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A BOUNDEDNESS THEOREM IN lT>i(W) 

GERHARD JAGER 

§0. In this paper we prove a boundedness theorem in the theory IDX(W). This 
answers a question asked by Feferman, for example in [3]. The background is the 
following. 

Let ,4[X,x] be an Z-positive formula arithmetic in X. The theory ID^P'4) is an 
extension of Peano arithmetic PA by the following axioms: 

(IDx.l) A[PA,x]-+PA(x), 

(ID^.2) Vx(X [F, x] -> F(x)) -> Vx(PA{x) - F(x)), 

for arbitrary formulas F; PA is a constant for the least fixed point of A[X,x]. Set-
theoretically, PA can be defined by recursion on the ordinals as follows: 

PA:={x:A[[j{PA^<a},x^, PA:= [){Pf:Z < < } , 

where oof is the first nonrecursive ordinal. 
Now let a -< b be the arithmetic relation which expresses that the recursive tree 

coded by a is a proper subtree of the tree coded by b, and define 

Tree[AT, x] :«> Vy -< x(y 6 X). 

The least fixed point of Tree[Ar, x] is the set pT r e e of all well-founded recursive trees. 
We write W or Wa for PTree or P j r e e , respectively. Since W is 77} complete we have 
W£ g W for all a < (of. If we define for each element a e W its inductive norm |a| by 
|a|:= min{<!;:a e W^}, then we have cOi* = {|a|:a e W] and the elements of VFcanbe 
used as codes for the ordinals less than a>f. 

Assume that B[X, x] is an X-positive formula arithmetic in X with the only free 
variables X and x, and assume that QB is a relation that satisfies 

QB(a,b) «-> £[{x:(3y < a)QB(y,x)},f]. 

If we define 

IB(x):*>(3aeW)QB(a,x), 

then we obviously have PB = IB. It was an open question whether a weak theory like 
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A BOUNDEDNESS THEOREM IN IDj (w) 943 

ID^W) is strong enough to prove the following boundedness theorem: 

(BT) Vx(B[/B,x]-/B(x)) , 

which corresponds to (IDB.l) with PB replaced by IB. The translation of the second 
axiom of l'Dl(P

B) 

Vx(B[F, x] -• F(x)) -> Vx(/B(x) -» F(x)) 

is provable in ID^H^) by induction on W. 
Our proof of boundedness in ID^W) essentially uses a second order version of 

ID^W) due to Feferman [3], Spector's boundedness theorem for I{ subsets of W 
and finally a lemma of Kreisel [4] that states that for every II { predicate F(x, y) 

Vx3yF(x, y) -> 3aHYPVxF(x, a(x)). 

§1. In the following we assume that the reader is familiar with the theory IDj of 
one inductive definition as presented for example in [1], [2], and [3]. Our notation 
mostly follows [3]. 

Let L be the usual first order language of arithmetic with constants for all 
primitive recursive functions and relations. The language L2 has in addition set 
variables X, Y, Z,.... Xx, y.<x, y> is the usual pairing function; s, t, sx, tt range over 
sequence numbers; < > is the number of the empty sequence; s = 
<(s)0,...,(s)lh(s)^1>; s*t is concatenation; s^t (s <= t) holds if s is an initial 
(proper) segment of t. Functions are defined by sets X satisfying Vx3!y«x,y> e X), 
and we take the function variables a, /?, y to range over such sets; a(ri) is the sequence 
number <<x(0),..., a(n — 1)>. 

We write X and x for finite strings X1,...,X„ and x t , . . . ,x„ of set and number 
variables. The notation A [X, x] is used to indicate that all free variables of A come 
from the lists X and \;A(X, x) may contain other free variables besides X and x. A(F) 
denotes the formula that results from A(X) if we replace each occurrence of (y e X) 
by F(y). 

{e} is the eth recursive function; Tot(e) expresses that {e} is total. If Tot(e), then e 
codes a recursive tree Te:= {s:Vt E s({e}(t) = 0)}. Given e and s one effectively 
associates e \s which codes the subtree of Te below s, Tets = {t:s*te Te}. For 
simplicity we write e \ x instead of e \ <x>. By a -< e we express that Ta is a proper 
subtree of Te. 

The set W of all well-founded recursive trees is the least set X such that 
VxCTreefA^x] - > x e X ) for the formula 

Tree[Z,x] : o (Tot(x) & {x}« » ^ 0) v (Tot(x) & Vy(x \ y e X)). 

Now suppose that /C[X,x] is an arbitrary (but fixed) AT-positive formula 
arithmetic in X. The language L(W,QA) is the language L extended by the unary 
predicate constants W and QA, and we write xeW and xe QA for W(x) and QA(x). 
The theory I D ^ X ) is given by the following axioms where F is an arbitrary 
formula of L(W,QA). 

1. Axioms of primitive recursive arithmetic PRA; 
2. F(0) & Vx(F(x) - F(x')) -»VxF(x); 
3.Vx(Tne[W,x]->xeW); 
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944 GERHARD JAGER 

4. Vx(Tree[F,x] -* F(x)) ->• (Vx e W)F(x); 
5. VaVx[Tot(a) - (<a ,x> e QA «-• A[3y < a(<>>,-> e QA\x])~]. 
Axioms 3 and 4 formalize that W is the set of all well-founded recursive trees. 

Axiom 5 expresses that the sets QA = {x: <a, x> e QA} with a e W are the stages of 
the inductive definition given by /4[X,x]. Now we define 

IA(x):& 3a e W«a,x} e QA). 

By an obvious induction on W we can show in ID(W, A) that 

Vx04[F,x] -> F(x)) ->Vx(7x(x) -> F(x)) 

for arbitrary formulas F of L(W, g"4). In the following we will see that ID(W, A) also 
proves the boundedness principle 

(BT) Vx{A[IA,x]-+IA{x)). 

§2. For the proof of (BT) it is more convenient to work in the second order version 
\T>m(W, A) of W(W, A) introduced by Feferman in [3]. ID(2)(W, A) is formulated in 
the second order language L2(W, QA) and has the following axioms: 

I. Axioms of PRA; 
II. VX[0 e X & Vx(x eX^x'eX)-* Vx(x e X)}; 
III. Vx(Tree[W,x] ->• x e W); 
IV. VX[Vx(Tree[X,x] - > X E I ) - . H ' C X ] ; 
V. VaVx[Tot(a) -»«a,x> e Q^ «• X[3y < a«y,-> e G^^x])]; 
VI. 3XVx(x e f « G(x)) for each formula G of L2(W,QA) without bound set 

variables. 
By VI each L(W, QA) formula defines a set and, consequently, the axioms 2 and 4 

of ID(W, A) are derivable from the axioms II and IV of ID(2)(W, A). Hence ID(W, A) 
is contained in ID(2,( W, A). In [3] it is proved that ID(2,( W, A) actually is the second 
order version of ID(jy,,4). The following theorem is obtained by an obvious 
modification of Feferman's proof that ID<2,(W) is a conservative extension of 
\T>{W). 

THEOREM 1 (FEFERMAN). lDi2)(W,A) is a conservative extension of \Y>(W,A\ 
It will be shown that ID<2)( W, A) proves (BT). For simplicity we now write ID(2) 

instead of ID(2)(W, A). 
Let nl{W, QA) or 77j be the class of all arithmetic formulas of L2(W, QA) or L2, 

respectively. A formula is called strict 77} (strict I{) if it is in 77J or has the form 
VATF(X) {3XF(X)) where F(X) is in 77 J and contains no set variables besides X. The 
class of strict 77J formulas (strict E\ formulas) is denoted by 77s (Es). Observe that 
strict 77 J and strict E \ formulas of the form VZF(X) and 3XF(X) may contain free 
number variables but no free set variables. Finally, a formula is 77£( W, QA) in 77s (77Q 
in 77s) if it is of the form GiFt,..., F„) where Fj(x),..., F„(x) are strict 77} formulas 
and G(Xu...,Xn) is in nl

0{W,QA) (in 77j). Now we list some properties of ID(2): 
LEMMA 1. Suppose that VXF[X,x] is strict 77J. Then we can find a primitive 

recursive n for which ID<2) proves 

VIF[ I ,x ]« i r (x )e l f . 
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LEMMA 2. ID<2) proves (/7S-CA), i.e. 

ID(2) h 3ATVx(x e X <- F(x)) 

/or euery strict 77} formula F(x). 
LEMMA 3. ID(2) proves (rs-AC), i.e. 

ID(2) h Vx3X37F(x, X, 7) -• 3ZVx37F(x,(Z)x, 7) 

/or euery 77 J formula F(x,X, Y) with no set variables besides X and Y. 
LEMMA 4. / / F(x) is TIQ(W, QA) in 77s, then the following is a theorem of ID(2): 

3XVx(x e l ^ F(x)). 

LEMMA 5. / / Fl[\,y'],...,Fn[_x,y] are 77s formulas (Is formulas) and GHA^,..., 
X„,x] is a 77 J formula positive in Xl,...X„, then there exists a 77s formula (Is 

formula) C[x] such that 

ID(2> h GEF^x, a .• ,f„[X •]] ~ C[x]. 

LEMMA 6. / / F(x) is TIQ(W, QA) in 77s, then the following are provable in ID<2): 
(a) F(0) & Vx(F(x) -• F(x')) ->VxF(x); 
(b) Vx(Tree[F,x] - F(x)) -•(Vx 6 W)F(x). 
Lemma 1 and Lemma 2 are proved in [3]; Lemma 3 is a standard consequence of 

Lemma 2 (see for example [6]). Lemma 4 follows from Lemma 1 and axiom VI of 
ID(2); Lemma 5 is proved by induction on the complexity of G using Lemma 3. 
Lemma 6 follows from Lemma 4 and the axioms II and IV of ID(2). 

DEFINITION, (a) W(a) :«> VX[Vx(Tree[X,x] - • x e X) -> a e X] ; 
(b) HA(X):o VaVx[Tot(a) - «a,x> e X « A[3y •< a«y,-> e X),x])]; 
(c) (p(a, x) :«• VX{HA{X) -> <a, x> e X). 
LEMMA 7. ID(2) proves the following: 
(a) Vx(x eW<-+ W(x)); 
(b) H^(A-) &aeW-> Vx«a, x > e l « <a, x> e <2A); 
(c) (Va e H/)Vx(<a,x> e f i " " £ > , * ) ) • 
PROOF. Since W(x) is a 77s formula, (a) follows from Lemma 2 and axiom III of 

ID<2). (b) is proved by induction on W. The direction from left to right of (c) follows 
from (b); for the converse direction observe that QA is a set in ID<2) which satisfies 
HA(X) by axiom V. 

§3. In order to state and prove Spector's boundedness theorem in ID(2) we need 
some familiar notions from recursion theory as they can be found for example in 
Shoenfield [5]. 

If {a} and {0} are total recursive functions, then a number-theoretic function a is a 
monotone function from the tree Ta to the tree Tb if a: Ta -> Tb and set-* a(s) c a(t) 
for all s, tin Ta. The predicate "a is a monotone function from Ta to Tb" is arithmetic 
in a. 

DEFINITION, (a) T^(a, b) :<=> Tot(a) & Tot(b) & [—1 W(b) v 3a(a is monotone from 
T. to Tfc)]; 

(b) T^a, b) :o Tot(a) & Tot(fo) & [~i W(b) v 3a3x«x> e Tb & a is monotone from 
T. to Tblx)l 
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946 GERHARD JAGER 

By Lemma 5 there exist Is formulas provably equivalent to T^(a, b) and TK{a, b); 
we denote them by \a\ :§ \b\ and \a\ < \b\. 

LEMMA 8. The following are theorems of ID<2): 
(a) be W&\a\ ^\b\^aeW; 
(b)a,be W^\a\ g |b| v \b\ <\a\; 
(c) beW&\a\ ^ \b\ -> Vx(<a,x> e QA -> (b,x) e QA). 
PROOF. All three assertions follow by induction on W. The proofs of (a) and (b) can 

essentially be found in [5]. For the proof of (c) we use axiom V of ID(2) and the fact 
that / inx,x] is positive in X. 

THEOREM 2 (SPECTOR). / / F(x) is a Is formula, then ID(2) proves 

Vx(F(x) -> x e W) - (3 e e W)Vx(F(x) -• |x| < |e|). 

PROOF. Again we follow [5]. Choose a 77s predicate G(x) which is provably not 
equivalent to a Is formula and assume that Vx(F(x) - • x e H ' ) and (Ve e W)3x(F(x) 
& |x| «t \e\). By Lemma 8(b), the last formula is equivalent to 

(1) (Ve e H^)3x(F(x) & \e\ S \x\). 

On the other hand, Lemma 1 gives a primitive recursive function n such that 

(2) G(a) *-* n(a) e W. 

Since F c W, (1) and (2) imply 

G(a)<-*3x(F(x)&|7t(a)|^|x|). 

The right side is equivalent to a Is formula by Lemma 5; a contradiction. 
In [4] Kreisel proves that for every TI\ predicate F(x,y) with Vx3yF(x, v) there 

exists an hyperarithmetical function a such that VxF(x, a(x)). His theorem and its 
proof can easily be adapted to our present context, and we obtain the following 
Theorem 3. 

THEOREM 3. For every 77s formula F(x, v) there exists a Is formula G(x, y) with the 
same free variables as F(x, y) such that ID<2) proves 

Vx3yF(x, y) - Vx3 \yG{x, y) & VxVy(G(x, v) - F(x, y)). 

§4. In this last section we finally prove the boundedness theorem for ID<2) and 
ID(W,A). 

LEMMA 9. Suppose that F(x, y) is a 77s formula. Then 

ID<2) h Vx(3y e W)F(x,y) -• (3e e W)Vx3y(\y\ < \e\ & F(x,y)). 

PROOF. We work in ID(2) and assume Vx(3y e W)F(x,y), which is equivalent to 

Vx3y{W{y) & F(x,y)). 

By Lemma 5 and Theorem 3 there is a Is formula G(x, y) such that 

Vx3!yG(x,y) & VxVy(G(x,)>) -» W(y) & F{x,y)). 

Now define C(y) :<=> 3xG(x,_y) and apply Lemma 5 and Theorem 2. Hence we have 
aneeW such that Vy(C(y) -• \y\ < \e\), and therefore Vx3y(|y| < \e\ & F(x,y)). 

LEMMA 10. Let B(X) be an X-positive 77Q formula. Then ID(2) proves 

B(3a e W[<a,-> 6 QA}) -»(3e e W)B«e,-} e QA). 
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PROOF (by induction on the complexity of B(X)). The only critical case is that 
when B(X) has the form VxC(AT, x). Now let us work in ID(2) and assume that 

VxC(3ae W[_<a,-} e QA],x). 

By the induction hypothesis we obtain Vx(32> e W)C((b,-) e QA,x) and therefore by 
Lemma 7(c) 

Vx(3beW)C(QA(b,-),x). 

Since B(X) is Z-positive, C(QA(b, •), x) is equivalent to a 77s formula, and we obtain 
by Lemma 9 

(3*>E W)Vx3bUb\ < \e\ & C(<2x(M,x)], 

i.e. 

(3e e W)Vx3fe[|fo| < |e| & C«ft,-> e fi^.x)]. 

Again the A'-positivity of C(X, x) and Lemma 8(c) yield 

(3eeW)VxC«e,>>eQA,x). 

THEOREM 4 (BOUNDEDNESS IN ID<2)). 

ID( 2 )hVx(/l[7'4,x]^7'4(x)). 

This theorem immediately follows from the AT-positivity of A[X,x~\, Lemma 10 
and axiom V of ID(2). The boundedness theorem for ID(W,A) is a corollary of 
Theorem 4 by Feferman's result (Theorem 1). 

THEOREM 5 (BOUNDEDNESS IN \D(W,A)). 

ID(W, A) h Vx{A\_lA,x] - IA(x)). 

Questions. 1. Can a boundedness theorem be proved in IDi where we have 
intuitionistic logic instead of classical logic? 

2. Is it possible to obtain boundedness theorems for the theories IDa and IDj, with 
<x>0? 
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