A BOUNDEDNESS THEOREM IN $ID_1(W)$

GERHARD JÄGER

§0. In this paper we prove a boundedness theorem in the theory $ID_1(W)$. This answers a question asked by Feferman, for example in [3]. The background is the following.

Let A[X, x] be an X-positive formula arithmetic in X. The theory $ID_1(P^A)$ is an extension of Peano arithmetic PA by the following axioms:

$$(ID_A.1) A[P^A, x] \to P^A(x),$$

(ID_A.2) $\forall x(A[F,x] \rightarrow F(x)) \rightarrow \forall x(P^{A}(x) \rightarrow F(x)),$

for arbitrary formulas F; P^A is a constant for the least fixed point of A[X, x]. Settheoretically, P^A can be defined by recursion on the ordinals as follows:

$$P^{A}_{\alpha} := \{ x: A[\bigcup \{ P^{A}_{\xi}: \xi < \alpha \}, x] \}, \qquad P^{A} := \bigcup \{ P^{A}_{\xi}: \xi < \omega^{ck}_{1} \},$$

where ω_1^{ck} is the first nonrecursive ordinal.

Now let $a \prec b$ be the arithmetic relation which expresses that the recursive tree coded by a is a proper subtree of the tree coded by b, and define

$$\operatorname{Tree}[X, x] :\Leftrightarrow \forall y \prec x (y \in X).$$

The least fixed point of Tree [X, x] is the set P^{Tree} of all well-founded recursive trees. We write W or W_{α} for P^{Tree} or P_{α}^{Tree} , respectively. Since W is Π_{1}^{1} complete we have $W_{\alpha} \subsetneq W$ for all $\alpha < \omega_{1}^{ck}$. If we define for each element $a \in W$ its inductive norm |a| by $|a| := \min{\{\xi: a \in W_{\xi}\}}$, then we have $\omega_{1}^{ck} = \{|a|: a \in W\}$ and the elements of W can be used as codes for the ordinals less than ω_{1}^{ck} .

Assume that B[X, x] is an X-positive formula arithmetic in X with the only free variables X and x, and assume that Q^B is a relation that satisfies

$$Q^{B}(a,b) \leftrightarrow B[\{x: (\exists y \prec a) Q^{B}(y,x)\}, b].$$

If we define

$$I^{B}(x) : \Leftrightarrow (\exists a \in W) Q^{B}(a, x),$$

then we obviously have $P^B = I^B$. It was an open question whether a weak theory like

Received May 7, 1985.

1986, Association for Symbolic Logic 0022-4812/86/5104-0008/\$01.60 $ID_1(W)$ is strong enough to prove the following boundedness theorem:

(BT)
$$\forall x (B[I^B, x] \rightarrow I^B(x))$$

which corresponds to $(ID_B, 1)$ with P^B replaced by I^B . The translation of the second axiom of $ID_1(P^B)$

$$\forall x(B[F, x] \to F(x)) \to \forall x(I^B(x) \to F(x))$$

is provable in $ID_1(W)$ by induction on W.

Our proof of boundedness in $ID_1(W)$ essentially uses a second order version of $ID_1(W)$ due to Feferman [3], Spector's boundedness theorem for Σ_1^1 subsets of W and finally a lemma of Kreisel [4] that states that for every Π_1^1 predicate F(x, y)

$$\forall x \exists y F(x, y) \to \exists \alpha_{HYP} \forall x F(x, \alpha(x)).$$

§1. In the following we assume that the reader is familiar with the theory ID_1 of one inductive definition as presented for example in [1], [2], and [3]. Our notation mostly follows [3].

Let L be the usual first order language of arithmetic with constants for all primitive recursive functions and relations. The language L_2 has in addition set variables X, Y, Z, ..., $\lambda x, y.\langle x, y \rangle$ is the usual pairing function; s, t, s₁, t₁ range over sequence number; $\langle \rangle$ is the number of the empty sequence; $s = \langle (s)_0, \ldots, (s)_{|h(s)-1} \rangle$; s * t is concatenation; $s \subseteq t$ ($s \subset t$) holds if s is an initial (proper) segment of t. Functions are defined by sets X satisfying $\forall x \exists ! y(\langle x, y \rangle \in X)$, and we take the function variables α, β, γ to range over such sets; $\overline{\alpha}(n)$ is the sequence number $\langle \alpha(0), \ldots, \alpha(n-1) \rangle$.

We write X and x for finite strings X_1, \ldots, X_n and x_1, \ldots, x_n of set and number variables. The notation A[X, x] is used to indicate that all free variables of A come from the lists X and x; A(X, x) may contain other free variables besides X and x. A(F)denotes the formula that results from A(X) if we replace each occurrence of $(y \in X)$ by F(y).

 $\{e\}$ is the *e*th recursive function; Tot(*e*) expresses that $\{e\}$ is total. If Tot(*e*), then *e* codes a recursive tree $T_e := \{s: \forall t \subseteq s(\{e\}(t) = 0)\}$. Given *e* and *s* one effectively associates $e \upharpoonright s$ which codes the subtree of T_e below *s*, $T_{ets} = \{t: s * t \in T_e\}$. For simplicity we write $e \upharpoonright x$ instead of $e \upharpoonright \langle x \rangle$. By $a \prec e$ we express that T_a is a proper subtree of T_e .

The set W of all well-founded recursive trees is the least set X such that $\forall x (\text{Tree}[X, x] \rightarrow x \in X)$ for the formula

 $\operatorname{Tree}[X, x] :\Leftrightarrow (\operatorname{Tot}(x) \And \{x\}(\langle \rangle) \neq 0) \lor (\operatorname{Tot}(x) \And \forall y(x \upharpoonright y \in X)).$

Now suppose that A[X,x] is an arbitrary (but fixed) X-positive formula arithmetic in X. The language $L(W, Q^A)$ is the language L extended by the unary predicate constants W and Q^A , and we write $x \in W$ and $x \in Q^A$ for W(x) and $Q^A(x)$. The theory ID(W, A) is given by the following axioms where F is an arbitrary formula of $L(W, Q^A)$.

1. Axioms of primitive recursive arithmetic PRA;

2. F(0) & $\forall x(F(x) \rightarrow F(x')) \rightarrow \forall xF(x);$

3. $\forall x (\text{Tree}[W, x] \rightarrow x \in W);$

4. $\forall x (\operatorname{Tree}[F, x] \to F(x)) \to (\forall x \in W)F(x);$

5. $\forall a \forall x [Tot(a) \rightarrow (\langle a, x \rangle \in Q^A \leftrightarrow A [\exists y \prec a(\langle y, \cdot \rangle \in Q^A), x])].$

Axioms 3 and 4 formalize that W is the set of all well-founded recursive trees. Axiom 5 expresses that the sets $Q_a^A = \{x: \langle a, x \rangle \in Q^A\}$ with $a \in W$ are the stages of the inductive definition given by A[X, x]. Now we define

$$I^{A}(x) :\Leftrightarrow \exists a \in W(\langle a, x \rangle \in Q^{A}).$$

By an obvious induction on W we can show in ID(W, A) that

$$\forall x (A[F, x] \to F(x)) \to \forall x (I^A(x) \to F(x))$$

for arbitrary formulas F of $L(W, Q^A)$. In the following we will see that ID(W, A) also proves the boundedness principle

(BT)
$$\forall x (A[I^A, x] \to I^A(x)).$$

§2. For the proof of (BT) it is more convenient to work in the second order version $ID^{(2)}(W, A)$ of ID(W, A) introduced by Feferman in [3]. $ID^{(2)}(W, A)$ is formulated in the second order language $L_2(W, Q^A)$ and has the following axioms:

I. Axioms of PRA;

II. $\forall X[0 \in X \& \forall x(x \in X \rightarrow x' \in X) \rightarrow \forall x(x \in X)];$

III. $\forall x (\text{Tree}[W, x] \rightarrow x \in W);$

IV. $\forall X [\forall x (Tree[X, x] \rightarrow x \in X) \rightarrow W \subset X];$

V. $\forall a \forall x [Tot(a) \rightarrow (\langle a, x \rangle \in Q^A \leftrightarrow A [\exists y \prec a(\langle y, \cdot \rangle \in Q^A), x])];$

VI. $\exists X \forall x (x \in X \leftrightarrow G(x))$ for each formula G of $L_2(W, Q^A)$ without bound set variables.

By VI each $L(W, Q^A)$ formula defines a set and, consequently, the axioms 2 and 4 of ID(W, A) are derivable from the axioms II and IV of $ID^{(2)}(W, A)$. Hence ID(W, A) is contained in $ID^{(2)}(W, A)$. In [3] it is proved that $ID^{(2)}(W, A)$ actually is the second order version of ID(W, A). The following theorem is obtained by an obvious modification of Feferman's proof that $ID^{(2)}(W)$ is a conservative extension of ID(W).

THEOREM 1 (FEFERMAN). $ID^{(2)}(W, A)$ is a conservative extension of ID(W, A).

It will be shown that $ID^{(2)}(W, A)$ proves (BT). For simplicity we now write $ID^{(2)}$ instead of $ID^{(2)}(W, A)$.

Let $\Pi_0^1(W, Q^A)$ or Π_0^1 be the class of all arithmetic formulas of $L_2(W, Q^A)$ or L_2 , respectively. A formula is called strict Π_1^1 (strict Σ_1^1) if it is in Π_0^1 or has the form $\forall XF(X)(\exists XF(X))$ where F(X) is in Π_0^1 and contains no set variables besides X. The class of strict Π_1^1 formulas (strict Σ_1^1 formulas) is denoted by $\Pi^s(\Sigma^s)$. Observe that strict Π_1^1 and strict Σ_1^1 formulas of the form $\forall XF(X)$ and $\exists XF(X)$ may contain free number variables but no free set variables. Finally, a formula is $\Pi_0^1(W, Q^A)$ in $\Pi^s(\Pi_0^1$ in $\Pi^s)$ if it is of the form $G(F_1, \ldots, F_n)$ where $F_1(x), \ldots, F_n(x)$ are strict Π_1^1 formulas and $G(X_1, \ldots, X_n)$ is in $\Pi_0^1(W, Q^A)$ (in Π_0^1). Now we list some properties of ID⁽²⁾:

LEMMA 1. Suppose that $\forall XF[X,\mathbf{x}]$ is strict Π_1^1 . Then we can find a primitive recursive π for which $ID^{(2)}$ proves

$$\forall XF[X,\mathbf{x}] \leftrightarrow \pi(\mathbf{x}) \in W.$$

944

LEMMA 2. $ID^{(2)}$ proves (Π^{s} -CA), i.e.

 $\mathrm{ID}^{(2)} \vdash \exists X \forall x (x \in X \leftrightarrow F(x))$

for every strict Π_1^1 formula F(x). LEMMA 3. $ID^{(2)}$ proves (Σ^s-AC) , i.e.

$$ID^{(2)} \vdash \forall x \exists X \exists YF(x, X, Y) \rightarrow \exists Z \forall x \exists YF(x, (Z)_x, Y)$$

for every Π_0^1 formula F(x, X, Y) with no set variables besides X and Y. LEMMA 4. If F(x) is $\Pi_0^1(W, Q^A)$ in Π^s , then the following is a theorem of $ID^{(2)}$:

$$\exists X \forall x (x \in X \leftrightarrow F(x)).$$

LEMMA 5. If $F_1[\mathbf{x}, y], \ldots, F_n[\mathbf{x}, y]$ are Π^s formulas (Σ^s formulas) and $G[X_1, \ldots, X_n, \mathbf{x}]$ is a Π_0^1 formula positive in X_1, \ldots, X_n , then there exists a Π^s formula (Σ^s formula) $C[\mathbf{x}]$ such that

$$\mathrm{ID}^{(2)} \vdash G[F_1[\mathbf{x}, \cdot], \dots, F_n[\mathbf{x}, \cdot]] \leftrightarrow C[\mathbf{x}].$$

LEMMA 6. If F(x) is $\Pi_0^1(W, Q^A)$ in Π^s , then the following are provable in $ID^{(2)}$: (a) F(0) & $\forall x(F(x) \rightarrow F(x')) \rightarrow \forall xF(x)$;

(b) $\forall x (\text{Tree}[F, x] \rightarrow F(x)) \rightarrow (\forall x \in W) F(x).$

Lemma 1 and Lemma 2 are proved in [3]; Lemma 3 is a standard consequence of Lemma 2 (see for example [6]). Lemma 4 follows from Lemma 1 and axiom VI of $ID^{(2)}$; Lemma 5 is proved by induction on the complexity of G using Lemma 3. Lemma 6 follows from Lemma 4 and the axioms II and IV of $ID^{(2)}$.

DEFINITION. (a) $\widetilde{W}(a) :\Leftrightarrow \forall X [\forall x (Tree[X, x] \to x \in X) \to a \in X];$ (b) $H^{A}(X) :\Leftrightarrow \forall a \forall x [Tot(a) \to (\langle a, x \rangle \in X \leftrightarrow A [\exists y \prec a(\langle y, \cdot \rangle \in X), x])];$ (c) $\widetilde{Q}^{A}(a, x) :\Leftrightarrow \forall X (H^{A}(X) \to \langle a, x \rangle \in X).$ LEMMA 7. ID⁽²⁾ proves the following:

(a) $\forall x (x \in W \leftrightarrow \tilde{W}(x));$

(b)
$$H^{A}(X)$$
 & $a \in W \to \forall x (\langle a, x \rangle \in X \leftrightarrow \langle a, x \rangle \in Q^{A});$

(c)
$$(\forall a \in W) \forall x (\langle a, x \rangle \in Q^A \leftrightarrow Q^A(a, x))$$

PROOF. Since $\tilde{W}(x)$ is a Π^s formula, (a) follows from Lemma 2 and axiom III of $ID^{(2)}$. (b) is proved by induction on W. The direction from left to right of (c) follows from (b); for the converse direction observe that Q^A is a set in $ID^{(2)}$ which satisfies $H^A(X)$ by axiom V.

§3. In order to state and prove Spector's boundedness theorem in $ID^{(2)}$ we need some familiar notions from recursion theory as they can be found for example in Shoenfield [5].

If $\{a\}$ and $\{b\}$ are total recursive functions, then a number-theoretic function α is a monotone function from the tree T_a to the tree T_b if $\alpha: T_a \to T_b$ and $s \subset t \to \alpha(s) \subset \alpha(t)$ for all s, t in T_a . The predicate " α is a monotone function from T_a to T_b " is arithmetic in α .

DEFINITION. (a) $T_{\leq}(a, b) :\Leftrightarrow \operatorname{Tot}(a) \& \operatorname{Tot}(b) \& [\neg \tilde{W}(b) \lor \exists \alpha (\alpha \text{ is monotone from } T_a \text{ to } T_b)];$

(b) $T_{\langle a, b \rangle} \Rightarrow \operatorname{Tot}(a) \& \operatorname{Tot}(b) \& [\neg \widetilde{W}(b) \lor \exists \alpha \exists x (\langle x \rangle \in T_b \& \alpha \text{ is monotone from } T_a \text{ to } T_{b \mid x})].$

GERHARD JÄGER

By Lemma 5 there exist Σ^s formulas provably equivalent to $T_{\leq}(a, b)$ and $T_{<}(a, b)$; we denote them by $|a| \leq |b|$ and |a| < |b|.

LEMMA 8. The following are theorems of $ID^{(2)}$:

(a) $b \in W \& |a| \leq |b| \rightarrow a \in W$;

(b) $a, b \in W \to |a| \le |b| \lor |b| < |a|;$

(c) $b \in W \& |a| \leq |b| \rightarrow \forall x (\langle a, x \rangle \in Q^A \rightarrow \langle b, x \rangle \in Q^A).$

PROOF. All three assertions follow by induction on W. The proofs of (a) and (b) can essentially be found in [5]. For the proof of (c) we use axiom V of $ID^{(2)}$ and the fact that A[X, x] is positive in X.

THEOREM 2 (SPECTOR). If F(x) is a Σ^s formula, then ID⁽²⁾ proves

$$\forall x(F(x) \to x \in W) \to (\exists e \in W) \forall x(F(x) \to |x| < |e|).$$

PROOF. Again we follow [5]. Choose a Π^s predicate G(x) which is provably not equivalent to a Σ^s formula and assume that $\forall x(F(x) \rightarrow x \in W)$ and $(\forall e \in W) \exists x(F(x) \& |x| \leq |e|)$. By Lemma 8(b), the last formula is equivalent to

(1)
$$(\forall e \in W) \exists x (F(x) \& |e| \leq |x|).$$

On the other hand, Lemma 1 gives a primitive recursive function π such that

(2) $G(a) \leftrightarrow \pi(a) \in W.$

Since $F \subset W$, (1) and (2) imply

$$G(a) \leftrightarrow \exists x(F(x) \& |\pi(a)| \leq |x|).$$

The right side is equivalent to a Σ^s formula by Lemma 5; a contradiction.

In [4] Kreisel proves that for every Π_1^1 predicate F(x, y) with $\forall x \exists y F(x, y)$ there exists an hyperarithmetical function α such that $\forall x F(x, \alpha(x))$. His theorem and its proof can easily be adapted to our present context, and we obtain the following Theorem 3.

THEOREM 3. For every Π^s formula F(x, y) there exists a Σ^s formula G(x, y) with the same free variables as F(x, y) such that $ID^{(2)}$ proves

$$\forall x \exists y F(x, y) \to \forall x \exists ! y G(x, y) \& \forall x \forall y (G(x, y) \to F(x, y)).$$

§4. In this last section we finally prove the boundedness theorem for $ID^{(2)}$ and ID(W, A).

LEMMA 9. Suppose that F(x, y) is a Π^s formula. Then

$$\mathrm{ID}^{(2)} \vdash \forall x (\exists y \in W) F(x, y) \to (\exists e \in W) \forall x \exists y (|y| < |e| \& F(x, y)).$$

PROOF. We work in ID⁽²⁾ and assume $\forall x (\exists y \in W) F(x, y)$, which is equivalent to

$$\forall x \exists y (\hat{W}(y) \& F(x, y)).$$

By Lemma 5 and Theorem 3 there is a Σ^s formula G(x, y) such that

$$\forall x \exists ! y G(x, y) \& \forall x \forall y (G(x, y) \rightarrow \tilde{W}(y) \& F(x, y)).$$

Now define $C(y) :\Leftrightarrow \exists x G(x, y)$ and apply Lemma 5 and Theorem 2. Hence we have an $e \in W$ such that $\forall y(C(y) \rightarrow |y| < |e|)$, and therefore $\forall x \exists y(|y| < |e| \& F(x, y))$. LEMMA 10. Let B(X) be an X-positive Π_0^1 formula. Then $ID^{(2)}$ proves

$$B(\exists a \in W[\langle a, \cdot \rangle \in Q^A]) \to (\exists e \in W)B(\langle e, \cdot \rangle \in Q^A).$$

946

PROOF (by induction on the complexity of B(X)). The only critical case is that when B(X) has the form $\forall x C(X, x)$. Now let us work in $ID^{(2)}$ and assume that

$$\forall x C (\exists a \in W[\langle a, \cdot \rangle \in Q^A], x).$$

By the induction hypothesis we obtain $\forall x (\exists b \in W) C(\langle b, \cdot \rangle \in Q^A, x)$ and therefore by Lemma 7(c)

$$\forall x (\exists b \in W) C(\tilde{Q}^{A}(b, \cdot), x).$$

Since B(X) is X-positive, $C(\tilde{Q}^{A}(b,\cdot), x)$ is equivalent to a Π^{s} formula, and we obtain by Lemma 9

$$(\exists e \in W) \forall x \exists b [|b| < |e| \& C(\tilde{Q}^{A}(b, \cdot), x)],$$

i.e.

$$(\exists e \in W) \forall x \exists b [|b| < |e| \& C(\langle b, \cdot \rangle \in Q^A, x)].$$

Again the X-positivity of C(X, x) and Lemma 8(c) yield

$$(\exists e \in W) \forall x C(\langle e, \cdot \rangle \in Q^A, x).$$

THEOREM 4 (BOUNDEDNESS IN $ID^{(2)}$).

$$\mathrm{ID}^{(2)} \vdash \forall x (A \lceil I^A, x \rceil \to I^A(x)).$$

This theorem immediately follows from the X-positivity of A[X, x], Lemma 10 and axiom V of $ID^{(2)}$. The boundedness theorem for ID(W, A) is a corollary of Theorem 4 by Feferman's result (Theorem 1).

THEOREM 5 (BOUNDEDNESS IN ID(W, A)).

$$\mathrm{ID}(W,A) \vdash \forall x (A[I^A,x] \to I^A(x)).$$

Questions. 1. Can a boundedness theorem be proved in ID_1^i where we have intuitionistic logic instead of classical logic?

2. Is it possible to obtain boundedness theorems for the theories ID_{α} and ID_{α}^{i} with $\alpha > 0$?

REFERENCES

[1] W. BUCHHOLZ, S. FEFERMAN, W. POHLERS and W. SIEG, *Iterated inductive definitions and subsystems of analysis: recent proof-theoretical studies*, Lecture Notes in Mathematics, vol. 897, Springer-Verlag, Berlin, 1981.

[2] S. FEFERMAN, Formal theories for transfinite iterations of generalized inductive definitions and subsystems of analysis, Intuitionism and proof theory, North-Holland, Amsterdam, 1970, pp. 303–326.

[3] ——, Monotone inductive definitions, The L. E. J. Brouwer centenary symposium, North-Holland, Amsterdam, 1982, pp. 77-89.

[4] G. KREISEL, The axiom of choice and the class of hyperarithmetic functions, Indagationes Mathematicae, vol. 24 (1962), pp. 307–319.

[5] J. SHOENFIELD, Mathematical logic, Addison-Wesley, Reading, Massachusetts, 1967.

[6] W. W. TAIT, Applications of the cut elimination theorem to some subsystems of classical analysis, Intuitionism and proof theory, North-Holland, Amsterdam, 1970, pp. 475–488.

MATHEMATIK ETH-ZENTRUM ZÜRICH, SWITZERLAND 947