).

In keeping with the above definitions, STRING imports
protein association knowledge not only from databases of
physical interactions, but also from databases of curated
biological pathway knowledge. Apart form the resources
already included in the previous release [MINT (10),
HPRD (9), BIND (12), DIP (11), BioGRID (8), KEGG
(13) and Reactome (14)], a number of resources have been
newly included [IntAct (7), EcoCyc (15), NCI-Nature
Pathway Interaction Database and Gene Ontology (GO)
protein complexes]. For the full STRING release, this
set of previously known and well-described interactions
is then complemented by interactions that are predicted
computationally, specifically for STRING, using a
number of prediction algorithms (18,19). First, we con-
duct systematic searches for genes that are found in
close proximity within prokaryotic chromosomes, which
is a good indicator for functional linkage. Second, we
search for instances where genes have joined to encode a
single fusion protein, which is indicative of functional
linkage even in organisms where the two proteins have
not fused. Third, we search for gene families that share
above-random similarities in their evolutionary histories
(i.e. they have similar ‘phylogenctic profiles’). This,
again, predicts that they contribute to similar functional
processes in the cell. Fourth, we conduct searches for
genes that display a similar transcriptional response
across a variety of conditions (co-expression). Individ-
ually, the above predictors may not always have the
specificity of direct experimental interaction assays; how-
ever, when used in concert and integrated probabilisti-
cally, the performance even of relatively weak predictors
can rival that of experimental data (20).

Lastly, two further sources of interactions in STRING
are actually providing the majority of associations; these
are text-mining and interaction transfer between organ-
isms. For the former, we parse a large body of scientific
texts [SGD (21), OMIM (22), The Interactive Fly, and
all abstracts from PubMed]. We search for statistically
relevant co-occurrences of gene names, and also extract
a subset of semantically specified interactions using
Natural Language Processing (23). For the transfer of
interactions between organisms, we estimate whether a
pair of interacting proteins found conserved in another
organism justifies the transfer of the interaction to that
other organism (24). The transferred interactions, as well
as all predicted or imported interactions, are benchmarked
and scored against a common reference of functional part-
nership [we currently use the joint membership of proteins
in biological pathways, as annotated at KEGG (13),
as our gold-standard].

Together, the above sources of interactions, includ-
ing predictions and transfers, result in a uniquely high
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coverage of the interaction networks stored in STRING
(Figure 1), particularly for well-studied model organisms.
Since the previous release, STRING has almost doubled
the number of supported organisms, which now stands at
630. The number of stored interactions has increased as
well, to a total of more than 50 million. Since the various
subtypes of the interaction evidence are stored separately
in the database, they can be disabled at will—giving users
the ability to adjust the scope and specificity of STRING
towards their particular application.

EXTENDED DEFINITION OF CONSERVED
GENOMIC NEIGHBORHOOD

When working with prokaryotes, scientists have long
used conserved genomic neighborhood arrangements
of genes to infer functional linkage, assuming that such
arrangements reflect polycistronic transcription units
(operons). STRING has followed this principle, compiling
and benchmarking protein—protein associations based
on close, co-directional neighborhood of genes on the
genome. As of version 8, this has been extended to cover
also neighboring genes that are counter-directional in a
head-to-head orientation (‘divergent transcription’). Such
divergently oriented gene pairs have been shown to be
indicative of functional linkage as well (25), albeit with
somewhat lower confidence. Often, one of the two genes
is a transcriptional regulator, targeting the neighboring
gene (25). STRING now uses this type of arrangement
in its neighborhood algorithm as well (benchmarked sepa-
rately, Figure 2). In addition, STRING is now more error
tolerant when assembling conserved neighborhoods,
ignoring short, partially overlapping genes on the anti-
sense strand that are likely to be spurious predictions.

INTEGRATION OF PROTEIN STRUCTURES

For each update, STRING now parses all entries of the
PDB database of protein structures (26). The use of pro-
tein structures is two-fold: first, to inform the user that a
given protein—or a close homolog thereof—indeed has
3D structure information. In this case, a small preview
of a representative structure is shown in the network,
and the user can follow it to view the full structure and
to proceed to the PDB website. Second, protein structures
serve as interaction evidence themselves, when more than
one distinct peptide chain is found in the structure. In this
case, a stable and reliable protein—protein interaction is
assumed.

NEW PROGRAMMING INTERFACE

To facilitate the integration of STRING into network
tools like Cytoscape (27) and workflow engines like
Taverna (28), we have created an application program-
ming interface (API) that allows access to the interaction
network in computer-readable formats (Figure 3). Addi-
tionally, specific API functions allow retrieval of individ-
ual records from our database, for example to map a
protein via its name onto a STRING entry. We further
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Figure 1. Protein association network in STRING. An example of the network view in STRING, centered on the query protein ‘hisB’ from
Escherichia coli. The inset shows the annotations and options that are available for each protein, including references to other databases. Three
‘functional modules’ can readily be seen in the network, forming tightly connected clusters. These encompass histidine biosynthesis, branched-chain
amino acid biosynthesis, and—Iless strongly connected—a part of fatty acid biosynthesis. Line color indicates the type of the supporting evidence; all
underlying evidence can be inspected in dedicated viewers that are accessible from the network.
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Figure 2. Extended definition of genomic neighborhood. (A) Illustration of a conserved gene neighborhood, containing genes related to the
biosynthesis and consumption of tryptophan (simplified from a STRING screenshot). Genes connected by lines are direct neighbors on the
chromosome, and genes with similar colors are orthologs across the various organisms. The arrow marks a switch in gene orientation, leading to
a head-to-head orientation of two presumptive operons. (B) Divergently oriented genes predict functional linkage in prokaryotes. Each dot sum-
marizes a group (bin) of gene pairs with similar intergenic distances. The fraction of such pairs where both genes are annotated in the same KEGG
pathway is indicated, implying functional partnership. Note that divergent gene pairs are slightly shifted towards larger intergenic distances,
presumably to accommodate promoters and regulatory sequences.

envision that the STRING API will be useful to devel-
opers of web services, who plan to make use of the
STRING interaction network. If a particular web service
needs access to the complete set of interactions, it may still
be advisable to maintain a local copy of our data distribu-
tion. However, if the service requires access to many dif-
ferent subsets (depending on wuser input), querying
STRING via its API could reduce administrative load.
The API is called by constructing a URL that contains
the type of the request, the desired output format and the

input items. The STRING server then returns the result of
the computation in the desired format. Further documen-
tation can be accessed via the STRING homepage.

USE SCENARIOS

Apart from the ad hoc and barrier-free access through the
website, STRING can be downloaded and used locally,
either in the form of concise flat-files or as a mirror
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Figure 3. The new Application Programming Interface, and how it connects to Cytoscape. Specific items of interest can be retrieved from STRING
by constructing URLs accordingly (see Table). Unless STRING's internal identifiers are known, an initial call with the ‘resolve’-request is recom-
mended, to map query items to nodes in the STRING network. TSV, tab-separated values; JSON, JavaScript Object Notation; PSI-MI 2.5,
Proteomics Standards Initiative Molecular Interaction (XML and tab-delimited format). *Requests ending on ‘List’ accept more than one input
item, but are otherwise identical (multiple query items must be separated by URL-encoded ‘new-line’ characters).

installation of the complete relational database back-end
(some of the downloads do require a free, nonredistribu-
tion license applicable to academic nonprofit users). The
interacting entities in STRING can be set to be either
proteins, or groups of orthologs spanning multiple organ-
isms (‘COG-mode’). For the latter, STRING relies on an
updated and extended version of the COGs [‘Clusters of
Orthologous Groups’ (29)], which is being maintained at
the eggNOG database (30). A variety of other databases
use STRING networks as a basis for further computa-
tions/annotations, for example by augmenting the net-
works with small molecules [STITCH, (31)], or by using
the network to increase the power of kinase—substrate pre-
dictions [NetworKIN, (32)]. STRING has also been inte-
grated into third-party tools such as NeAT [Network
Analysis Tools, (33)], which provides various ways to
analyze the interaction network, or Gaggle (34), which
enables automated data transfer into other tools via a
browser add-on.
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