A BOUNDEDNESS THEOREM $\mathrm{IN}_{\mathrm{ID}}^{1} 1(W)$

GERHARD JÄGER

§0. In this paper we prove a boundedness theorem in the theory $\mathrm{ID}_{1}(W)$. This answers a question asked by Feferman, for example in [3]. The background is the following.

Let $A[X, x]$ be an X-positive formula arithmetic in X. The theory $\operatorname{ID}_{1}\left(P^{A}\right)$ is an extension of Peano arithmetic PA by the following axioms:
($\mathrm{ID}_{A} .1$)

$$
\begin{gathered}
A\left[P^{A}, x\right] \rightarrow P^{A}(x), \\
\forall x(A[F, x] \rightarrow F(x)) \rightarrow \forall x\left(P^{A}(x) \rightarrow F(x)\right),
\end{gathered}
$$

$\left(\mathrm{ID}_{A} \cdot 2\right)$
for arbitrary formulas $F ; P^{A}$ is a constant for the least fixed point of $A[X, x]$. Settheoretically, P^{A} can be defined by recursion on the ordinals as follows:

$$
P_{\alpha}^{A}:=\left\{x: A\left[\bigcup\left\{P_{\xi}^{A}: \xi<\alpha\right\}, x\right]\right\}, \quad P^{A}:=\bigcup\left\{P_{\xi}^{A}: \xi<\omega_{1}^{c k}\right\},
$$

where $\omega_{1}^{c k}$ is the first nonrecursive ordinal.
Now let $a<b$ be the arithmetic relation which expresses that the recursive tree coded by a is a proper subtree of the tree coded by b, and define

$$
\operatorname{Tree}[X, x]: \Leftrightarrow \forall y \prec x(y \in X) .
$$

The least fixed point of Tree $[X, x]$ is the set $P^{\text {Tree }}$ of all well-founded recursive trees. We write W or W_{α} for $P^{\text {Tree }}$ or $P_{\alpha}^{\text {Tree }}$, respectively. Since W is Π_{1}^{1} complete we have $W_{\alpha} \varsubsetneqq W$ for all $\alpha<\omega_{1}^{c k}$. If we define for each element $a \in W$ its inductive norm $|a|$ by $|a|:=\min \left\{\xi: a \in W_{\xi}\right\}$, then we have $\omega_{1}^{c k}=\{|a|: a \in W\}$ and the elements of W can be used as codes for the ordinals less than $\omega_{1}^{c k}$.
Assume that $B[X, x]$ is an X-positive formula arithmetic in X with the only free variables X and x, and assume that Q^{B} is a relation that satisfies

$$
Q^{B}(a, b) \leftrightarrow B\left[\left\{x:(\exists y<a) Q^{B}(y, x)\right\}, b\right] .
$$

If we define

$$
I^{B}(x): \Leftrightarrow(\exists a \in W) Q^{B}(a, x),
$$

then we obviously have $P^{B}=I^{B}$. It was an open question whether a weak theory like

[^0]$\mathrm{ID}_{1}(W)$ is strong enough to prove the following boundedness theorem:
\[

$$
\begin{equation*}
\forall x\left(B\left[I^{B}, x\right] \rightarrow I^{B}(x)\right), \tag{BT}
\end{equation*}
$$

\]

which corresponds to $\left(\mathrm{ID}_{B} .1\right)$ with P^{B} replaced by I^{B}. The translation of the second axiom of $\operatorname{ID}_{1}\left(P^{B}\right)$

$$
\forall x(B[F, x] \rightarrow F(x)) \rightarrow \forall x\left(I^{B}(x) \rightarrow F(x)\right)
$$

is provable in $\mathrm{ID}_{1}(W)$ by induction on W.
Our proof of boundedness in $\mathrm{ID}_{1}(W)$ essentially uses a second order version of ID $_{1}(W)$ due to Feferman [3], Spector's boundedness theorem for Σ_{1}^{1} subsets of W and finally a lemma of Kreisel [4] that states that for every Π_{1}^{1} predicate $F(x, y)$

$$
\forall x \exists y F(x, y) \rightarrow \exists \alpha_{\mathrm{HYP}} \forall x F(x, \alpha(x)) .
$$

§1. In the following we assume that the reader is familiar with the theory ID_{1} of one inductive definition as presented for example in [1], [2], and [3]. Our notation mostly follows [3].
Let L be the usual first order language of arithmetic with constants for all primitive recursive functions and relations. The language L_{2} has in addition set variables $X, Y, Z, \ldots . \lambda x, y .\langle x, y\rangle$ is the usual pairing function; s, t, s_{1}, t_{1} range over sequence numbers; \rangle is the number of the empty sequence; $s=$ $\left\langle(s)_{0}, \ldots,(s)_{\mathrm{Ih}(s)-1}\right\rangle ; s * t$ is concatenation; $s \subseteq t(s \subset t)$ holds if s is an initial (proper) segment of t. Functions are defined by sets X satisfying $\forall x \exists!y(\langle x, y\rangle \in X)$, and we take the function variables α, β, γ to range over such sets; $\bar{\alpha}(n)$ is the sequence number $\langle\alpha(0), \ldots, \alpha(n-1)\rangle$.

We write \mathbf{X} and \mathbf{x} for finite strings X_{1}, \ldots, X_{n} and x_{1}, \ldots, x_{n} of set and number variables. The notation $A[\mathbf{X}, \mathbf{x}]$ is used to indicate that all free variables of A come from the lists \mathbf{X} and $\mathbf{x} ; A(\mathbf{X}, \mathbf{x})$ may contain other free variables besides \mathbf{X} and $\mathbf{x} . A(F)$ denotes the formula that results from $A(X)$ if we replace each occurrence of $(y \in X)$ by $F(y)$.
$\{e\}$ is the e th recursive function; $\operatorname{Tot}(e)$ expresses that $\{e\}$ is total. If $\operatorname{Tot}(e)$, then e codes a recursive tree $T_{e}:=\{s: \forall t \subseteq s(\{e\}(t)=0)\}$. Given e and s one effectively associates $e\left\lceil s\right.$ which codes the subtree of T_{e} below $s, T_{e \mid s}=\left\{t: s * t \in T_{e}\right\}$. For simplicity we write $e\lceil x$ instead of $e\rceil\langle x\rangle$. By $a<e$ we express that T_{a} is a proper subtree of T_{e}.
The set W of all well-founded recursive trees is the least set X such that $\forall x($ Tree $[X, x] \rightarrow x \in X)$ for the formula

$$
\operatorname{Tree}[X, x]: \Leftrightarrow(\operatorname{Tot}(x) \&\{x\}(\langle \rangle) \neq 0) \vee(\operatorname{Tot}(x) \& \forall y(x \mid y \in X))
$$

Now suppose that $A[X, x]$ is an arbitrary (but fixed) X-positive formula arithmetic in X. The language $L\left(W, Q^{A}\right)$ is the language L extended by the unary predicate constants W and Q^{A}, and we write $x \in W$ and $x \in Q^{A}$ for $W(x)$ and $Q^{A}(x)$. The theory $\operatorname{ID}(W, A)$ is given by the following axioms where F is an arbitrary formula of $L\left(W, Q^{A}\right)$.

1. Axioms of primitive recursive arithmetic PRA;
2. $F(0) \& \forall x\left(F(x) \rightarrow F\left(x^{\prime}\right)\right) \rightarrow \forall x F(x)$;
3. $\forall x($ Tree $[W, x] \rightarrow x \in W)$;
4. $\forall x(\operatorname{Tree}[F, x] \rightarrow F(x)) \rightarrow(\forall x \in W) F(x)$;
5. $\forall a \forall x\left[\operatorname{Tot}(a) \rightarrow\left(\langle a, x\rangle \in Q^{A} \leftrightarrow A\left[\exists y<a\left(\langle y, \cdot\rangle \in Q^{A}\right), x\right]\right)\right]$.

Axioms 3 and 4 formalize that W is the set of all well-founded recursive trees. Axiom 5 expresses that the sets $Q_{a}^{A}=\left\{x:\langle a, x\rangle \in Q^{A}\right\}$ with $a \in W$ are the stages of the inductive definition given by $A[X, x]$. Now we define

$$
I^{A}(x): \Leftrightarrow \exists a \in W\left(\langle a, x\rangle \in Q^{A}\right) .
$$

By an obvious induction on W we can show in $\operatorname{ID}(W, A)$ that

$$
\forall x(A[F, x] \rightarrow F(x)) \rightarrow \forall x\left(I^{A}(x) \rightarrow F(x)\right)
$$

for arbitrary formulas F of $L\left(W, Q^{A}\right)$. In the following we will see that $\operatorname{ID}(W, A)$ also proves the boundedness principle

$$
\begin{equation*}
\forall x\left(A\left[I^{A}, x\right] \rightarrow I^{A}(x)\right) . \tag{BT}
\end{equation*}
$$

§2. For the proof of (BT) it is more convenient to work in the second order version $\operatorname{ID}^{(2)}(W, A)$ of $\operatorname{ID}(W, A)$ introduced by Feferman in [3]. $\operatorname{ID}^{(2)}(W, A)$ is formulated in the second order language $L_{2}\left(W, Q^{A}\right)$ and has the following axioms:
I. Axioms of PRA;
II. $\forall X\left[0 \in X \& \forall x\left(x \in X \rightarrow x^{\prime} \in X\right) \rightarrow \forall x(x \in X)\right]$;
III. $\forall x$ (Tree $[W, x] \rightarrow x \in W$);
IV. $\forall X[\forall x($ Tree $[X, x] \rightarrow x \in X) \rightarrow W \subset X]$;
V. $\forall a \forall x\left[\operatorname{Tot}(a) \rightarrow\left(\langle a, x\rangle \in Q^{A} \leftrightarrow A\left[\exists y<a\left(\langle y, \cdot\rangle \in Q^{A}\right), x\right]\right)\right] ;$
VI. $\exists X \forall x(x \in X \leftrightarrow G(x))$ for each formula G of $L_{2}\left(W, Q^{A}\right)$ without bound set variables.

By VI each $L\left(W, Q^{A}\right)$ formula defines a set and, consequently, the axioms 2 and 4 of $\operatorname{ID}(W, A)$ are derivable from the axioms II and IV of $\operatorname{ID}^{(2)}(W, A)$. Hence $\operatorname{ID}(W, A)$ is contained in $\operatorname{ID}^{(2)}(W, A)$. In [3] it is proved that $\operatorname{ID}^{(2)}(W, A)$ actually is the second order version of $\operatorname{ID}(W, A)$. The following theorem is obtained by an obvious modification of Feferman's proof that $\mathrm{ID}^{(2)}(W)$ is a conservative extension of $\operatorname{ID}(W)$.

Theorem 1 (Feferman). $\operatorname{ID}^{(2)}(W, A)$ is a conservative extension of $\operatorname{ID}(W, A)$.
It will be shown that $\mathrm{ID}^{(2)}(W, A)$ proves (BT). For simplicity we now write $\mathrm{ID}^{(2)}$ instead of $\mathrm{ID}^{(2)}(W, A)$.

Let $\Pi_{0}^{1}\left(W, Q^{A}\right)$ or Π_{0}^{1} be the class of all arithmetic formulas of $L_{2}\left(W, Q^{A}\right)$ or L_{2}, respectively. A formula is called strict Π_{1}^{1} (strict Σ_{1}^{1}) if it is in Π_{0}^{1} or has the form $\forall X F(X)(\exists X F(X))$ where $F(X)$ is in Π_{0}^{1} and contains no set variables besides X. The class of strict Π_{1}^{1} formulas (strict Σ_{1}^{1} formulas) is denoted by $\Pi^{s}\left(\Sigma^{s}\right)$. Observe that strict Π_{1}^{1} and strict Σ_{1}^{1} formulas of the form $\forall X F(X)$ and $\exists X F(X)$ may contain free number variables but no free set variables. Finally, a formula is $\Pi_{0}^{1}\left(W, Q^{A}\right)$ in $\Pi^{s}\left(\Pi_{0}^{1}\right.$ in Π^{s}) if it is of the form $G\left(F_{1}, \ldots, F_{n}\right)$ where $F_{1}(x), \ldots, F_{n}(x)$ are strict Π_{1}^{1} formulas and $G\left(X_{1}, \ldots, X_{n}\right)$ is in $\Pi_{0}^{1}\left(W, Q^{A}\right)$ (in Π_{0}^{1}). Now we list some properties of $\mathrm{ID}^{(2)}$:

Lemma 1. Suppose that $\forall X F[X, \mathbf{x}]$ is strict Π_{1}^{1}. Then we can find a primitive recursive π for which $\mathrm{ID}^{(2)}$ proves

$$
\forall X F[X, \mathbf{x}] \leftrightarrow \pi(\mathbf{x}) \in W .
$$

Lemma 2. ID ${ }^{(2)}$ proves (Π^{s}-CA), i.e.

$$
\mathrm{ID}^{(2)} \vdash \exists X \forall x(x \in X \leftrightarrow F(x))
$$

for every strict Π_{1}^{1} formula $F(x)$.
Lemma 3. $\mathrm{ID}^{(2)}$ proves ($\Sigma^{s}-\mathrm{AC}$), i.e.

$$
\mathrm{ID}^{(2)} \vdash \forall x \exists X \exists Y F(x, X, Y) \rightarrow \exists Z \forall x \exists Y F\left(x,(Z)_{x}, Y\right)
$$

for every Π_{0}^{1} formula $F(x, X, Y)$ with no set variables besides X and Y.
Lemma 4. If $F(x)$ is $\Pi_{0}^{1}\left(W, Q^{A}\right)$ in Π^{s}, then the following is a theorem of $\mathrm{ID}^{(2)}$:

$$
\exists X \forall x(x \in X \leftrightarrow F(x)) .
$$

Lemma 5. If $F_{1}[\mathbf{x}, y], \ldots, F_{n}[\mathbf{x}, y]$ are Π^{s} formulas (Σ^{s} formulas) and $G\left[X_{1}, \ldots\right.$, $\left.X_{n}, \mathrm{x}\right]$ is a Π_{0}^{1} formula positive in $X_{1}, \ldots X_{n}$, then there exists a Π^{s} formula (Σ^{s} formula) $C[\mathbf{x}]$ such that

$$
\mathrm{ID}^{(2)} \vdash G\left[F_{1}[\mathbf{x}, \cdot], \ldots, F_{n}[\mathbf{x}, \cdot]\right] \leftrightarrow C[\mathbf{x}] .
$$

Lemma 6. If $F(x)$ is $\Pi_{0}^{1}\left(W, Q^{A}\right)$ in Π^{s}, then the following are provable in $\mathrm{ID}^{(2)}$:
(a) $F(0) \& \forall x\left(F(x) \rightarrow F\left(x^{\prime}\right)\right) \rightarrow \forall x F(x)$;
(b) $\forall x(\operatorname{Tree}[F, x] \rightarrow F(x)) \rightarrow(\forall x \in W) F(x)$.

Lemma 1 and Lemma 2 are proved in [3]; Lemma 3 is a standard consequence of Lemma 2 (see for example [6]). Lemma 4 follows from Lemma 1 and axiom VI of $\mathrm{ID}^{(2)}$, Lemma 5 is proved by induction on the complexity of G using Lemma 3. Lemma 6 follows from Lemma 4 and the axioms II and IV of ID ${ }^{(2)}$.
Definition. (a) $\tilde{W}(a): \Leftrightarrow \forall X[\forall x(\operatorname{Tree}[X, x] \rightarrow x \in X) \rightarrow a \in X]$;
(b) $H^{A}(X): \Leftrightarrow \forall a \forall x[\operatorname{Tot}(a) \rightarrow(\langle a, x\rangle \in X \leftrightarrow A[\exists y<a(\langle y, \cdot\rangle \in X), x])]$;
(c) $\tilde{Q}^{A}(a, x): \Leftrightarrow \forall X\left(H^{A}(X) \rightarrow\langle a, x\rangle \in X\right)$.

Lemma 7. ID ${ }^{(2)}$ proves the following:
(a) $\forall x(x \in W \leftrightarrow \tilde{W}(x))$;
(b) $H^{A}(X) \& a \in W \rightarrow \forall x\left(\langle a, x\rangle \in X \leftrightarrow\langle a, x\rangle \in Q^{A}\right)$;
(c) $(\forall a \in W) \forall x\left(\langle a, x\rangle \in Q^{A} \leftrightarrow \tilde{Q}^{A}(a, x)\right)$.

Proof. Since $\tilde{W}(x)$ is a Π^{s} formula, (a) follows from Lemma 2 and axiom III of $\mathrm{ID}^{(2)}$. (b) is proved by induction on W. The direction from left to right of (c) follows from (b); for the converse direction observe that Q^{A} is a set in $\mathrm{ID}^{(2)}$ which satisfies $H^{A}(X)$ by axiom V.
§3. In order to state and prove Spector's boundedness theorem in ID ${ }^{(2)}$ we need some familiar notions from recursion theory as they can be found for example in Shoenfield [5].

If $\{a\}$ and $\{b\}$ are total recursive functions, then a number-theoretic function α is a monotone function from the tree T_{a} to the tree T_{b} if $\alpha: T_{a} \rightarrow T_{b}$ and $s \subset t \rightarrow \alpha(s) \subset \alpha(t)$ for all s, t in T_{a}. The predicate " α is a monotone function from T_{a} to T_{b} " is arithmetic in α.

Definition. (a) $T_{\leqq}(a, b): \Leftrightarrow \operatorname{Tot}(a) \& \operatorname{Tot}(b) \&[\square \tilde{W}(b) \vee \exists \alpha(\alpha$ is monotone from T_{a} to T_{b}];
(b) $T_{<}(a, b): \Leftrightarrow \operatorname{Tot}(a) \& \operatorname{Tot}(b) \&\left[\neg \tilde{W}(b) \vee \exists \alpha \exists x\left(\langle x\rangle \in T_{b} \& \alpha\right.\right.$ is monotone from T_{a} to $\left.\left.T_{b \mid x}\right)\right]$.

By Lemma 5 there exist Σ^{s} formulas provably equivalent to $T_{\leqq}(a, b)$ and $T_{<}(a, b)$; we denote them by $|a| \leqq|b|$ and $|a|<|b|$.

Lemma 8. The following are theorems of ID $^{(2)}$:
(a) $b \in W \&|a| \leqq|b| \rightarrow a \in W$;
(b) $a, b \in W \rightarrow|a| \leqq|b| \vee|b|<|a|$;
(c) $b \in W \&|a| \leqq|b| \rightarrow \forall x\left(\langle a, x\rangle \in Q^{A} \rightarrow\langle b, x\rangle \in Q^{A}\right)$.

Proof. All three assertions follow by induction on W. The proofs of (a) and (b) can essentially be found in [5]. For the proof of (c) we use axiom V of $\mathrm{ID}^{(2)}$ and the fact that $A[X, x]$ is positive in X.

Theorem 2 (Spector). If $F(x)$ is a Σ^{s} formula, then ID $^{(2)}$ proves

$$
\forall x(F(x) \rightarrow x \in W) \rightarrow(\exists e \in W) \forall x(F(x) \rightarrow|x|<|e|) .
$$

Proof. Again we follow [5]. Choose a Π^{s} predicate $G(x)$ which is provably not equivalent to a Σ^{s} formula and assume that $\forall x(F(x) \rightarrow x \in W)$ and $(\forall e \in W) \exists x(F(x)$ \& $|x| \nmid|e|)$. By Lemma 8(b), the last formula is equivalent to

$$
\begin{equation*}
(\forall e \in W) \exists x(F(x) \&|e| \leqq|x|) . \tag{1}
\end{equation*}
$$

On the other hand, Lemma 1 gives a primitive recursive function π such that

$$
\begin{equation*}
G(a) \leftrightarrow \pi(a) \in W . \tag{2}
\end{equation*}
$$

Since $F \subset W$, (1) and (2) imply

$$
G(a) \leftrightarrow \exists x(F(x) \&|\pi(a)| \leqq|x|) .
$$

The right side is equivalent to a Σ^{s} formula by Lemma 5 ; a contradiction.
In [4] Kreisel proves that for every Π_{1}^{1} predicate $F(x, y)$ with $\forall x \exists y F(x, y)$ there exists an hyperarithmetical function α such that $\forall x F(x, \alpha(x))$. His theorem and its proof can easily be adapted to our present context, and we obtain the following Theorem 3.

Theorem 3. For every Π^{s} formula $F(x, y)$ there exists a Σ^{s} formula $G(x, y)$ with the same free variables as $F(x, y)$ such that $\mathrm{ID}^{(2)}$ proves

$$
\forall x \exists y F(x, y) \rightarrow \forall x \exists!y G(x, y) \& \forall x \forall y(G(x, y) \rightarrow F(x, y)) .
$$

§4. In this last section we finally prove the boundedness theorem for ID ${ }^{(2)}$ and $\operatorname{ID}(W, A)$.

Lemma 9. Suppose that $F(x, y)$ is a Π^{s} formula. Then

$$
\mathrm{ID}^{(2)} \vdash \forall x(\exists y \in W) F(x, y) \rightarrow(\exists e \in W) \forall x \exists y(|y|<|e| \& F(x, y)) .
$$

Proof. We work in $\mathrm{ID}^{(2)}$ and assume $\forall x(\exists y \in W) F(x, y)$, which is equivalent to

$$
\forall x \exists y(\tilde{W}(y) \& F(x, y)) .
$$

By Lemma 5 and Theorem 3 there is a Σ^{s} formula $G(x, y)$ such that

$$
\forall x \exists!y G(x, y) \& \forall x \forall y(G(x, y) \rightarrow \tilde{W}(y) \& F(x, y)) .
$$

Now define $C(y): \Leftrightarrow \exists x G(x, y)$ and apply Lemma 5 and Theorem 2. Hence we have an $e \in W$ such that $\forall y(C(y) \rightarrow|y|<|e|)$, and therefore $\forall x \exists y(|y|<|e| \& F(x, y))$.

Lemma 10. Let $B(X)$ be an X-positive Π_{0}^{1} formula. Then ID ${ }^{(2)}$ proves

$$
B\left(\exists a \in W\left[\langle a, \cdot\rangle \in Q^{A}\right]\right) \rightarrow(\exists e \in W) B\left(\langle e, \cdot\rangle \in Q^{A}\right) .
$$

Proof (by induction on the complexity of $B(X)$). The only critical case is that when $B(X)$ has the form $\forall x C(X, x)$. Now let us work in $\mathrm{ID}^{(2)}$ and assume that

$$
\forall x C\left(\exists a \in W\left[\langle a, \cdot\rangle \in Q^{A}\right], x\right) .
$$

By the induction hypothesis we obtain $\forall x(\exists b \in W) C\left(\langle b, \cdot\rangle \in Q^{A}, x\right)$ and therefore by Lemma 7(c)

$$
\forall x(\exists b \in W) C\left(\tilde{Q}^{A}(b, \cdot), x\right) .
$$

Since $B(X)$ is X-positive, $C\left(\tilde{Q}^{A}(b, \cdot), x\right)$ is equivalent to a Π^{s} formula, and we obtain by Lemma 9

$$
(\exists e \in W) \forall x \exists b\left[|b|<|e| \& C\left(\tilde{Q}^{A}(b, \cdot), x\right)\right],
$$

i.e.

$$
(\exists e \in W) \forall x \exists b\left[|b|<|e| \& C\left(\langle b, \cdot\rangle \in Q^{A}, x\right)\right] .
$$

Again the X-positivity of $C(X, x)$ and Lemma 8(c) yield

$$
(\exists e \in W) \forall x C\left(\langle e, \cdot\rangle \in Q^{A}, x\right) .
$$

Theorem 4 (Boundedness in ID ${ }^{(2)}$).

$$
\mathrm{ID}^{(2)} \vdash \forall x\left(A\left[I^{A}, x\right] \rightarrow I^{A}(x)\right) .
$$

This theorem immediately follows from the X-positivity of $A[X, x]$, Lemma 10 and axiom V of $\mathrm{ID}^{(2)}$. The boundedness theorem for $\operatorname{ID}(W, A)$ is a corollary of Theorem 4 by Feferman's result (Theorem 1).

Theorem 5 (Boundedness in $\operatorname{ID}(W, A)$).

$$
\mathrm{ID}(W, A) \vdash \forall x\left(A\left[I^{A}, x\right] \rightarrow I^{A}(x)\right) .
$$

Questions. 1. Can a boundedness theorem be proved in ID_{1}^{i} where we have intuitionistic logic instead of classical logic?
2. Is it possible to obtain boundedness theorems for the theories ID_{α} and ID_{α}^{i} with $\alpha>0$?

REFERENCES

[1] W. Buchholz, S. Feferman, W. Pohlers and W. Sieg, Iterated inductive definitions and subsystems of analysis: recent proof-theoretical studies, Lecture Notes in Mathematics, vol. 897, SpringerVerlag, Berlin, 1981.
[2] S. Feferman, Formal theories for transfinite iterations of generalized inductive definitions and subsystems of analysis, Intuitionism and proof theory, North-Holland, Amsterdam, 1970, pp. 303-326.
[3] -, Monotone inductive definitions, The L. E. J. Brouwer centenary symposium, NorthHolland, Amsterdam, 1982, pp. 77-89.
[4] G. Kreisel, The axiom of choice and the class of hyperarithmetic functions, Indagationes Mathematicae, vol. 24 (1962), pp. 307-319.
[5] J. Shoenfield, Mathematical logic, Addison-Wesley, Reading, Massachusetts, 1967.
[6] W. W. Tait, Applications of the cut elimination theorem to some subsystems of classical analysis, Intuitionism and proof theory, North-Holland, Amsterdam, 1970, pp. 475-488.

```
mathematik
    ETH-ZENTRUM
        ZÜRICH,SWITZERLAND
```


[^0]: Received May 7, 1985.

