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This paper focuses on a discrete-time risk model in which both insurance risk and financial
risk are taken into account. We study the asymptotic behavior of the ruin probability and
the tail probability of the aggregate risk amount. Precise asymptotic formulas are derived
under weak moment conditions of involved risks. The main novelty of our results lies in
the quantification of the impact of the financial risk.

1. INTRODUCTION AND PRELIMINARIES

In this paper, for every i ≥ 1, let Xi be an insurer’s net loss (the total amount of claims
less premiums) within period i and let Yi be the stochastic discount factor (the reciprocal
of the stochastic return rate) over the same time period. Then the stochastic present values
of aggregate net losses of the insurer can be specified as

S0 = 0, Sn =
n∑

i=1

Xi

i∏
j=1

Yj , n ≥ 1, (1.1)

with their maxima

Mn = max
0≤k≤n

Sk, n ≥ 1. (1.2)

We are concerned with the asymptotic behavior of the tail probabilities P (Sn > x) and
P (Mn > x) as x → ∞, in which P (Mn > x) coincides with the insurer’s finite-time ruin
probability within period n given that the initial wealth is x.

In the literature, {Xi; i ≥ 1} and {Yi; i ≥ 1} are usually called the insurance risk and
the financial risk, respectively. Under certain independence and/or identical distribution
assumptions imposed on Xi’s and Yi’s, the asymptotic tail behavior of Sn and Mn has been
extensively studied by many researchers. See, for example, Tang and Tsitsiashvili [30,31],
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Konstantinides and Mikosch [16], Tang [28], Zhang, Shen, and Weng [33], Chen [4], and Yang
and Wang [32] for some recent findings. Since the products of Yi’s appearing in Eq. (1.1)
essentially cause technical problems in the derivation of explicit asymptotic formulas, most
of the existing works assumed that the financial risk is dominated by the insurance risk,
that is, the tails of Yi’s are lighter than the tails of Xi’s, usually through imposing strong
moment conditions on Yi’s. Then the problem becomes relatively tractable and the final
results are mainly determined by the tails of Xi’s.

However, as shown by empirical data and the most recent financial crisis, the financial
risk may impair the insurer’s solvency as seriously as does the insurance risk and, hence,
it should not be underestimated as before; see Norberg [17], Frolova, Kabanov, and Perga-
menshchikov [10], Kalashnikov and Norberg [15], and Pergamenshchikov and Zeitouny [22].
Therefore, in the current contribution, we focus on the other directions where the finan-
cial risk dominates the insurance risk or no dominating relationship exists between the two
kinds of risk. We aim at capturing the impact of the financial risk (the products of Yi’s) on
the tail behavior of Sn and Mn. Loosening some independence and identical distribution
constraints, we derive precise asymptotic formulas under weak moment conditions of Yi’s
and Xi’s.

Throughout this paper, an underlying assumption is the following:

Assumption A: {Xi; i ≥ 1} is a sequence of real-valued rv’s (random variables) with dis-
tribution functions Fi’s, {Yi; i ≥ 1} is a sequence of positive and independent rv’s with
distribution functions Gi’s, and {Xi; i ≥ 1} and {Yi; i ≥ 1} are mutually independent.

It is worth mentioning that, if we further assume that both {Xi; i ≥ 1} and {Yi; i ≥ 1}
are sequences of iid (independent and identically distributed) rv’s in Eq. (1.1), then there
is a natural connection between this discrete-time risk model and the general bivariate
Lévy-driven risk model with the form

Ut =
∫ t

0

eQsdPs, t ≥ 0,

where {Qs; s ≥ 0} and {Ps; s ≥ 0} are two independent Lévy processes; see Paulsen [20,21],
Hao and Tang [12], and references therein. To see this, arbitrarily embed an increasing
sequence of stopping times, say {τi; i ≥ 1}, to the Lévy-driven model. Then, after such a
discretization procedure, Uτn

takes the form as Sn in Eq. (1.1). Due to this reason, the
results obtained in this paper can provide us with some valuable insights to the general
bivariate Lévy-driven case.

We restrict our discussions within the scope that Yi’s are regularly varying. A real-
valued rv Z with distribution function H is said to be regularly varying if its survival
function H = 1 − H is regularly varying at infinity, that is, limx→∞ H(xy)/H(x) = y−α

for every y > 0 and some α ≥ 0. In this case, we write Z ∈ R−α or H ∈ R−α. A positive
regularly varying function with α = 0 is also called slowly varying function. See Bingham,
Goldie, and Teugels [1], Resnick [23], or Embrechts, Klüpelberg, and Mikosch [8] for more
details on regularly varying functions.

Hereafter, all limit relations hold as x → ∞ unless otherwise specified. For two positive
functions a(·) and b(·), we write a(x) � b(x) or b(x) � a(x) if lim infx→∞ a(x)/b(x) ≥ 1 and
write a(x) ∼ b(x) if both a(x) � b(x) and a(x) � b(x).

Our first result below shows that, in a special case of regular variation, the moment
conditions of involved rv’s can be dropped thanks to a Rootzén-type lemma stated in
Section 3 (Lemma 3.1).
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Theorem 1.1. Under Assumption A, let Xi’s be independent. If, for every i ≥ 1,
F i(x) ∼ �∗i (ln x) · (ln x)γ∗−1

x−α and Gi(x) ∼ �i(ln x) (ln x)γi−1
x−α for some positive con-

stants α, γ∗, γi and some slowly varying functions �∗i (·), �i(·) then, for every n ≥ 1, letting
γ̄n = γ∗ +

∑n
i=1 γi, we have

P (Sn > x) ∼ P (Mn > x) ∼ P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠
∼ αnΓ(γ∗)

∏n
i=1 Γ(γi)

Γ (γ̄n)
�∗n(ln x)

(
n∏

i=1

�i(ln x)

)
(ln x)γ̄n−1x−α. (1.3)

Remark 1.1. A well-known folklore in risk theory is that the ruin of an insurer, that is, the
tail of Mn, will be determined by one of the insurance risk and the financial risk which has
a heavier tail. Nevertheless, Theorem 1.1 provides a counterexample violating the folklore.
To see this more clearly, let both {Xi; i ≥ 1} and {Yi; i ≥ 1} be sequences of iid rv’s with
common survival functions F (x) ∼ �∗(ln x) (ln x)γ∗−1

x−α and G(x) ∼ �(ln x) (ln x)γ−1
x−α,

respectively. Then, according to the different selections of γ∗, �∗(·) and γ, �(·), Theorem 1.1
covers various asymptotic relationships between F and G. However, we have the unified
asymptotic expansion determined by both F and G.

Remark 1.2. Tang and Tsitsiashvili [30] gave a similar result for Mn in their Theorem 6.2.
Their result does not cover, and is not covered by, our Theorem 1.1, since their conditions of
Xi’s and ours are mutually exclusive. However, their assumptions imply F (x) = o

(
G(x)

)
,

whereas our Theorem 1.1, as stated in Remark 1.1, is valid for various relationships between
F and G.

Theorem 1.1 presents an elegant result which is due to the special forms of F i’s and
Gi’s. In the subsequent sections, we focus on asymptotic analysis of Sn and Mn for general
regularly varying conditions, while the price to pay for it is the lack of elegance and the high
technicalities of the proofs. Our main results presented in Theorem 2.1 below show that, as
expected, similarly to Theorem 1.1, both Sn and Mn are regularly varying rv’s under some
general conditions. Furthermore, we derive precise tail asymptotics for both Sn and Mn.
One remarkable feature of our Theorem 2.1 is the weakening of the moment assumptions
commonly imposed on Xi’s and Yi’s in the literature.

The rest of the paper is organized as follows. Section 2 shows our main theorem with
several interesting remarks. Section 3 gives the lemmas and proofs related to the results
presented in Sections 1 and 2. Finally, Appendix A discusses the constant weighted sums
of the products of Yi’s (Xi ≡ ci > 0 for every i ≥ 1 in Eq. (1.1)), which model the stochas-
tic present values of some risk-free bond with fixed income ci in period i. We derive an
asymptotic formula with the uniformity of the constant weights in this case.

2. MAIN RESULTS AND REMARKS

Hereafter, the summation and the product over an empty set of indices are considered as 0
and 1, respectively. Moreover, to avoid triviality, every individual real-valued rv is assumed
to be not only concentrated on (−∞, 0]. For a real number a, we write a+ = a ∨ 0.

Under the framework specified in Assumption A, we continue to study the tail behavior
of Sn and Mn defined in Eqs. (1.1) and (1.2). For the conciseness in writing and presentation,
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we further define

S
(l)
0 = 0, S(l)

n =
n+l−1∑

i=l

Xi

i∏
j=l

Yj , l, n = 1, 2, . . . ,

and
M (l)

n = max
0≤k≤n

S
(l)
k , l, n = 1, 2, . . . .

Clearly, S
(l)
n describes the stochastic present value at time l − 1 of aggregate net losses

occurring from time l to time n + l − 1. Note in passing that S
(1)
n = Sn, M

(1)
n = Mn, and

further

S(l)
n = Yl

(
Xl + S

(l+1)
n−1

)
and M (l)

n = Yl

(
Xl + M

(l+1)
n−1

)
+

, l, n = 1, 2, . . . . (2.1)

Our main results are given in the following Theorem 2.1, in which assertion (i) is valid
for arbitrarily dependent Xi’s, assertion (ii) drops the dominating relationship between F i’s
and Gi’s, and neither assertion (i) nor (ii) requires E (Xi)

β
+ < ∞ or EY β

i < ∞ for every i ≥ 1
and some β > α.

Theorem 2.1. Under Assumption A, assume that Gi ∈ R−α for every i ≥ 1 and some
α ≥ 0, and EY α

i < ∞ for every i ≥ 2.
(i) If XiYi ∈ R−α and

P (|Xi| > x) = o
(
Gi+1(x)

)
(2.2)

for every i ≥ 1 then, for every n ≥ 1, Sn ∈ R−α, Mn ∈ R−α, and further

P (Sn > x) ∼
n−1∑
i=1

Bn,iP

⎛⎝ i∏
j=1

Yj > x

⎞⎠+ P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠ (2.3)

and

P (Mn > x) ∼
n−1∑
i=1

Dn,iP

⎛⎝ i∏
j=1

Yj > x

⎞⎠+ P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠ , (2.4)

where

Bn,i = E

(
Xi + S

(i+1)
n−i

)α

+
− E

(
S

(i+1)
n−i

)α

+
and Dn,i = E

(
Xi + M

(i+1)
n−i

)α

+
− E

(
M

(i+1)
n−i

)α

.

(ii) If Xi’s are independent and F i ∈ R−α with E (Xi)
α
+ < ∞ for every i ≥ 1 then, for

every n ≥ 1, Sn ∈ R−α, Mn ∈ R−α, and further

P (Sn > x) ∼
n−1∑
i=1

(
Bn,i − E (Xi)

α
+

)
P

⎛⎝ i∏
j=1

Yj > x

⎞⎠+
n∑

i=1

P

⎛⎝Xi

i∏
j=1

Yj > x

⎞⎠ (2.5)

and

P (Mn > x) ∼
n−1∑
i=1

(
Dn,i − E (Xi)

α
+

)
P

⎛⎝ i∏
j=1

Yj > x

⎞⎠+
n∑

i=1

P

⎛⎝Xi

i∏
j=1

Yj > x

⎞⎠ . (2.6)
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One important theoretical merit of Theorem 2.1 lies in that, through the trans-
parent expansions (2.3)–(2.6), it gives new criteria for the regular-variation membership
of Sn and Mn. A common shortcoming of formulas (2.3)–(2.6) is the involved constants
which cannot be accurately calculated in general. However, this is the price we have to pay
for highlighting the impact of the financial risk Yi’s and weakening the moment conditions.
Moreover, our explicit expressions of Bn,i and Dn,i enable us to easily conduct numerical
estimates.

The following remarks and Corollary 2.1 contain some interesting special cases of
Theorem 2.1, from which one can realize to some extents the flexibility and generalization
of our Theorem 2.1.

Remark 2.1. If α = 0 then assertion (i) gives

P (Sn > x) ∼ P (Mn > x) ∼ P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠ ,

and assertion (ii) reduces to

P (Sn > x) ∼ P (Mn > x) ∼
n∑

i=1

P

⎛⎝Xi

i∏
j=1

Yj > x

⎞⎠−
n−1∑
i=1

P

⎛⎝ i∏
j=1

Yj > x

⎞⎠ .

Remark 2.2. Clearly, if E |Xi|β < ∞ for every i ≥ 1 and some β > α then the two special
conditions of assertion (i) hold in view of Lemma 3.2(a) below. In this case, the last term
of Eqs. (2.3) and (2.4) can be expanded as follows by Breiman’s lemma; see Breiman [2],

P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠ ∼ E (Xn)α
+ · P

⎛⎝ n∏
j=1

Yj > x

⎞⎠ .

Plugging this relation into Eqs. (2.3) and (2.4) and noting that E (Xn)α
+ = Bn,n = Dn,n

yield

P (Sn > x) ∼
n∑

i=1

Bn,iP

⎛⎝ i∏
j=1

Yj > x

⎞⎠ and P (Mn > x) ∼
n∑

i=1

Dn,iP

⎛⎝ i∏
j=1

Yj > x

⎞⎠ .

Remark 2.3. By the proofs of Theorem 2.1(i) and Lemma 3.3 below, if Xi’s are independent
then Eq. (2.2) in assertion (i) can be weakened to F i(x) = o

(
Gi+1(x)

)
.

In what follows, for a sequence {Zi; i ≥ 1} of iid rv’s, we always denote by Z its
generic rv.

Remark 2.4. By Lemma 3.2(a) and Remark 2.3, if both {Xi; i ≥ 1} and {Yi; i ≥ 1} are
sequences of iid rv’s then only F (x) = o

(
G(x)

)
suffices for assertion (i). Moreover, in this

case, we have

Bn,i = Bn−i = E

(
X1 + S

(2)
n−i

)α

+
− E

(
S

(2)
n−i

)α

+
= E (Sn−i+1)

α
+ (EY α)−1 − E (Sn−i)

α
+ ,

and

Dn,i = Dn−i = E

(
X1 + M

(2)
n−i

)α

+
− E

(
M

(2)
n−i

)α

= EMα
n−i+1 (EY α)−1 − EMα

n−i.

Remark 2.5. The conditions of assertion (ii) do not exclude the simultaneous occurrence
of F i(x) = o

(
Gi+1(x)

)
for every i ≥ 1. In such an intersectional case, Lemma 3.2(b) and
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Remark 2.3 imply that assertion (i) also holds and, hence, Eqs. (2.5) and (2.6) should be
equivalent to Eqs. (2.3) and (2.4), respectively. The fact can be easily shown through Lemma
3.5 below. Actually, for every 1 ≤ i ≤ n − 1, by F i(x) = o

(
Gi+1(x)

)
and Lemma 3.5, we

have

P

⎛⎝Xi

i∏
j=1

Yj > x

⎞⎠− E (Xi)
α
+ · P

⎛⎝ i∏
j=1

Yj > x

⎞⎠ = o(1)P

⎛⎝i+1∏
j=1

Yj > x

⎞⎠ .

On the other hand, it follows from Fatou’s lemma that, for every 1 ≤ i ≤ n − 1,

P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠ � E

⎛⎝Xn

n∏
j=i+2

Yj

⎞⎠α

+

· P
⎛⎝i+1∏

j=1

Yj > x

⎞⎠ .

Hence,

n−1∑
i=1

⎛⎝P

⎛⎝Xi

i∏
j=1

Yj > x

⎞⎠− E (Xi)
α
+ · P

⎛⎝ i∏
j=1

Yj > x

⎞⎠⎞⎠ = o(1)P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠ ,

which implies that Eqs. (2.5) and (2.6) are equivalent to Eqs. (2.3) and (2.4), respectively.

The following corollary concerns another special case of Theorem 2.1, in which the more
explicit asymptotics can be derived. The assertion for Mn was partially given by Theorem
6.1 of Tang and Tsitsiashvili [30]. Recall that a real-valued rv Z with survival function H
is said to belong to the class S(α) for some α ≥ 0 if

lim
x→∞

H(x − y)
H(x)

= eαy, y ∈ (−∞,∞), (2.7)

and

lim
x→∞

H2∗
+ (x)

H(x)
= 2EeαZ < ∞,

where H+(x) = H(x)1{x≥0} and H2∗
+ stands for the 2-fold convolution of H+. In the lit-

erature, relation Eq. (2.7) itself defines a larger class denoted by L(α). See, for example,
Cline [6] and Pakes [18,19] for more details on the classes S(α) and L(α). Note that, for a
positive rv Z, ln Z ∈ S(α) implies Z ∈ R−α and EZα < ∞.

Corollary 2.1. Under Assumption A, let both {Xi; i ≥ 1} and {Yi; i ≥ 1} be sequences of
iid rv’s. If ln Y ∈ S(α) for some α ≥ 0 and limx→∞ F (x)/G(x) = θ ∈ [0,∞) then, for every
n ≥ 1,

P (Sn > x) ∼ KnG(x) and P (Mn > x) ∼ LnG(x), (2.8)

where

Kn =
n∑

i=1

(
E (Sn−i+1)

α
+ (EY α)i−2 + θ (EY α)i

)
and

Ln =
n∑

i=1

(
EMα

n−i+1 (EY α)i−2 + θ (EY α)i
)

.

Particularly, if α = 0 then, for every n ≥ 1,

P (Sn > x) ∼ P (Mn > x) ∼ (θ + 1) nG(x).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S026996481400014X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:35:10, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S026996481400014X
https:/www.cambridge.org/core


ASYMPTOTICS FOR A DISCRETE-TIME RISK MODEL 579

3. LEMMAS AND PROOFS

The following result is due to Corollary 2.1 of Hashorva and Li [13], which is motivated
by Lemma 7.1 of Rootzén [25]; see also Rootzén [26]. Note that for iid Zi’s such that
P(Z > x) ∼ cx−α the assertion was shown in Lemma 4.1(4) of Jessen and Mikosch [14].

Lemma 3.1. Let Z1, . . . , Zn be n positive and independent rv’s. If, for every 1 ≤ i ≤ n,
P(Zi > x) ∼ �i(ln x)(ln x)γi−1x−α for some positive constants α, γi and some slowly varying
function �i(·) then we have

P

(
n∏

i=1

Zi > x

)
∼ αn−1

∏n
i=1 Γ(γi)

Γ (
∑n

i=1 γi)

(
n∏

i=1

�i(ln x)

)
(ln x)

∑n
i=1 γi−1x−α.

Proof of Theorem 1.1: The last relation in Eq. (1.3) follows immediately from Lemma
3.1. It remains to verify that both the tails of Sn and Mn are asymptotically equivalent to
the right-hand side of Eq. (1.3). We only prove the assertion for Sn, since the counterpart
of Mn can be obtained similarly.

By Lemma 3.1, it is clear that the assertion holds for S1 = X1Y1. Now we assume by
induction that the assertion holds for n − 1 ≥ 1 and prove it for n. Recalling Eq. (2.1), it
holds that

P (Sn > x) = P

(
Y1

(
X1 + S

(2)
n−1

)
> x

)
. (3.1)

From the induction assumption, we know that S
(2)
n−1 ∈ R−α and F 1(x) = o(1)P

(
S

(2)
n−1 > x

)
.

Noting also that F 1 ∈ R−α and X1 is independent of S
(2)
n−1, we have (see, e.g., Feller [9],

pp. 278)

P

(
X1 + S

(2)
n−1 > x

)
∼ P

(
S

(2)
n−1 > x

)
∼ αn−1Γ(γ∗)

∏n
i=2 Γ(γi)

Γ (γ∗ +
∑n

i=2 γi)
�∗n(ln x)

(
n∏

i=2

�i(ln x)

)
(ln x)γ∗+

∑n
i=2 γi−1x−α.

Then, applying Lemma 3.1 to Y1 and X1 + S
(2)
n−1 in (3.1) completes the proof. �

The next lemma is a restatement of the Corollary of Theorem 3 in Embrechts and
Goldie [7].

Lemma 3.2. Let Y be a positive rv with survival function G ∈ R−α for some α ≥ 0 and
let Z be a real-valued rv with survival function H. Assume that Y and Z are independent.
Then Y Z ∈ R−α if either (a) H(x) = o(G(x)) or (b) H ∈ R−α.

The first assertion of Lemma 3.3 below is borrowed from Lemma 3.3 of Hao and
Tang [12]; see also Lemma 4.4.2 of Samorodnitsky and Taqqu [27], and the second assertion
is a special case of Proposition 2 of Rogozin and Sgibnev [24].
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Lemma 3.3. Let Y and Z be two real-valued rv’s with survival functions G and H,
respectively. If G ∈ R−α for some α ≥ 0 and

P (|Z| > x) = o
(
G(x)

)
(3.2)

then
P (Y + Z > x) ∼ G(x).

Particularly, if Y and Z are independent then Eq. (3.2) can be weakened as H(x) =
o
(
G(x)

)
.

Lemma 3.4 below is crucial for the proof of our main theorem.

Lemma 3.4. Let Y be a positive rv with survival function G ∈ R−α for some α ≥ 0 and
let Z1, . . . , Zn be n real-valued rv’s satisfying E (Zi)

α
+ < ∞ for every 1 ≤ i ≤ n and

P

(
n∑

i=1

Zi > x

)
∼

n∑
i=1

ciP (Zi > x) (3.3)

for n non-negative constants c1, . . . , cn such that max1≤i≤n ci > 0. Assume further that Y
and {Z1, . . . , Zn} are independent. Then

P

(
Y

n∑
i=1

Zi > x

)
∼
(

E

(
n∑

i=1

Zi

)α

+

−
n∑

i=1

ciE (Zi)
α
+

)
P (Y > x) +

n∑
i=1

ciP (Y Zi > x) .

(3.4)

One merit of Lemma 3.4 is that we do not require E (Zi)
β
+ < ∞ for every 1 ≤ i ≤ n and

some β > α. In return, the tails of products P (Y Zi > x) for 1 ≤ i ≤ n cannot be expanded
further. Otherwise, relation Eq. (3.4) will reduce to Breiman’s formula. If Zi ’s are indepen-
dent then relation Eq. (3.3) with c1 = · · · = cn = 1 is usually called the max-sum equivalence
property; see, for example, Cai and Tang [3] for some heavy-tailed distribution classes satis-
fying such a property. Moreover, even under some special dependence structures, including
the pairwise negative dependence and (quasi-) asymptotic independence, relation Eq. (3.3)
still holds with c1 = · · · = cn = 1 for Zi’s belonging to certain heavy-tailed distribution
classes; see Chen and Yuen [5], Geluk and Tang [11], and Tang [29], among others.

Proof of Lemma 3.4: For every 0 < ε < 1, by relation Eq. (3.3), there is some M > 0
such that the relations

(1 − ε)
n∑

i=1

ciP (Zi > x) ≤ P

(
n∑

i=1

Zi > x

)
≤ (1 + ε)

n∑
i=1

ciP (Zi > x) (3.5)

hold for all x ≥ M . By this large M , we rewrite the left-hand side of (3.4) as

P

(
Y

n∑
i=1

Zi > x

)
= P

(
Y

n∑
i=1

Zi > x, Y >
x

M

)
+ P

(
Y

n∑
i=1

Zi > x, Y ≤ x

M

)
= I1(M,x) + I2(M,x).

Applying Remark A.1(a) below to I1(M,x), we have, for M large enough,

1 − ε ≤ lim
x→∞

I1(M,x)
E (
∑n

i=1 Zi)
α

+ · P (Y > x)
≤ 1 + ε. (3.6)
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Consider I2(M,x) =
∫ x/M

0
P (
∑n

i=1 Zi > x/y) G(dy). It follows from Eq. (3.5) that

(1 − ε)J(M,x) ≤ I2(M,x) ≤ (1 + ε)J(M,x), (3.7)

where

J(M,x) =
n∑

i=1

ciP (Y Zi > x) −
n∑

i=1

ciP

(
Y Zi > x, Y >

x

M

)
.

Using Remark A.1(a) again to each summand of the second summation, we obtain that, for
M large enough,

1 − ε ≤ lim
x→∞

J(M,x)∑n
i=1 ciP (Y Zi > x) −∑n

i=1 ciE (Zi)
α
+ · P (Y > x)

≤ 1 + ε. (3.8)

Combining Eqs. (3.6)–(3.8) and noting the arbitrariness of ε complete the proof. �

Lemma 3.5. Let Y be a positive rv with survival function G ∈ R−α for some α ≥ 0 and let
Z1, Z2 be two real-valued rv’s with survival functions H1,H2 satisfying H1(x) = o

(
H2(x)

)
and E (Z2)

α
+ < ∞. Assume that Y and {Z1, Z2} are independent. Then

P (Y Z1 > x) − E (Z1)
α
+ · G(x) = o(1)P (Y Z2 > x) .

Proof: For every 0 < ε < 1, since H1(x) = o
(
H2(x)

)
, there is some M such that for all

x ≥ M the relation H1(x) ≤ εH2(x) holds. Write

P (Y Z1 > x) = P

(
Y Z1 > x, Y >

x

M

)
+ P

(
Y Z1 > x, Y ≤ x

M

)
= I1(M,x) + I2(M,x).

By Remark A.1(a), choosing M large enough, it holds that

lim
x→∞

I1(M,x) − E (Z1)
α
+ · G(x)

E (Z1)
α
+ · G(x)

≤ ε. (3.9)

For I2(M,x), by conditioning on Y and noting that H1(x) ≤ εH2(x) for x ≥ M , we have

I2(M,x) ≤ εP

(
Y Z2 > x, Y ≤ x

M

)
≤ εP (Y Z2 > x) . (3.10)

Moreover, Fatou’s lemma gives

P (Y Z2 > x) � E (Z2)
α
+ · G(x). (3.11)

Therefore,

lim sup
x→∞

P (Y Z1 > x) − E (Z1)
α
+ · G(x)

P (Y Z2 > x)

= lim sup
x→∞

(
I1(M,x) − E (Z1)

α
+ · G(x)

E (Z1)
α
+ · G(x)

· E (Z1)
α
+ · G(x)

P (Y Z2 > x)
+

I2(M,x)
P (Y Z2 > x)

)

≤ ε

(
E (Z1)

α
+

E (Z2)
α
+

+ 1
)

,

where in the last step we used Eqs. (3.9)–(3.11) in turn. Noting the arbitrariness of ε
completes the proof. �

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S026996481400014X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:35:10, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S026996481400014X
https:/www.cambridge.org/core


582 Enkelejd Hashorva and Jinzhu Li

Proof of Theorem 2.1(i): We only derive relation (2.3) which implies that Sn ∈ R−α

by Lemma 3.2(b), then the assertions regarding Mn follow from the similar procedures with
obvious modifications.

We proceed by the mathematical induction. Trivially, relation (2.3) holds for n = 1 with
a by-product

P (S1 > x) � E (X1)
α
+ · P (Y1 > x) .

Assume by induction that relation (2.3) holds for n − 1 ≥ 1 with

P (Sn−1 > x) � E

(
X1 + S

(2)
n−2

)α

+
· P (Y1 > x) .

Now we consider Sn and recall that relation (3.1) holds. Applying the induction assumption
to {Y2, . . . , Yn} and {X2, . . . , Xn} leads to

P

(
S

(2)
n−1 > x

)
� E

(
X2 + S

(3)
n−2

)α

+
· P (Y2 > x) . (3.12)

Combining Eq. (3.12) with (2.2) gives

P (|X1| > x) = o (1) P

(
S

(2)
n−1 > x

)
,

which, together with Lemma 3.3, gives

P

(
X1 + S

(2)
n−1 > x

)
∼ P

(
S

(2)
n−1 > x

)
.

Applying Lemma 3.4 to Eq. (3.1) with Y , Z1, Z2 replaced by Y1, X1, S
(2)
n−1, respectively,

and c1 = 0, c2 = 1, we have

P (Sn > x) ∼
(

E

(
X1 + S

(2)
n−1

)α

+
− E

(
S

(2)
n−1

)α

+

)
P (Y1 > x) + P

(
Y1S

(2)
n−1 > x

)
= Bn,1P (Y1 > x) + P

(
Ŝ

(2)
n−1 > x

)
, (3.13)

where Ŝ
(2)
n−1 stands for S

(2)
n−1 with Y2 replaced by Y1Y2. Clearly, {Y1Y2, Y3, . . . , Yn} and

{X2, . . . , Xn} also satisfy all the conditions of assertion (i). Thus, using the induction
assumption to Ŝ

(2)
n−1 yields

P

(
Ŝ

(2)
n−1 > x

)
∼

n−1∑
i=2

Bn,iP

⎛⎝ i∏
j=1

Yj > x

⎞⎠+ P

⎛⎝Xn

n∏
j=1

Yj > x

⎞⎠ . (3.14)

A combination of Eqs. (3.13) and (3.14) gives relation Eq. (2.3). �

Proof of Theorem 2.1(ii): Similarly as before, we only derive relation Eq. (2.5) by the
mathematical induction. Trivially, relation (2.5) holds for n = 1. Assume by induction that
relation (2.5) holds for n − 1 ≥ 1, which implies that S

(2)
n−1 ∈ R−α. Since F1 ∈ R−α and X1
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is independent of S
(2)
n−1, it holds that

P

(
X1 + S

(2)
n−1 > x

)
∼ P (X1 > x) + P

(
S

(2)
n−1 > x

)
.

Now, applying Lemma 3.4 to Eq. (3.1) with Y , Z1, Z2 replaced by Y1, X1, S
(2)
n−1, respectively,

and c1 = c2 = 1, we have

P (Sn > x) ∼
(

E

(
X1 + S

(2)
n−1

)α

+
− E (X1)

α
+ − E

(
S

(2)
n−1

)α

+

)
P (Y1 > x)

+ P (X1Y1 > x) + P

(
Y1S

(2)
n−1 > x

)
=
(
Bn,1 − E (X1)

α
+

)
P (Y1 > x) + P (X1Y1 > x) + P

(
Ŝ

(2)
n−1 > x

)
. (3.15)

Since {Y1Y2, Y3, . . . , Yn} and {X2, . . . , Xn} also satisfy all the conditions of assertion (ii),
using the induction assumption on Ŝ

(2)
n−1 yields

P

(
Ŝ

(2)
n−1 > x

)
∼

n−1∑
i=2

(
Bn,i − E (Xi)

α
+

)
P

⎛⎝ i∏
j=1

Yj > x

⎞⎠+
n∑

i=2

P

⎛⎝Xi

i∏
j=1

Yj > x

⎞⎠ . (3.16)

A combination of Eqs. (3.15) and (3.16) gives relation (2.5). �

Proof of Corollary 2.1: Since ln Y ∈ S(α) and limx→∞ F (x)/G(x) = θ, we can derive
by Proposition 2 of Rogozin and Sgibnev [24] that, for every i ≥ 1,

P

⎛⎝Xi

i∏
j=1

Yj > x

⎞⎠ ∼ (iEXα
+ + θEY α

)
(EY α)i−1

G(x), (3.17)

and, particularly,

P

⎛⎝ i∏
j=1

Yj > x

⎞⎠ ∼ i (EY α)i−1
G(x). (3.18)

If θ = 0, that is, F (x) = o
(
G(x)

)
, then Remark 2.4 indicates that Theorem 2.1(i) holds.

Plugging Eqs. (3.17) and (3.18) into (2.3) and (2.4), and then rearranging the constants
with keeping in mind the two relations specified in Remark 2.4, we obtain the relations in
Eq. (2.8) with θ = 0. On the other hand, if θ > 0 then Theorem 2.1(ii) is valid. Plugging
Eqs. (3.17) and (3.18) into (2.5) and (2.6), and then rearranging the constants, we complete
the proof. �
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APPENDIX A

In this section, we derive some asymptotic results for the constant weighted sums of partial products
of Yi’s with the uniformity of the constant weights; see Theorem A.1 below. We first prepare two
important lemmas.

Lemma A.1. Let Y be a positive rv with survival function G ∈ R−α for some α ≥ 0 and let
Z = {Z} be a set of positive rv’s satisfying inf Z > 0 and E (supZ)α < ∞, where inf / supZ =
inf / supZ∈Z Z. Assume that Y and Z are independent. Then it holds uniformly for Z ∈ Z that

lim
M→∞

lim
x→∞

P (Y Z > x, Y > x/M)

EZα · G(x)
= 1. (A1)

Proof: For every M > 1 > δ > 0 and x > 0, we have

P

(
Y Z > x, Y >

x

M

)
= P

(
Y >

x

M
, Z > M

)
+ P (Y Z > x, 0 < Z ≤ δ) + P (Y Z > x, δ < Z ≤ M)

= I1(M, x) + I2(M, x) + I3(M, x).

Since Y and Z are independent, it holds that

lim
M→∞

lim
x→∞ sup

Z∈Z
I1(M, x) + I2(M, x)

EZα · G(x)

≤ lim
M→∞

lim
x→∞ sup

Z∈Z
P (Z > M) G (x/M) + P (Z ≤ δ) G(x/δ)

EZα · G(x)

≤ lim
M→∞

lim
x→∞

P (supZ > M) G (x/M) + P (inf Z ≤ δ) G(x/δ)

E (inf Z)α · G(x)

= lim
M→∞

P (supZ > M) Mα + P (inf Z ≤ δ) δα

E (inf Z)α

≤ P (inf Z ≤ δ)

E (inf Z)α
, (A2)

where in the third and the fourth steps we used G ∈ R−α and E (supZ)α < ∞, respectively. For
I3(M, x), we have

lim
M→∞

lim
x→∞ sup

Z∈Z

∣∣∣∣ I3(M, x)

EZα · G(x)
− 1

∣∣∣∣
≤ lim

M→∞
lim

x→∞ sup
Z∈Z

∣∣∣∫M
δ

(
G(x/y)/G(x) − yα)

P (Z ∈ dy)
∣∣∣+ EZα1{Z>M}∪{Z≤δ}

EZα

≤ lim
M→∞

lim
x→∞

supδ<y≤M

∣∣G(x/y)/G(x) − yα
∣∣+ E (supZ)α 1{supZ>M} + P (inf Z ≤ δ) δα

E (inf Z)α

≤ P (inf Z ≤ δ)

E (inf Z)α
, (A3)
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where in the last step we used Theorem 1.5.2 of Bingham, Goldie, and Teugels [1] to neglect the
first term of the numerator as x → ∞. Combining Eq. (A2) with (A3) and noting the arbitrariness
of δ complete the proof. �

Remark A.1. Going along the same lines of the above proof with corresponding modifications, we
can obtain two variants of Lemma A.1: Let Y be that in Lemma A.1 and let Z be a set of real-
valued rv’s independent of Y , then (a) relation (A1) with EZα replaced by EZα

+, denoted by (4.1′),
holds for every fixed Z with EZα

+ < ∞; (b) relation (4.1′) holds uniformly for Z ∈ Z if α > 0 and
0 < E (inf Z)α+ ≤ E (supZ)α+ < ∞.

Using Lemma A.1 and the same idea as in the proof of Lemma 3.4, we have the following:

Lemma A.2. In addition to the other conditions of Lemma A.1, if P (Z > x − 1) ∼ P(Z > x) holds
uniformly for Z ∈ Z then it holds uniformly for Z ∈ Z that

P (Y (1 + Z) > x) ∼ [E (1 + Z)α − EZα]
P (Y > x) + P (Y Z > x) .

Theorem A.1. Let {Yi; i ≥ 1} be a sequence of positive and independent rv’s with survival func-
tions Gi ∈ R−α for every i ≥ 1 and some α ≥ 0. Assume that EY α

i < ∞ for every i ≥ 2. Then,
for every n ≥ 1 and 0 < a ≤ b < ∞, it holds uniformly for (c1, . . . , cn) ∈ [a, b]n that

P

⎛⎝ n∑
i=1

ci

i∏
j=1

Yj > x

⎞⎠ ∼
n∑

i=1

An,iP

⎛⎝ i∏
j=1

Yj > x

⎞⎠ , (A4)

where

An,i = E

⎛⎝ n∑
k=i

ck

k∏
j=i+1

Yj

⎞⎠α

− E

⎛⎝ n∑
k=i+1

ck

k∏
j=i+1

Yj

⎞⎠α

.

Particularly, if α = 1 then it holds uniformly for (c1, . . . , cn) ∈ [a, b]n that

P

⎛⎝ n∑
i=1

ci

i∏
j=1

Yj > x

⎞⎠ ∼
n∑

i=1

ciP

⎛⎝ i∏
j=1

Yj > x

⎞⎠ ,

and if α = 0 then it holds uniformly for (c1, . . . , cn) ∈ [a, b]n that

P

⎛⎝ n∑
i=1

ci

i∏
j=1

Yj > x

⎞⎠ ∼ P

⎛⎝ n∏
j=1

Yj > x

⎞⎠ .

Proof: We prove relation (A4) by mathematical induction. For n = 1, by Theorem 1.5.2 of
Bingham, Goldie, and Teugels [1], it holds uniformly for c1 ∈ [a, b] that

P (c1Y1 > x) ∼ cα
1 P (Y1 > x) = A1,1P (Y1 > x) .

Hence, the assertion holds for n = 1. Now we assume by induction that the assertion holds for
n − 1 ≥ 1 and prove it for n. Define a set of positive rv’s as

Z =

⎧⎨⎩
n∑

i=2

ci

c1

i∏
j=2

Yj : (c1, . . . , cn) ∈ [a, b]n

⎫⎬⎭ .
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It follows from Lemma 3.2(b) that
∏i

j=2 Yj ∈ R−α ⊂ L(0) for every 2 ≤ i ≤ n. Observing

that (c2/c1, . . . , cn/c1) ∈ [a/b, b/a]n−1, we obtain by the induction assumption that, uniformly for
(c1, . . . , cn) ∈ [a, b]n,

P

⎛⎝ n∑
i=2

ci

c1

i∏
j=2

Yj > x − 1

⎞⎠ ∼
n∑

i=2

c−α
1 An,iP

⎛⎝ i∏
j=2

Yj > x − 1

⎞⎠
∼

n∑
i=2

c−α
1 An,iP

⎛⎝ i∏
j=2

Yj > x

⎞⎠
∼ P

⎛⎝ n∑
i=2

ci

c1

i∏
j=2

Yj > x

⎞⎠ .

Moreover, it is obvious that

inf Z =

n∑
i=2

a

b

i∏
j=2

Yj > 0 and E (supZ)α = E

⎛⎝ n∑
i=2

b

a

i∏
j=2

Yj

⎞⎠α

< ∞.

Hence, Z satisfies the conditions of Lemma A.2, which implies that, uniformly for (c1, . . . , cn) ∈
[a, b]n,

P

⎛⎝ n∑
i=1

ci

i∏
j=1

Yj > x

⎞⎠ = P

⎛⎝Y1

⎛⎝1 +
n∑

i=2

ci

c1

i∏
j=2

Yj

⎞⎠ >
x

c1

⎞⎠
∼ c−α

1 An,1P

(
Y1 >

x

c1

)
+ P

⎛⎝Y1

n∑
i=2

ci

c1

i∏
j=2

Yj >
x

c1

⎞⎠
∼ An,1P (Y1 > x) + P

⎛⎝ n∑
i=2

ciY1

i∏
j=2

Yj > x

⎞⎠ . (A5)

For the second term of Eq. (A5), regarding Y1Y2 as a whole and applying the induction assumption
to Y1Y2, Y3, . . . , Yn, we have, uniformly for (c2, . . . , cn) ∈ [a, b]n−1,

P

⎛⎝ n∑
i=2

ciY1

i∏
j=2

Yj > x

⎞⎠ ∼
n∑

i=2

An,iP

⎛⎝ i∏
j=1

Yj > x

⎞⎠ . (A6)

A combination of Eqs. (A5) and (A6) completes the proof. �

Similarly as in Corollary 2.1, assuming further that {Yi; i ≥ 1} is a sequence of iid rv’s and
ln Y ∈ S(α) for some α ≥ 0 leads to a series of explicit results. We conclude them in the following
Corollary A.1.

Corollary A.1. Let {Yi; i ≥ 1} be a sequence of positive and iid rv’s with common survival function
G. If ln Y ∈ S(α) for some α ≥ 0 then, for every n ≥ 1 and 0 < a ≤ b < ∞, it holds uniformly for
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(c1, . . . , cn) ∈ [a, b]n that

P

⎛⎝ n∑
i=1

ci

i∏
j=1

Yj > x

⎞⎠ ∼
n∑

i=1

E

⎛⎝ n∑
k=i

ck

k−i+1∏
j=1

Yj

⎞⎠α (
EY α)i−2 · G(x).

Particularly, if α = 1 then it holds uniformly for (c1, . . . , cn) ∈ [a, b]n that

P

⎛⎝ n∑
i=1

ci

i∏
j=1

Yj > x

⎞⎠ ∼
n∑

i=1

ici (EY )i−1 · G(x),

and if α = 0 then it holds uniformly for (c1, . . . , cn) ∈ [a, b]n that

P

⎛⎝ n∑
i=1

ci

i∏
j=1

Yj > x

⎞⎠ ∼ nG(x).
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