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The cblG and cblC disorders of cobalamin (Cbl) metabolism are two inherited causes of megaloblastic anaemia.
In cblG, mutations in methionine synthase (MTR) decrease conversion of hydroxocobalamin (HOCbl) to methyl-
cobalamin, while in cblC, mutations in MMACHC disrupt formation of cob(II)alamin (detected as HOCbl). Cases
with undetectable methionine synthase (MS) activity are extremely rare and classified as ‘cblG-variant’. In four
‘cblG-variant’ cases, we observed a decreased conversion of cyanocobalamin to HOCbl that is also seen in cblC
cases. To explore this observation, we studied the gene defects, splicing products and expression of MS, as well
as MS/MMACHC protein interactions in cblG-variant, cblG, cblC and control fibroblasts. We observed a full-size
MS encoded by MTR-001 and a 124 kDa truncated MS encoded by MTR-201 in cblG, cblC, control fibroblasts and
HEK cells, but only the MTR-201 transcript and inactive truncated MS in cblG-variant cells. Co–immunoprecipi-
tation and proximity ligation assay showed interaction between truncated MS and MMACHC in cblG-variant
cells. This interaction decreased 2.2, 1.5 and 5.0-fold in the proximity ligation assay of cblC cells with p.R161Q
and p.R206W mutations, and HEK cells with knock down expression of MS by siRNA, respectively, when com-
pared with control cells. In 3D modelling and docking analysis, both truncated and full-size MS provide a loop
anchored to MMACHC, which makes contacts with R-161 and R-206 residues. Our data suggest that the inter-
action of MS with MMACHC may play a role in the regulation of the cellular processing of Cbls that is required
for Cbl cofactor synthesis.

INTRODUCTION

Cobalamin (Cbl) exists in several forms in cells and body fluids,
including hydroxocobalamin (HOCbl), methylcobalamin
(MeCbl) and 5′-deoxyadenosylcobalamin (AdoCbl) (1). Me-
thionine synthase (MS, EC 2.1.1.13) generates MeCbl during

the catalytic cycle of methionine synthesis and is deficient in
the cblG defect (2). The MMACHC protein encoded by the
5-exon MMACHC gene mutated in the cblC defect (3) is a
31.7 kDa cytosolic Cbl trafficking chaperone that removes the
upper axial ligand of exogenous Cbl (4,5). The generated
cob(II)alamin in base-off conformation can be seen as HOCbl
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after extraction and HPLC analysis (5). MMACHC has a dual
activity, catalysing either reductive decyanation when it encoun-
ters cyanocobalamin (CNCbl) or dealkylation of alkylcobala-
mins (e.g. MeCbl), which is reflected in its 3D structure (4).
MTR has 33 exons and encodes the MS protein with a predicted
molecular weight of 140.4 kDa (2,6,7).

Despite the prediction of transcripts in the www.ensembl.org
database, experimental data on MTR splicing are lacking.
Among the predicted transcripts, MTR-201 contains 31 exons
and encodes a truncated protein with a molecular weight of
124.1 kDa and no activity. It differs from MTR-001 by lacking
exons 16, 17 and 18 and by addition of a supplementary exon
after exon 33 of MTR-001. The missing exons of MTR-201
belong to the postulated N5-methyltetrahydrofolate-
(5-CH3-THF) and the Cbl-binding domains.

The cblG and cblC defects share a number of abnormalities in-
cludingmegaloblasticanaemia,neurologicaldisturbances,hyper-
homocysteinaemia and hypomethioninaemia (1,6–9). Cases of
cblG with undetectable MS activity are very rare and are classified
as ‘cblG-variant’ (10). We have observed in cultured fibroblasts
from ‘cblG-variant’ cases a decreased conversion of CNCbl to
HOCbl, similar to cells from cblC cases (11–13). To explain
this paradoxical similarity, we studied the expression of MTR
and MS, as well as the interaction of MS and MMACHC in
cblG-variant, cblG and cblC fibroblast cell lines.

RESULTS

MS activity

The fibroblast cell lines studied are four cblG-variant cases (in-
cluding AE and three cases from Canada, MG#1, MG#2 and
MG#3), one cblG case (KF) and two cblC cases (SA and
WG4130). SA and WG4130 were children hospitalized in
their first year of life, who presented with megaloblastic
anaemia, dramatic increase of homocysteine, low methionine
and serum vitamin B12 levels within the reference range, as pre-
viously described (1,11,12). The serum methylmalonic acid
level was within the reference range in cblG variants and cblG,
but elevated in SA and WG4130 (11,12); cblG-variant fibro-
blasts had no detectable functional MS activity (measured by
the conversion of 5–[14C]CH3–THF to [14C]-methionine). By
comparison, KF cells and control fibroblasts had functional
MS activity of 0.17 and 1.87 nmol/h/mg protein, respectively.

Cobalamin processing in skin fibroblasts from patients

Labelled Cbl was incubated with cells for 92 h. The conversion
of CNCbl to HOCbl was dramatically lower in fibroblasts from
the 3 cblG-variant patients (MG#1, MG#2 and MG#3) than in
those from 41 standard cblG cases evaluated in the Department
of Human Genetics of McGill university, Canada (3.8+ 3.1 and
23.5+ 12.1%, respectively, P ¼ 0.008). In the cblG-variant
fibroblasts of the fourth case, patient AE evaluated in Europe,
only 14.3+ 3.6% of CNCbl was converted to HOCbl. This
was intermediate between the 3.8+ 2.6 and 6.1+ 0.1%
reported in cblC fibroblasts and the 21.6+ 8.0% reported in
cblG fibroblasts, and much lower than the 66.7+ 13.0%
observed in control fibroblasts (Fig. 1A and B). Conversely,
the conversion of CNCbl to AdoCbl was higher in cblG-variant

cells, compared with the other cells (Supplementary Material,
Fig. S1 and S2). To investigate this unexpected cellular pheno-
type of cblG variant, we performed an extensive molecular
study of gene defects and gene expression, as well as of MS
and MMACHC protein interactions in fibroblasts of AE (cblG
variant), KF (cblG), SA and WG4130 (cblC).

Genomic DNA analysis

AE and KF cell lines had no mutations in the MMACHC gene.
Conversely, SA and WG4130 were cblC cell lines with
MMACHC mutations and no MTR mutations. A c.609 + 1088
G . A substitution in the MTR gene of AE was expected to
create a new splice acceptor site (GTGG becoming GTAG)
and the subsequent formation of two donor sites in intron 6
(using Alamutw software). This substitution was absent in the
DNA of 70 controls, and was not reported in the 1000 Genome
database. SA was a cblC case with compound heterozygosity
for c.271dupA, p.R91 . GNsX14 and c.616C . T, p.R206W
of MMACHC. WG4130 was a cblC case with compound hetero-
zygosity for c.328delAACC, p.N110EfsX13 and 482G . A,
p.R161Q of MMACHC.

Transcripts and protein analysis

RT–PCR analysis of amplicons of MTR-001 transcripts showed
two additional larger bands in the amplicon that encompassed
exons 6 and 7 in AE fibroblasts, but not in control, KF and SA
cells (Fig. 2A and B). Sequencing identified the two expected al-
ternative splicing products. The largest product resulted from the
insertion of a 129 bp sequence from intron 6 in the reading frame
and the medium product from the insertion of a 78 bp sequence
identical to the beginning of the 129 bp sequence. The 13th
codon of both insertions was a stop codon (Fig. 2A–C). KF was
a cblG cell line with a MTR homozygous mutation c.3518C .
T, p.P1173L. RT–PCR assays were performed to study the
other splicing products of MTR in the five cell lines, according
to the 2012 edition of www.ensembl.org database. The transcripts
of MS predicted in this database are shown in Figure 3A. All PCR
amplicons were sequenced. MTR-201, MTR-003 and MTR-004
transcripts, but not MTR-202, were detected in all cell lines,
whereas MTR-001 and MTR-002 were not detected in AE cells.
The 78 bp sequence insertion of intron 6 was also detected in
MTR-004, in AE fibroblasts (Fig. 3B).

Western blot analysis of MS showed the expression of the
140 kDa full-size enzyme, translated by MTR-001 and a
124 kDa truncated protein, corresponding to the MTR-201 tran-
script in control, cblG and cblC cell lines. In contrast, only the
124 kDa truncated isoform, corresponding to the MTR-201 tran-
script was found in the AE cblG-variant fibroblasts (Fig. 4A).
The relative distribution of both MS isoforms varied as a func-
tion of growth, in Caco2 TC7 cells. The relative intensity of
the 124 kDa isoform increased, whereas the 140 kDa isoform
decreased after cells reached confluence (Supplementary Mater-
ial, Fig. S3). The 124 kDa band was shown not to be a proteolysis
product since the addition of protease inhibitors to the protein
extract of fibroblasts had no influence on the appearance of the
140 and 124 kDa isoforms, while addition of trypsin to the ex-
traction buffer produced complete degradation of the isoforms
(Supplementary Material, Fig. S4). We also confirmed that the
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124 kDa protein band corresponded to MS by mass spectrometry
analysis of cell lysate from NHDF control fibroblasts and fibro-
blasts of AE, a cblG-variant case (Supplementary Material,
Fig. 5S). We provide evidence that MS interacts with
MMACHC in all cell lines using co-immunoprecipitation and
quantification of the protein–protein interactions with the prox-
imity ligation assay (PLA) (Duolinkw) (Fig. 4B). The
co-immunoprecipitation of MMACHC by anti-MS antibody
was much lower in the SA and WG4130 cblC cell lines, com-
pared with cblG, cblG-variant and control fibroblasts
(Fig. 4A). In agreement with these findings, MMACHC–MS
interaction evaluated by the PLA was 1.6-fold higher in the KF
cell line and 1.5- and 2.2-fold reduced in the cblC cell lines
expressing the p.R161Q and p.R206W mutations, respectively,
compared with control fibroblasts (Fig. 4B). We have investi-
gated knock down of MS expression by siRNA transfection to
obtain control data of the PLA, in human embryonic kidney
(HEK) cells. The transfection of HEK cells with siRNA #24 (tar-
geting the end of exon 24) increased the cell expression of the
124 kDa isoform and decreased the full-size MS, while transfec-
tion with siRNA #16 (targeting exon 16) decreased both full-size
MS and 124 kDa isoform (Fig. 5A). Compared with the control
condition, these transfection conditions decreased the inter-
action of MS with MMACHC by 50%, in Duolink experiments
(Fig. 5B). Transfection with siRNA #6 (targeting exon 6)
decreased dramatically the expression of the full-size MS in
western blot analysis and the interaction with MMACHC by
80%, in Duolink experiments (Fig. 5B).

Modelling and docking analyses of interactions between
MS and MMACHC

In 3D modelling of the MS–MMACHC interface, a loop present
in both MS and MTR-201, is shown to be buried within a deep
(over 15 Å) invagination in MMACHC, thereby establishing

contacts with both Arg-161 and Arg-206. This loop corresponds
to a fragment of 19 amino acids that extends from position 749 to
position 767 and constitutes a significant part (883 Å2; 66%) of
the total contact surface area (Fig. 6). We also analysed intermo-
lecular hydrogen bonds between the docked partners. The results
are illustrated using 2D-GraLab (14) in Figure 7A and B. The
interaction domain of MS with MMACHC essentially spans
two linear sequence regions composed of residues 688–706
and 745–768. The persistent occurrence of these two fragments
in the sequence of MTR-201 is in agreement with the interaction
between MMACHC and truncated MS, which was shown by
co-immunoprecipitation and PLA in cblG-variant AE fibro-
blasts (Fig. 4A and B). The interaction involved 43 residues
from MMACHC and 38 from MS. The two p.R161Q and
p.R206W mutations of MMACHC reported in SA and
WG4130 respectively were considered in the interaction pre-
dicted by the docking analysis (Fig. 7B). Hydrogen bonds of
both residues are found to be equally stabilizing. In agreement
with our experimental findings, it is clear, however, that the
more conservative mutation R161Q is likely to be less deleteri-
ous to the MMACHC–MS interaction, than the R206W muta-
tion, in which the residue change is significantly different both
in size and physico-chemical properties (Fig. 7B).

DISCUSSION

In this study, we report a decreased conversion of CNCbl to
HOCbl, in cblG-variant fibroblasts, similar to that observed in
cblC fibroblasts (11–13). Conversely, the conversion of
CNCbl to AdoCbl was higher in cblG-variant cells, compared
with the other cells. To investigate the genetic and molecular
mechanisms that may explain this unexpected finding, we per-
formed a molecular genetic study of MTR and studied possible
interactions of the MS and MMACHC proteins in fibroblasts
of one cblG-variant case (AE), as compared with cblG, cblC

Figure 1. Analyses of cyano-[57Co]Cbl conversion into Cbl isoforms in fibroblasts from AE cblG-variant, KF cblG, SA and WG4130 cblC cases and NHDF control
cell line. The cells were incubated with labelled Cbl for 92 h in dark at 378C under 5% CO2 atmosphere, as described in methods. (A) Identification and quantificationof
[57Co]Cbl-labelled isoforms (OH-Cbl, CN-Cbl, Ado-Cbl, Me-Cbl) were performed by HPLC in fibroblast extracts and expressed as a percentage of intracellular
cyano-[57Co]Cbl. (n ¼ 6, mean+ standard error of the mean). The range of the relative distribution (%) of Cbl isoforms in control fibroblasts is 17–20, 17–30,
15–35 and 25–45%, for OH-Cbl, CNCbl, AdoCbl and Me-Cbl, respectively. (B) Ratios of intracellular percentage of OH-[57Co]Cbl versus intracellular percentage
of cyano-[57Co]Cbl.
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and control fibroblast cell lines. The data show that alternative
splicing in cells from the cblG variant produces an MTR-201
transcript that encodes a truncated MS, and a MTR-001 tran-
script with two insertions containing stop codons. The transla-
tion of truncated isoforms of MS through MTR alternative
splicing has been also reported very recently in human brain
tissues (15). The missing exons of MTR-201 belong to the
5-CH3-THF- and Cbl-binding domains, explaining the lack of
MS activity of the truncated 124 kDa protein (6,7). The
decreased expression of MMACHC protein in the two cblC
cases can be explained by the fact one of the two causal mutations
results in a stop codon (11,12).

We show interaction between MMACHC and both full-size
active MS and/or truncated MS by co-immunoprecipitation
and PLA of fibroblasts. This was confirmed by the decreased ex-
pression of either the full-size MS, the truncated MS or the two
isoforms in HEK cells transfected with siRNA. The present
data and the recent observation of protein–protein interaction

between MMACHC and MMADHC suggest that intracellular
Cbl is processed through close protein–protein interactions,
possibly to ensure substrate channelling and to allow only
minimal exposure of Cbl to the environment (16,17). It has
been shown that the interaction between MMADHC and
MMACHC plays a role in the regulation of the balance
between AdoCbl and MeCbl synthesis (16,18). In vitro,
MMACHC has the ability to decyanate CNCbl to cob(II)alamin
(13). The interaction between MMACHC and MS isoforms
could therefore be part of the mechanisms regulating the
MMACHC-dependent processing of Cbl. This could explain
the decreased decyanation of Cbl observed in the cblG-variant
fibroblasts. In normal conditions, the expression of both trun-
cated and full-size enzyme results from an MTR splicing mech-
anism that produces a regulatory mechanism for directing the
Cbl towards either MeCbl or AdoCbl pathways. In cblG-variant
cells, the interaction of MMACHC with the truncated MS
protein only may deregulate the cellular distribution of Cbl

Figure 2. Molecular analyses of the cblG-variant (AE). (A) RT–PCR with primer pairs cMTRm_04 and cMTRm_05 (see Supplementary Material, Table SI) encom-
passing exons 4–7 and 6–10, respectively. The upper and medium bands of AE mRNA contain the 129-bp and 78-bp inserts. (B) Alternative splicing products iden-
tified by sequencing the amplicon that encompassed exons 6 and 7. (C) Sequencing of genomic DNA and splicing consequences of the G . A substitution in position
c.609 + 1088. Inserts generated a TGA stop codon indicated by an arrow. Numbers 1, 2 and 3 in open squares indicate the position of the new splice acceptor site and
the subsequent donor sites, respectively.
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between MeCbl and AdoCbl. This mechanism displays similar-
ity with the MMACHC–MMADHC interaction, which involves
full size and truncated proteins (16,18).

In contrast to MMACHC, the N-terminal sequence of
MMADHC contains a mitochondrial targeting sequence
leading to both mitochondrial and cytoplasmic localization
(16). Consistently, MMADHC has been found in both compart-
ments in contrast to the cytosolic MMACHC (19). Therefore,
these results and our data suggest that the interaction between
MMACHC with MS occurs either at the same time or after the
one between MMACHC and MMADHC.

MMADHC mutations affecting the translation of the
C-terminal part of the protein lead to impairment of the remethy-
lation pathway, with increased homocysteine, improved mito-
chondrial targeting of MMADHC and subsequent increase of
AdoCbl, with a concomitant decrease in MeCbl formation
(16,18). This increased synthesis of AdoCbl is also observed in
our cblG-variant patients. This suggests that the orientation of
Cbl towards AdoCbl may also be influenced on the synthesis
of MeCbl through MMACHC–MS. These recent data and our
results therefore highlight the cross-point role of MMACHC
for regulating the conversion of Cbl into either MeCbl or
AdoCbl through interactions with the respective key proteins
of these two pathways.

The 3D structure of human MMACHC (pdb ID ¼ 3SOM) has
been resolved (20), but not that of human MS, except for a rather
short C-terminal fragment. We, therefore, built a 3D-model of
human MS, using the E. coli B12-dependent MS as a structural
template. The proposed MS–MMACHC interaction is based
on an MS loop that anchors within a cleft made in MMACHC,
in close vicinity to Arg-161 and Arg-206 residues. The model-
ling analysis also agrees with previous data showing that
MMACHC binds Cbl in the ‘base-off’ state required by MS
(3–5,20). The C-terminal domain of MMACHC displays simi-
larity to the C-terminal domain of TonB proteins, a protein
involved in bacterial Cbl uptake, which directly interacts with
proteins involved in Cbl import (3). The differences seen in the
PLA between control, cblG-variant and cblC fibroblasts, re-
spectively, suggest an influence of R161Q and R206W muta-
tions on the MMACHC–MS interaction, which was consistent
with the involvement of the R161 and R206 residues in the
docking analysis. The cblC patient, SA, has a p.R206W
change within the C-terminal domain of MMACHC, very
close to the loop of five-residue 198–203 that deviates from
the protein backbone of the superimposed TonB structure (3).
It was predicted to be deleterious for MMACHC–MS inter-
action in the docking analysis and was also in the cell line
showing the least interaction between MS and MMACHC in

Figure 3. MTR transcription in control and cblG-variant, cblG and cblC fibroblasts. (A) Prediction of MTR splicing, according to the www.ensembl.org/ database of
EMBL-EBI and Sanger Centre (see Supplementary Material, Tables SII and SIII). Transcripts encoding functional proteins are shown in yellow, transcripts encoding
proteinsof unknown function in red, transcripts not encoding a protein in blue. The positionofmissing codons in the other transcripts is indicatedby openellipses,using
the MTR-001 transcript as a reference. Horizontal bars depict amplicons produced in RT–PCR, for the spicing analysis. (B) RT–PCR of transcripts MTR-201,
MTR-202, MTR-002 and MTR-003. MTR-203 was not detected. GAPDH was used as an internal standard.
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the PLA. The model for the interaction of the two proteins iden-
tifies contact sequences in MS that are present in both full-length
and truncated protein. Hence, the absence of a part of the
Cbl-binding domain may result in a truncated MS that is
unable to bind Cbl donated by MMACHC despite a ‘productive’
interaction.

In conclusion, we found an interaction between MS and
MMACHC, which suggests a regulatory role of MS in the intra-
cellular metabolism of Cbl, through MTR splicing of two tran-
scripts that encode the full-size enzyme and a non-functional
truncated protein, respectively. This regulatory interaction was
highlighted in cblG-variant fibroblasts with decreased HOCbl
and increased AdoCbl, in which MTR encoded only the non-
functional MS isoform.

MATERIALS AND METHODS

Cell culture

The fibroblast cell lines were from the University Hospitals of
Basel, Switzerland (AE, cblG-variant), Nancy University,
France (KF, cblG and SA, cblC), McGill University, Canada

(MG#1, MG#2 and MG#3, 3 cblG-variant cases and WG4130,
cblC) and ATCC (Manassas, Virginia, USA) (NHDF control
fibroblasts). Fibroblasts were grown in Dulbecco’s modified
Eagle medium supplemented with 10% heat-inactivated foetal
calf serum (PAA), as described (20,21). HEK-293 and TC7
cells were maintained in Dulbecco’s modified Eagle medium
with 10% foetal calf serum supplemented with antibiotics
(21,22).

MS activity

MS activity was determined as described (21). The assay mixture
contained, in a final volume of 100 ml; 100 mM potassium phos-
phate buffer (pH 7.2) (Sigma-Aldrich), 25 mM of 5–[14C] CH3–
THF (GE Healthcare), 25 mM dithiothreitol (Sigma-Aldrich),
25 mM ascorbate (Sigma-Aldrich), 0.2 mM SAM (Sigma-
Aldrich), 50 mM methylcobalamin (Sigma-Aldrich), 5 mM

homocysteine and cell extract containing 100–400 mg of
protein. For blanks, the cell extract was replaced with 100 mg
of bovine serum albumin. Samples were incubated from
20 min to 1 h at 378C. The reaction mixture was heated at
958C for 15 min, and cooled on ice for 10 min. The reaction

Figure 4. Protein expression of MS and MMACHC in control and cblG-variant, cblG and cblC fibroblasts. (A) Western blot of methionine synthase (MS) and
MMACHC proteins, and western blot of MMACHC immunoprecipitated with antibody against MS protein. GAPDH was used as an internal control of protein ex-
pression. (B) Proximity ligation assays (Duolinkw) of interaction between MS and MMACHC. The quantification of linkage was performed by dot counting (blobs)
using Matlab, as described previously (22,23). The intensity of interactions is shown in the histogram (∗P , 0.05; ∗∗P , 0.01; ∗∗∗P , 0,001).
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mixture was centrifuged for 10 min at 12 000g at 48C and the
pellet eliminated. The radioactivity was quantified by scintilla-
tion counting in a Packard Tri Carb Model C1900 scintillation
counter. MS activity was expressed as nanomoles of [14C] Me-
thionine formed per milligram protein per hour.

Cobalamins assay in patient fibroblasts

For studies of Cbl uptake, fibroblasts were incubated with
31.25 pM [57Co]CNCbl (MP Biomedicals, Inc., Orangeburg,
NY, USA) for 92 h in dark at 378C under 5% CO2 atmosphere.
The following steps were performed on ice under dim red light
in order to prevent photolysis of Cbl cofactors (23). Cells were
harvested by trypsinization and centrifuged to collect whole
pellets. These pellets were resuspended in a presence of a solu-
tion containing 10 mM HOCbl, CNCbl, AdoCbl and MeCbl
and 50 ml of Streptomyces griseus protease (Sigma, 80 U/ml,
dissolved in TBS-calcium buffer) to digest the proteins. To
achieve the digestion, the resuspended pellets were incubated
3 h at 378C. After the incubation, two volumes of acetone
(2208C) were added to the digested cells and incubated over-
night at 2208C. This step was followed by centrifugation at
48C to pellet the digested proteins and the supernatant was
retained. The pellets were washed once again with 500 ml cold
acetone, centrifuged and the collected supernatant was added
to the previous collected supernatant. The supernatant was

evaporated in SpeedVac 2 h by the room temperature. The
remaining aqueous samples were analysed by HPLC using a
Merck column Resolve C-18 (E. Merck, Interchim, Montluçon)
in a gradient of acetonitrile buffered with 85 mM of triethylam-
monium phosphate at pH 3.

Genomic DNA analysis

DNA was extracted from cultured fibroblasts using an QIAmp
DNA micro extraction kit (Qiagen, Courtaboeuf, France). PCR
amplification of all exons of MTR and MMACHC was performed
using 33 and 5 primers pairs, respectively (Supplementary Ma-
terial, Table SI). PCR reaction was performed using OptimaseTM

Polymerase (Transgenomic, Lanorville, France); products were
purified using an QIAquick PCR purification kit (Qiagen). Direct
sequencing was performed using the BigDye terminator v1.1
Cycle Sequencing Kit (Applied Biosystems, Villebon sur
Yvette, France). The sequences were compared with the MTR
and MMACHC reference sequences.

Transcript analysis

Total RNA was isolated from cultured fibroblast cells using the
RNeasy Plus Mini extraction kit (Qiagen, Courtaboeuf, France).
First strand cDNA was synthesized from 2 mg of total RNA using
oligo(dT)12–18 primers with SuperScriptw II reverse

Figure 5. Transfection of HEK cells with siRNA targeting junction of exons 12–13, end of exon 24, exon 16, exon 6 and exon 13 of MTR, respectively (see Supple-
mentary Material, Table SIV). (A) Western blots of cells transfected at Day 3. The proteins were extracted after 48 h, as described in methods. GAPDH was used as an
internal control of protein expression. (B) Proximity ligation assays (Duolinkw) of interaction between MS and MMACHC, after transfection with siRNA targeting
junction of exons 12–13, end of exon 24, exon 16 and exon 6, respectively (∗P , 0.05; ∗∗∗P , 0.001).
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transcriptase (Invitrogen, Mantes la Jolie, France) according to
the manufacturer’s protocol. PCR reactions were performed
using PCR buffer (1× as final concentration), MgCl2 (1.5 mM

as final concentration), dNTP (0.2 mM as final concentration),
23 pairs of specific primers (0.5 pmol/ml as final concentration),
cDNA (2 ml) and Taq DNA Polymerase (1 U as final concentra-
tion) in an i-cycler thermal cycler (BioRad). All reagents were
from Invitrogen. Twenty-three primers were used for the
amplification of the whole open-reading frame of gene MTR.
Their sequences are given in Supplementary Material, Table SI.
For the study of MTR splicing, PCR was performed using four
primers pairs (MTR201-, MTR202-, MTR003- and MTR004-
primers), according to the splicing prediction of www.ensem
bl.org/ database of EMBL-EBI (2012 edition) and Sanger
Centre (primer sequences are given in Supplementary Material,
Table SII and the transcript nomenclature in Supplementary
Material, Table SIII), the same reagents, final concentrations
and equipment as mentioned above.

Inhibition of MS expression by siRNA transfection
in HEK-293 cells

For siRNA experiments, HEK-293 cells were transfected at 40%
confluency with Lipofectamine RNAiMax (Life Technologies)
according to the manufacturer’s recommendations using 50 nM

of each siRNA. The design of siRNA to target different exons
of MTR isoforms is given in Supplementary Material,
Table SIV. The negative control siRNA was purchased from
Life Technologies and the sequences of the other siRNAs are
as follows: siMTR#1: 5′-AUAGUUUCCUGCCAUGAUG-3′,
siMTR#2: 5′-GGAGGAGCAACCACUUCAA-3′, siMTR#3:

5′-GGACUGGAAUGGAGGAACA-3′, siMT810: 5′- GGGUC
GACAUCUUACUCAU-3′ and siMTR811: 5′- GGAUUGG
ACCAUACACCAA-3′; siRNA were designed to target junction
of exons 12–13, end of exon 24, exons 16–18, exon 6 and exon
13 of MTR isoforms, as described in Supplementary Material,
Table SIII. After 48 h, proteins were extracted in a buffer con-
taining 50 mM Tris–HCl pH 6.8, 20 mM EDTA and 5% SDS,
sonicated briefly and analysed by SDS–PAGE and western
blotting.

Protein analysis

Whole cell lysates (50 mg) from cultured fibroblasts were pre-
pared in the presence of 5% (v/v) of protease inhibitor cocktail
(PIC, Sigma, P8340), separated and transferred in nitrocellulose
membranes (Millipore) as described (21). The membranes were
incubated overnight at 48C with primary antibodies diluted in
TBS buffer containing 5% non-fat dried milk, as follows:
anti-MS (goat polyclonal, Abcam), anti-MMACHC (rabbit poly-
clonal, Abcam) and anti-GAPDH antibody (mouse monoclonal,
Santa Cruz Biotechnology) at a dilution of 1 : 1000. Appropriate
secondary antibodies conjugated to horse radish peroxidase
were used for detection with an ECL Detection kit (Amersham).

Co-immunoprecipitation experiments were performed by
means of a Piercew Co-Immunoprecipitation commercial kit
(Thermo Scientific Pierce). This optimized method enables iso-
lation of native protein complexes from a lysate by directly im-
mobilizing purified antibodies onto an agarose support, as
described (24).

We performed the PLA (Duolink in situ PLA reagents; Olink
Bioscience; Eurogentec, Angers, France) to visualize and quantify
interactions of MMACHC and MS in situ, in fibroblasts and HEK
cells. Since the procedure is based on a stoichiometric reaction,
each dot corresponds to a close interaction between the two pro-
teins.Theexperimentalconditions for theuseofprimaryantibodies
for this technique were identical to those used for the other immu-
nohistochemistry experiments. A pair of oligonucleotide-labelled
secondaryantibodies (PLA probes) was usedaccording to the man-
ufacturer’s instructions to bind to the primary antibodies (25,26).
This pair of secondary antibodies generates a signal only when
the two probes are in close proximity (,4 nm). After amplifica-
tion, thesignal fromeachdetectedpair isvisualizedasan individual
fluorescent dot. The PLA signals were counted and assigned to a
specific subcellular location based on microscopy images
(BX51WI microscope, Olympus, Tokyo, Japan, with Blob-
Finder/MatLab freeware from the Centre for Image Analysis,
Uppsala University, Uppsala, Sweden).

Modelling and docking analyses of the interactions
between MS and MMACHC

Although there is an existing 3D structure model for human
MMACHC (pdb ID ¼ 3SOM), none is yet available for human
MS, except for a rather short C-terminal fragment (2O2 K; resi-
dues 926–1265). Docking prediction required therefore model-
ling a plausible 3D structure for human MS. This endeavour
made use of MolIDE (27). Accordingly, homology modelling
was performed using, as a structural template, the E. coli
Cbl-dependent MS (3IVA; residues 663–1264; 52% identity,
67% positive, 4% gap, alignment length: 604, hit length: 579),

Figure 6. Modelling analysis of the interface between MS and MMACHC. Hom-
ology modelling of human MS was performed using, as a structural template, the
E. coli B12-dependent methionine synthase, as described in methods section. The
final model obtained is named MTR_3_3IVAA_0.pdb and has eight insertions
and one deletion. This and an existing 3D structure model for human
MMACHC (pdb ID ¼ 3SOM) were further optimised with the BRUGEL
package for modelling the interface between MS and MMACHC. The model illu-
strated, using Rasmol (detailed information is provided in methods) corresponds
to the most stable interactions involving the MMACHC pair, Arg-161 and
Arg-206. MS is shown as an orange ribbon. MMACHC is displayed as a model
and coloured according to secondary structures with a-helices in magenta,
b-sheets in yellow, turns in pale blue and random in white; Arg-161 and
Arg-206 are shown in CPK dots and labelled.
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which, along with the C-terminal activation domain, also con-
tains the Cbl-binding domain. Full hydrogen atoms structures
of homology-modelled human MS and MMACHC were
docked using the ClusPro 2.0 server (http://cluspro.bu.edu/
login.php) (28). The model illustrated, using Rasmol
(Windows Version 2.7.5) (http://www.rasmol.org) (29,30)
corresponds to the most stable interactions involving the
MMACHC pair, Arg-161 and Arg-206. Sequence alignment
was adjusted so as to exclude the occurrence of indels within

secondary structure elements. Loops, which then included even-
tual indels, were modelled with LOOPY (31). The final model
obtained was named MTR_3_3IVAA_0.pdb and has eight inser-
tions and one deletion. This and 3SOM structures were further
optimized with the BRUGEL molecular modelling package
(32) following two successive rounds each consisting of hydro-
gen atoms construction/optimization with heavy atoms con-
strained and 2000 steps of unrestrained steepest-descent
energy minimization, followed by two rounds of unrestrained

Figure 7. Docking analyses of the bonds between MS and MMACHC. (A) MMACHC–MS total interface analysis. The figure was generated using 2D-GraLab (14)
and BRUGEL (26) softwares. The distances between hydrogen-bonding partners are in Angstroms and measured between H atoms and the corresponding hydrogen-
bond acceptor atom. Arg-161 and Arg-206 are emphasized with a red star. (B) MMACHC Arg-161 and Arg-206 hydrogen bonds in the complex with MS. The figure
was generated with 2D-GraLab(14), but all geometric data are those of BRUGEL. All distances are in Angstroms. Dual distance values separated by a slash (/) between
hydrogen-bond partners correspond to the presence of two hydrogen bonds.
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conjugated-gradient minimization (500 steps, each). The result-
ing model structure was then analysed in BRUGEL for the
contact surface area in the complex (1297 Å2, a value at the
lower edge of measured interface areas, consistent with the re-
versibility of the complex). Contact data were generated with
2D-GraLab for total interface analysis (14).

Statistical analysis

Results were expressed as means+ standard error of the mean.
Comparison between cell phenotypes was performed by
one-way ANOVA.

SUPPLEMENTARY MATERIAL

Supplementary material is available at HMG online.
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