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A substantial proportion of non-small-cell lung cancer (NSCLC), and adenocarcinoma in particular, depends on a so-
called ‘driver mutation’ for their malignant phenotype. This genetic alteration induces and sustains tumorigenesis, and
targeting of its protein product can result in growth inhibition, tumor response and increased patient survival. NSCLC
can thus be subdivided into clinically relevant molecular subsets. Mutations in EGFR best illustrate the therapeutic
relevance of molecular classification. This article reviews the scope of presently known driving molecular alterations,
including ROS1, BRAF, KRAS, HER2 and PIK3CA, with a special emphasis on ALK rearrangements, and outlines their
potential therapeutic applications.
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introduction
Distinct subtypes of non-small-cell lung cancer (NSCLC) are
driven by a specific genetic alteration—are so-called ‘oncogene
addicted’—and are thus sensitive to inhibition of the
corresponding activated oncogenic pathway. This new
paradigm has substantially impacted lung cancer treatment:
early treatment of advanced NSCLC consisted of
chemotherapy tailored for patients according to the expected
toxicity and more recently according to the histologic subtype
[1]. Nowadays, NSCLC can be further subdivided into
clinically relevant molecular subsets, according to their driving
genetic alterations affecting tumor proliferation and survival.
Treatment of patients with EGFR activating and sensitizing
mutation-driven NSCLC with EGFR tyrosine kinase inhibitors
(TKIs) results in an unprecedented response rate (RR) of 60–
80%, a median progression-free survival (PFS) of ∼8–13
months, as well as an improved quality of life compared with
chemotherapy [2, 3]. Tumor genotype analysis has to date
identified driver alterations in ∼50–80% of NSCLC patients
according to demographics, and particularly ethnicity. Sequist
et al. [4] carried out a multiplexed PCR-based assay to
simultaneously identify >50 mutations in several key NSCLC
genes on parallel to FISH analysis for EML4-ALK
translocations on 552 tumors mainly from Caucasian smoker
patients. Eighty-one percent were adenocarcinomas, and a
genetic driver change was identified in 51% of all samples,
most commonly KRAS (24%), EGFR (13%) and EML4-ALK
translocation (5%). Less common mutations were also
identified: TP53 (4%), PI3KCA (2%), beta-catenin (2%), BRAF
(1%), NRAS (1%), HER2 (∼1%) and IDH1 (∼1%). A Chinese
surgical series by Sun et al. [5] examined a genotyping panel of
mutations in 52 resected lung adenocarcinomas from East

Asian never smokers and found 90% of tumors to be
harboring a mutation in EGFR, KRAS, ALK or HER2. Focusing
on adenocarcinoma subtype, the NCI’s Lung Cancer Mutation
Consortium (LCMC) tested 830 patients with lung
adenocarcinoma, and detected a driver mutation in 54%: KRAS
25%, EGFR 23%, BRAF 3%, PIK3CA 3%, HER2 1%, MEK1
0.4%, NRAS 0.2%, ALK rearrangements 6% and MET
amplifications 2% [6].
Takeuchi et al. [7] identified KIF5B–ALK fusions in ∼0.2%

of resected adenocarcinomas, ROS1 gene rearrangements with
five different fusion partners: TPM3, SDC4, SLC34A2, CD74
and E2R in 1.2% of adenocarcinomas and CCDC6-RET in an
extremely small minority of adenocarcinomas. Kohno et al. [8]
identified KIF5B–RET fusions in ∼1.9% of adenocarcinomas
(patients of Japanese ancestry). At ASCO 2012, Capelletti et al.
reported on 11 patients with KIF5B-RET fusions among 643
patients [9] More recently, Togashi et al. [10] identified a
KLC1–ALK fusion with an unreported incidence. All of these
ALK, RET and ROS1 fusions have transforming capability.
EGFR and KRAS mutations, ALK translocations and MET

amplification are found in <5% of squamous cell carcinoma,
and HER2 and BRAF mutations have not yet been described in
this histological subtype. Squamous cell carcinoma (SCC) of
the lung is a distinct molecular subtype of lung cancer
potentially amenable to distinct molecularly targeted therapies.
The Cancer Genome Atlas (TCGA) is conducting DNA, RNA,
and miRNA sequencing along with DNA copy number
profiling, quantification of mRNA expression and promoter
methylation on surgically resected samples of SCC. Exome
sequencing of 178 samples revealed 13 significantly mutated
genes, including TP53, CDKN2A, PTEN, KEAP1, and NFE2L2.
Apart from the near universal loss of TP53 and CDKN2A,
alterations in the NFE2L2/KEAP1 and PI3K/AKT pathways
were found in 35% and 43% of tumors analyzed.
Rearrangements involving several known tumor suppressors
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CDKN2A. CDKN2A loss of function was observed in 72% of
specimens. Potential therapeutic targets for clinical trials with
currently available drugs were identified in 127
patients (75%) [11].
This review focuses on ALK modification in NSCLC, but

encompasses other genetic alterations that contribute to lung
carcinogenesis. Many oncogene products represent targets for
drug therapy, and the expanding knowledge of molecular
pathways implicated in lung tumorigenesis will radically
change treatment, with hope for less toxic, targeted treatment
and subsequently better outcomes.

ALK rearrangements
Anaplastic lymphoma kinase (ALK) is an orphan member of
the insulin superfamily of receptor tyrosine kinases, whose
normal function is poorly understood. Chromosomal
rearrangements involving the ALK gene occur in a variety of
malignancies, including anaplastic large cell lymphoma,
inflammatory myofibroblastic tumors and NSCLC. To date, in
NSCLC, ALK has three reported fusion partners: EML4, KLC1
and KIF5B. TFG represents a potential forth fusion partner
which has however not been histopathologically proven until
today [12]. Soda et al. [13] showed that a small inversion
within chromosome 2p results in the formation of a fusion
gene comprising portions of the echinoderm microtubule-
associated protein-like 4 (EML4) gene and the ALK gene. The
fusion gene results in constitutive ALK kinase activation,
serving as a potent ‘oncogenic driver’ with transforming ability.
The EML4–ALK fusion transcript could be detected in 6.7% of
the 75 NSCLC patients (of Japanese ethnicity), and this
alteration was mainly mutually exclusive with EGFR or KRAS
mutations. EML4-ALK-positive tumors were mostly
adenocarcinomas and tended to affect younger and more
frequently never/light smokers [14]. In these tumors, ALK is
the sole determinant of critical growth pathways, resulting in
the activation of downstream canonical PI3K/AKT as well as
MAPK/ERK pathways. Within the pivotal phase I/II clinical
trial by Kwak et al. [15], treatment of 82 EML4-ALK-positive
patients with the ALK TKI crizotinib resulted in a 57% RR and
stable disease in 33% of the patients. The kinetics of clinical
response was comparable to previous experiences with EGFR
TKIs in EGFR-mutated NSCLC. The median PFS was 10
months, 1-year overall survival (OS) was 74% [95% confidence
interval (CI) 63–82] and 2-year OS was 54% (95% CI 40–66),
with a median OS not yet reached. A retrospective study by
Shaw et al. [16] suggests that crizotinib might prolong OS in
ALK-positive NSCLC, when compared with historical ALK-
positive patients not exposed to crizotinib, who had a similar
course to the general NSCLC population, suggesting that the
ALK fusion is predictive but not prognostic. On the basis of its
demonstrated efficacy and safety in phase I and II studies,
crizotinib was granted accelerated approval by the Food and
Drug Administration (FDA) for the treatment of advanced,
ALK-positive NSCLC. Phase III study results are awaited, both
in the second-line setting comparing crizotinib to pemetrexed
or docetaxel (NCT00932893) and in the first-line setting in
comparison to cisplatin and pemetrexed or carboplatin and
pemetrexed (NCT01154140).

resistance to ALK inhibitors
As is the case with EGFR TKIs, clinical benefit of crizotinib
therapy is limited by the development of acquired resistance.
Resistance to TKIs can be mediated either by ALK point
mutation and/or gene amplification, or activation of bypass
signaling. The most frequent resistance mutations consist in
amino acid substitutions increasing kinase activity and/or
hindering drug binding, as described, for example, for EGFR in
NSCLC and BCR-ABL in chronic myeloid leukemia,
respectively. In the ALK setting, at least eight point mutations
conferring resistance to ALK inhibitors have already been
described and most of them shown to result in cross-resistance
to other ALK inhibitors [17, 18]. Mutations can involve the
gatekeeper site within the kinase domain and interfere with
inhibitor binding (L1196M), the solvent front—also altering
crizotinib binding (G1202R, S1206Y), the ATP-binding pocket
(G1269A) or amino acids C- or N-terminal to the αC-helix—
affecting ATP kinase affinity (C1156Y, L1152R, F1174L,
1151Tins) [19]. More potent and irreversible inhibitors might
be capable of overcoming gatekeeper resistance [20].
Another mechanism of resistance is the activation of a

parallel ‘side-road’ or of the downstream pathways. In this
situation combination targeted approaches need to be
evaluated, such as in the case of MET amplification in EGFR-
mutated NSCLCs. A combination of EGFR and MET
inhibitors effectively overcomes this resistance in preclinical
models [21]. Two recent small series have looked into the
mechanisms of resistance to crizotinib and will be summarized
below.
Katayama et al. analyzed biopsies of 18 patients with NSCLC

who had developed secondary resistance to crizotinib and
observed multiple additional genetic changes in the ALK gene,
including ALK gene amplification, and further not previously
described point mutations (T1151 insertion, G1202R and
S1206Y) [22]. In addition, some cells harbor both ALK
amplification and gatekeeper mutations [23]. The clinically
available ALK inhibitors tested (CH5424802 and ASP-3026)
showed distinct selectivity profiles against the various ALK
resistance mutations, with accordingly different degrees of drug
sensitivity. Doebele et al. [24] also analyzed tissue from 14
patients with ALK-positive NSCLC with radiological
progression while on crizotinib, and identified ALK mutations
in 4 patients, including a novel mutation G1269 which induced
crizotinib resistance in cell lines. Doebele et al. also found copy
number gain, defined as a more than two-fold increase in the
mean rearranged gene per cell in the post-treatment biopsy
compared with the pre-treatment biopsy, to be the mechanism
of resistance in 2 patients out of 14. These results indicate that
multiple distinct mutations in the ALK kinase domain can
abrogate the inhibitory capacity of crizotinib. This is in sharp
contrast to the EGFR-activating mutations, where T790M
essentially represents the sole resistance mutation [25].
Nevertheless, in contrast to EGFR inhibitors, resistance due

to secondary mutations or amplification of the drug target
does not represent the predominant mechanism of acquired
resistance to ALK inhibitors. Bypass signaling, including the
KIT and EGFR pathways, has been identified as potential
resistance mechanisms. Doebele et al. identified 1 patient out
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of 14 with an EGFR-activating mutation and 2 patients with
KRAS mutations. Nevertheless, combined inhibition of ALK
and EGFR failed to induce apoptosis in resistant cell lines, a
phenomenon that was also observed by Katayama et al. [22].
The KIT amplification-mediated resistance resembles the
resistance to EGFR TKI mediated by MET amplification, with
preclinical data suggesting a combination of imatinib and
crizotinib may overcome this particular mechanism of
resistance.
Overall, ALK mutations account for ∼37% of acquired

resistance, copy number gain for 18%; alternate oncogene
activation with or without loss of ALK fusion gene accounts
for ∼36%, and unknown mechanisms for 18%. Interestingly,
sometimes multiple mechanisms of resistance were observed in
the same patient, e.g. an ALK resistance mutation and EGFR
activation, or copy number gain and an ALK mutation [18] To
support this, Doebele et al. subsequently reported the analysis
of 19 ALK-positive patients that underwent rebiopsy after
progression under crizotinib therapy. Rebiopsy yielded tumor
in 84% of cases, 81% of which demonstrated a plausible
mechanism of resistance. 50% were ALK non-dominant, with
31% ALK kinase domain mutations and 19% ALK fusion gene
copy number gain. 50% were ALK-dominant, with 31%
demonstrating the emergence of alternate oncogenes (EGFR or
KRAS activating mutation), and 19% unknown [26]. This
potential for multiple and simultaneous resistance mechanisms
has several clinical implications, affecting diagnostic evaluations
as well as treatment strategies. First, new ALK inhibitors might
effectively inhibit some resistant ALK fusion products, with a
coexistent mechanism of resistance hampering tumor
responsiveness. This clearly supports the use of combination
therapy to overcome resistance. Second, the question of TKI
continuation upon progression remains unresolved. Third,
tumor heterogeneity, both within the primary tumor and
among individual metastases, will raise the question of multiple
re-biopsies. From a therapeutic standpoint, the wide array of
resistance alterations will make it challenging to develop
strategies to overcome ALK inhibitor resistance [27].
Various ALK inhibitors are being tested in ongoing trials. A

phase I dose escalation of ALK TKI LDK378 (Novartis
Pharmaceuticals) is recruiting patients with ALK-positive
advanced NSCLC (NCT01283516). A phase I/II study (safety,
tolerability, pharmacokinetics and preliminary antitumor
activity) is testing the combined ALK/EGFR inhibitor AP26113
(ARIAD Pharmaceuticals) in ALK-positive tumors including
advanced NSCLC (NCT01449461).

heat shock protein 90 inhibitors in ALK-driven
NSCLC
Heat shock protein 90 (Hsp90) is a molecular chaperone that
plays a key role in the conformational maturation of oncogenic
signaling proteins. Inhibitors bind to Hsp90 and induce the
proteasomal degradation of its client proteins. Tumor cells
contain Hsp90 complexes in an activated conformation that
facilitates malignant progression but also exhibit high-affinity
to Hsp90 inhibitors and therefore represent a unique target for
cancer therapeutics [28]. Clinical data have shown the efficacy
of Hsp90 inhibitors in combination with EGFR TKIs after

progression on TKI therapy. Hsp90 inhibitors might abrogate
the oncogenic switch that allows cancer cells to signal through
alternative receptor tyrosine kinases. In fact, most oncogenic
kinases, including BRAF, MET and ALK, are Hsp90 clients
that are sensitive to Hsp90 inhibition [29]. Clinical evaluation
of another Hsp90 inhibitor is currently in progress in
unselected advanced NSCLC patients (STA 9090, Synta
Pharmaceuticals Corp., NCT01031225). A single-arm phase II
study is testing ganetespib (STA-9090), an Hsp90 inhibitor
(Synta Pharmaceuticals Corp.) in ALK-positive NSCLC
patients (NCT01562015). A phase II study is testing the Hsp90
inhibitor AUY922 (Novartis Pharmaceuticals) in patients with
advanced NSCLC including EGFR-mutated or ALK-positive
patients who have received at least two lines of prior
chemotherapy (NCT01124864). Another phase II study testing
IPI-204, a novel Hsp90 inhibitor (Infinity Pharmaceuticals)
tested in advanced ALK-positive NSCLC patients, has been
closed due to slow accrual (NCT01228435).

ROS1 rearrangements
ROS1, like ALK, is a receptor tyrosine kinase of the insulin
receptor family. It has been initially identified as a potential
driver mutation in an NSCLC cell line and one NSCLC patient
[12]. Translocations leading to ROS1 fusion transcripts were
shown to lead to constitutive kinase activity and sensitivity to
TKIs. At present, data suggest that ROS1 is inhibited by some
aspecific multiple kinase inhibitors, including crizotinib. There
are currently no specific ROS1 inhibitors in clinical trial. The
clinical characteristics of patients with ROS1 rearrangements
were described by Bergethon et al. [30], who screened 1073
NSCLC patients using an ROS1 FISH assay, mainly in the
United States. Approximately 2% of NSCLC harbored ROS1
rearrangements. As is the case with ALK translocations, these
patients tended to be younger than the wild-type patients and
were more likely to be never/light smokers. Of all never
smokers screened, 6% harbored ROS1 rearrangements. In vitro,
crizotinib inhibits ROS1 activity and cell proliferation.
Preclinical development of ROS1-specific kinase inhibitors is
ongoing [31]. In the phase I study PROFILE 1001, crizotinib
demonstrated marked antitumor activity in 14 evaluable
patients with advanced NSCLC harboring ROS1 gene
rearrangement, with 7 patients experiencing a partial response,
1 experiencing a complete response, and a 79% disease control
rate at 8 weeks [15, 32].

BRAF mutations
BRAF is a kinase that links RAS GTPase to downstream
proteins of the MAPK pathway. BRAF lies downstream of
KRAS and directly phosphorylates MEK. BRAF mutations
cause increased kinase activity and constitutive activation of
MAPK2 and MAPK3. BRAF mutations are found in ∼1–5% of
NSCLC, almost exclusively adenocarcinomas [33–36]. Paik
et al. [37] found 18 out of 697 screened lung adenocarcinomas
to harbor a BRAF mutation [36]. Remarkably, all patients were
current or former smokers, and there seems to be a paucity of
BRAF mutations in non-white populations, with Sasaki et al.
[35] reporting 1 out of 97 Japanese patients with lung
adenocarcinoma harboring a BRAF mutation. Marchetti et al.
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screened 1046 NSCLC patients and found BRAF mutations in
4.9% of adenocarcinomas and 0.3% of squamous NSCLC. The
mutations found in NSCLC are distinct from the melanoma
setting: whereas BRAF-mutated melanoma harbors a V600E
amino acid substitution in more than 80% of cases, NSCLC
harbors non-V600E mutations, distributed in exons 11 and 15,
in ∼40%–50% of cases. In Marchetti’s publication, all non-
V600E mutations (2%) detected in adenocarcinomas were
found in smokers and V600E mutations (2.8%) were
substantially more frequent in females and in never smokers.
In this series, follow-up data were available for the 331 resected
lung carcinomas, showing that patients with V600E BRAF
mutations had more aggressive tumor histotype, characterized
by micropapillary features and associated with shorter median
disease-free survival and OS, while no prognostic impact was
found for the non-V600E mutations [36]. Interestingly,
mutations in BRAF were mutually exclusive with EGFR and
KRAS mutations, and ALK rearrangements. Due to the large
predominance of V600E mutations in melanoma, current
drugs targeting BRAF such as vemurafenib have been tailored
to have specific activity against V600E mutant kinase. Their
activity against other BRAF mutations found in NSCLC, such
as G469A (39%) and D594G (11%) is unknown. Preclinical
data suggest that non-V600E mutated BRAF kinases are
resistant to vemurafenib [38]. Conversely, the CRAF inhibitor
sorafenib was found to be ineffective against the V600E
mutant isoform, but might have increased activity against
other BRAF mutants that have increased CRAF activity [39].
In addition, there are preclinical data, suggesting that BRAF
mutations might predict sensitivity of NSCLC cells to MEK
inhibitors [40].
Clinical data on efficacy and resistance to BRAF pathway

inhibitors are not yet available. According to preclinical data,
amplification of BRAF or activation of downstream pathway
components such as activating MEK mutations, or signaling
through other RAF family members, might be among the main
mechanisms of resistance [41]. It has been observed that colon
cancer patients harboring V600E BRAF mutations show only a
very limited response to vemurafenib [42]. In this setting, BRAF
inhibition leads to rapid feedback activation of EGFR, and
blockade of EGFR with cetuximab, gefitinib or erlotinib shows
strong synergy with BRAF V600E inhibition in vitro [43].
A phase I study testing the multiple RAF kinase inhibitor

(including CRAF, BRAF and the activated mutant BRAF
V600E) XL281 (BMS-908662, Bristol-Myer Squibb) has been
completed (NCT01086267) and results are awaited. AZD6244,
a novel and highly selective MEK inhibitor is in phase II
clinical trial for patients with solid tumors harboring a BRAF
mutation (NCT00888134), and a phase II randomized trial
versus pemetrexed in patients with advanced NSCLC in the
second or third line has been completed, with results pending
(NCT00372788). For the same compound, data are awaited
from a phase II trial comparing its combination with docetaxel
versus docetaxel alone in patients with advanced NSCLC with
mutated KRAS (NCT00372788). The BATTLE-2 Program, a
biomarker-integrated targeted therapy study in previously
treated patients with advanced NSCLC, also tests this
compound in combination with MK2206 (Merck), an AKT
inhibitor (NCT01248247). And finally, an ongoing phase II

study evaluates the selective BRAF kinase inhibitor
GSK2118436 (GlaxoSmithKline) in patients with advanced
NSCLC harboring BRAF mutations (NCT01336634).

KRAS mutations
Activating mutations in codons 12 and 13 of the KRAS
oncogene occur in ∼24% of lung adenocarcinomas and are
mutually exclusive to EGFR mutations, HER2 mutations, ALK
rearrangements and BRAF mutations [4]. KRAS mutations
seem to occur early in the development of smoking-related
carcinomas [44]. Cappuzzo and colleagues carried out a
prospective molecular marker analysis of EGFR and KRAS in a
large sample of patients randomly assigned to placebo or
erlotinib maintenance therapy after first-line chemotherapy.
KRAS mutations seemed to be prognostic for reduced PFS,
regardless of treatment received [45]. There is currently no
drug available capable of inhibiting KRAS directly, and current
strategies focus on potential targets downstream of KRAS in
the RAS/RAF/MEK pathway. Sorafenib, a weak RAF inhibitor,
showed efficacy in KRAS mutant NSCLC according to a brief
report by Smit et al. [46], with a partial response in 3 out of 10
patients and stable disease in 6 out of 10 patients, with a
median PFS of 3 months. Sorafenib also showed efficacy in the
BATTLE trial, a phase II adaptive randomized trial, where
KRAS mutant NSCLC on sorafenib showed a lower progression
rate at 8 weeks when compared with the whole study
population of 244 patients [47]. An ongoing phase II study is
testing the MEK inhibitor GSK1120212 (GlaxoSmithKline)
versus docetaxel in the second-line setting in advanced NSCLC
patients with specific mutations in the KRAS signaling
pathway (including KRAS) (NCT01362296).

HER2 mutations
HER2 (or ERBB-2) is a member of the EGFR family of
receptor tyrosine kinases. It does not have a known ligand and
is activated by homodimerization or heterodimerization with
other members of the HER family. HER2 activates the PI3K/
AKT/mTOR (mammalian target of rapamycine) pathway.
HER2 overexpression or gene amplification is associated with
sensitivity to trastuzumab and lapatinib in breast cancer. In a
meta-analysis of 40 published studies, HER2 overexpression
assessed by immunohistochemistry (IHC) was shown to be a
marker of poor prognosis in NSCLC, with a hazard ratio of
1.48 (95% CI 1.22–1.80) and 1.95 (95% CI 1.56–2.43) in
adenocarcinomas specifically. No prognostic value was found
in squamous cell carcinomas. HER2 amplification determined
by FISH was not related to prognosis [48]. In the lung cancer
setting, amplification was found in 2–23% of the patients,
while HER2 mutations were found in 2% of lung
adenocarcinomas [49]. HER2 mutations consist of insertions in
exon 20, leading to constitutive activation of the receptor, with
downstream activation of AKT and MEK [50]. In vitro, cells
harboring these mutations are sensitive to TKIs targeting HER2
and EGFR such as lapatinib [51] but are resistant to TKIs
targeting EGFR alone. This is the case irrespective of the EGFR
mutational status (i.e. including the small number of tumors
harboring both EGFR and HER2 mutations), the activating
signals being executed through the HER2 kinase [49].
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In preclinical models of NSCLC trastuzumab has additive or
synergistic antitumor activity in combination with various
cytotoxic agents [52]. Trastuzumab has been tested in
advanced NSCLC patients overexpressing HER2 in a phase II
trial, in combination with cisplatin and gemcitabine
(NCT00016367), and failed to show survival benefit in all
HER2 IHC-positive lung cancers. Nevertheless, 80% of the
patients with IHC 3+ disease on study treatment were still alive
at 6-month follow-up, compared with 64% of the overall
population, and an RR of 83% and a median PFS of 8.5
months were observed in the six trastuzumab-treated patients
with HER2 3+ or FISH-positive NSCLC [53]. In HER2-
amplified NSCLC, there seems to be no benefit from lapatinib
[54]. A case report from 2006 describes a female non-smoker
with metastatic adenocarcinoma resistant to cisplatin, taxane
and EGFR TKI therapy, with a tumor carrying an exon 20
mutation (G776L) and HER2 amplification responding to
trastuzumab given weekly together with paclitaxel [55]. A
single-arm trial of the EGFR/HER2 dual inhibitor BIBW 2992
(afatinib) showed responses in 3/3 assessable patients (out of 5
identified) with adenocarcinoma harboring HER2 activating
mutations, even in the context of resistance to other EGFR- or
HER2-targeted compounds [56].
Trastuzumab is currently being tested alone, in IHC-positive

or, respectively, HER2-mutated or -amplified NSCLC
(NCT00004883 and NCT00758134) and in combination with
carboplatin and paclitaxel. Results are pending. Lapatinib has
been tested in molecularly unselected advanced NSCLC
patients, including one trial that has been stopped for futility
after interim analysis (NCT00073008). Pertuzumab has been
tested in a phase II trial in advanced NSCLC patients with
HER2 activation (NCT00063154). Results are pending. More
trials investigating afatinib in other advanced NSCLC patients,
including in combination with EGFR TKIs, are ongoing.

PIK3CA mutations
PIK3CA mutations regenerate phosphatidylinositol-3-
phosphate, which is a key mediator between growth factor
receptors and downstream signaling pathways. In NSCLC,
PIK3CA mutations affect most frequently the catalytic domain
encoded in exon 9 and are found in ∼2% of NSCLC, as
frequently in adenocarcinoma as in squamous cell carcinoma
[57]. PIK3CA mutations induce oncogenic cellular
transformation [58]. Amplification of PIK3CA has also been
observed in NSCLC, particularly in squamous cell carcinoma,
but the oncogenic potential of PIK3CA amplification alone has
not yet been shown [59]. Chaft et al. reported 23 out of 1125
patients harboring PIK3CA mutations, 16 (70%) of which had
coexisting mutations in other oncogenes: 10 KRAS, 1 BRAF, 1
ALK rearrangement and 3 EGFR exon 19 deletions [60]. This
is in sharp contrast to the mutual exclusiveness of driver
oncogene mutations found in lung adenocarcinomas harboring
EGFR, KRAS or ALK transformations. In their sample, the
presence of coexisting oncogene mutations was associated with
an inferior outcome, with only one patient having received an
experimental agent targeting PIK3CA. Cell lines with PIK3CA
mutations are sensitive to downstream inhibitors such as
mTOR inhibitors, but this sensitivity is abrogated by coexistent

KRAS mutation [61]. Preclinical data actually suggest that
coexisting KRAS and PIK3CA mutations are associated with
resistance to PI3K/AKT/mTOR inhibitors.
The oral PI3K inhibitor BKM120 (Novartis

Pharmaceuticals) is being tested in a phase II trial in pretreated
advanced NSCLC patients with activated PI3K pathway
(NVT01297491). The same compound is also being tested in
combination with erlotinib in the setting of resistance to EGFR
TKIs (NCT01487265). Another oral specific PI3K inhibitor,
GDC0941 (Genentech), is being tested in a phase Ib trial in
combination with carboplatine/paclitaxel ± bevacizumab or
cisplatine/pemetrexed/bevacizumab in unselected patients with
advanced NSCLC (NCT00974584).

MET amplification and point mutations
The MET oncogene encodes hepatocyte growth factor (HGF)
receptor, a transmembrane receptor with tyrosine kinase
activity. Its amplification has been reported in 1.4% of lung
adenocarcinomas in a Japanese population and 21% of NSCLC
in a European population including squamous cell carcinomas
[62, 63]. MET amplification has transforming capacity, being
sufficient to drive the proliferation of cancer cells and
development of metastasis in a mouse melanoma model [64].
MET amplification is observed as a mechanism of resistance
in ∼20% of the patients with activating EGFR mutations
progressing under EGFR TKI [65]. Point mutations in the
kinase domain of MET are rare in NSCLC [66, 67]. While their
prevalence is low, their potential for causing disease
progression is significant [68], and when used to replace
endogenous MET in the mouse germline, these mutations
cause a variety of tumors including carcinomas of various
tissues of origin [69]. In NSCLC, most of MET mutations are
located in the extracellular sema domain and the
juxtamembrane domain of MET, with a preclinical
demonstrated potential to affect ligand binding, receptor
activation and receptor turnover.
The MET pathway can be inhibited by monoclonal

antibodies against HGF or its receptor or by MET TKIs [70].
AMG102 (Amgen), a human monoclonal antibody that binds
and neutralizes HGF/scatter factor (SF), is being tested with
erlotinib in a phase I/II trial in pretreated patients with
advanced NSCLC (NCT01233687).
Interestingly, two randomized phase II trials of a MET

monoclonal antibody (onartuzumab, Genentech) and a MET-
specific TKI tivantinib together with erlotinib versus erlotinib
alone showed promising results in unselected pretreated
NSCLC patients and are now being tested in a phase III trial
[71]. Onartuzumab is being tested in various settings including
this randomized phase III trial which is testing onartuzumab
or placebo in combination with erlotinib in pretreated patients
with advanced MET IHC-positive NSCLC (NCT01456325) ;
another randomized phase III trial is testing onartuzumab or
placebo in combination with carboplatin/cisplatin and
paclitaxel in untreated patients with advanced squamous cell
carcinoma (NCT01519804); a randomized phase II trial is
testing onartuzumab or placebo in combination with
bevacizumab/carboplatine/paclitaxel or cisplatin/pemetrexed
(NCT01496742). Tivantinib (ARQ197, Daiichi Sankyo) is
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tested in a phase III trial versus placebo in combination with
erlotinib in advanced non-squamous NSCLC (NCT01244191)
[72]. Besides crizotinib, a potent MET inhibitor, various other
small-molecule MET inhibitors are being tested in NSCLC,
including GSK13693089 (foretinib, a MET/VEGFR2 inhibitor,
GlaxoSmithKline) and XL184 (cabozantinib, a MET/VEGFR2
inhibitor, Exelixis), even if, to date, a predictive biomarker for
MET inhibitor sensitivity remains to be defined.

conclusion
The discovery of EGFR mutations has opened the era of
targeted therapy in NSCLC, shifting treatment from platinum-
based chemotherapy for all fit patients to molecularly
personalized therapy. The greatest improvements in outcome are
obtained by targeting the ‘driver genetic alteration’ of each
specific molecularly defined subset, rather than targeted therapy
of unselected patients. The identification of the key molecular
abnormality will thus become crucial, even if numerous very
small subsets of tumors will have to be identified.
Acquired resistance has emerged as a major hurdle preventing

targeted therapy from having a substantial long-term impact on
outcome beyond their initial benefit. The understanding of these
mechanisms will hopefully allow a better sequencing and
optimal combination of targeted agents in each biologically
defined setting. Resistance mutations may be overcome with
more potent and/or irreversible inhibitors capable of blocking
mutated targets. Combination therapies will most likely be the
key to overcome resistance mediated by activation of parallel or
downstream pathways. Several other mechanisms of drug
resistance, such as drug efflux by antiporter efflux pumps, as
well as anti-apoptotic mechanisms have the potential to limit
drug efficacy and need to be further explored.
Beyond oncogenic activation, other genetic alterations not

encoded by the DNA sequences, referred to as epigenetic
changes, also represent potential therapeutic targets. As
opposed to genetic lesions, the epigenetic changes are
potentially reversible by a number of small molecules such as
histone deacetylases, which are, however, beyond the scope of
this review [73].
In conclusion, targeted therapies hold promise for improved

outcome in advanced NSCLC patients, even after the
development of acquired resistance. This, however, will
demand the incorporation of broad genotyping of NSCLC into
the clinic as a standard of care, as well as successive repeated
and potentially multisite biopsies.
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