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S U M M A R Y
In the rapidly rotating, low-viscosity limit of the magnetohydrodynamic equations as relevant
to the conditions in planetary cores, any generated magnetic field likely evolves while simulta-
neously satisfying a particular continuous family of invariants, termed Taylor’s constraint. It is
known that, analytically, any magnetic field will evolve subject to these constraints through the
action of a time-dependent coaxially cylindrical geostrophic flow. However, severe numerical
problems limit the accuracy of this procedure, leading to rapid violation of the constraints. By
judicious choice of a certain truncated Galerkin representation of the magnetic field, Taylor’s
constraint reduces to a finite set of conditions of size O(N), significantly less than the O(N3)
degrees of freedom, where N denotes the spectral truncation in both solid angle and radius.
Each constraint is homogeneous and quadratic in the magnetic field and, taken together, the
constraints define the finite-dimensional Taylor manifold whose tangent plane can be eval-
uated. The key result of this paper is a description of a stable numerical method in which
the evolution of a magnetic field in a spherical geometry is constrained to the manifold by
projecting its rate of change onto the local tangent hyperplane. The tangent plane is evaluated
by contracting the vector of spectral coefficients with the Taylor tensor, a large but very sparse
3-D array that we define. We demonstrate by example the numerical difficulties in finding
the geostrophic flow numerically and how the projection method can correct for inaccuracies.
Further, we show that, in a simplified system using projection, the normalized measure of
Taylorization, τ , may be maintained smaller than O(10−10) (where τ = 0 is an exact Taylor
state) over 1/10 of a dipole decay time, eight orders of magnitude smaller than analogous
measures applied to recent low Ekman-number geodynamo models.

Key words: Numerical approximations and analysis; Electromagnetic theory; Dynamo:
theories and simulations; Planetary interiors.

1 I N T RO D U C T I O N

1.1 Geophysical motivation

Many physical systems evolve subject to known invariants, of which
perhaps the best known are energy, momentum and mass; such
quantities are conserved along any trajectory of the system. In many
cases, these constraints derive directly from the governing equations
and, if analytic solutions were available, they would be automatically
satisfied. In other systems the constraints stem from considerations
of internal structure where, for instance, a collection of point masses
representing the vertices of a robot arm are connected together by
invariant lengths of material. In all cases, barring specific design
considerations, any output of a numerical scheme used for evolving

∗Now at: School of Earth and Environment, University of Leeds, Leeds,
UK LS2 9JT.

such a system is likely not to satisfy the constraints due, at the very
least, to the accumulation of numerical errors. In many applications,
obeying the constraints is not just an academic exercise but is crucial
for understanding the model and suppressing numerical instabili-
ties. Applications for constrained dynamics span a wide range of
topics that include fluid dynamics (Salmon 2005), robotics (Hong
et al. 2005), interaction of complex solid bodies (e.g. computer
gaming, Fox et al. 2000) and molecular dynamics (Frenkel & Smit
2002).

Our interest in constrained dynamics is motivated by something
quite different: the mechanism that effects the generation and sus-
tenance of magnetic fields in the liquid outer core of the Earth. The
so-called geodynamo is ultimately powered by the secular cool-
ing of the planet, actuating rotationally influenced buoyancy-driven
convection. This motion drives a self-excited dynamo process, sus-
taining the field against decay. A full understanding of this magne-
tohydrodynamic system requires knowledge of the spatial structure
and evolution of the flow u and magnetic field B, described by the
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Evolution subject to Taylor’s constraint 691

non-dimensionalized Navier–Stokes and induction equation

ẑ × u = −∇ p + R̃a T (r) r̂ + [∇ × B] × B

+
[

− Ro

(
∂u

∂t
+ (u · ∇)u

)
+ E ∇2u

]
, (1)

∂B

∂t
= ∇ × (u × B) + ∇2B, ∇ · B = 0 (2)

along with an equation for the temperature anomaly T , supplying
buoyancy, which is not needed in our discussion. The buoyancy
force points in the radial direction, defined by the unit vector r̂; ẑ is
a unit vector along the rotation axis and p denotes the pressure. Fol-
lowing Fearn (1998), the equations have been non-dimensionalized
based on typical length and timescales of the radius of the outer core
and the a priori magnetic diffusion time of around 105 years. Typical
conditions imposed on the outer boundary are those of an impen-
etrable, non-slip and electrically insulating exterior. If included in
the geometry, an inner core is usually modelled as electrically con-
ducting with a non-slip and impenetrable surface. The remaining
parameters are the Rossby number, Ro (measuring inertia), the Ek-
man number, E (measuring viscosity) and a (modified) Rayleigh
number R̃a (measuring the buoyancy force). The parameters Ro and
E are both small, taking typical values of O(10−9) and O(10−15), re-
spectively, in the Earth’s core. Therefore, to a good approximation,
it is believed that the rightmost parenthesized terms of (1) may be
neglected, resulting in the ‘magnetostrophic balance’ between the
Coriolis force, pressure, buoyancy and the Lorentz force. The mag-
netostrophic system is of considerable interest as it describes the
slow evolution of the geomagnetic field (on millenial timescales),
perhaps being able to explain the longstanding dominance of the
axially symmetric dipolar component of the field, along with dy-
namics such as geomagnetic reversals. Furthermore, superimposed
on this background state are faster dynamics such as torsional waves
or oscillations, for which there is mounting observational evidence
(Jault et al. 1988; Gillet et al. 2010).

Turning back to the detail of the magnetostrophic approxima-
tion: discarding the two non-dimensionally small terms in (1) re-
sults in two significant algebraic changes to the equations. First, the
elimination of viscosity reduces the order of the highest derivative
occurring, and thus also the number of boundary conditions we
can impose. Modelling the boundaries as impenetrable provides the
required number of conditions: we need not (and cannot) impose
that the boundaries are non-slip (as we might if viscosity was re-
tained). This procedure is equivalent to solving for the free-stream
component of flow in a viscous calculation (Taylor 1963). Second,
neglecting inertia renders (1) a diagnostic equation for u rather than
prognostic, and u is implicitly determined through knowledge of B
and T . Note that the system, as a whole, remains dissipative even
with zero viscosity due to the existence of magnetic diffusion, de-
scribing the energy lost into Ohmic heating. Despite huge advances
in parallel computing in the last few decades, the low-viscosity low-
inertia regime of (1) remains out of reach due to the existence of
very short time and small spatial scales which present a significant
numerical obstacle (Kono & Roberts 2002). The limiting case of
Ro = E = 0 has been largely inaccessible due to a particular theoret-
ical hurdle known as Taylor’s constraint, an accurate and efficient
numerical treatment of which is the focus of this paper.

Some 48 yr ago, Taylor (1963) proved a necessary condition of
any solution to the magnetostrophic equations, now termed Taylor’s
constraint. By considering an average over geostrophic contours
[cylinders of fluid C(s), coaxial with the rotation axis], he showed

Figure 1. Example cylinders over which Taylor’s constraint is defined, each
of which is coaxial with the rotation axis and touches the edge of the core
at its extremities. In a full sphere, there is just one family of cylinders. In a
spherical shell, there are three: outside the tangent cylinder, and above and
below the inner core.

that

T (s) ≡
∫

C(s)

(
[∇ × B] × B

)
φ

s dφ dz = 0, (3)

where (s, φ, z) are cylindrical coordinates and ( )φ signifies the
azimuthal component. This condition follows because the Corio-
lis, pressure and buoyancy forces vanish under this average and
so, therefore, the Lorentz force must also. Under the assumption
that the core is a full sphere (with no inner core), (3) describes a
single infinite member family of constraints parametrized by the
cylindrical radius 0 ≤ s ≤ 1. In a more realistic (although more
complex) geometry of a spherical shell, there are three families
of geostrophic contours C(s), those outside the so-called tangent
cylinder (the cylinder aligned with the rotation axis and tangent to
the inner core at the equator) and those inside the tangent cylinder
above and below the inner core. Examples of such cylinders are
shown in Fig. 1.

Taylor’s constraint presents a formidable obstacle. Not only does
it involve cylindrical averages, rather awkward when quantities are
naturally expressed in spherical polar coordinates, but, ostensibly, it
supplies infinitely many independent conditions (one for each pos-
sible choice of cylinder). However, in a fully spectral method with
a finite number of degrees of freedom, the Taylor integral, T (s)
(in 3), is a finite algebraic object and can be rendered zero by apply-
ing a finite number of constraints to B (Livermore et al. 2008). Fur-
thermore, by judicious choice of method, the number of constraints
can be made significantly fewer than the number of degrees of free-
dom and solutions, known as Taylor states, exist (see Section 2.1 for
more detail). In a typical model of moderate resolution, the num-
ber of constraints, each quadratic in B, may number O(10)–O(100),
which must simultaneously be satisfied in any solution of (1) and
(2) with E = Ro = 0. Within the finite multidimensional space
of magnetic field spectral coefficients that satisfy the conditions
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692 P. W. Livermore, G. Ierley and A. Jackson

appropriate for an electrically insulating exterior, Taylor’s constraint
defines a multidimensional surface which we term the Taylor man-
ifold, defined by the intersection of quadratic surfaces associated
with each individual constraint. Any solution to the inertia-free
inviscid geodynamo equations must necessarily evolve along this
manifold, just as a Hamiltonian system evolves along a surface of
constant energy. The purpose of this paper is to present an initial
study of how this can be achieved numerically.

1.2 Taylor’s time-evolution algorithm

In many fluid dynamical systems the inertial terms are important and
hence the Navier–Stokes equations are prognostic. However, here
smallness of Rossby number means that inertial terms are dropped
for the magnetostrophic system and so the equations for velocity are
diagnostic, determined according to Taylor’s prescription (3) for a
unique flow. The evolution of the flow is slaved to that of magnetic
and temperature fields and hence of comparable smoothness in time.

Taylor showed that the flow can be written as two components

u = umag + ug(s) φ̂, (4)

comprising what we denote here as the magnetostrophic flow and
the geostrophic flow. Only the magnetostrophic flow, quadratic in
B, may be determined from (1) (using, for instance, the integral
approach of Taylor), since ug(s), the geostrophic component of flow,
represents a null space of solution. This can be easily seen by
noting that ẑ × ug(s)φ̂ = −ug(s)ŝ, which can be absorbed into
the pressure gradient. The undetermined geostrophic component of
flow is fixed by imposing the additional dynamical statement that
the time-derivative of Taylor’s constraint must also be zero. Taylor
showed that ug satisfies a linear second-order ordinary differential
equation whose coefficients are non-linear in the magnetic field:

α(s)
d2

ds2

(
ug(s)

s

)
+ β(s)

d

ds

(
ug(s)

s

)
= G(s), (5)

where

α(s) =
∫

C(s)
s B2

s s dφ dz,

β(s) =
∫

C(s)

[
2B2

s + s B · ∇Bs

]
s dφ dz, (6)

and G(s) is a complex expression depending on umag and B; C(s) is
any geostrophic cylinder.1 Although α and β are both quadratic in
B, G(s) is quartic in B and thus ug is quadratic in B as is umag.

The equation for ug is an exact statement and, although somewhat
involved, this method presents a possible quasi-analytic scheme by
which the magnetostrophic equations can be solved. In essence the
algorithm is

loop
1. umag(tn) = g(B(tn), T(tn))
2. Find ug(tn) = ug(umag(tn), B(tn))
3. u(tn) = umag(tn) + ug(tn) φ̂

4. B(tn+1) = f (u(tn), B(tn))
5. T(tn+1) = h(u(tn), T(tn))

end loop

where f and h represent time-evolution schemes applied to (2) and
for the temperature T ; g is the method of computing umag(B, T) and

1 Note the typographic error in Taylor’s paper in the coefficient β (as can be
confirmed by dimensional analysis).

tn is discrete time. Note that u(tn) depends only on previous states
of the flow through dependence on B and T .

This algorithm, although rather elegant, has some fairly serious
difficulties when implemented numerically, as illustrated by previ-
ous attempts (e.g. Fearn & Proctor 1987). The first problem is to
find an exact Taylor state that we may use as an initial condition.
Although some isolated examples exist in the literature (e.g. Holler-
bach & Ierley 1991), a generalized approach has only recently come
to light (Livermore et al. 2009, 2010). The second problem is how to
keep the magnetic field on the Taylor manifold. In Taylor’s method,
if the initial state is on the manifold and the time derivative of Tay-
lor’s constraint remains identically zero (through the action of the
geostrophic flow so defined) then Taylor’s constraint will be satis-
fied for all time. This quasi-analytic algorithm contains the implicit
assumption that ug(s), the geostrophic flow, is handled analytically.
However, in any practical scheme, since the coefficients of the re-
quired ordinary differential equation depend in a complicated way
on s, this is not usually possible and so one would need to find ug nu-
merically. Two associated computational problems, described later,
both result in inaccurate treatment of ug which will not confine the
trajectory of the magnetic field to the Taylor manifold for more than
a short interval; thus major problems hamper a direct application of
Taylor’s method.

The first issue is that we might adopt a truncated spectral ex-
pansion to find ug, anticipating that ug is smooth and its spectral
representation should converge exponentially fast. However, this is
not so: although ug may be smooth, typical expansions converge
slowly (see the example in Section 3.2). The coefficients of the
ODE are numerically costly cylindrical averages of rather complex
functions: α and β are quadratic in B, and G is quartic in B through
its dependence on umag. The high computation cost that arises is due,
not only to the fact that B is represented in spherical coordinates
that are not easily averaged in cylindrical coordinates, but because
B may be small scale necessitating a large number of quadrature
points. Furthermore, α, β and G must be recomputed at each time
step, since B itself changes in time. It is therefore apparent that,
due to computational limitations, it may not practical to compute
ug to anything more than a moderate resolution which, depend-
ing on the rate of convergence, may mean that ug is significantly
underresolved.

The second issue is, quite independent of the above, the dis-
cretization error in the representation of ∂B

∂t . Even if ug is known to
high precision, the estimate of ∂B

∂t must be projected onto the numer-
ical discretization used to represent the magnetic field, commonly
a truncated fully spectral approach. Thus after projection onto the
discretization, information may be lost and ∂B

∂t may no longer lie in
the tangent plane of the manifold.

Both of the above effects will be present in any discretized scheme
and, as shown by an example in Section 3.2, will lead to a rapid di-
vergence from the Taylor manifold. Of course, the rate of divergence
will reduce with increasing truncation in both space and time, as
the numerical scheme will be able to represent to a much higher
accuracy the required dynamics. In this paper we discuss a modifi-
cation to the algorithm that confines the magnetic field to the Taylor
manifold, even if ug is not handled with high precision.

1.3 Overview of the projection method

The key problem with Taylor’s method, as will be demonstrated
by an example in Section 3.2, is that errors in representing either
ug or its action on the magnetic field may send the trajectory of B

C© 2011 The Authors, GJI, 187, 690–704

Geophysical Journal International C© 2011 RAS



Evolution subject to Taylor’s constraint 693

Figure 2. Consider a point A on the Taylor manifold (depicted, with artistic
license, as the surface of the solid ellipse) with local tangent plane as shown.
The instantaneous exact vector ∂B

∂t , computed with an analytic ug , points in

the direction AD (in plane); ∂B
∂t computed using an inexact ug points in the

direction AB (out of plane). The evolution may be corrected by projecting
AB onto AC, onto the tangent-plane of the manifold; although both AC and
AD lie in the tangent plane, their in-plane components differ.

rapidly off the manifold; that is, ∂B
∂t from (2) will quickly diverge

from the local tangent hyperplane. Without correction, Taylor’s
constraint would be violated after a potentially small number of
time steps. As we will explain in more detail in Section 2.2, it is
always possible to construct the local tangent hyperplane at any
point on the Taylor manifold. Given any Taylor state B, we define
PB to be the projection onto the local tangent plane. One way of
avoiding numerical problems is to evolve the magnetic field using
the refined estimate of its rate of change: PB( ∂B

∂t ).
The key ideas are illustrated in Fig. 2. Suppose that the system

lies at point A on the Taylor manifold (depicted by the surface of the
solid ellipse). If we compute ∂B

∂t (from 2 and 4) using an inaccurate
representation of ug it will, in general, point off the manifold in
the direction AB; an exact treatment of ug would ensure that ∂B

∂t
lies in the local tangent plane in the direction AD. Numerically, we
may correct the trajectory AB to AC by projecting it down onto the
local tangent plane, discarding the out-of-plane component. How
this may be achieved computationally is the focus of the remainder
of the paper.

1.4 Recent work on constrained systems

Having introduced the problem under consideration, it is of interest
to review briefly other constrained dynamical models in the current
literature, which may be broadly divided into two classes. First, there
are hydrodynamical models principally involving the Navier–Stokes
and continuity equations, describing conservation of momentum
and mass. Depending on the assumptions made, further constraints
may be derived directly, for example: energy, potential vorticity
(Müller 1995) and flow helicity (Moffatt 1969). Importantly, the
constraints are so few in number that it is possible to construct
numerical schemes in which they are satisfied exactly (e.g. Marsden
et al. 1998; Salmon 2005). One the one hand, the equations that we
consider in this paper are an extension of hydrodynamics, that is,
we allow the fluid to be electrically conducting and consider the
additional complication of a magnetic field. However, the number
of constraints that enter our problem is considerably more than those
relating to hydrodynamic studies [typically O(100) compared with

O(1)] and the associated numerical techniques are not applicable
here.

The second class we may loosely describe as ‘heavily constrained’
dynamics, where a system, typically describing the evolution of a
solid object, evolves subject to (possibly) many hundreds of con-
straints. For example, in robotics and computer gaming, the evolu-
tion of an arm, defined by several invariant lengths joined at pivot
points xi, may be defined entirely by the motion of xi, each point
mass being allowed to evolve independently according to New-
ton’s equations, but subject to the conservation of internal lengths
and (possibly) constraints on internal angles (e.g. Witkin 1997).
A secondary area of importance is molecular dynamics, in which
the evolution and structure of large molecules may be studied by
evolving the requisite collection of atoms from an appropriate ini-
tial configuration. However, such systems are often stiff, that is,
there is a large range of timescales that must be resolved, even
if interest is only focussed on the slower dynamics. To eliminate
short timescales, and therefore to increase the time over which the
system may be evolved, it is common to fix various internal bond
lengths and angles and thus supply a large number of constraints to
the system (Ciccotti et al. 1982). For these dynamical systems, if
the number of constraints is small, in principle one can construct a
Lagrangian method in a generalized coordinate system in which the
constraints are automatically satisfied. However, this is intractable
in large systems and it is often expedient to consider a set of point
masses that evolve subject to imposed invariants, achieved numeri-
cally principally using two methods. First, in the post-stabilization
approach (Shampine 1986), the system of particles are evolved as
if they were entirely independent. At the end of each time step, the
state vector is perturbed by a small amount to ensure that the con-
straints are satisfied; if many such perturbations are possible, that
which minimizes some given norm is typically chosen. One promis-
ing characteristic of this scheme is that it will always maintain the
constraints exactly; however, there is, in general, no physically mo-
tivated choice of norm. The second method involves the imposition
of time-dependent internal forces that, for instance, ensure that a
set of internal lengths never change. These forces are chosen such
that they do no work on the system and are therefore given as λT J,
where J = dC/dq is the Jacobian of the constraints C with respect
to the variables q, and λ is a vector of Lagrange multipliers (Witkin
1997). Since J is known, all that remains is to find λ(t) in order
that the constraints remain satisfied. This is typically achieved by
imposing d2C/dt2 = 0 and solving the resulting (linear) system (e.g.
Baumgarte 1972).

The ‘heavily constrained’ class of problems bears the most simi-
larity to Taylor’s constraint. Not only are the number of constraints
under consideration broadly comparable, but the role of ug(s) is
similar to λ and, furthermore, both are given by a linear equation
whose coefficients depend non-linearly on the state of the system.
However, while λ can be determined through solving a simple linear
matrix–vector system, ug(s) is defined by a second-order ordinary
differential equation whose accurate solution is not easy to find, as
we discussed.

The remainder of the paper is arranged as follows. In the next
section, we discuss how to construct the local tangent plane and
the projection P , along with the associated computational details.
Section 3 describes how Taylor’s time-evolution scheme can be
amended with the projection method along with several examples.
In Section 4 we discuss the pros and cons of the projection method
and end with general concluding remarks in Section 5.
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2 C O N S T RU C T I O N O F T H E
TA N G E N T P L A N E

2.1 Finite characterization of Taylor’s constraint

We discretize the (divergence-free) magnetic field in a truncated set
of poloidal and toroidal vector spherical harmonics,

B =
Lmax∑
l=1

l∑
m=0

[
Sm s/c

l + Tm s/c
l

]
, (7)

where

Sm s/c
l = ∇ × ∇ × [

Y m s/c
l (θ, φ) Sm s/c

l (r ) r̂
]
,

Tm s/c
l = ∇ × [

Y m s/c
l (θ, φ) T m s/c

l (r ) r̂
]
, (8)

in spherical polar coordinates (r, θ , φ). The notation Y m s/c
l repre-

sents a (Schmidt quasi-normalized) spherical harmonic of degree
l, order m and azimuthal dependence sin mφ or cos mφ as appro-
priate. The superscript ‘s/c’ will be dropped henceforth to sim-
plify notation, except where we wish to draw attention to particular
harmonics.

The development of the theory with which we can describe Tay-
lor’s constraint is much simplified in a full-sphere (with no solid
inner core): the spherical shell case follows along similar but more
involved lines. The magnetic field satisfies two key conditions: (i)
it must be everywhere smooth (infinitely differentiable) including
at the origin, and (ii) it is required to satisfy electrically insulating
boundary conditions. We adopt a fully spectral representation in
radius in terms of a Galerkin scheme of the form

Sm
l (r ) =

Nmax∑
n=1

almn Sln(r ), T m
l (r ) =

Nmax∑
n=1

blmn Tln(r ), (9)

in which condition (i) is satisfied by restricting the two families of
basis functions, Sln(r) and Tln(r), to be of the form

r l+1 Qn(r 2) (10)

where Qn is a polynomial of degree n (e.g. Boyd 2001). Condition
(ii) is equivalent to the requirement that

dSm
l (r )

dr
+ l Sm

l (r ) = 0, T m
l (r ) = 0, (11)

which places simple linear constraints on the structure of Qn. There
remains some flexibility in selecting the Qn; here, we choose them
to render the basis sets, Sln and Tln, orthonormal:∫ 1

0
Sln(r ) Slk(r ) (1 − r 2)−1/2 dr

=
∫ 1

0
Tln(r ) Tlk(r ) (1 − r 2)−1/2 dr = δnk .

(12)

Each radial basis function behaves asymptotically like an individ-
ual one-sided Jacobi polynomial and therefore takes on many of
the optimal properties of the Jacobi polynomials themselves (Li
et al. 2010). As an alternative to this choice of orthonomality, by
imposing orthogonality on derivatives of these functions rather than
the functions themselves, it is often possible to quasi-diagonalize
the representation of certain differential operators, for example, the
Laplacian in spherical polar coordinates (Livermore 2010).

In the representation (9), it was shown in Livermore et al. (2008)
that T (s) (of eq. 3) is simply

T (s) = s2
√

1 − s2 Q̃Lmax+2Nmax−2(s2), (13)

for some polynomial Q̃n of degree n. Thus, Taylor’s constraint can
be enforced (for every s in the continuum 0 ≤ s ≤ 1) by requiring
each polynomial coefficient to vanish (including the constant coef-
ficient s0 = 1). Because the magnetic field satisfies the insulating
boundary conditions, it may be further shown that the polynomial
coefficients in T (s) are linearly degenerate and the total number
of constraints that must be satisfied is C = Lmax + 2Nmax − 2.
Each polynomial coefficient of Q̃ in T (s) is quadratic in the spec-
tral coefficients of the magnetic field, (almn, blmn), since T (s) is
a quadratic functional of B, and defines a set of constraints of
significantly smaller size than the number of degrees of freedom
L = 2 Lmax (Lmax + 2) Nmax � C. That is, O(N) constraints for
O(N3) degrees of freedom where N = Nmax = Lmax. This is strongly
suggestive of a very large solution space although, since the con-
straints are non-linear, little can be said rigourously about its size.

2.2 The tangent hyperplane to the Taylor manifold

Let us consider the general setting of a system of size L governed
by the set of C � L constraints

ck(b) = 0, k = 1, 2, 3, . . . , C,

where b is a vector of spectral coefficients [here, of the magnetic
field, b = (almn, blmn)] and ck are some non-linear functionals. In our
case, ck are quadratic, although the methodology of constructing
the local tangent plane admits the generalized form.

Let us assume that both b and an infinitesimal perturbation of the
form b + δb lie on the manifold, where δb lies in the local tangent
hyperplane to the manifold at b. It is immediate that, to first order,

J δb = 0, (14)

where Jkj = ∂ck /∂bj is the Jacobian matrix of the constraints with
respect to the spectral coefficients. Let us denote the kth row vector
of J by nk (i.e. nk is the vector of derivatives of constraint ck with
respect to the spectral coefficients). Then δb is perpendicular to
each nk and thus the tangent hyperplane, spanned by all possible
such δb, is everywhere perpendicular to the nk . We now consider
how to project any vector v onto the local tangent to the manifold,
which is possible with only knowing the vectors normal to its sur-
face. The projection is expedited if we first find an orthonormal set
{q1, q2, . . . qC} that spans the same space as {n1, n2, . . . nC}, which
may be accomplished in principle by using a Gram–Schmidt proce-
dure [although this is prone to numerical error (Press et al. 1992): a
better suggestion is discussed below]. We then need to find αi such
that

qT
j

(
v +

C∑
i=1

αi qi

)
= 0, j = 1, 2, . . . , C, (15)

that is, adding to v a certain combination of the normal vectors
such that the result lies in the tangent plane. By orthonormality, it
is immediate that αi = −v · qi. An interesting extension of this is
not to seek the projection of v onto the tangent plane, but instead to
consider the much more difficult problem of projecting v onto the
(non-linear) manifold itself. One possible way of proceeding is to
note that the axisymmetric toroidal harmonics appear only linearly
in the quadratic Taylor constraints; assuming all other coefficients
are prescribed, a linear solve places the solution exactly on the man-
ifold (Livermore et al. 2009). However, this singles out a particular
subset of harmonics and does not guarantee to perturb the solution
by a distance that is minimal in any physically derived norm; that
is, it may not project the vector v onto the ‘closest’ place on the
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manifold. Motivated by the tangent plane methodology, one may
be tempted to seek an intersection of a perturbation of the form
v+∑C

i=1 αi qi with the Taylor manifold, with the belief that the nor-
mal directions to the local tangent plane would provide an optimal
direction in which to search. This would require the solution of C
coupled quadratic equations in C unknown values of α. Although
the linearized version (15) is guaranteed in general to have a unique
solution, this non-linear system does not: there may be more than
one solution, or no solutions at all. In the latter eventuality, a more
general search space would be required, although one would antic-
ipate that any non-linear solution however obtained would lie close
to the linearized solution. Thus, if an iterative approach was used to
solve the non-linear system, the solution to (15) would constitute a
good starting guess. Further discussion of non-linear schemes and
their attendant complexities is not pursued here.

We now return to the tangent plane projection and discuss an
alternative method of computing a set of orthonormal vectors. From
(14) it is clear that δb must lie in the null-space of J and, since δb is
an arbitrary vector in the tangent plane, the null-space of J defines
the local tangent hyperplane at b. We can then write J in singular
value decomposition

J = U S V T .

We may partition the row vectors of V T (which are mutually or-
thogonal) into two classes: those lying within the tangent plane,
and those perpendicular. We begin by defining a matrix Y whose
rows are simply those rows of V T corresponding to zero singular
values in S. The rows of Y span the tangent hyperplane at b (i.e.
the null-space of J ) since, for any linear combination of such rows,
pre-multiplication by J gives the zero vector. By orthonormality of
V T , it follows that all remaining rows (corresponding to non-zero
singular values in S), which we may group into the matrix W , are
perpendicular to the tangent plane. Indeed, pre-multiplication by J
of any linear combination of these rows gives a non-zero vector and
cannot reside within the tangent space. Note that the space spanned
by the rows of W is also spanned by the set {q1, q2, . . . qC}. Consider
multiplication of any vector v by Y T Y . If v is in the tangent plane
then, by orthonormality of V , Y T Yv = v; if v lies orthogonal to the
tangent plane then Y T Yv = 0. Thus, multiplication by Y T Y projects
any vector onto the tangent plane. Equivalently, multiplication by
W T W gives the projection orthogonal to the tangent plane, or Y T Y =
I − W T W . There are several remarks worth noting about the above
method. First, compared to a Gram–Schmidt method, although at
first sight perhaps more involved, the singular value decomposition
allows a much more stable and accurate computation of a set of
spanning normal vectors. Secondly, because of the relatively small
number of constraints (C � L), for any vector v, it is much more
efficient to evaluate its projection using (I − W T W )v than its equiv-
alent form Y T Yv. This is because we may exploit the fact that W
has many fewer rows than Y and we can evaluate the projection as v
− W T (Wv). Thirdly, since we need only to compute the matrix W
rather than the whole matrix V , only the ‘economy’ singular value
decomposition (SVD) decomposition is required.

Finally, we comment on the necessity of using a Galerkin radial
scheme to construct the projection. At first sight, it might appear
that any radial discretization would afford such a tangent-plane pro-
jection, but this is not so. Crucially, the Taylor manifold is defined
by the intersection of those solutions that satisfy both (3) and (11).
Any representation of the manifold (and therefore its tangent plane)
must take both of these conditions into account. As a first example,
consider a finite difference scheme. At the present time, this must
be ruled out as the finite characterization of Taylor’s constraint

is only currently known for fully spectral radial schemes. A sec-
ond alternative that we might have considered is a spectral scheme
of ‘Chebyshev-tau’ type (e.g. Boyd 2001), where the toroidal and
poloidal scalar functions are expanded in terms of (say, N) smooth
basis functions that do not, individually, satisfy the boundary con-
ditions. If two boundary conditions (11) are imposed, then typically
the first N − 2 coefficients are determined using the dynamics of the
system, the final two coefficients by (11). Within the space defined
by the first N − 2 basis functions, we may form a projection onto the
Taylor manifold as before. However, the problem remaining is that,
after applying this projection, the modification to the magnetic field
by the addition of the extra two spectral coefficients to fulfill (11)
will violate Taylor’s constraint. Crucially, the boundary conditions
and the projection need to be imposed at the same time; this is cur-
rently possible only within a Galerkin scheme, for which an optimal
theory has only recently been developed (Livermore 2010).

2.3 Computational considerations

We now apply the concepts developed to the specific problem of
Taylor’s condition, which requires rendering zero the polynomial
form (13). Numerically, this may be achieved in many different
ways, for instance, by considering the two equivalent monomial or
Chebyshev representations:

(i) T (s) = s2
√

1 − s2

K∑
k=0

ck s2k, or

(ii) T (s) = s2
√

1 − s2

K∑
k=0

c̃k T2k(s), (16)

or indeed by replacing the Chebyshev polynomials Tn(s) above by
any other spanning set of polynomials (e.g. any Jacobi polynomial).
The range of k bounded above by K = Lmax + 2Nmax − 3 takes into
account the linear degeneracy caused by the boundary conditions.
The coefficients c̃k are simply a homogeneous linear combination of
the ck (reflecting the fact that the polynomials they multiply span the
same finite subspace as the monomials). Therefore, to arrange that
Taylor’s condition is satisfied, we can choose either to set each ck or
each c̃k to zero. Formally (and in exact arithmetic), these two cases
are equivalent, although in finite precision the resulting accuracy
will differ as discussed below.

Each coefficient ck or c̃k is exactly quadratic in the magnetic field
coefficients and may be written

ck =
∑
i< j

Ti jk bi b j , c̃k =
∑
i< j

T̃i jk bi b j . (17)

We denote as the Taylor tensor2 both Tijk and T̃i jk . Henceforth we
shall refer to a general tensor T , where the context will make it
clear which representation, either (i) elementary monomials or (ii)
Chebyshev polynomials we refer to.

The Taylor tensor contains L2 C elements, although is sparse,
containing a non-zero entry Tijk only if the spherical harmonics i
and j ‘interact’, which requires specific selection rules to be satis-
fied (Livermore et al. 2008). The (symmetric) Taylor interaction is

2 Strictly speaking a tensor is required to obey certain rules regarding trans-
formations of the coordinate system which are not relevant here. However,
the entries of the tensor are not arbitrary: clearly the two representations Tijk

and T̃i jk are related by a linear transformation and denotation as ‘tensor’
rather than ‘array’ or ‘matrix’ reflects this property.
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Table 1. Summary of numerical parameters for a variety of truncations in spherical harmonic degree (Lmax)
and in radius (Nmax). From left to right: the number of variables L = 2Nmax Lmax (Lmax +2) in the spectral
expansion, the number of Taylor constraints C in a full sphere, the number of non-zero elements NNZ of
T for both monomial (M) and Chebyshev polynomial (C) representation indicated by superscripts. The
rightmost two columns supply, correct to two significant figures, the density (the percentage of elements of T
that are non-zero) and storage requirements (in double precision), both only for the Chebyshev presentation,
this being the most expedient choice as discussed in the text. A formula to enumerate both NNZM and
NNZC is given and briefly proved in the Appendix.

Lmax Nmax L C NNZM NNZC DensityC (per cent) StorageC/Mb

6 4 384 12 20 754 23 414 1.7 0.18
8 6 960 18 146 694 167 358 0.88 1.3

10 6 1440 20 299 406 351 876 0.72 2.7
12 4 1344 18 199 182 248 374 0.61 1.9
12 6 2016 22 542 502 654 042 0.61 5.0
14 8 3584 28 1 867 634 2 242 554 0.52 17
20 10 8800 38 10 722 486 13 236 186 0.36 100
50 20 104 000 88 1 373 887 706 1 781 641 206 0.14 13 000

defined by

[Bi , B j ] =
∫

C(s)

(
[∇ × Bi ] × B j

)
φ

s dφ dz

+
∫

C(s)

(
[∇ × B j ] × Bi

)
φ

s dφ dz, (18)

where Bi and Bj are two magnetic fields. Note that the contributions
of each of the two terms above are not individually symmetric
under interchange of i and j (see eqs 2.7–2.9 in Livermore et al.
2008). A natural way to represent Tijk is a symmetric quadratic form;
we therefore need only store one of the two symmetric halves, or
equivalently write Tijk in a strictly upper triangular format [hence the
restriction i < j in eq. (17)]. To exploit the sparsity when computing
T (s) (or any derived quantities), we could attempt to derive the form
of any banded structures in the tensor and create a one-to-one map
of the non-zero entries to a dense vector of coefficients. However,
as illustrated later, the structure of the tensor is highly complex and
such a task is far from trivial. Instead, we proceed more directly and
create an ordered list of the form

[i, j, k, Ti jk],

which gives, in ascending order in i, only those harmonics j > i that
give a non-zero contribution to Tijk . Of particular note is that the

matrix J given by

Jkl = ∂

∂bl

∑
i< j

Ti jk bi b j =
∑

i<l,l< j

(Tilk + Tl jk) bl (19)

can be efficiently computed by taking one row at a time of the
list representation of T and computing its contribution to the two
relevant entries in J . The elements of T are evaluated analytically
using computer algebra (with the package Maple) and written to
disk in double precision floating point format.

Table 1 shows a summary of the numerical parameters involved
for various truncations in spherical harmonic degree (Lmax) and in
radius (Nmax). The number of magnetic field spectral coefficients
is denoted L and the number of Taylor conditions as C. As noted,
the Taylor tensor is very sparse, as indicated by the number (NNZ)
and fraction of non-zero elements. The superscript in the column
heading denotes whether monomials (M) or Chebyshev polynomials
(C) are used in the representation of Taylor tensor. A formula for
NNZ is given and briefly proved in the Appendix.

To further illustrate the sparsity of the Taylor tensor and highlight
its structural complexity, Fig. 3 shows a graphical depiction as 2-D
symmetric matrices. Adopting the truncation Lmax = 8, Nmax = 6
associated with 960 spectral coefficients, a corresponding 960 ×
960 grid contains a black dot at the (i, j) entry if Tijk or Tjik is

Figure 3. Graphical representation of the sparsity and structure of the Taylor tensor in terms of a 2-D projection ξ ij = maxk f (Tijk), where f (x) = 1 if x 	= 0
and zero otherwise, at truncation Lmax = 8, Nmax = 6. In each 960 × 960 matrix, ξ (i, j) is coloured black if it takes the value 1 (equivalent to the condition that
the harmonics i and j (or j and i) have a non-zero interaction) or is coloured white otherwise. Matrix (a) is defined in terms of the spectral ordering where the
radial index varies most rapidly; this produces large blocks (rather than points). Matrix (b) adopts the spectral ordering where the harmonic index varies the
fastest. Both (a) and (b) contain the same number of black dots in highly complex structures, each having an associated Taylor-tensor density of 0.88 per cent.
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non-zero for any k (i.e. harmonics i and j interact); the position
is coloured white otherwise. Such a matrix is independent of the
representation used to formulate the Taylor tensor, since we are
only concerned with non-zero interactions and not their expansion
in any particular set of polynomials. The only remaining issue is
to decide how the spectral coefficients are ordered. There are two
natural ways of doing this; common to each is an ordered list of
the spherical harmonics within the truncation 0 ≤ m ≤ l ≤ Lmax

of size N = 2Lmax(Lmax + 2), distinguishing between poloidal and
toroidal types. In Fig. 3(a), consistent with the results in Section 3.3,
the spectral coefficients are ordered as ((i, n)n=1,2,...,Nmax )i=1,2,...,N ,
where i indicates the harmonic index and n the radial index; that
is, the radial index varies most rapidly. This produces large blocks
of interactions in the image. In Fig. 3(b), the order is the opposite:
((i, n)i=1,2,...,N )n=1,2,...,Nmax , that is, with the radial index varying most
slowly. This has the effect of spreading out the interactions and
creating a more scattered image. However, as they represent the
same object, both (a) and (b) have the same number of black dots. It
is clear that the structure is extremely complex, and that producing
an analytic mapping of the grid position (i, j) to locate the non-zero
entries is a highly non-trivial task.

Finally, we briefly discuss why we have troubled to introduce
different representations for the Taylor tensor (given that they are
formally equivalent); in particular, why there is an optimal choice
from numerical considerations. The computation of J , required to
compute the normals to the tangent plane, necessitates the contrac-
tion of T with the vector of coefficients b (19). In fixed precision,
severe inaccuracies can arise if the quantities to be added vary
dramatically in magnitude, due solely to roundoff error. For this
reason, it is expedient to find a representation of T with its elements
of minimal range in magnitude. As a starting point for a discussion,
Fig. 4 shows coefficients taken from two representations of the
Taylor tensor given by the interaction between the axisymmetric
harmonics: toroidal; l = 9; n = 6 (harmonic i) and poloidal; l = 10,
n = 6 (harmonic j). With k plotted in the horizontal direction, the
monomial coefficients Tijk are depicted by circles and the Cheby-
shev coefficients T̃i jk by diamonds. It is immediately apparent that
the entries of Tijk vary by O(1010), whereas those of T̃i jk vary by
only O(102). Thus, the Chebyshev representation offers much better
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Figure 4. A comparison of representations of the Taylor interaction between
the axisymmetric toroidal l = 9, n = 6 magnetic field mode and the axisym-
metric poloidal l = 10 n = 6 mode. The circles show the spectral coefficients
(ck ) and diamonds the Chebyshev coefficients c̃k . The range of coefficients
are much greater for the monomial representation than the Chebyshev case
and the latter is therefore numerically preferred for constructing the tangent
plane.

alternative to the monomial representation, a result confirmed by
the time-dependent calculations in Section 3.3. Of all possible or-
thogonal polynomials, whether or not the Chebyshev polynomials
in particular offer an optimal representation we cannot say; but we
speculate, owing to their uniform oscillation property, that they are
close to it. Furthermore, it is likely that any optimal representation
depends on the structure of the magnetic field modes: in particular,
the choice of radial basis functions and, to a similar extent, the basis
functions in solid angle too (here being the spherical harmonics).

3 I M P ROV I N G TAY L O R ’ S A L G O R I T H M
U S I N G P RO J E C T I O N

3.1 An improved algorithm

Having all ingredients now in hand, we now show how the projection
method may be implemented. We discretize (1) and (2) by adopt-
ing a standard spherical harmonic representation (as described in
Section 2.1) for both the flow and magnetic field; the equations are
then projected back onto the basis using de-aliased transforms (e.g.
Hollerbach 2000). The projection method, described in the previous
section, may be added onto Taylor’s algorithm to produce a refined
estimate of the rate of change of magnetic field. After finding (a
possibly inaccurate) estimate of u and then computing the (approx-
imate) discretized form of the right-hand side of (2), written here
as f (b), we may find the projection onto the local tangent space,
Pb f (b), by the following procedure:

Compute Jkj = ∑
(Tijk + Tjik) bj

[U, S, V T ] = svd(J, economy)
Form W from V
Pb( f (b)) = (

v − W T W f (b)
)

The modified discretization of the induction equation we now
want to evolve is

∂b

∂t
= Pb( f (b)),

to which we may now apply any time-stepping scheme; for this
initial study, we adopt a standard Runge–Kutta scheme of order four.
It is worth noting explicitly that although f , above, is a discretization
of a linear operator (and so, notwithstanding truncation errors, is
linear), when coupled with the projection operator, this first-order
partial differential equation becomes inherently spatially non-linear.

In terms of computational expense, the requirement to compute
P with every evaluation of f(b) is very costly. The majority of
computational effort is taken up by the evaluation of the matrix J
which takes O(L6

max) operations (if Lmax = Nmax, see the Appendix)
compared to only O(L4

max) for any slow transform (such as the Leg-
endre transform in colatitude or radial transform via quadrature).
However, this can be speeded up significantly using a parallel com-
putation. The evaluation of the singular value decomposition itself
by comparison is relatively very fast, as tests show, although if re-
quired it could be speeded up by linearization about a previous state
(Liu et al. 2008).

To evaluate how close the evolving magnetic field is to the Taylor
manifold, we use two non-dimensional measures of ‘Taylorization’.
The first is elementary to compute (within the framework already
described) and defines departures from the manifold in spectral
space: it is defined as

σ =
∑C

i=1 |c̃k |
C

∫
V B2 dV

,
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where c̃k are defined in (17). Note that this measure is representation
specific (we could equally well define it using ck), and that each c̃k

is quadratic in B and so σ is dimensionless (recall that length has
already been non-dimensionalized).

The second is more physically motivated (and more standard in
the literature) and is defined to be the rms measure

τ =

√√√√√√√√√
∫ 1

0

[∫
C(s)

(
[∇ × B] × B

)
φ

s dφ dz

]2

ds

∫ 1

0

∫
C(s)

[(
[∇ × B] × B

)
φ

s

]2

dφ dz ds

, (20)

where C(s) is a geostrophic cylinder at radius s. These two norms
offer completely independent checks that a solution is on the Taylor
manifold. The evaluation of σ is performed in Matlab simply by
contracting the vector of magnetic field coefficients with relevant
tensors and matrices all pre-computed in Maple. The Tayloriza-
tion τ is computed numerically in Fortran 90 using Gauss and
Gauss–Chebyshev quadrature. The computation of both σ and τ is
exact apart from the rounding errors inherent in double precision.

3.2 An example magnetostrophic system: taking a few
time steps

We will now illustrate the key issues by evolving a quasi-
magnetostrophic system by a few time steps. Because the numerical
tools to solve for umag(B, T) in general have not yet been properly
developed, we cannot solve the full magnetostrophic system. In-
stead, by choosing a simple initial magnetic field, in the absence of
buoyancy forces, we can find analytically the solution for umag which
we assume is constant for the 10 short time steps of length h = 10−5

that we shall take. This is, of course, an approximation, but since
the evolution time is short, the energy of B changes only by less
than 1 per cent over these 10 time steps and a concomitantly small
change in umag would be expected. Within this simple example, the
flow is driven entirely by the Lorentz force, and would represent the
evolution of the geodynamo should the buoyancy force be suddenly
turned off.

The following algorithm summarizes, given B(tn), in this numer-
ical experiment how we compute its rate of change:

1. Find ug(tn) = ug(umag, B(tn))
2. u(tn) = umag + ug(tn) φ̂

3. Compute ∂B
∂t from eq. (2); project back onto the spectral basis.

4*. Project onto tangent plane of manifold

Central to this exercise is to compare the above algorithm with,
and without, step 4; that is, what happens if we follow Taylor’s orig-
inal algorithm compared to adding in projection. We will therefore
compare the evolution of B or, more specifically, its Taylorization,
which is evolved using a standard Runge–Kutta scheme of order
four.

We will take the initial magnetic field to be

B(t0) = λ ∇ × ∇ × (
Y 0

2 S2,1(r ) r̂
)

corresponding to the l = 2, m = 0 poloidal mode of largest radial
scale, following the notation of Section 2.1; λ is chosen so that B(t0)
has unit rms over the full sphere. If T = 0 (i.e. no buoyancy force)
then the magnetostrophic flow is

umag = −1575 r sin θ

416(−9 + 24 r 2 − 15 r 4 − 10 r 2 cos2 θ + 10 r 4 cos2 θ
)
φ̂,

a colatitudinally dependent toroidal flow of spherical harmonic de-
gree 3, containing only an azimuthal component. Note that, for
numerical expediency, we have deliberately chosen an equatorially
symmetric, axisymmetric initial field; for then u is also of this
symmetry and it follows that B will remain, for all time, in this
restrictive symmetry class. This reduces the computational work-
load, and allows us to work within the symbolic package Maple,
allowing us to mix exact analytical procedures [in particular, to
compute G(s) of (5)] with numerical calculations. We shall use the
spectral truncation Lmax = 6 and Nmax = 4 bearing in mind that we
need only consider the poloidal modes of even degree and toroidal
modes of odd degree, these being equatorially symmetric; barring
degeneracies, the number of Taylor constraints is 12.

To find ug, we write

ug(s) = s
N−1∑
n=0

an Tn(2s2 − 1) = s
N−1∑
n=0

an T2n(s),

as a Chebyshev expansion truncated at N coefficients, exploiting
the fact that it is known to be an odd function of s (Livermore et al.
2008). We now substitute this form directly into (5) and form a
matrix system by evaluating at a set of collocation points, which
we take to be the N − 1 zeros of TN−1(2s2 − 1). There is some
flexibility in the choice of collocation points, but this particular set
can be justified as by using all the zeros of the given polynomial
we have a ‘uniform’ resolution over [0, 1]. As an alternative, for
example, we could use the smallest N − 1 (positive) zeros of TK(2s2

− 1) for any K > N ; however, the neglect of collocation points near s
= 1 may limit convergence there. The linear system is completed by
imposing the condition of zero total angular momentum about the
rotation axis; that is, requiring that the angular momentum imparted
from ug exactly cancels out the angular momentum of 40 π

39 stemming
from umag.

Before showing what happens during the evolution, it is instruc-
tive to compute the initial ug to high accuracy. In Section 1.2 we
discussed problems with finding accurate solutions to ug, arguments
that we illustrate here. Fig. 5(a) shows the spectrum of |an| on a
log–log plot as a function of index n when N = 80. At least over
the range plotted, the convergence appears to follow the algebraic
scaling n−1, rather than exponential. The super-algebraic fall-off to-
wards the right-hand end of the spectrum is not a converged feature.
Two orders of magnitude decrease in the magnitude of the spectral
coefficients requires an expansion up to index 20: that is, Chebyshev
degree 40. This slow convergence is representative of the general
case, and comes about due to the spatially varying (time-dependent)
coefficient α(s) which multiplies the highest derivative in (5).

Fixing the time step as h = 10−5, we now take 10 time steps
with, and without, projection (using the Chebyshev representation
for the Taylor tensor). When computing the projection, we must
decide which singular values of J are zero and which are not. This
is not as straightforward as it sounds: due to numerical imprecision,
in general no exact zero singular values will arise. In a typical
case we would calculate a subset of singular values all around the
same magnitude, in addition to a remaining subset of much lower
magnitude (which, would, in exact precision, be zero). Numerically
we have to decide where the threshold lies that separates these two
sets. For the calculations here, the largest singular values are O(103)
and we set the threshold as 10−7.

Fig. 5(b) compares the evolution of the initial exact Taylor state,
measured by the Taylorization σ (based on the Chebyshev repre-
sentation). To evolve the magnetic field, all terms of the induction
eq. (2) are present in the model, although umag is held fixed. Of
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Figure 5. (a) For the initial magnetic field given in the text, convergence of the spectrum of ug as a function of index n of the numerical approximation

ug = s
∑N−1

n=0 an Tn(2s2 − 1) shown as filled circles. On the range plotted, the convergence appears to be only algebraic, scaling as n−1, giving rise to numerical
problems in accurately representing ug . The super-algebraic fall-off towards the right-hand end of the spectrum is not a converged feature. A spectral fall-off of
two orders of magnitude requires a representation in (odd) Chebyshev polynomials of degree 40. (b) A comparison of the evolution of the induction equation
system (described in Section 3.2) over 10 time steps of size h = 10−5, with and without projection, measured by the Taylorization σ . Without projection, σ

increases linearly with time and the solution rapidly leaves the manifold. Increasing N from 6 to 20 decreases the rate of divergence from the manifold only
marginally. With projection, σ = O(10−8) and increases only very slowly with time. The truncation used here is Lmax = 6, Nmax = 4; in the Legend, N is
defined as in (a).

principal note is that, without projection, the Taylorization appar-
ently increases linearly with time and will quickly leave the mani-
fold (as shown by the circle symbols using resolutions N = 6 and
N = 20). That σ increases with time in this manner can be easily
seen by linearization; if B(t1) = B(t0) + h B̃ where B(t0) satisfies
Taylor’s constraint but B(t1) does not, then after a single time step
σ (t1) = 0 + h C(B(t0), B̃) + O(h2), where C is some constant [de-
pendent on B(t0) and B̃]. Further time steps appear to add to this
error, linear to leading order.

Fig. 5(b) also shows that, following Taylor’s original algorithm,
increasing N from 6 to 20 only decreases σ (t) in a minor way. The
reason for this (as discussed in Section 1.2) is simply that although
ug is represented to modest accuracy, the projection of the right-hand
side of (2) back onto the basis set truncated at Lmax = 6, Nmax = 4
introduces a significant discretization error for the action of ug. This
can be identified most easily for the initial time step. Since B(t0) is
of spherical harmonic degree 2, then almost all of the spectral-tail
of ug, containing spherical harmonic degrees higher than 8, induces
no field of degree less than six (see the selection rules of Bullard &
Gellman 1954); thus the truncation procedure ignores the spectral
tail of ug and effectively reduces its resolution.

The square data points in Fig. 5(b) give the Taylorization when
using the projection method with N = 6. On this linear scale (cho-
sen to show the linear divergence of the non-projection method
from the manifold), the Taylorization σ (t) is graphically indistin-
guishable from zero. It is, in fact, O(10−8), and increases only very
slowly with time (in fact, after a single step, σ (t1) = O(10−8) and
it only increases with increments of O(10−11) for every time step
thereafter). The cases of N = 6 and N = 20 (not shown) give very
similar behaviour, owing to the fact that the projection algorithm
ensures the evolution of B is tangent to the Taylor manifold, irre-
spective of the accuracy of ug. The non-uniform behaviour of σ in
time suggests that there is something very special about the geome-
try of the manifold at the particular initial condition we have chosen
of a single, axisymmetric, harmonic, which leads to a minor degra-
dation in accuracy during the first time step. Such an issue will not
influence the general case however: when evolving a magnetic field

of no particular symmetry as described in the following section, we
find no such behaviour.

3.3 The importance of the choice of Taylor tensor

The previous example illustrated some of the key aspects inherent
in evolving a magnetostrophic system, albeit for a small number of
time steps. By adopting an even simpler case that may be treated
exclusively numerically, we now present some more results on the
projection algorithm. Specifically, although anticipated by the dis-
cussion in Section 2.3, we will investigate the numerical issue of
whether or not the Chebyshev representation of the Taylor tensor
is really superior to the monomial representation. Furthermore, we
will be able to test the accuracy of the evolution algorithm for a
system evolved for many more time steps than before.

Our model contains only the basic ingredients of some vector f,
representing an approximation to ∂B

∂t , and the projection method to
confine the evolution to the manifold.

∂b

∂t
= Pb

[
f
]
. (21)

Perhaps the simplest example would be to choose f to be constant
(in time) and to then test how well Taylor’s constraint is maintained.
However, we use

f = ∇2B,

which exhibits more complex B-dependence. Physically, this may
be viewed as evolving the magnetic diffusion equation subject to
Taylor’s constraint.

Since we are no longer confined to axisymmetry, we adopt an
initial magnetic configuration that is much more general than that
used before: having energy in all wavenumbers. We use the method
described in Livermore et al. (2009), in which we exploit the fact
that the axisymmetric toroidal coefficients never themselves appear
as squared terms in the Taylor constraints ck . By assuming that all
the remaining coefficients are prescribed, we only need to solve a
linear system to find an exact Taylor state, rather than having to
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Table 2. A comparison of two methods of computing the tangent plane and the Taylorization
that results, for a variety of spatial truncations, in our simple projection model. For either
the monomial or Chebyshev representation of the Taylor tensor, the rows are listed in order
of problem complexity, judged by the the number of degrees of freedom L and the number
of constraints C. The fifth column gives the initial value of τ . Columns 6–10 show τ n, the
Taylorization at the end of the time interval [0, 0.01] having taken n equal time steps using
a Runge–Kutta scheme of order 4. In each case the Chebyshev representation supplies a
much more accurate Taylor state for an initial condition. At low resolutions both methods
then behave comparably for the time-evolution problem. However, at larger truncations the
Chebyshev representation is superior enabling a much more accurate Taylorization to be
maintained.

Lmax Nmax L C τ init τ 10 τ 100 τ 1000 τ 10 000 τ 100 000

Monomial representation
6 4 384 12 5.4e-12 3.0e-1 7.8e-5 3.1e-9 2.9e-11 1.2e-11
8 6 960 18 5.5e-9 6.6e-1 3.7e-3 5.1e-5 9.8e-8 1.7e-7

12 4 1344 18 8.6e-10 2.2e-1 7.9e-5 1.5e-7 2.3e-7 1.1e-7
10 6 1440 20 5.4e-8 4.6e-1 5.5e-2 1.1e-4 3.6e-5 1.6e-5
10 8 1920 24 1.5e-7 6.8e-1 1.9e-1 4.2e-2 3.6e-2 3.8e-2

Chebyshev polynomial representation
6 4 384 12 4.3e-14 3.0e-1 7.8e-5 3.1e-9 2.9e-11 1.2e-11
8 6 960 18 2.1e-12 6.6e-1 3.7e-3 5.1e-5 6.9e-10 3.9e-11

12 4 1344 18 3.4e-12 2.2e-1 7.9e-5 4.4e-9 2.9e-11 3.0e-11
10 6 1440 20 8.3e-14 4.6e-1 5.5e-2 4.0e-6 3.2e-10 3.2e-10
10 8 1920 24 3.4e-11 7.0e-1 2.0e-1 5.9e-5 4.0e-9 1.6e-9

solve a set of coupled quadratic equations. To avoid any particular
symmetries, our approach is to fill each non-axisymmetric-toroidal
entry of the vector b with pseudo-random values drawn from the
interval [0, 1] that are shaped with the envelope e−(l+n)/2 to mimic
an exponential fall-off with (l, n). The remaining set of axisym-
metric toroidal modes are larger in number than the number of
constraints C and, in principle, we may select any C of them to
formulate a linear system. However, some choices lead to poorly
conditioned linear systems and inaccurate Taylor states. Our ap-
proach was to select the first C modes from the ordered list (l, n)
where both l and n decrease from (Lmax, Nmax) with l varying most
quickly. The results of this procedure were generally excellent (see
column 5 of Table 2), producing an extremely small Taylorization
τ = O(10−11) or better, using the Chebyshev representation of the
Taylor tensor. The monomial representation did not behave so well,
since its linear system was more poorly conditioned, and produced
τ = O(10−7) or better. The remarks noted in Livermore et al. (2009)
of potential problems in computing accurate Taylor states (with the
monomial representation in mind) are now greatly offset by the high
performance of the Chebyshev representation.

Consider the same moderate truncation as before: Lmax = 6,
Nmax = 4, in which 384 variables must be evolved with 12 Taylor
constraints. Using the Chebyshev representation, we evolve the ini-
tial condition from t = 0 until t = 0.01 in 1000 steps of size h = 10−5.
The end time corresponds to around 1/10 of the so-called ‘dipole
diffusion time’ (1/π 2 in our dimensionless units), corresponding to
the slowest free decay time of the full-sphere system ∂B

∂t = ∇2B.
Fig. 6 shows the evolution quantified in terms of the measures of
Taylorization σ and τ . There are two key features of note. First is that
the measures are very similar in magnitude and time-dependence,
thus each is an excellent proxy for the other. This also confirms that
our calculations are correct because, as previously noted, σ and τ

are computed using completely different techniques. Second is that
both measures of Taylorization are O(10−8) – O(10−11), very much
smaller than 1.

Comparable calculations using different resolutions and time
steps h, for both the Chebyshev and monomial representation, are
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Figure 6. Time evolution of two different (non-dimensional) measures of
Taylorization: σ (using the Chebyshev representation) and τ . Both measures
behave similarly and lie in the range O(10−8) – O(10−11), although in this
example σ is around one order of magnitude smaller than τ .

shown in Table 2. For each representation, the runs are listed in
order of problem complexity as judged by the number of degrees of
freedom L and the number of constraints C. In the fifth column is
the value of τ , a measure of the Taylorization, for the initial field.
In columns 6–10 are shown, τ n, the value of τ at the end of the time
interval [0, 0.01] after taking n equal time steps of size h. At low
resolution (e.g. Lmax = 6, Nmax = 4), aside from the initial condition
(which we have already remarked upon), the Chebyshev and mono-
mial representations behave identically. Furthermore, they produce
values of τ 10, τ 100 and τ 1000 which decrease by a factor of 104 each
time, in agreement with the O(h4) accuracy of the Runge–Kutta
scheme, although this property is apparently not obeyed for smaller
time steps in this example (presumably due to roundoff error in
double precision) and for higher truncations. For this lowest resolu-
tion example, errors induced by ill-conditioning of the Taylor ten-
sor apparently have no effect (the truncation not being sufficiently
high to expose their influence) and accuracy is limited only by
computational roundoff errors at O(10−11). However, at the largest
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truncations shown, the situation is reversed. The monomial repre-
sentation becomes increasingly ill-conditioned and behaves poorly:
at Lmax = 10, Nmax = 8, τ (at t = 0.01) cannot be rendered smaller
than O(10−2) even at the smallest value of h shown. Indeed, by com-
paring the values of τ 10 000 and τ 100 000 it would appear that subse-
quent decreases in the time step would serve only to increase, rather
than decrease τ . That is, computational roundoff errors vastly ex-
acerbated by the poor monomial representation swamp the solution
and prevent convergence in h to a solution evolving on the Taylor
manifold. In contrast the Chebyshev representation performs very
well, even in the same highest resolution example, it being possi-
ble to maintain a Taylorization τ = O(10−9) for the two smallest
values of h considered. In this case, improved conditioning ensures
that computational roundoff errors do not prevent convergence to
highly accurate solutions.

For comparison with existing estimates in the literature of geo-
dynamos at small Ekman number, both Rotvig & Jones (2002) and
Stellmach & Hansen (2004) calculated τ = O(10−1) – O(10−2) (note
that the Taylorization defined in Rotvig & Jones (2002) is analogous
to our τ 2). It is clear that our numerical method is able to satisfy
Taylor’s constraint to a much higher precision.

Finally, we note that the calculations up to t = 0.01 are apparently
stable; further calculations indicate that this stability is maintained
at least up to t = 0.1, and probably indefinitely. However, we remark
that the value of τ for the constrained problem does in fact keep
increasing for times beyond t = 0.01. In fact, at t = 0.1, it has risen
to O(10−6). Although this is still small, it highlights the fact that, due
to numerical error, eventually the solution will indeed diverge from
the manifold (albeit very slowly); this is discussed in Section 4.

4 D I S C U S S I O N : P RO S A N D C O N S
O F P RO J E C T I O N

In the preceding sections, we have discussed in some detail the
problems that may occur with a numerical implementation of Tay-
lor’s algorithm and how adding a projection step greatly enhances
the accuracy of remaining on the Taylor manifold. On a fundamen-
tal level, including a projection step in a numerical algorithm is
commonplace: any discrete scheme that models an analytic system
is, at its essence, simply a projection of the underlying continuous
evolution. For many systems, small inaccuracies in the discretized
system do not matter, and it is expected that increases in the resolu-
tion will bring the system ever closer to the true evolution. However
in some cases, including that of the magnetostrophic system we
have considered in this paper, certain quantities, namely the Taylor
integral, must be maintained exactly (as zero). This is a troublesome
constraint to deal with since it is non-linear, being quadratic in the
magnetic field. Linear constraints on the other hand are much eas-
ier to deal with, a well-known example being incompressible fluid
dynamics in which ∇ · u = 0 everywhere (the magnetic field obeys
a similar constraint of ∇ · B = 0). Such a system may be evolved
subject to this linear constraint by either simply using a represen-
tation in terms of a basis set that is divergence free (precisely the
Galerkin method used in this paper), or by regarding the pressure as
a Lagrange multiplier whose purpose is to impose the constraint. In
this paper, to sidestep the issues attendant of non-linear constraints,
we effectively linearize Taylor’s condition about the magnetic field
at each discrete time step, projecting its rate of change onto the
tangent plane of the manifold. However, any linearization of a non-
linear constraint will never be exact, and we discuss some of the
pros and cons of the method below.

Let us begin by summarizing the positive points of the method.
First, it is easy to implement once the Taylor tensor entries are com-
puted, requiring only the assembly of a matrix and then computation
of its singular value decomposition. Secondly, and perhaps more
importantly, within any prescribed truncation of magnetic field, the
method will exactly (up to numerical roundoff error) project the
rate of change onto the tangent plane. It is worth noting that to
capture the general magnetostrophic dynamics (and indeed, for the
dynamics of a general system) we need to ensure that the system
is converged in both time and space: that is, by ensuring that the
evolution becomes independent of further increases in spatial reso-
lution and further decreases in time step length. However with the
projection method, at any fixed spatial truncation, the Tayloriza-
tion depends only on the error incurred by time discretization and
can be minimized by consideration of more accurate time-evolution
methods. This should be compared to Taylor’s original algorithm,
in which the evolving Taylorization can be rendered zero only when
the system is fully converged in both space and time. Therefore,
as far as the Taylorization is concerned, the projection method al-
lows us to ignore issues of spatial convergence with the knowledge
that any non-zero Taylorization arises solely through errors in the
temporal discretization.

The projection method, however, introduces some challenging
technical issues. First is the construction of the Jacobian matrix J ,
describing the local tangent plane to the manifold, each entry being
the contraction of the vector of magnetic field spectral coefficients
with entries of the Taylor tensor. Not only might this become a com-
putational bottleneck at large truncation, but we must take care that
numerical inaccuracies do not creep in. The summation of floating
point numbers is most accurate when they are all of similar magni-
tude. As we discussed in the text, using a Chebyshev representation
mitigates this problem somewhat, but since the Taylor integral in-
volves a spatial derivative, it will always be the case that smaller
scales will be represented with larger Taylor tensor coefficients than
those from the largest scales.

Second is a somewhat technical point, but the projection method
requires us to distinguish between singular values of J which are
zero, from those which are not. In a typical numerical output, there
will be a subset of values which have a magnitude considerably
larger than the remainder, but choosing a threshold criterion in
advance (which must be valid for all such computations) may not
be straightforward. However, it should be possible to sidestep this
issue by noting that output from the singular value decomposition
produces singular values ordered by their magnitude. Going down
the list and deciding when the values drop off to zero is equivalent to
projecting out the component associated with each singular vector
in turn, and then checking that the vector produced is tangent to the
manifold.

Third is the issue of truncation. Any numerical scheme is hostage
to the resolution adopted; in our case, the issues are not only that
the action of the differential operators are not fully resolved, but
that the Taylor manifold itself may not be fully represented. That
is, it may be that increasing the resolution may change the local
curvature of the manifold, therefore altering the orientation of the
local tangent plane and changing the subsequent evolution of the
system. Of course, as in all numerical schemes, we anticipate that
these discretization errors will decrease with increasing resolution
and should be negligible if all the dynamics are properly resolved.

Finally, our linearized system will not be able to maintain accu-
rately Taylor’s constraint for all time. Eventually, due to temporal
discretization error, or even numerical round-off error, the magnetic
field will diverge from the manifold. If such an event were to occur,
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then non-linear iterations could be performed to perturb the mag-
netic field to the closest place on the manifold (which always exists).
How we find this location is not entirely straightforward; one possi-
ble method is to search in the direction normal to the tangent plane
as discussed in Section 2.2. Having perturbed the system back onto
the manifold the system can then be evolved as usual. If such a pro-
cedure was carried out when the deviation from the manifold was
significant, it is possible that the required large perturbation may
alter appreciably the flow and the subsequent dynamics (recall that
the flow is dependent upon the magnetic field). With this in mind, it
may be useful to consider a scheme which periodically perturbs the
magnetic field, even if the deviation from the manifold is not large,
to ensure that major adjustments are never required.

5 C O N C LU S I O N S

In an inertia-free inviscid geodynamo model, any magnetic field
must evolve subject to a condition called Taylor’s constraint. In this
paper, we have discussed an algorithm that can be used to evolve
a magnetic field subject to this constraint in a full-sphere. Central
to the method is the spatial representation of the magnetic field in
terms of an appropriate finite Galerkin global basis set. There then
ensues not merely a projection but an exact reduction of the Taylor
constraint onto a finite set of homogeneous quadratic conditions.
This development allows an explicit construction of the tangent
hyperplane at every point on the multidimensional Taylor manifold,
and is the keystone to our algorithm. According to Taylor’s method,
the geostrophic flow arises to keep the evolution of the magnetic field
on the manifold. However, as we have demonstrated, inaccuracies in
computing ug and in subsequent numerical projections mean that an
evolution controlled in such a manner would quickly diverge from
the manifold. As we have shown, incorporation of a projection step
onto the local tangent plane keeps the solution trajectories on the
manifold to high precision and is evidently stable.

It is noteworthy to add a comment on the choice of Galerkin basis.
Our algorithm hinges on a finite characterization of Taylor’s con-
straint which is only known for one class: polynomial radial basis
functions combined with spherical harmonics. Thus our Galerkin
scheme (satisfying both the boundary conditions and regularity at
the origin) was built from these functions. A commonly considered
variant for the Galerkin radial basis set is the spherical Bessel func-
tions, the eigenfunctions of the free decay problem. However, no
exact Taylor states can be found for any finite truncation (Livermore
et al. 2008), essentially because Bessel functions do not combine in
the same simple way as polynomials and the number of constraints
exceeds the number of degrees of freedom. The required restriction
of all possible Galerkin radial basis functions to those of polynomial
type, may be viewed in a similar way to the use of spherical har-
monics in solid angle. Alternative (θ , φ) representations exist, such
as double Fourier series (Boyd 2001). However, in general, these
will not have a polynomial representation in Cartesian coordinates
and so will not combine, after transforming to a cylindrical geom-
etry, in the manner required—as spherical Bessel functions do not
in radius—to produce a small number of constraints. However, it is
presumably the case that we can approximate a Taylor state using
any spectral representation by using, for instance, a least-squares
analysis. We would anticipate that, as the truncation increases, the
error will converge to zero.

Finally, we comment briefly on the future directions of this work.
The remaining piece required to evolve the magnetostrophic sys-
tem is a method to find umag as a function of a Taylor state B and

temperature perturbation T . The method we envisage is adapting
that used in Glatzmaier & Roberts (1995) for the absence of vis-
cosity; developments in this direction are underway. In a spherical
shell, compared to a full sphere, more complications arise. Not only
must we consider a more potent Taylor’s constraint [requiring more
independent conditions satisfied compared with a full sphere (Liv-
ermore et al. 2010)], but in addition other constraints arise from
considerations of continuity of the magnetostrophic component of
flow across the tangent cylinder (Hollerbach & Proctor 1993). Al-
though these additional conditions only apply at a single value of s,
they apply to all wavenumbers of the Lorentz force (compared with
only the axisymmetric component for Taylor’s constraint) and may
therefore locally strongly constrain the evolution of the magnetic
field. The imposition of this augmented set of constraints may re-
quire subtle modifications to the algorithm as outlined earlier; this
issue is currently under investigation.
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A P P E N D I X A : E N U M E R AT I O N O F T H E
N O N - Z E RO E L E M E N T S O F T H E
TAY L O R T E N S O R

The Taylor integral (3) by be written in either of the following
equivalent quadratic forms involving the spectral coefficients of
magnetic field bi:

(i) T (s) = s2
√

1 − s2

K∑
k=0

∑
i< j

Ti jk bi b j s2k,

(ii) T (s) = s2
√

1 − s2

K∑
k=0

∑
i< j

Ti jk bi b j c̃k T2k(s), (A1)

in what we denoted in the main text as the monomial or Cheby-
shev representation of the Taylor tensor. For the purposes of this
Appendix, case (ii) may be viewed as a representation in terms of
any general spanning set of polynomials, for instance, any family of
orthogonal polynomials. The arguments that follow are in no way
specific to Chebyshev polynomials. The range of k, bounded above
by K = Lmax + 2Nmax − 3, takes into account the linear degeneracy
caused by the electrically insulating external boundary conditions.
The tensors T and T̃ are very sparse and it is of significant interest
to enumerate the number of non-zero elements NNZ. In fact, we
are only able to derive an upper bound (which in most cases is very
tight) since we cannot rule out the possibility that some elements of
the tensor are zero by chance.

Contributions to T (s) stem from consideration of every possible
‘interaction’ between two harmonics of indices i and j (where the
index parametrizes dependence in both solid angle and radius) and
is of the form

s2
√

1 − s2 QN (s2),

where QN is a polynomial of known degree N(i, j). Furthermore,
to form a non-zero contribution, the two harmonics must obey
certain selection rules as given in Livermore et al. (2008). We
choose to write the Taylor tensors in a strictly upper triangular
structure with i < j to minimize the number of non-zero tensor
entries. Table A1 summarizes the harmonic selection rules for the
three distinct types of interaction (i) toroidal–poloidal (T–S), (ii)
toroidal–toroidal (T–T) and (iii) poloidal–poloidal (S–S) between
two harmonics of wavenumbers m1 and m2, degrees l1 and l2 and
radial indices n1 and n2. Note that, aside from the structure as set out
in (10) and satisfying the boundary conditions (11), the Galerkin
radial basis functions are assumed arbitrary. That is, we assume
only that they are of degree rl+1+2n for given spherical harmonic
l and radial index n but nothing whatsoever further (for instance,
orthogonality is not assumed).

To enumerate the elements, there are two facts that must be borne
in mind. First, as we set out above, if external electrically insulat-
ing boundary conditions are assumed then only the coefficients of
QN (σ ) (denoting σ = s2) up to degree Lmax + 2Nmax − 3 are inde-
pendent. In addition, QN (σ ) contains a common factor of σ max (m−1,0)

(Livermore et al. 2008), which renders zero the first max (m − 1, 0)
coefficients in the monomial representation (i) but not necessarily
in a more general representation (ii). In the former case, a typical
interaction therefore supplies

A(k) = min

[
l1 + l2 − k

2
+ n1 + n2, Lmax + 2Nmax − 3

]
− max(0, m − 1) + 1

independent non-zero elements to T , where k takes the values 3,
2 and 4 for TS, TT and SS interactions, respectively. Note that we
include all non-zero coefficients of QN (including s0), hence the

Table A1. A summary of the selection rules, between (i) toroidal and poloidal harmonics, (ii) toroidal and toroidal harmonics and
(iii) poloidal and poloidal harmonics of wavenumbers m1 and m2, degrees l1 and l2, and radial indices n1 and n2. If the rules are
obeyed, then QN (s2) is non-zero and, other considerations notwithstanding (e.g. degeneracy due to boundary conditions), supplies
N + 1 non-zero entries to the tensor T .

TS TT SS

Selection m1 = m2 m1 = m2 	= 0 m1 = m2 	= 0
rules l1 − l2 = 1 (mod 2) l1 − l2 = 0 (mod 2) l1 − l2 = 0 (mod 2)

same φ-phase l1 	= l2 if l1 = l2 then n1 	= n2

different φ-phase different φ-phase
2N l1 + l2 − 3 + 2n1 + 2n2 l1 + l2 − 2 + 2n1 + 2n2 l1 + l2 − 4 + 2n1 + 2n2
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addition of the last term in the above expression. This may be con-
trasted with the more general representation (ii) (e.g. Chebyshev)
in which a typical interaction supplies

Ã(k) = min

[
l1 + l2 − k

2
+ n1 + n2, Lmax + 2Nmax − 3

]
+ 1,

independent non-zero elements to T̃ . We shall now pursue the full
enumeration for representation (i); that for representation (ii) is
trivially obtained by interchanging A with Ã in the following. Note
that, sinceA(k) ≤ Ã(k), of all possible representations of the Taylor
tensor, that of the monomial representation has the smallest number
of non-zero elements (as illustrated by Table 1).

In the TS case, the number of non-zero elements is of the form
(suppressing the double sum over n1 and n2)

2
∑
l1 odd

∑
l2 even

A(3) + 2
∑

l1 even

∑
l2 odd

A(3) +
∑

l1 even

∑
l2 odd

A(3)

+
∑
l1 odd

∑
l2 even

A(3).

In the above, the first two terms correspond to m > 0 and contain a
factor of two for both cosine and sine terms in azimuth; the last two
terms correspond to m = 0. By noting that A is symmetric in l1 and
l2, the leftmost two summations are identical, as are the rightmost
two.

The enumeration in the TT and SS cases follows similarly. How-
ever, since each of these involves harmonics of the same type (in
contrast to those of the toroidal–poloidal interactions where the har-
monics are of different type), by noting the restriction i < j in (A1),
we only need only consider azimuthal interactions where harmonic
i has cos mφ and harmonic j has sin mφ dependence (and not vice
versa).

The total enumeration of non-zero elements of the tensor T (in
the monomial representation) is therefore

N N Z =
Nmax∑
n1=1

Nmax∑
n2=1

[
2

∑
eo

m = 0

A(3) +
∑
m>0

{
4
∑

eo

A(3)

︸ ︷︷ ︸
TS∑

oo+ee


1︸ ︷︷ ︸
SS

+
∑

oo+ee


2︸ ︷︷ ︸
TT

}]
, (A2)

where


1 = (1 − δl1 l2δn1 n2 )A(4), 
2 = (1 − δl1 l2 )A(2), (A3)

and we have introduced the short-hand∑
oo

=
∑
l1 odd

∑
l2 odd

,
∑

ee

=
∑

l1 even

∑
l2 even

,
∑

eo

=
∑

l1 even

∑
l2 odd

.

(A4)

The summations over odd and even l ≥ m can be evaluated using

Lmax∑
l odd; l≥m

f (l) =
�Lmax/2�−1∑


m/2�
f (2i + 1), (A5)

Lmax∑
l even; l≥m

f (l) =

Lmax/2�−1∑

max(0,�m/2�−1)

f (2i + 2), (A6)

where �x� and 
x� give the nearest integer greater than or less than
x.

Due to the rather awkward structure of NNZ, we have been unable
to simplify it into a closed form analytic expression; however, (A2)
can be evaluated as it stands assisted by computer algebra. Note
that, in either representations (i) or (ii), NNZ scales as O(L6

max) (if
Lmax = Nmax). This is due to the presence of five nested summations,
each over the truncation, with the summand a linear function of A,
itself dependent on the spherical harmonic degree l and radial index
n. Strictly speaking, NNZ is an upper bound for the number of non-
zero elements since some coefficients of the relevant polynomials
could be zero by chance. In fact, this does happen (although rarely
and in an unpredictable manner). For example, in representation (i),
it so happens that there is no coefficient of s0 in

[1S4, 1T9]

and the coefficient of the highest (expected) exponent of s2 is also
zero in the following interactions:[

4S3c
3 , 2T

3c
10

]
,

[
2S3c

10, 4T3c
3

]
,

[
1S7c

12, 6T7c
7

]
and

[
6S7c

7 , 1T7c
12

]
.

Here, the notation [n1 Sm
l1
, n2T

m
l2

] (suppressing the azimuthal phase
information) denotes the interaction between the poloidal mode of
spherical harmonic degree and order, and radial degree (l1, m1, n1)
and the toroidal mode of indices (l2, m2, n2). Adopting a Cheby-
shev representation, within the truncation Lmax = 6, Nmax = 4, no
chance zeros occur, although four chance zeros do occur within the
truncation Lmax = 10, Nmax = 6.

It is also briefly worth remarking that, within the truncated har-
monics 0 ≤ m ≤ l ≤ Lmax there exist magnetic fields for which
not only are certain components of particular interactions zero (as
noted earlier), but that have identically zero interaction with all
harmonics. These are the rather special modes of toroidal type
and of degree and order Lmax. Denoting such a toroidal field
by T and any magnetic field (within the truncation) as B, this
means that [T, B] = 0, where the Taylor interaction [ , ] is defined
in (18). This result is entirely expected (and is therefore absent
from the preceding discussion on ‘chance’ zeros) and follows di-
rectly from a combination of the harmonic selection rules given in
Table A1 and the restriction of the truncation. Interestingly, it fol-
lows that [T + εB, T + εB] = O(ε2) for arbitrary B and ε � 1
and thus T has a Taylorization of zero which is ‘stable’ to linear
perturbations.
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