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Abstract 
For the production of cutting blocks for knee-joint implant positioning a precise segmentation of the femur and tibia is 
essential. Due to low bone density and osteophytes the segmentation of knee bones from CT data can be a major 
challenge. As part of an industrial project, we have developed a hybrid segmentation method – based on a pre-
segmentation with statistical shape model and a fine-segmentation with the Fast Marching algorithm. 
 
 
 

1 Introduction 
For the accurate implant positioning of a knee-joint 
replacement there are more and more custom-made 
cutting blocks used, which gives the surgeon the 
necessary bone interface. The advantage of this method 
over a conventional surgery is the more simple alignment 
of the implants, a shorter operation time as well as 
reduced instruments [1] [2].  
 

 
 
Image 1 Custom made cutting blocks at the bone model 
(left: tibia, right: femur). 
 
The core for such a technology is a high-precision 
segmentation of the femur and tibia in the knee joint 
region (i.e. generation of surface data), as well as the 
knowledge of the position of the knee, hip and ankle. Our 
goal is to automate this process as much as possible. In 
the following we focus on the aspect of robust and 
accurate segmentation of the knee-bones. 
 
Generally, the segmentation of bones in CT data isn’t a 
particular challenge. However, in image data – due to a 
knee replacement – the bone segmentation is due to low 
bone density and osteophytes a challenging problem (see 

Image 2), which we solve with a hybrid segmentation 
approach – containing a pre- and a fine-segmentation. 
 

 
 
Image 2 CT slice image of the femur: the bone voxel-
values are hardly different from those of the soft tissue. 
 
For the detection of hip, knee and ankle (and hence the 
information of the leg axis) we use a statistical shape 
model (based on few data sets) and match it with the CT 
data. With that, a pre-segmentation of the knee joint 
bones is given, which guarantees (due to the model-based 
approach) a robust separation of the femur, tibia and 
patella. But for the manufacturing of cut-blocks these 
surface data are not accurate enough - patient-specific 
characteristics, such as osteophytes, are rarely recorded. 
To capture the local shape details as well as possible, we 
perform a further step, a fine segmentation (in the 
boundary segment region) by using the front-propagation 
method Fast Marching. This process step can also be 
applied only locally, i.e. at the support surfaces of the 
cutting blocks. 

2 Methods 
Our approach of the knee joint segmentation is essentially 
done in two steps: First, we perform a pre-segmentation 
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with the goal to identify and separate the bones robustly, 
and then a fine segmentation (in the boundary segment 
region) to detect the local nuances and osteophytes on the 
bones as accurately as possible. 

2.1 Pre-Segmentation 
The goal of the pre-segmentation is a robust identification 
and separation of the knee bones: femur, tibia and patella. 
Especially in case of joint wear and tear (osteoarthritis 
knee) is a separation of the femur and Tiba (only on the 
basis of the voxel values) hardly possible – a-priori 
knowledge is necessary. To implement this step, we use a 
statistical shape model and match it with the CT data. 

2.1.1 Statistical shape model 
To generate the statistical shape model, we have manually 
segmented femur, tibia and patella from 30 CT data sets 
and calculated from these (through correspondence and 
principal component analysis) the average models and 
their basic shape variations [3] [4]. 
 

 
 
Image 3 Statistical shape model of the femur in the knee-
area: Line 1 to 3 shows the first 3 variations with ± 3σ.  
 

 
 
Image 4 shape model (red) registered to image data, and 
boundary segment region (green) for fine-segmentation. 
 
The statistical model (based on the first 5 modes) gives the 
variability of the bones in good accordance (see Image 4), 

so that with a registration of the model with the image data 
a rough segmentation can be done: In a first step, the 
initials-position and the scale is searched in the image data 
set, by doing the best fit with the average model in the 
volume data (a coarse grid following). Then an iterative 
model adaptation [3] is made by using the first five shape 
variations. 
 
With the registered model, we obtain on one hand the 
model surface and on the other hand the model 
parameters. The surface data are the bone segments, 
which we convert for further processing into binary image 
data {Ωk}. The model parameters of knee joint bones – 
together with those of hip- and ankle-joint – serve as a 
basis of planning for the determination of the leg axis. 

2.2 Fine-Segmentation 
With the fine segmentation, the local nuances of the bone 
surface should be as precisely as possible. For that we use 
the front-propagation method – Fast Marching – and scan 
the bones from the outside (in the boundary region of the 
segment Ωk). The initial front (or the seed-points) is 
placed outside of the segment Ωk by the measure dout  ≈ 7 
mm. The front propagation is then given by a speed 
function, which is calculated from the local image data. 
This approach is in some sense comparable with the 
region growing process, but it is better to control because 
of the cumulative behavior (in terms of the impact values) 
and therefore more robust. In addition, we use for the 
control of the front propagation a maximum depth of 
penetration din. Is this measure through the front 
propagation exceeded, it will be reported as a local 
segmentation error. And after the Fast Marching method 
there are applied some morphological post-processing 
steps: on one hand for the blob filtering and the 
optimization of the segment boundary and on the other 
hand for the correction of possible segmentation failures. 

2.2.1 Fast-Marching-Algorithm 
The Fast Marching algorithm describes the front-
propagation behavior [5] to a monotonically spread front 
C, i.e. the determining speed function F (x) (defined over 
the image domain) is always positive F (x) ≥ 0. If the 
front C is implicitly described by a level-set-function C(t) 
= {x ∈ Rn | φ(x, t) = 0}, then this function φ is determined 
by the level set equation 
 
 φt + F |∇φ| = 0 (1) 
 
and by the initial conditions φ (x, 0) = φ0(x), and F(x) is 
the speed function. Since the front propagation should 
stop or decrease in the area of edges, it can be expressed 
by  
 
 F(x) = 1 / (1 + |∇f(x)|) (2) 
 
or by a sigmoid function, where f(x) is the value of the 
pixel x. The segmentation is then given with Ω (t) = {x ∈ 
Rn | φ(x, ∞) ≤ t}, in which t is a positive parameter. 
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For the interpretation of the setting parameter t and a 
better understanding of the propagation field T(x):=  
φ(x,∞), the Eikonal equation 
 

|∇T(x)| = 1/F(x), 
 
with the boundary conditions T(x0) = 0 (for the seed points 
x0) is more suitable. Then the linked Fermat's principle 
states [6] that T(x) describes the minimal effort in the field 
1/F(x) for moving from point x0 to x. If for the speed 
function the expression (2) is used, then it can be shown, 
that T(x) is basically a minimal accumulation of the 
gradient magnitudes |∇f(x)| on a path from x0 to x. And 
this is one of the advantages of this approach – compared 
with the region growing algorithm. 
By setting a threshold t > 0 – simplified considered as a 
measure of the expected accumulation of gradient 
magnitudes – and knowing the propagation field T(x) – 
provide by the Fast Marching method –, the fine 
segmentation is given by 
 
 Ω'k = {x ∈ Rn | T(x)  ≤ t}. 
 
The image 5 (left) shows the propagation field T(x), with 
the seed points x0 shifted to the outside of  Ωk by 15 
pixels, in pseudo colors from blue (T = 0) to red (T ≥ 
100). And one can also recognize a region with low bone-
edges (cyan to yellow), but due to the accumulation of the 
low gradient magnitudes, a good segmentation is still 
possible. Image 5 (right) shows the segment boundary 
with a threshold value t = 30. 
 

  
 
Image 5 Fine-segmentation with Fast-Marching: left the 
propagation field, right the segment boundary with t = 30. 
 
In our work we have used for the speed function the 
sigmoid function. On one hand this allows more 
influence, but on the other hand it makes the 
determination of the setting parameter more difficult. 

2.2.2 Postprocessing 
According to the Fast Marching algorithm Ωk →Ω’k, Ω’k 
may not be simply connected and can contain additional 
small blob's: e.g. because of noise or the positioning of 
seed points inside other segments. These artifacts can be 
removed using morphological operations. Further possible 

errors (exceeding of the penetration depth) are eliminated 
with the watershed method. 

3 Results 
We have developed a hybrid segmentation method for the 
knee-bone segmentation from CT data, which is stable 
and has a good accuracy. A model-based approach (as a 
pre-segmentation) guarantees a robust separation of 
femur, tibia and patella. And with the local acting front 
propagation method Fast Marching (as a fine 
segmentation) there will be generally automatic achieved 
an improvement of the segmentation accuracy 
(respectively it will capture more surface details). But for 
image data with locally very weak bone edges, 
segmentation failures can occur, which are recognized by 
certain criteria’s, and they can be easily corrected by 
changing local parameters. 
 
To validate the accuracy, 20 data sets were segmented 
manually and with the presented approach: without the 
fine segmentation the mean deviation is 2.2 mm, with the 
fine-segmentation it is 0.8 mm, and by some manual 
corrections the mean value is 0.3 mm. 
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