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This editorial refers to ‘Super-resolution imaging reveals that
loss of the C-terminus of connexin43 limits microtubule plus-
end capture and NaV1.5 localization at the intercalated disc’
by E. Agullo-Pascual et al., pp. 371–381, this issue.

The cardiac voltage-gated sodium channel, NaV1.5, is responsible for
conducting the inward sodium current (INa), which leads to the fast
depolarization of the cardiac cell membrane. Mutations in SCN5A, the
gene encoding NaV1.5, that lead to alterations in INa are linked to
many cardiac phenotypes including congenital long QT syndrome
type 3, Brugada syndrome, atrial fibrillation, conduction slowing, and
dilated cardiomyopathy. Several partner proteins have been described
to associate with NaV1.5, and the genes encoding some of these regula-
tory proteins have also been found to be mutated in patients with
inherited forms of cardiac arrhythmias.1

Recent investigations have revealed that the expression level, cellular
localization, and activity of NaV1.5 are finely regulated by complex
molecular and cellular mechanisms. Multiple pools of NaV1.5 in
cardiac cells have been identified,2 depending on where they are tar-
geted and with which partner proteins they interact (Figure 1A). Thus,
proteins such as SAP97,3 ankyrin-G, plakophilin 2 (PKP2), and con-
nexin43 (Cx43)4,5 have been described to interact with NaV1.5. The im-
portance of these interactions in targeting and stabilizing NaV1.5 at the
intercalated disc (ID), where cells are electrically and mechanically
coupled, is only partially understood. NaV1.5 is also expressed at the
lateral membrane of cardiomyocytes, and its targeting to this compart-
ment is regulated by the syntrophin/dystrophin complex.6 Ankyrin-G
has also been shown to associate with NaV1.5 at the lateral membrane
of cardiomyocytes as well as at the transverse tubules.4

Although several partners of NaV1.5 have been identified in different
membrane compartments of cardiomyocytes, the precise location of
functional channels remained undefined. In a previous study, Gorelik
and Delmar groups7 demonstrated, using scanning ion conductance mi-
croscopy (a technique that allows 3D topography imaging of live cells
with a resolution of ≤ 20 nm) and conventional cell-attached patch-
clamp, that sodium channels not only segregate into ID vs. lateral mem-
brane pools, but also cluster into highly confined functional nanodomains.

In this issue of Cardiovascular Research Agullo-Pascual et al.8 report im-
portant new data regarding the organization of Nav1.5 into macromol-
ecular complexes at the ID of murine cardiomyocytes. Combining

three sophisticated techniques, i.e. super-resolution fluorescence mi-
croscopy (SRFM), scanning patch-clamp (SPC), and macropatch
current recordings, they characterized the relationship between
Cx43, NaV1.5, and the microtubule plus-end. This plus-end region of
the microtubule contains tracking proteins which help to tether the
end of the microtubule to the plasma membrane and facilitate the deliv-
ery of proteins to the cell surface at the ID of cardiomyocytes. Interest-
ingly, among the different partners of NaV1.5 at the ID, the cardiac gap
junction protein Cx43 has been shown to regulate INa. A recent
study9 demonstrated a Cx43-dependent regulation of INa that led to
ventricular arrhythmia while the gap junctional conductance was not
impaired.Moreover, previous studies indicated that (i) capture of micro-
tubules at the site of cell–cell contact involves association of cadherin-
rich sites with the microtubule plus-end10 and (ii) NaV1.5 is delivered to
the cell membrane via microtubules.11 The authors of the present work
have chosen to study the localization of NaV1.5 and the microtubule
plus-end tracking protein ‘end-binding 1’ (EB1) in relation to N-cadherin
(a key protein of cell–cell junctions) at nanometric resolution and their
dependence on Cx43 structures. Using SFRM, they identified
N-cadherin signals at the cell end and used them as a reference point
to define different clusters. After having identified EB1 clusters at the
ID, the authors showed that these EB1 clusters were reduced in genet-
ically modified mice where Cx43 was replaced by a truncated form
lacking the last five amino acids (Cx43D378stop), while gap junction
plaque formation was not altered. This reduction was accompanied by
a reduction in NaV1.5–ID clusters, but interestingly the localization of
the NaV1.5 scaffolding protein, ankyrin-G, was not changed. Macropatch
recordings of isolated cells that were performed at the region previously
occupied by the ID showed a reduced INa in Cx43D378stop cardiomyo-
cytes compared with controls. SPC also revealed that unitary conduct-
ance of sodium channels was unchanged, thus concurring with the
notion of a reduced proportion of functional NaV1.5 channels in this
ID region. Based on these observations, the authors proposed a
model suggesting that Cx43 is part of a molecular complex that may
capture the microtubule plus-end and allow for proper targeting of
NaV1.5 to the ID (Figure 1B).

This study contributes to the understanding of the mechanisms of
NaV1.5 cluster formation at the ID. Other partners of NaV1.5 have
been proposed to control its expression at the ID, especially PKP2
and SAP97. While PKP2 has been proposed to be part of a Cx43/
ankyrin-G complex, whether SAP97 belongs to the same NaV1.5/EB1/

The opinions expressed in this article are not necessarily those of the Editors of Cardiovascular Research or of the European Society of Cardiology.

* Corresponding author. Tel: +41 31 6320928; fax: +41 31 6320946, Email: hugues.abriel@dkf.unibe.ch

Published on behalf of the European Society of Cardiology. All rights reserved. & The Author 2014. For permissions please email: journals.permissions@oup.com.

Cardiovascular Research (2014) 104, 231–233
doi:10.1093/cvr/cvu221

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85224251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ankyrin-G cluster, or to different NaV1.5 clusters, thus defining different
NaV1.5 subpopulations at the ID, remains an open question. The organ-
ization of NaV1.5 clusters at the lateral membrane and t-tubules is also
another question that remains to be addressed. Our group recently
observed6 that the last three amino acids (SIV) of the C-terminus of
NaV1.5 are essential for NaV1.5 expression at the lateral membrane of
cardiomyocytes andalso forcardiac conduction.Macropatch recordings
showed a 60% decrease in INa, recorded at the lateral membrane of car-
diomyocytes from mice expressing NaV1.5 with a truncation of the SIV
motif. This observation suggests that, either there is another pool of
NaV1.5 at the lateralmembrane that is responsible for the40% remaining
INa and that the targeting of these channels is independent of the
C-terminal SIV motif or, that other sodium channel isoforms are
present at the lateral membrane, as already proposed.12,13 Moreover,
while interacting proteins may regulate Nav1.5 targeting, they may also
influence the biophysical properties of sodium channel subpopulations.
Asanexample,a-1-syntrophin (SNTA1) and NaV1.5 interact at the lateral
membrane of ventricular cardiomyocytes, and the congenital long QT
syndrome mutation A390V in SNTA1 was shown to disrupt the associ-
ationofplasmamembraneCa2+-ATPase4b(PMCA4b) fromtheneuron-
al nitric oxide synthase (nNOS)–SNTA1–PMCA4b complex,14 thus
releasing inhibition of nNOS and leading to increased nitrosylation of

NaV1.5andcausing late INa.AnotherNaV1.5partner, caveolin-3, that loca-
lizes at the lateral membrane and t-tubules, has also been described to
interact with the channel and to increase nNOS-dependent nitrosylation
of NaV1.5 when mutated, subsequently leading to an increase in late INa.

15

Thus, identifying clusters of NaV1.5 channels which present different bio-
physical properties would be of great interest, especially in the selective
targeting of a population of channels with novel pharmacological agents.

In conclusion, the study from Agullo-Pascual et al.8 represents an
important step in the ambitious endeavour that aims at providing a com-
plete understanding of the diversity of the cardiac sodium channel land-
scape. The combination of cutting-edge techniques, such as SRFM and
SPC, and the use of different available animal models will greatly contribute
towards reaching this aim in the future. To develop new therapeutic inter-
ventions that are aimed at restoring normal sodium channel function, it is
crucial to fully understand the cellular mechanisms that lead to the forma-
tion of sodium channel macromolecular complexes within cardiac cells.
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Figure 1 Multiple pools of NaV1.5 in cardiacmyocyte. (A) Different NaV1.5 pools have been identified at the ID, lateral membrane, or t-tubules of cardiac
cells, depending on which partner proteins they interact. It has to be noted that, in each compartment, sodium channels also cluster into highly confined
functional nanodomains. (B) Amodel proposedby Agullo-Pascual et al. for NaV1.5 cluster formationat the ID: Cx43 regulates EB1 capture, thus allowing for
NaV1.5 delivery to N-cadherin-rich sites. The red circle defines the different partner proteins clustering at the ID.
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