
Gene expression

Assessing allele-specific expression across

multiple tissues from RNA-seq read data

Matti Pirinen1,*, Tuuli Lappalainen2,3,4,5,6,7, Noah A. Zaitlen8,

GTEx Consortium, Emmanouil T. Dermitzakis2,3,4, Peter Donnelly9,10,

Mark I. McCarthy9,11 and Manuel A. Rivas9,*

1Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland, 2Department of Genetic

Medicine and Development and, 3Institute for Genetics and Genomics in Geneva (iG3), University of Geneva,

Geneva, Switzerland, 4Swiss Institute of Bioinformatics, Geneva, Switzerland, 5Department of Genetics, Stanford

University, Palo Alto, CA, USA, 6New York Genome Center, New York, NY, USA, 7Department of Systems Biology,

Columbia University, New York, NY, USA, 8Department of Medicine, University of California, San Francisco, CA,

USA, 9Wellcome Trust Centre for Human Genetics and 10Department of Statistics, University of Oxford, Oxford, UK

and 11Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK

*To whom correspondence should be addressed.

Associate Editor: Ivo Hofacker

Received on September 28, 2014; revised on January 9, 2015; accepted on January 29, 2015

Abstract

Motivation: RNA sequencing enables allele-specific expression (ASE) studies that complement

standard genotype expression studies for common variants and, importantly, also allow measur-

ing the regulatory impact of rare variants. The Genotype-Tissue Expression (GTEx) project is col-

lecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are

required for the analysis of these data.

Results: We present a statistical method to compare different patterns of ASE across tissues and to

classify genetic variants according to their impact on the tissue-wide expression profile. We focus

on strong ASE effects that we are expecting to see for protein-truncating variants, but our method

can also be adjusted for other types of ASE effects. We illustrate the method with a real data ex-

ample on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a

simulation study to assess our method more generally.

Availability and implementation: http://www.well.ox.ac.uk/~rivas/mamba/. R-sources and data

examples http://www.iki.fi/mpirinen/

Contact: matti.pirinen@helsinki.fi or rivas@well.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advancements in sequencing technologies are enabling unprece-

dented possibilities to study the transcriptome (Montgomery et al.,

2010; Pickrell et al., 2010). In RNA-sequencing studies, it is possible

to distinguish between transcripts from the two haplotypes of an

individual using heterozygous sites. This approach, called allele-

specific expression (ASE) analysis, allows an alternative way to

quantify cis-regulatory variation, complementary to eQTL analysis.

In addition, ASE has been utilized to analyze transcriptome effects

of nonsense-mediated decay (NMD) triggered by predicted loss-

of-function variants (Lappalainen et al., 2013; MacArthur et al.,

2012; Montgomery et al., 2011).

The Genotype-Tissue Expression (GTEx) project is establishing

a resource database and tissue bank for the scientific community to

study the relationship between genetic variation and gene expression

in human tissues (GTEx-Consortium, 2013), with an aim to
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interpret GWAS findings for translational research. The project is

analyzing gene expression from various perspectives, including tran-

script structure, expression quantity and diversity, eQTLs, and ASE

differences. Furthermore, as medical genetics pursues exploration of

rare variants, insights gained from the study of DNA and RNA

sequencing data in the GTEx project will become important for

functional interpretation of rare variants (Rivas et al., 2011, 2013;

Zuk et al., 2014).

To date, some methods have been proposed for the analysis of

ASE data, but these methods largely focus on a single tissue (Degner

et al., 2009; Ronald et al., 2005; Sun, 2012; Zhang et al., 2009) al-

though some could be applied also to multiple tissues (Skelly et al.,

2011). The multi-tissue aspect is important for interpreting disease

association findings (Grundberg et al., 2012; McCarroll et al., 2008)

since eQTL and early ASE studies suggest widespread tissue-specific

effects of cis-regulatory variants (Dimas et al., 2009; Gutierrez-

Arcelus et al., 2013). Currently, more sophisticated methods for

cross-tissue eQTL analysis are emerging (Flutre et al., 2013).

However, eQTL analysis requires large sample sizes, while ASE ana-

lyses can be conducted with significantly smaller datasets.

In this article, we present novel statistical methods for analyzing

ASE patterns from RNA-seq data across multiple tissues. Our main

motivation is phenomena such as NMD that can lead to a substan-

tial imbalance of transcripts from the two alleles (Fig. S37 in

Lappalainen et al., 2013) and can vary considerably between cell

types (Linde et al., 2007). From a statistical point of view, an advan-

tage of prominent ASE is that it can be detected even with a single

individual and with as small a read count as 10. (See Middle panel

of Fig. 4 for an example dataset.)

We address three main questions:

• In which tissues does a heterozygous site show ASE?
• Which tissues show similar ASE effects at the site studied?
• What proportion of a certain class of variants, such as protein

truncating variants (PTV), show ASE in all tissues, only in some

tissues, or in no tissues?

For the first question, a standard frequentist version of the bino-

mial test is commonly used. However, an interpretation of such a

test depends on factors like the read count and simultaneous analysis

of multiple tissues is very challenging. Hence, we require that our

statistical framework allow a simultaneous comparison between sev-

eral cross-tissue models for observed data. For example, we want to

weigh relative support of the model where all tissues show ASE to

the models where only a single tissue shows ASE and to the null

model where none of the tissues show ASE. For this purpose, we

adopt a Bayesian model comparison framework. Among its favor-

able properties are natural ways to compare models with differing

number of parameters and to fully account for the amount of avail-

able data when evaluating relative support of the models.

2 Methods

2.1 Grouped tissue model
We consider RNA-seq read counts overlapping a particular genomic

position from multiple tissues of one individual who is heterozygous

at that position. (See Section 4 and Supplementary Information

for extensions to multiple sites and individuals.) For tissue

s ¼ 1; . . . ;T, let ys1 and ys2 be the number of reads supporting

the reference and non-reference allele, respectively, and let

ns ¼ ys1 þ ys2. We classify the tissues into three groups: no ASE (N ),

moderate ASE (M) and strong ASE (S) and denote the group of

tissue s by cs 2 fN ;M;Sg. Motivation for introducing a separate

group for strong ASE is to identify the variants with the most ex-

treme ASE effects. Such effects require careful checking for possible

biases in the data (Degner et al., 2009; Panousis et al., 2014) and

have been seen, for example, among PTVs that exhibit a whole spec-

trum from none to complete ASE (Fig. S37 in Lappalainen et al.,

2013; Kukurba et al., 2014). For each group G 2 fN ;M;Sg, we de-

note the proportion of the transcripts with the reference allele by

hðGÞ. We use a binomial sampling model for the data conditional on

the group indicators:

ys1jcs � Binðns; hðcsÞÞ (1)

Possible expression states of the tissues differ in the prior assump-

tions about parameters hð�Þ. We use the following priors (Fig. 1) to

describe different groups:

hðN Þ � Betað2000; 2000Þ

hðMÞ � 1

2
Betað36;12Þ þ 1

2
Betað12; 36Þ

hðSÞ � 1

2
Betað80; 1Þ þ 1

2
Betað1;80Þ

Under no ASE model N both alleles are expressed (almost) equally

and hence hðN Þ � 0:5. As in Skelly et al. (2011), our N model

allows small deviations from the exact point value of 0.5 to be ro-

bust against some technical measurement bias (Fig. S28 in

Lappalainen et al., 2013) as well as very small ASE effects that are

not a main focus in this study. The parameters for Beta distributions

have been chosen in a way that clearly separates the three groups

from each other (Fig. 1) and thus gives an informative framework to

classify the tissues into three groups In supplementary information,

we further discuss the prior specification, extensions to truncated

priors and independence across tissues and a restriction to only one

ASE group. Our implementation allows user to easily modify the

prior parameters as well as use one-sided versions of the prior distri-

butions instead of the two-sided versions used in our simulation ex-

periments. For example, when studying NMD, we may require that

the reference allele is expressed more strongly, and hence consider

only the one-sided ASE states. Conversely, the two-sided ASE states

are tailored for the situations where we do not want to make an as-

sumption about which allele might be dominating. This is useful, for

example, when studying imprinting.
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Fig 1. Densities of the prior distributions for the proportion of reference allele

for the three groups: N ;M and S
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Configurations. For fixed prior distributions, the model space consists

of 3T configurations represented by c ¼ ðc1; . . . ; cTÞ vector where

each tissue-specific indicator cs 2 fN ;M;Sg:
We partition the space of configurations into five ASE states:

NOASE ¼ fc j for all s : cs ¼ Ng

MODASE ¼ fc j for all s : cs ¼Mg

SNGASE ¼ fc j for all s : cs ¼ Sg

HET0 ¼ fc j exist s; t : cs ¼ N and ct 6¼ N g

HET1 ¼ fc j exist s; t : cs 6¼ ct and for all u : cu 6¼ Ng;

where the states represent configurations for no ASE (NOASE),

moderate ASE (MODASE), strong ASE (SNGASE), heterogeneity

with at least one tissue showing no ASE (HET0) and heterogeneity

with all tissues showing some ASE (HET1). We also consider a tis-

sue-specific sub state of the heterogeneity states:

TIS SPE ¼ fc j exist s; t : cs 6¼ ct and for all u 6¼ t : cu ¼ csg:

To do probabilistic comparison between the states we need to

define prior probabilities for each state. We do this by defining prior

for each configuration in a way which depends on its distance from

homogeneity. We define a distance dðcÞ for each configuration c as

the smallest number of tissues whose group indicators need to be

changed in order to turn c into a homogeneous configuration (either

NOASE, MODASE or SNGASE). Formally, dðcÞ ¼ T�
maxf‘N ; ‘M; ‘Sg, where ‘N ; ‘M and ‘S are the number of tissues that c
assigns to N ;M and S, respectively. In particular, the configur-

ations with d¼0 are the three homogeneous configurations and the

configurations with d¼1 form the set TIS_SPE.

We specify the total prior probability for each possible value of d

¼ 0; . . . ;T � T=3d e and then distribute it equally among the config-

urations with the same distance. This prior allows us to easily imple-

ment the idea that among the vast space of configurations we favor

a priori the parsimonious ones, i.e. those where many tissues are

similar. Our prior distribution extends the one recently used for

multi-tissue eQTL setting (Flutre et al., 2013) to the case of more

than two expression states. In the results reported in this work, we

have set a prior mass of 0.75 to d¼0 (i.e. 0.25 for each of NOASE,

MODASE and SNGASE) and the remaining 0.25 has been divided

equally among all possible values of d ¼ 1; . . . ;T � T=3d e. This

choice was made because it gives an equal prior weight for the four

main patterns of ASE: three homogeneous states and general hetero-

geneity. If a previous estimate of configuration probabilities were

available, it could be utilized instead.

2.2 Multi-locus grouped tissue model
For settings where many variants are available for a joint analysis,

we extend grouped tissue model (GTM) to a hierarchical multi-locus

grouped tissue model (GTM*) that learns from the data the

proportion of variants belonging to each of the five states,

p ¼ ðpN ; pM; pS;pH0; pH1Þ, and thus avoids the need to fix prior

probabilities of the states. Our default prior for the proportions is

p � Dirichletð1;1; 1; 1; 1Þ:

We describe the technical details of GTM* and compare it to GTM

in Supplementary Information.

2.3 Computation
We use a standard Gibbs sampler to explore the posterior

distribution of the configuration indicators c under GTM (see

Supplementary Information for details).

The basic building block for model comparison is the Bayes fac-

tor between configuration c and the NOASE state

BFðcÞ ¼ pðyjcÞ
pðyjNOASEÞ ; (2)

where y ¼ ðy1�; . . . ; yT�Þ. Evaluation of BFðcÞ can be done analytic-

ally by using Beta-binomial likelihood separately for the numerator

and the denominator. Thus we can quickly evaluate the Bayes factor

for any particular configuration and compare even hundreds of con-

figurations. However, when the number of tissues is large (say

T>10), the number of possible configurations grows too large to be

exhaustively evaluated (analogous to a problem with eQTLs in

Flutre et al., 2013). This becomes problematic in particular when as-

sessing heterogeneity (either HET0 or HET1), which in principle

would require a consideration of all those groupings that assume dif-

ferences between some tissues. Therefore, we introduce an approxi-

mation that avoids enumerating all groupings when assessing

heterogeneity, by focusing on only configurations that are strongly

supported by the data. Thus we assume that the configurations with

d>1 that have not been visited by the Gibbs sampler and are not

among a few dozen top heterogeneity models defined by tissue-spe-

cific group membership probabilities, have negligible marginal like-

lihood and can be ignored. This leads to a lower bound for the

marginal likelihoods of the heterogeneity states. In practice, a com-

parison to the exact values for cases where exact values can be calcu-

lated (T�10) shows that the lower bound is actually a good estimate

in most cases (see Section 3).

By combining the Bayes factors with the prior probabilities of

the states we have the posterior probabilities of the states.

2.4 Q-statistic for heterogeneity
We compare GTM to a standard heterogeneity measure (Cochran,

1950)

Q ¼
XT

s¼1

nsðĥs � hÞ2

ĥs ð1� ĥs Þ
;

where ĥs ¼ ys1=ns and h are the empirical proportion of the refer-

ence allele at tissue s and across all tissues, respectively. (If ys1 ¼ 0,

we set ys1 ¼ 0:5 and ys2 ¼ ns � 0:5 to avoid numerical problems.)

The idea is that this measure increases with the heterogeneity of the

tissue-specific hs parameters, and can thus be used as a measure of

heterogeneity. The Q-statistic is typically used for statistical testing

for heterogeneity rather than for quantifying the amount of hetero-

geneity, and is known to have low power when sample size is small

(Higgins et al., 2003). An empirical P-value of the Q-statistic is esti-

mated by simulating datasets where the number of tissues and reads

match with the observed data and where all tissues have the same

value for hs ¼ h.

3 Results
We first assess performance of GTM on simulated data and compare

it with a standard heterogeneity measure. Second, we illustrate

GTM on a real data example taken from the GTEx project. Results

of GTM* are presented in Supplementary Information.

Data simulation. For three values for the number of tissues (T¼5,

10, 30) and four values for the number of reads per each tissue

(ns ¼ 10; 30; 50; 200, for all s), we simulated 1000 datasets for nine

scenarios given in Table 1. The reference allele read count for each

tissue s was sampled from Binðns; hsÞ, where hs is 0.5 for group N ,

0.75 for groupM and 0.99 for group S.
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GTM results. We applied GTM on the simulated datasets with 2000

Gibbs sampler iterations. The results for read counts 10 and 50 are

shown in Figure 2 and for the remaining read counts in

Supplementary Figure S4. The run time was 8, 16 and 53 s per data-

set, for T¼5, 10 and 30, respectively (Intel i7/3.40 GHz).

For the homogeneous scenarios 1, 2 and 3, the detectability of

the true state increases with the number of tissues, and in general is

already high with only 5 tissues and 10 reads per each tissue. In par-

ticular, when the true state is SNGASE (scenario 3), there is no no-

ticeable uncertainty about the correct state in any of the datasets,

while for NOASE (scenario 1) and MODASE (scenario 2) the data

are not equally decisive. This is related to the fact that the variance

in the read counts is larger for h ¼ 0:5 (NOASE) and h ¼ 0:75

(MODASE) than it is for the extreme value of h ¼ 0:99 (SNGASE).

Our scenarios 4, 5, 6 and 7 consider the smallest possible

amount of heterogeneity: a single tissue is different from the others.

In these scenarios, we see an opposite trend from the homogeneous

ones: the true heterogeneous state becomes harder to distinguish

from the closest homogeneous one as the number of tissues in-

creases. This is because, according to our prior, a configuration

where a single tissue differs from the others becomes less probable

as the number of other tissues increases. Information about the true

state increases with the number of reads per tissue, and the overall

heterogeneity probability (HET0 þ HET1) is high for all heteroge-

neous scenarios for read count 50.

The scenarios 8 and 9 represent stronger heterogeneity where

about half of the tissues belong to one group and the remaining

half to another. When the true underlying groups are N and M
(scenario 8), then 10 reads is not yet enough to clearly separate the

true pattern from the homogeneous states (NOASE and MODASE),

while 50 reads is enough for this purpose. In the scenario 9, where

tissues are divided between M and S, the overall heterogeneity

probability is always fairly large, but it is difficult to exclude the

possibility that at least one tissue belongs to N , especially when

many tissues are available. As a consequence, the HET0 state gets a

considerable probability even though the true underlying state is

HET1. To distinguish between the two heterogeneity states in

this scenario requires read counts larger than 50 (Supplementary

Fig. S4).

Taken together, the results in Figure 2 and Supplementary Figure

S4 show that the model is correctly able to distinguish between all

five combined states but an amount of information required for ac-

curate classification varies between scenarios.

Comparisons with Q-statistic. To show differences between our

GTM heterogeneity probability and Q-statistic in detecting hetero-

geneity we show ROC curves for two settings (Fig. 3). In the first

one, we use the 1000 datasets from simulation scenario 1 to repre-

sent a homogeneous state and the 1000 datasets from scenario 4 to

represent a heterogeneous state, with T¼30 tissues and n¼10 reads

per tissue. The ROC curve on the left panel of Figure 3 shows how

those 2000 datasets are ranked by the posterior probability of HET0

þ HET1 state from GTM and by the empirical P-value of Q. The

right panel in Figure 3 shows similar results when comparing the

homogeneous scenario 3 to the heterogeneous scenario 7. In both

settings GTM is slightly better in detecting heterogeneity than the

Q-statistic: ROC curve of GTM is consistently above that of Q.

We discuss the difference between the two approaches in Section 4.

Accuracy of approximation. To assess how accurate our approxima-

tion for marginal likelihoods of the heterogeneity states is, we

Table 1. Scenarios for simulations

N M S STATE

1 T 0 0 NOASE

2 0 T 0 MODASE

3 0 0 T SNGASE

4 T – 1 0 1 HET0

5 1 0 T – 1 HET0

6 0 T – 1 1 HET1

7 0 1 T – 1 HET1

8 T=2d e T=2b c 0 HET0

9 0 T=2d e T=2b c HET1

For each of the nine scenarios, the table shows how many tissues (out of

total T) belong to each of the three possible groups, N ;M and S, whose h

parameters are 0.5, 0.75 and 0.99, respectively. The STATE column shows to

which of the five combined states each scenario belongs
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Fig 2. Each of the nine simulation scenarios (Table 1) is represented by three

numbers of tissues (5, 10, 30) and two values for number of reads (10, left col-

umn and 50, right column). Each bar is divided into five colors (map given at

the bottom) according to the (average) posterior probability of the five states

when GTM was applied to the simulated datasets
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compared the posterior probabilities of the five states from GTM

with the exact values on all 9000 datasets simulated with T¼10 tis-

sues and n¼10 reads per tissue. As a measure of accuracy we

use the total variation (TV) distance, which for discrete distributions

ðpiÞ and ðqiÞ is defined as 1
2

X
i
jpi � qij. TV describes how much of

the probability mass needs to be relocated in order to turn the first

distribution into the other, and also gives an upper bound for the

maximal difference in probability that the two distributions assign

to any one state.

We observed (Table 2) that 95% of the datasets had TV < 0:05,

and 0.5% had TV > 0:10, with maximal TV being 0.168. As TV

less than 0.10 is unlikely to change our inference on the underlying

state, our approximation works well for a great majority of the data-

sets tested. However, there are large differences in the accuracy be-

tween the scenarios with scenario 8 (5 tissues in N and other 5 in

M) showing the strongest discrepancy. An explanation for this

is that with only 10 reads per tissue the scenario 8 assigns non-

negligible posterior probability to so many of the configurations

showing heterogeneity between N andM groups that some of them

are missed during our default number of 2000 Gibbs sampler

iterations.

In Section 4, we propose an additional heterogeneity measure to

complement our approximation for the posterior probability of het-

erogeneity states, especially for datasets with large number of

tissues.

3.1 A PTV in ECM1
We consider read count data on SNV rs121909115 in chromosome

1, whose non-reference allele (T) introduces a stop codon in some

transcripts of the gene ECM1. This is an example of a protein-trun-

cating mutation that we expect to experience NMD leading to a re-

duction in the transcripts from the non-reference allele. However,

the strength of NMD and its consistency across different tissue types

is unknown. In the currently available GTEx data, we have one indi-

vidual who is heterozygous at this SNV and Figure 4 shows the data

and GTM results across seven tissues.

The results show that, as expected, most tissue types show ASE

where the non-reference allele has lower read counts than the refer-

ence allele. In addition, there is evidence of heterogeneity between

the tissue (pðHET0jyÞ ¼ 0:93) and that heterogeneity could result

from a tissue-specific effect where the skin tissue escapes ASE

(pðTIS SPEjyÞ ¼ 0:24). None of the tissues shows strong evidence

for complete ASE (group S), but rather the other six tissue types

(apart from skin) are likely to belong to either the moderate ASE

groupM, or to no ASE group. In particular, the nerve and adipose

samples cannot be assigned to any one of our groups with high
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Fig 3. ROC curves for detecting heterogeneity using GTM and Q-statistic on

simulated datasets. Left: scenario 1 (homogeneity) versus scenario 4 (hetero-

geneity). Right: scenario 3 (homogeneity) versus scenario 7 (heterogeneity).

Parameters are T¼30 tissues and n¼10 reads per tissue. Heterogeneity stat-

istics are the posterior probability of HET0þHET1 from GTM and the empirical

P-value from the Q-statistic. The legends show percent concordance meas-

ures for the ROC curves

Table 2. Accuracy of GTM

SCENAR TV <0.01 TV <0.05 TV <0.10 max

1 0.462 0.972 1 0.092

2 0.452 0.959 0.995 0.129

3 1 1 1 0.006

4 0.160 0.986 0.999 0.105

5 0.997 1 1 0.011

6 0.327 0.973 1 0.070

7 0.994 1 1 0.012

8 0.081 0.663 0.962 0.168

9 0.565 1 1 0.025

For each of the nine scenarios, Table shows the proportion of simulated

datasets (out of total 1000 with T¼ 10 tissues and n¼ 10 reads per tissue) for

which TV distance between GTM estimates and the exact posterior distribu-

tion of the five states is less than 0.01, 0.05 or 0.10. The max column shows

the maximum TV distance observed
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Fig 4. Data on rs121909115. Top panel shows the posterior probabilities for

six states as defined in Methods. The tissue specific state (TIS_SPE) is a sub-

set of the heterogeneity states (HET0 and HET1) and the probabilities of the

other five states sum to one. Middle panel shows the point estimates of the

non-reference allele frequency among RNA-seq reads across seven tissue

types (named at the bottom) together with their 95% credible intervals. Non-

reference read counts/total read counts are given below middle panel.

Bottom panel shows the posterior probability distribution of the group indica-

tor (cs) for each tissue type, where white, gray and black denote groups N ;M
and S, respectively. Tissue types: ARTTBL, Artery tibial; NERVET, Nerve tibial;

ADPSBQ, Adipose subcutaneous; HRTLV, Heart ventricle; MSCSKL, Muscle

skeletal; SKINS, Skin sun exposed
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confidence, which can be seen from their membership probabilities

being evenly split between the groupsN andM.

The non-reference allele (T) at the SNV rs121909115 is one of

the known protein truncating mutations in ECM1 that in homozy-

gous carriers lead to lipoid proteinosis, also known as Urbach-

Wiethe disease (OMIM 247100; Hamada et al., 2003).

The symptoms of this disease include scarring and infiltration of skin

and mucosae (Hamada, 2002). Therefore, it is an interesting observa-

tion that in our data the observed allelic ratio of the nonsense muta-

tion is higher in the skin tissue than in several other tissue types.

The isoform view of the GTEx portal (2014-01-17, dbGaP

phs000424.v4.p1) shows four isoforms for ECM1 of which only

one (ENST00000470432) does not annotate rs121909115 as stop-

gain variant. However, the relative abundance of this transcript

does not seem particularly high in skin tissue compared with the

other tissues. Another observation is that one of the remaining three

transcripts (ENST00000346569) is expressed in only a few tissues.

These tissues include mucous membrane and skin tissue where

symptoms of lipoid proteinosis are seen.

4 Discussion

We have introduced a statistical framework to assess similarities

and differences in ASE between tissue types. A motivation for our

work comes from ongoing RNA-sequencing projects such as the

GTEx project (GTEx-Consortium, 2013) that generates data on up

to 30 tissue types per individual with read counts per tissue and per

site starting from around 10.

We have chosen a Bayesian approach because it leads to a con-

sistent probabilistic quantification of the support that the data pro-

vide for each of the competing models. We see this as an advantage

over a series of separate analyses, such as, for example, would be

needed by an approach that first assessed heterogeneity using the Q-

statistic and if no (statistically significant) heterogeneity was

observed, would further classify the dataset into one of the homoge-

neous states. Previously, two excellent studies on Bayesian models

for expression data have been published by Skelly et al. (2011) and

Flutre et al. (2013).

Skelly et al. (2011) consider a three-stage hierarchical model for

allele read counts from genome-wide RNA-seq data of one individ-

ual. They observe allele counts at each heterozygous SNV (1st level)

which are assigned to genes (2nd level) whose common properties

are controlled by genome-wide parameters (3rd level). Their model

would be directly applicable also to multi-tissue RNA-seq data where

tissue-specific allele counts replace SNV-specific allele counts and

sites replace genes at the second level of the model. Suppose, for ex-

ample, that we had multi-tissue RNA-seq data on a set of individuals

who are heterozygous for at least one PTV. The model of Skelly et al.

(2011) would produce posterior distribution on the global propor-

tion of the PTVs that show ASE in at least one tissue type, as well as

variant-specific posterior probability of ASE. However, it would not

give as refined characterization of ASE at each PTV as our hierarch-

ical model GTM* (Supplementary Information) and it would not do

inference on tissue-specific group indicator parameters (cs) that allow

probabilistic model comparison between different patterns of ASE.

Flutre et al. (2013) developed a method for a joint eQTL analysis

across multiple tissues. They work with micro-array expression data

using a linear model that is not directly applicable to the datasets we

have in mind: read count data from several tissues of a single indi-

vidual. They use tissue-specific binary indicator parameters that tell

whether a variant is an eQTL in each tissue and introduce three

ways to assign prior probabilities to different configurations of the

indicators. Their ‘lite’ model gives positive prior on only those con-

figurations whose distance from homogeneity is at most 1. Their

‘BMA’ model is similar to what we have used in that the prior of a

configuration depends only on its distance from homogeneity and

that the total prior probability corresponding to each value of dis-

tance is the same. Finally, their most complex ‘BMA-HM’ model

treats the weights of the configurations as random variables and esti-

mates them across genes using a hierarchical model. Similar hier-

archical model, that would learn joint ASE patterns between tissues

by a simultaneous analysis of a set of genetic variants (e.g. PTVs) is

also an important topic for further development of our hierarchical

model GTM*.

Even though hierarchical models, such as our GTM* and those

of Skelly et al. (2011) and Flutre et al. (2013), are conceptually at-

tractive, we believe that GTM’s ability to analyze one PTV at a time

has its merits from a practical point of view: it is quick to run, easy

to understand and requires read count data on only one variant.

Heterogeneity measures. Our model assumes that all tissues in a

same group have the same reference allele read frequency h. In prac-

tice, we expect that our model is robust to some heterogeneity

within each group, since the priors for different groups are so clearly

separable from each other (Fig. 1 and Supplementary Fig. S1). Our

main interest is to assign tissue types into (three) broad categories of

ASE, and consequently we call a dataset heterogeneous only if some

pair of tissues show fairly strong difference in the non-reference al-

lele frequency. Standard heterogeneity measures, such as Q, ask a

slightly different question of whether parameters hs have exactly the

same value across the tissues. A frequentist answer to this latter

question is given by an empirical P-value of heterogeneity measures

Q or pðHETjyÞ estimated under the null hypothesis that all tissues

have the same value for h parameter which is estimated from the

data. By this approach, heterogeneity P-values in the ECM1 ex-

ample of Figure 4 are 0.011 and 0.006 by using Q and pðHET0jyÞ,
respectively, as a test statistic. While these P-values point to general

heterogeneity between the tissue types, our GTM analysis leads to

more detailed information considering the type of heterogeneity: we

see heterogeneity where at least one tissue type escapes ASE (our

HET0 state).

Our heterogeneity probabilities are based on a lower bound of

the true marginal likelihoods of the heterogeneity states. We showed

that in a large majority of our datasets (with 10 tissues) the approxi-

mation is accurate, but the approximation may not always work as

well with larger number of tissues. Therefore, in addition to the het-

erogeneity probabilities, we also compute, for each pair of tissues, a

posterior expectation of the distance between them. Here we define

the distance between two tissues to be 0 if they belong to a same

group and 1 otherwise. Maximum of all pairwise distances gives an

indication whether there is heterogeneity between tissues. By further

defining the distance between the ASE groupsM and S to be 0, we

have a measure for particular kind of heterogeneity (HET0) where

at least one tissue belongs to the no ASE group N .

4.1 Application of the method

Nonsense-mediated decay. We envisage that a primary application

of our method will be in analyzing NMD. PTVs are usually subject

to NMD, a cellular mechanism that detects premature termination

codons and prevents expression of truncated proteins. Integrated

genome and transcriptome sequencing studies in lymphoblastoid cell

lines have demonstrated that ASE can be used for testing variants

predicted to trigger NMD (Lappalainen et al., 2013; MacArthur
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et al., 2012; Montgomery et al., 2010, 2011). To test whether the

predicted NMD truly happens, we can use the one-sided ASE models

rather than the two-sided ones to explicitly require that an ASE sig-

nal is present only if the minor allele, and not the major allele, is

silenced. We applied the one-sided approach in our example analysis

of a PTV in ECM1.

Imprinting. Genomic imprinting is a phenomenon where only an al-

lele inherited from the parent of a particular sex is expressed (Babak

et al., 2008). To assess imprinting for one tissue type one could con-

sider a common coding variant of the gene of interest in that tissue

across multiple heterozygous individuals. If the gene is imprinted,

then in about half of the individuals the allele 1 should be silenced,

because we expect that in about half of the individuals the allele 1 at

this locus is inherited from the mother and in the other half it origin-

ates from the father. We could extend our framework to such a case

by allowing each ASE group to be divided into two subgroups repre-

senting parental origin of the allele 1. If one of the subgroups had

proportion h of the reads from allele 1 then the corresponding pro-

portion for the other subgroup should be 1� h. We could model h
with a Beta-prior as in our GTM model.

Modest ASE effects. An interesting application of ASE is in the study

of cis-regulatory variants in LD with coding variants. When regula-

tory variants have only modest effects (Dimas et al., 2009), we could

modify our prior on ASE states to reflect this (see Supplementary

Information section S8 and Fig. S6). With this approach we envision

that researchers are able to study the effect of cis-regulatory variants

on transcription across a broad range of tissues where the number of

samples per tissue may be limited. However, compared to strong

ASE effects, more modest effects require much larger read counts

per tissue and decrease the ratio between biological signal and pos-

sible technical noise (Degner et al., 2009).

Multiple individuals. Suppose we have RNA-seq data on same tissue

types from several individuals who are heterozygous at a particular

variant. We could first assess, for each tissue type, whether the indi-

viduals are heterogeneous in their ASE status. If there is no evident

heterogeneity, a simple approach is to combine the reads from the

same tissue type across the individuals before analyzing the data

across the tissues. A more refined model that accounts for possible

individual-specific effects that are shared across the tissues requires

further work.

5 Conclusion

We have presented GTM and its multi-site extension (GTM*), to (i)

classify tissues into three groups at each site according to their ASE

patterns and (ii) classify the sites into five combined ASE states ac-

cording to their tissue-wide ASE profiles. We see major applications

of our approach in assessing homogeneity, heterogeneity and tissue

specificity across a group of genetic variants such as variants pre-

dicted to trigger NMD, variants in genes with evidence of imprint-

ing, or variants in LD with GWAS loci for a particular disease.

As an example, we presented an application of the method to

read count data from the GTEx project for one heterozygote carrier

of a premature truncating mutation (p.R53X, rs121909115) in the

ECM1 gene. For this variant, which in homozygous form is known

to cause lipoid proteinosis, we identified heterogeneous gene expres-

sion effects across tissues and evidence for a complete escape from

NMD in skin tissue.

The identification and characterization of ASE, in particular for

PTVs with a putative complete loss of function effect, will provide a

better understanding of the biological mechanisms that are involved

in transcriptional regulation and will improve our computational

models for annotating variants identified in case–control or clinical

genome sequencing studies.
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