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ABSTRACT
We revisit the alignments of the largest structures observed in the cosmic microwave back-
ground (CMB) using the seven and nine-year Wilkinson Microwave Anisotropy Probe (WMAP)
and first-year Planck data releases. The observed alignments – the quadrupole with the oc-
topole and their joint alignment with the direction of our motion with respect to the CMB (the
dipole direction) and the geometry of the Solar system (defined by the Ecliptic plane) – are
generally in good agreement with results from the previous WMAP data releases. However,
a closer look at full-sky data on the largest scales reveals discrepancies between the earlier
WMAP data releases (three to seven-year) and the final, nine-year release. There are also
discrepancies between all the WMAP data releases and the first-year Planck release. Never-
theless, both the WMAP and Planck data confirm the alignments of the largest observable
CMB modes in the Universe. In particular, the p-values for the mutual alignment between
the quadrupole and octopole, and the alignment of the plane defined by the two with the dipole
direction, are both at the greater than 3-sigma level for all three Planck maps studied. We also
calculate conditional statistics on the various alignments and find that it is currently difficult
to unambiguously identify a leading anomaly that causes the others or even to distinguish
correlation from causation.
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1 IN T RO D U C T I O N

Cosmic microwave background (CMB) maps produced by the
Wilkinson Microwave Anisotropy Probe (WMAP) and, most re-
cently, the Planck collaborations provide an unprecedented view
into the physics of the early Universe. These data help constrain
the parameters of the standard cosmological model, � cold dark
matter (�CDM), to the per cent level accuracy. They also point
out some intriguing anomalies, particularly on the largest angular
scales or at the lowest multipole moments. One anomaly, and the
one of interest for this work, is alignments. The quadrupole and
octopole are found to be mutually aligned and they define axes that
are unusually perpendicular to the Ecliptic pole and parallel to the
direction of our motion with respect to the rest frame of the CMB
(the dipole direction). Another anomaly, the lack of correlations on
large angular scales, is the subject of a companion work (Copi et al.
2013). For reviews of the large-angle anomalies before the final
WMAP and the first cosmological Planck data releases, see Bennett
et al. (2011) and Copi et al. (2010).

� E-mail: cjc5@cwru.edu

The study of alignments requires precise measurements of the
full-sky CMB. Conventional wisdom tells us that the largest scales
in the Universe should be well measured. The basic argument is
straightforward: measurements by WMAP and Planck are signal
dominated on small angular scales. Large numbers of these mea-
surements are averaged to determine the large-scale structure of
the CMB which further reduces the noise leading to very precise
determinations. Thus, even though cosmic variance is large and our
Universe could have been drawn from a broadly distributed en-
semble, our particular realization can be very well measured. Both
WMAP and Planck are measuring the same CMB sky so should
agree very well on the largest scales.

Unfortunately, the real-world is more complicated. Though the
statistical noise is small, residual contamination due to foregrounds,
even after cleaning the maps, remains a source of significant un-
certainty. These issues are of paramount importance in the study of
alignments. In the nine-year data release, the WMAP team states:
‘We conclude that our ability to remove foregrounds is the limiting
factor in measurement of the cosmological quadrupole+octopole
alignment’ (Bennett et al. 2013). They then argue that the statistical
significance of the alignment is weakened due to this. In a similar
context the Planck team states: ‘Residual foregrounds (mostly on
the Galactic plane) present in the four Planck CMB estimates could
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influence the reconstruction of the low-order multipoles’ (Planck
Collaboration XXIII 2014). (Note that their four maps include the
Commander-Ruler map in addition to the three we discuss below.)
They proceed to Wiener filter their maps to further reduce contam-
ination which has a small effect on alignments. This observation
is not new: for example, Chiang, Naselsky & Coles (2007) found
signs of residual foregrounds in the WMAP three-year data release
on these large scales. Such residual contaminations persist in the
data to the present time.

The goal of this paper is to study these large-angle alignments
with the Planck one-year data and to compare them to the WMAP
seven and nine-year data. The Planck collaboration included a brief
discussion of alignments in their extensive study of isotropy in
the CMB (Planck Collaboration XXIII 2014). In their presenta-
tion, they did not include results from the principal mathematical
tool employed here – the multipole vectors; moreover, we use a
somewhat different approach to generate the full-sky maps, and use
a much larger set of Monte Carlo simulations to obtain the sta-
tistical inferences. This work therefore complements the existing
detailed study of other tests of isotropy, such as the hemispherical
power asymmetries and moments of the temperature field (Planck
Collaboration XXIII 2014).

To study the large-angle alignments, it is necessary to define
statistics and assign significance to the data based on them. In re-
cent years, the trend has been towards applying a Bayesian analysis
to all statistical questions. Broadly speaking, the Bayesian approach
is designed to compare models and for parameter estimation within
a model. Even the problem of null hypothesis testing in the Bayesian
approach is reduced to a model comparison; that between the full
model and a subset of the full model with a restricted parameter set,
some parameters fixed, etc. When there is a model with no serious
competitors, such as in cosmology with �CDM, Bayesian statistics
struggles to even ask the question of the consistency between the
model and the data (though see Starkman, Trotta & Vaudrevange
2008 for a possible, if computationally challenging, approach). At
the present time in cosmology, there are no compelling alterna-
tive models that can account for the anomalies. Clever ideas have
been proposed to explain some of the anomalies (e.g. Frisch 2005;
Gordon et al. 2005; Alnes & Amarzguioui 2006; Inoue & Silk 2006;
Rakić, Räsänen & Schwarz 2006; Pullen & Kamionkowski 2007;
Dikarev et al. 2008; Ramirez & Schwarz 2009; Peiris & Smith
2010), but no model that explains all, or even most, of them exists.
It is not even clear whether the origin of the anomalies is cosmo-
logical, astrophysical foregrounds, systematic (instrumental, map
making, etc.), or simply statistical, although it could be argued that
since the Planck satellite and data reduction is very different from
that provided by the WMAP satellite, systematic effects are unlikely
to explain the existence of shared anomalies. Due to these issues, we
adopt the frequentist approach consistent with that used in previous
work (see Copi et al. 2006, for example). The frequentist approach
is well suited for this specific problem – to address the question of
tension between the model and the data, and, if there is one, where
this tension lies. This allows the data to point the way towards the
source of any potential discrepancy independent of finding a better
model to describe it.

This paper is organized as follows. In Section 2, we take a first
look at the large-angle Planck data and compare the angular power
spectrum at the lowest multipoles between Planck and WMAP re-
leases. In Section 3, we describe the methodology of how we arrive
at an ensemble of full-sky maps using harmonic inpainting, and
how we correct for the effect of our motion through the CMB rest
frame on the quadrupole. In Section 4, we describe the statistics that

Table 1. The power spectrum coefficients, D�, in units of
µK2 as reported by WMAP and Planck. All values are
based on a maximum likelihood estimator. Since the one-year
WMAP reported values were based on pseudo-C� estimators,
they have been excluded from this table. The S1/2 values have
been computed for �max = 100 unless otherwise stated.

Data release D2 D3 D4 D5 S1/2 (µK4)

WMAP 3yr 211 1041 731 1521 8330
WMAP 5yr 213 1039 674 1527 8915
WMAP 7yr 201 1051 694 1517 8938
WMAP 9yr 151 902 730 1468 5797
Planck R1 299 1007 646 1284 8035\rlapa

Note. aThis S1/2 has been calculated for �max = 49 since
Planck only provides binned values for � ≥ 50.

we use (and that we developed previously for our WMAP analyses),
and in Section 5, we carry out a frequentist analysis to quantify the
various alignments. We conclude in Section 6.

2 STAT E O F L A R G E - S C A L E DATA

Since full-sky data are required for a study of alignments, it is
important to understand its current state. A high-level view of the
data can be obtained through the power spectrum coefficients

D� ≡ �(� + 1)

2π
C�. (1)

The results reported by WMAP and Planck are summarized in
Table 1.1 In all cases, these values are given in μK2 and are based on
a maximum likelihood estimator. Since the one-year WMAP analy-
sis employed a pseudo-C�-based estimator, it has not been included
in the table.

The S1/2 statistic defined in the one-year WMAP data release
(Spergel et al. 2003) is a convenient and discriminating tool to
quantify the lack of correlations on large angular scales. The statistic
can be calculated as

S1/2 ≡
∫ 1/2

−1
[C(θ )]2d(cos θ ) =

�max∑
�=2

C�I��′C�′ , (2)

where the I��′ are components of an easily calculated matrix. For a
more thorough discussion of the S1/2 from the Planck data see Copi
et al. (2013). In Table 1, the S1/2 has been calculated for �max = 100
except for Planck which only provides binned C� for � ≥ 50.

The noise only contribution to the uncertainty in the values in
Table 1 is estimated in WMAP from the Fisher matrix to be σD�

∼
10 μK2 in all cases; typically slightly larger in the earlier data
releases and slightly smaller in the later ones. This sets the scale
for the expected statistical scatter in the data. From the table, we
see that the three-year through seven-year WMAP data releases are
in good agreement and provide a consistent picture of the large-
scale Universe. The differences are most likely due to systematic
analysis improvements such as beam-shape determination, point-
source identification, and masking. Quite surprisingly the nine-year
WMAP data release provides a markedly different view of the large-
scale Universe and even more surprisingly the first Planck data

1 All CMB data are available from the Lambda site,
http://lambda.gsfc.nasa.gov/, including links to both WMAP and Planck
results. The Planck results may directly be obtained via the Planck Legacy
Archive, http://archives.esac.esa.int/pla/.
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Table 2. The power spectrum coefficients, D�, in units of µK2

extracted from cleaned, full-sky maps provided by WMAP and
Planck.

Map D2 D3 D4 D5 S1/2 (µK4)

WMAP ILC 1yr 195 1053 834 1667 8190
WMAP ILC 3yr 248 1051 756 1588 8476
WMAP ILC 5yr 243 1052 730 1591 8642
WMAP ILC 7yr 240 1048 731 1593 8528
WMAP ILC 9yr 243 1013 709 1612 8156
Planck NILC 209 863 704 1379 4816
Planck SEVEM 205 798 736 1207 3766
Planck SMICA 239 925 713 1494 6309

release provides yet another different view. In particular, comparing
the quadrupole, D2, we see that the nine-year WMAP and first-
year Planck results differ by a factor of 2, or roughly 15 times the
approximate noise error!

An alternative view of the large-scale Universe comes from the
foreground cleaned, full-sky maps provided in the data releases (we
restrict our analysis to the maps officially released by the WMAP
and Planck collaborations). The D� extracted from these maps are
shown in Table 2. For WMAP, the maps are cleaned using the Inter-
nal Linear Combination (ILC) method (Eriksen et al. 2004; Hinshaw
et al. 2007). For Planck multiple cleaning procedures were used and
three, full resolution maps based on them, the SMICA, NILC, and
SEVEM maps, have been provided (Planck Collaboration XII 2014).
Furthermore, for the SMICA and NILC maps a small inpainting mask
with fsky ≈ 0.97 has been defined by the Planck team. This small
region has been inpainted using a constrained realization and it is
these inpainted maps that were analysed for the values provided in
the table. From these results, we see that the WMAP full-sky maps
from all data releases are in reasonably good mutual agreement.
The one-year map is somewhat discrepant and the nine-year map is
also somewhat different in its S1/2 value, but otherwise the cleaning
procedure employed throughout the years has produced relatively
stable results. For the Planck maps this is not the case. Though
the cleaning procedures do produce quadrupoles more in line
with the one from WMAP, there is still a large discrepancy between
the large-scale structure internally among the Planck maps and in
comparison with WMAP. Moreover, these three maps were not the
only cleaned maps produced, just the best three (four including
also the Commander-Ruler method), selected by the Planck team,
based on unpublished criteria. The larger spread of results from the
Planck maps when compared to the WMAP ILC maps of different
years does not come as a surprise. While the WMAP collabora-
tion published similar incarnations of the same ILC method over
the years, the three analysed Planck maps are based on (radically)
different assumptions about the foreground.

Naturally many details have been ignored in these comparisons.
For example, a visual examination of the SEVEM map shows clear
signs of small-scale contaminations near the Galactic plane. This
region is inpainted in the SMICA and NILC maps and suggests that
we should be careful interpreting results based on the SEVEM map.
Also, for all of the maps larger masks, called validity masks, have
been defined by the Planck team to define a more conservative (i.e.
smaller) set of pixels that are believed to be clean. These masks have
sky fractions of fsky = 0.88 for the SMICA map, fsky = 0.93 for the
NILC map, and fsky = 0.76 for the SEVEM map. As explained below,
we will mostly use the inpainting masks, except for the SEVEM map
for which we will use the validity mask.

3 FULL-SKY MAPS

Perhaps contrary to our conventional wisdom, the largest scales in
the CMB have been measured precisely but not (yet) necessarily ac-
curately; this is immediately clear by inspecting the angular power
as represented in Tables 1 and 2. Therefore, care must be taken
when analysing full-sky data and when interpreting the results. In
this section, we describe our methodology for arriving at an ensem-
ble of maps that represent the Planck full-sky. The two particular
techniques that we will apply are inpainting and Doppler correction
for the quadrupole.

For the purpose of studying alignments in �CDM cosmologies,
all that matters is the phase structure of the a�m – i.e. the relative
values of a�m of equal � and all m. The statistics used to study
alignments are constructed so as to be independent of the power
spectrum. Thus, any power spectrum could be used to produce re-
alizations for studying the distributions of these statistics, provided
the a�m have random phases, and the underlying distribution is sta-
tistically isotropic. Despite this, some of the discussions below will
refer to the magnitudes of the a�m. To be consistent with our com-
panion analysis of the two-point angular correlation function (Copi
et al. 2013), we use the Planck base best-fitting power spectrum.
This power spectrum is freely available along with all the Planck
data and is based on the parameters listed in the first column of table
2 in Planck Collaboration XVI (2014).

3.1 Inpainting

One approach to handling particularly contaminated regions of a
map is to excise those regions and to replace them with synthetic
data constrained to agree with the uncontaminated regions of the
map. In general, masking the skies introduces coupling among
the modes so this must be used with some care. The relationship
between the uncontaminated partial map and a representation of
the full-sky information (either as a map or spherical harmonic co-
efficients, a�m) is an underdetermined linear system. Due to this
there is not a unique solution and extra information is required to
re-fill the contaminated regions. One set of techniques to achieve
this re-filling, that is the extra assumptions imposed and the bal-
ance between these assumptions and the type and quality of fit to
the uncontaminated regions, is known as inpainting. Inpainting has
been studied in numerous contexts and many approaches have been
explored for CMB maps (see Inoue, Cabella & Komatsu 2008 and
especially Starck, Fadili & Rassat 2013 for a discussion of tech-
niques in the context of low-� reconstruction). The Planck analysis
has implemented a particular form of inpainting (Benoit-Lévy et al.
2013; Planck Collaboration XII 2014) used in the SMICA and NILC

maps discussed above. For other related work on the topic, see
Abrial et al. (2008); Dupé et al. (2011); Bucher & Louis (2012);
Nishizawa & Inoue (2013).

Inpainting is not a simple cure for contamination. The resulting
full-sky information will depend on the extra assumptions (type of
inpainting performed) and also on the mask employed. Choosing a
large mask will remove the most contamination but will also lead to
a large variance, poor determination, of the full-sky information. In
this work, our goal is to study the large-scale anomalies present in
the full-sky data independent of their origin. If we were interested
in only a cosmological origin for alignments, we would restrict
the analysis to the cleanest portions of the sky by employing a
large mask. A large mask washes out the results making definitive
statements about the alignments impossible. On the other hand,
employing a small mask allows for definitive statements about the
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presence of alignments but reduces the ability to determine their
origin. Since our focus is on the existence of alignments in the data
as provided, our main results will be based on inpainting using the
aforementioned smaller inpainting masks with fsky ≈ 0.97.

3.2 Harmonic inpainting

Harmonic inpainting as applied to the CMB (Inoue et al. 2008;
Kim, Naselsky & Mandolesi 2012) is an application of constrained
Gaussian realizations for reconstructing the a�m from a masked sky.
It assumes the usual statistical properties, Gaussianity and isotropy,
but also produces probability distributions which can be used in
subsequent analyses. Here we mainly follow Kim et al. (2012),
but have changed the notation slightly. The technique is intimately
related to pseudo-a�m reconstruction as will be evident in what
follows.

3.2.1 Algorithm

Consider a temperature map, T (ê), and a mask, W (ê). Here, and
in what follows, ê represents the usual radial unit vector that in
Cartesian coordinates may be written as

ê = (sin θ cos φ, sin θ sin φ, cos θ ). (3)

These quantities may be expanded in spherical harmonics as

T (ê) =
∑
�′m′

a�′m′Y�′m′ (ê), W (ê) =
∑
�̃m̃

w�̃m̃Y�̃m̃(ê). (4)

We may also expand the masked sky in terms of the pseudo-a�m,
denoted by ã�m, and relate this to the previous expansions by

W (ê)T (ê) =
∑
�m

ã�mY�m(ê)

=
∑
�̃m̃

w�̃m̃Y�̃m̃(ê)
∑
�′m′

a�′m′Y�′m′ (ê). (5)

This is a standard procedure: we solve for the pseudo-a�m by in-
tegrating and using the properties of the spherical harmonics. This
leads to an integral over three spherical harmonics which may be
evaluated in terms of the Gaunt coefficients and most easily repre-
sented by the Wigner 3J symbols. The end result is

ã�m =
∑
�′m′

F�m;�′m′a�′m′ , (6)

where

F�m;�′m′ ≡ (−1)m
∑
�̃m̃

w�̃m̃

√
(2� + 1)(2�′ + 1)(2�̃ + 1)

4π

×
(

�′ �̃ �

0 0 0

) (
�′ �̃ �

m′ m̃ −m

)
. (7)

More compactly we write this in matrix notation as

ã = Fa. (8)

Moreover, we define the following matrices which are simplified
using the statistical isotropy of the underlying a�m,

b ≡ 〈aã†〉 = CaF
†, C ≡ 〈ãã†〉 = FCaF

†, (9)

where the angle brackets represent an ensemble average and Ca rep-
resents the diagonal matrix of the C th

� from the best-fitting �CDM
model, Ca ≡ 〈aa†〉.

For a given map and mask, we calculate F and ã. From these,
harmonic inpainting proceeds by generating realizations of �CDM
as amc

�m , that is, the amc
�m are Gaussian random variables with |amc

�m| ∈
N (0, C th

� ) and random phases. These are then corrected giving us
constrained realizations as

ainp = amc + bC−1(ã − Famc). (10)

We now explain how to efficiently calculate the matrix C−1.

3.2.2 Inversion and marginalization

Calculating the matrix C−1 is complicated by the fact that the under-
lying map which we are trying to inpaint may contain a monopole
and dipole (on the full- or cut-sky). We wish to remove these contri-
butions. This can be done in a number of ways; we will marginalize
over them using a method based on that of Slosar & Seljak (2004)
with some modifications.

To begin we construct the rectangular coupling matrix, F, as
above using the best-fitting �CDM C th

� with C th
0 = C th

1 = 0. Let
f represent the columns of F corresponding to the monopole and
dipole (typically the first four columns) and F̂ be the remainder of
the columns. With this we may marginalize over the monopole and
dipole in the correlation matrix by first writing it as

C = F̂CaF̂
† + λff† ≡ Ĉ + λff†, (11)

where λ is a large parameter, preferably λ → ∞. This can be ac-
complished analytically when calculating the inverse using a result
from Rybicki & Press (1992),

C−1 = lim
λ→∞

(Ĉ + λff†)−1

= lim
λ→∞

[Ĉ
−1 − Ĉ

−1
f(λ−1 + f†Ĉ

−1
f)−1f†Ĉ

−1
]

= Ĉ
−1 − Ĉ

−1
f(f†Ĉ

−1
f)−1f†Ĉ

−1
. (12)

This last line is now easy to calculate. Since Ĉ is a correlation matrix
it is Hermitian and positive definite so may be efficiently inverted
using a Cholesky decomposition. We have an extra matrix we need
to invert, the one in parenthesis in the last line of the previous
equation. However, this is a 4 × 4 correlation matrix so is also easy
to handle.

Initially, adoption of harmonic inpainting seems risky since it
imposes the assumptions of Gaussianity and statistical isotropy on
the full-sky a�m. However, this is outweighed by clear advantages:
the inpainting generates statistical distributions of the full-sky a�m

thus allowing accurate statements for any test that rests on the full
CMB sky, and it is straightforward to implement. Crucially, since
we have restricted our main analysis to masks with fsky ≈ 0.97, the
results will be insensitive to the inpainting assumptions.

3.2.3 Results

Two scales appear in harmonic inpainting: we denote by Linp the
maximum multipole reconstructed by the inpainting and by Lmax

the maximum multipole used in the reconstruction (i.e. the largest
coupling multipole). In other words, the coupling matrix F de-
fined in equation (7) is a rectangular matrix of size (Linp + 1)2 ×
(Lmax + 1)2. For the work performed here we are only interested in
the quadrupole and octopole and (mainly) in the SMICA and NILC

maps with their inpainting masks with fsky ≈ 0.97. We study the
sensitivity of harmonic inpainting with these constraints in mind.
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Figure 1. Histograms of the a2m in µK from 5000 harmonic inpaintings
of the SMICA map using its inpainting mask for various choices of scales
Linp × Lmax. The histograms have been shifted by the average from the 50
× 100 case so are centred roughly around zero (and precisely on zero for the
black curve). These histograms show little sensitivity in the choice of Linp

× Lmax and that the a2m are well reconstructed, typically to within about
1 µK.

To study the sensitivity to choices of Linp and Lmax, we begin
with the SMICA map. Figs 1 and 2 show histograms from 5000
reconstructions for various choices of Linp × Lmax. We have chosen
the Linp × Lmax = 50 × 100 case as the standard. The histograms in
these figures are shifted by the average value from this (50 × 100)
case. The x-axis in the histograms is in units of μK and shows that
the a�m are reconstructed to within about 1 μK in all cases. This
is not surprising: given the small fraction of the sky inpainted, it
is expected that F is diagonally dominant; the resulting inpainting
should not be sensitive to the choice of scales (provided they are
large enough) and the a�m should be well determined.

With the choice Linp × Lmax = 50 × 100, we next compare
inpainting of the various Planck maps. These histograms based on
5000 reconstructions are shown in Figs 3 and 4. For the SMICA and
NILC maps their inpainting masks with fsky ≈ 0.97 have been used,
while for the SEVEM map an inpainting mask was not available, so
we used its validity mask with fsky = 0.76 instead. For this reason,
the distributions for the SEVEM map are significantly broader than
the other two. For the most part, the three maps are in very good
agreement though there are notable exceptions. In particular, aim

21

and are
31 show significant shifts as compared to their widths between

the SMICA and NILC maps. In even more cases, the SMICA and
NILC a�m are in the tails of the SEVEM distribution. These results
provide a graphical view of the levels and properties of residual
contaminations in the maps.

3.3 Doppler quadrupole

The study of the CMB temperature anisotropies typically begins
with the quadrupole and proceeds to higher multipoles, smaller

Figure 2. Same as Fig. 1, now for the a3m.

scales. The monopole is not included since its magnitude is not
predicted by the theory. The dipole is subtracted since our motion
through the Universe with respect to the CMB is at a speed β = v/c
∼ 10−3, whereas the fluctuations are 
T/T ∼ 10−5 so the Doppler
dipole is about two orders of magnitude larger than the expected
cosmological CMB dipole. A Doppler quadrupole (DQ) – effect
of the Sun’s proper motion on the quadrupole – is also induced
and expected to have a magnitude O(β2) ∼ 10−6. Though this is
small, it is not negligible, especially in our Universe which has a
small cosmological quadrupole and when properties of the maps
are being studied.

The CMB temperature (monopole) has been determined from the
nearly perfect blackbody to be T0 = 2.7255 ± 0.0006 K (Fixsen
2009). Our direction through the Universe in Galactic coordinates
is (l, b) = (263.◦99 ± 0.◦14, 48.◦26 ± 0.◦03) with a speed β = (1.231 ±
0.003) × 10−3 (Hinshaw et al. 2009). These values can be compared
to those in table 3 of Planck Collaboration V (2014). Note that there
is an additional contribution to the speed due to the velocity of
the satellite with respect to the Sun. This introduces up to about a
10 per cent variation in β at a non-constant direction with respect to
the CMB. This contribution has not been included in the following
discussion.

With these values, the Doppler contribution to the quadrupole
from the CMB monopole may be calculated as (Peebles &
Wilkinson 1968; Kamionkowski & Knox 2003)

a
DQ
2m = T0

∫
[γ (1 − β · ê)]−1 Y ∗

2 m(ê) dê, (13)
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Figure 3. Histograms of the a2m in µK from 5000 harmonic inpaint-
ing of the Planck maps for the scales Linp × Lmax = 50 × 100. For the
SMICA and NILC maps, the areas covered by their inpainting masks with
fsky = 0.97 have been inpainted. For the SEVEM map, its validity mask with
fsky = 0.76 has been used. From these histograms, we see that the a2m are
mostly consistent among the maps, see the text for details.

where γ ≡ (1 − |β|2)−1/2. The numerical results of this calculation
along with the values from the SMICA map are given in Table 3.
We see that while the DQ correction is generally small it is not
negligible and in the case of the imaginary part of a21 the correction
is comparable to the uncorrected value! This has important conse-
quences for any analysis involving the a2m, such as the alignments
considered here.

Even higher multipole moments are also induced due to our
motion but these are further suppressed by powers of β and need
not be considered. For example, the Doppler octopole should have
a magnitude O(β3) ∼ 10−9. Direct calculation shows that for all
components the Doppler octopole correction has a magnitude less
than about 10−4 of the observed octopole.

In principle, the DQ can be corrected during data reduction.
This is naturally accomplished when calibrating off the anisotropies
induced by our motion with respect to the rest frame of the CMB
(typically referred to as calibrating off the Doppler dipole). For a
blackbody with temperature T0 and motion in the direction ê with
time-dependent velocity β(t), the induced anisotropies are


T (ê, t) =
[

1

γ (t)(1 − β(t) · ê)
− 1

]
T0. (14)

For Planck, this expression was used to calibrate the low-
frequency instrument (Planck Collaboration V 2014). Surprisingly,
for the high-frequency instrument the classical approximation for
the dipole anisotropy


T (ê) ≈ (β · ê)T0 (15)

was employed (Planck Collaboration VIII 2014). WMAP also used
this classical approximation (Hinshaw et al. 2003). This means that
the WMAP ILC maps require the DQ correction and that it is less

Figure 4. Same as Fig. 3, now for the a3m.

clear how to handle the Planck full-sky maps. On the one hand,
most of the individual frequency band data combined to produce
the cleaned full-sky maps have not been DQ corrected (the high
frequency bands). On the other hand, one of the cleanest frequency
bands, 70 GHz, has been DQ corrected. Given the current state, we
have applied the DQ correction to all the cleaned full-sky Planck
maps.

Subsequent to our original analysis, Planck Collaboration XXIII
(2014) was updated to include estimates of DQ correction factors for
each of their released combined maps. Unfortunately neither a com-
plete description of how these correction factors were calculated nor
all the data required to calculate them were made publicly available.
Given the importance of the DQ correction to alignment results we
have recalculated some of the statistics as discussed in Section 5.2.
We find that the Planck DQ correction factors strengthen the align-
ments making the data less consistent with �CDM. This further
shows the importance of applying the DQ correction and having an

Table 3. The spherical harmonic coefficients for the quadrupole
from the Planck inpainted SMICAmap and the Doppler quadrupole
(DQ). The a2m values are given in µK. The corrected a2m are
calculated by subtracting the first two rows.

Source a20 a21 a22

Planck SMICA 13.09 −1.53 + 2.50i −15.50 − 17.09i
DQ correction 1.46 0.28 − 2.64i −11.16 − 10.25i
SMICA corrected 11.63 −1.81 + 5.14i −14.34 − 16.84i
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accurate estimate of it. Due to the uncertainty in the calculation of
the factors we will continue to apply our simple DQ correction as
discussed above and again affirm that the significance of the anoma-
lous alignments is sensitive to details such as the DQ correction.

3.4 Large-scale data summary

The comparisons presented here provide a broad view of the state
of the existing CMB temperature data on the largest scales. There
are many other comparisons that can be made (see Frejsel, Hansen
& Liu 2013; Kovács, Carron & Szapudi 2013, for example). On the
largest scales, we see that there exist significant discrepancies both
between the WMAP and Planck maps and even internally among the
maps produced by the WMAP team in different releases and among
the maps produced using the various cleaning methods employed
by Planck. This suggests that one must be careful about assigning
a cosmological origin to any large-scale result based on full skies.

Despite the caution that must be exercised when interpreting
large-scale, full-sky results, it is important to pursue such work.
The discovery of alignments, or any anomaly, that persist through
multiple full-sky maps is striking given the different instruments,
systematics, cleaning procedures, etc. It strongly suggests that there
is at least some fundamental origin to them. The extent to which
this origin is cosmological and the statistical significance of such
an identification is difficult to determine. Even if the origin of the
alignments is ultimately determined to be an as-yet unidentified
systematic or an unsubtracted (or mis-subtracted) foreground, it is
important to characterize the properties of the anomalies. Only in
this way can their cause be isolated and (if it is not cosmological)
the data processing pipeline thereby improved, resulting in higher
quality large-scale data.

4 A LIGNMENT STATISTICS

The planarity of the octopole and alignment of the quadrupole and
octopole in the CMB as observed by WMAP was first studied by de
Oliveira-Costa et al. (2004) through the maximum angular momen-
tum dispersion. This statistic has subsequently been applied to the
Planck data (Planck Collaboration XXIII 2014). A more complete
picture of CMB alignments is obtained through the use of the mul-
tipole vectors Copi, Huterer & Starkman (2004). Here, we study
both of these approaches.

4.1 Maximum angular momentum dispersion

The angular momentum dispersion about an axis n̂ is defined by de
Oliveira-Costa et al. (2004) as

[
L(n̂)]2
� ≡

∑
m

m2|a�m(n̂)|2. (16)

Heuristically, [
L(n̂)]2
� measures the amount of planarity of struc-

ture in the multipole � around an axis n̂. Notice that this is not a
rotationally invariant quantity and its value is maximized around
some axis, n̂�. Having found such axes for the quadrupole and
octopole, we quantify their alignment through their dot product,
|n̂2 · n̂3|.

To determine the axes n̂� without applying brute force numerical
rotations of maps at some resolution, we follow Copi et al. (2006)
and use the known rotational properties of the a�m. Here we briefly
review the procedure. Under rotations the spherical harmonic coef-
ficients transform as a′

� = D†a�. It is most convenient to represent

the rotation in terms of the Wigner rotation matrices which, for
Euler angles α, β, and γ , may be written as (Edmonds 1960)

D
(�)
m′m(α β γ ) = eim′γ d(�)

m′m(β)eimα. (17)

Here the d
(�)
m′m(β) are the reduced Wigner matrices. From explicit

calculation, we find that

(
L)2
� =

∑
m′m′′

a∗
�m′a�m′′ ei(m′−m′′)γ

×
∑

m

m2d
(�)
m′m(β)d (�)

m′′m(β)

≡
∑
m′m′′

H
(�)
m′m′′ (γ )G(�)

m′′m′ (β)

= Tr
[
H(�)(γ )G(�)(β)

]
. (18)

To find the extrema of (
L)2
� , we take derivatives with respect to

the angles reducing the problem to the solution of two coupled
non-linear equations

Tr
[
∂γ H

(�)(γ )G(�)(β)
] = 0, Tr

[
H(�)(γ )∂βG

(�)(β)
] = 0. (19)

It is easy to see that

∂γ H
(�)
m′m′′ (γ ) = i(m′ − m′′)H(�)

m′m′′ (γ ). (20)

Both G
(�)
m′′m′ (β) and ∂βG

(�)
m′′m′ (β) may be evaluated quickly and effi-

ciently using known properties of the d
(�)
m′m(β) (Edmonds 1960).

We note that for the quadrupole the axis n̂2 may instead be
calculated directly from the multipole vectors as n̂2 = ŵ(2;1,2) for
w(2;1,2) defined below, equation (23). (For the derivation of this
correspondence see Copi et al. 2006.)

4.2 Multipole vectors

The multipole vectors form an irreducible representation of the ro-
tation group SO(3), so provide a basis for expanding any scalar
function on the sphere. These vectors contain all the information
about the function though, in a form different from the usual spher-
ical harmonic coefficients, a�m. Various properties of the scalar
function are more easily described or detected in one basis than the
other, and for considering the alignments the multipole vectors have
much to offer.

Consider a scalar function, f�(ê), of pure multipole �. In the usual
spherical harmonic decomposition this function is expanded as

f�(ê) =
∑

m

a�mY�m(ê). (21)

In the multipole vector representation, it is instead written in terms
of a scalar, A(�), and � unit vectors,

{
v̂(�;j ) | j = 1, . . . , �

}
, as

f�(ê) = A(�)

⎡
⎣ �∏

j=1

(
v̂(�;j ) · ê

) − T�

⎤
⎦ . (22)

Here T� is the sum over all possible traces; it removes the lower
order multipoles from the preceding product. Notice that when
written in this form the function is manifestly rotationally invariant.
Also notice that these vectors are only determined up to a sign so
that they really define axes.

This representation is not new: James Clerk Maxwell in his study
of electromagnetism discussed the properties of spherical harmon-
ics in a very similar manner (Maxwell 1891). It has been shown
that Maxwell’s representation is identical to the one given above
(Weeks 2004), suggesting the alternative name of Maxwell’s multi-
pole vectors. With their introduction into CMB studies an algorithm
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for converting from the usual spherical harmonic coefficients, a�m,
to the multipole vectors was provided (Copi et al. 2004) greatly
facilitating their computation.

There are many ways in which the multipole vectors can be
employed to study the CMB. The most useful way has proven to be
through the area vectors (Copi et al. 2004, 2006)

w(�;i,j ) ≡ v̂(�;i) × v̂(�;j ). (23)

These area vectors define sets of planes. Alignment of these planes
with a direction n̂ is checked by again using the dot product to
define a set of values {Aj|j = 1, . . . , n} by

Aj ≡ |wj · n̂|. (24)

Here wj represents any area vector. Different sets of area vectors
can be used in different cases. For the work discussed here, we
restrict the analysis to the quadrupole, � = 2, and octopole, � = 3,
vectors. Finally we define two statistics based on these values

S ≡ 1

n

n∑
j=1

Aj , T ≡ 1 − 1

n

n∑
j=1

(1 − Aj )2. (25)

See Copi et al. (2006) for more general versions of these statistics
and Weeks (2004), Schwarz et al. (2004), Slosar & Seljak (2004),
Katz & Weeks (2004), Land & Magueijo (2005a), Land & Magueijo
(2005b), Bielewicz et al. (2005), Abramo et al. (2006a), Abramo,
Sodré & Wuensche (2006b), Weeks & Gundermann (2007),
Gruppuso & Burigana (2009), Gruppuso & Górski (2010) for other
tests with multipole vectors.

5 R ESULTS

The main results in this work are based on DQ-corrected maps as
discussed in Section 3.3. Also, for the Planck SMICA and NILC

maps the results are based on 5 × 105 harmonic inpaintings using
the method discussed in Section 3.2.

5.1 Maximum angular momentum dispersion

The alignment of the quadrupole and octopole as quantified by the
maximum angular momentum dispersion axes has been studied in
recent data releases (Bennett et al. 2011, 2013; Planck Collabora-
tion XXIII 2014). Planck Collaboration XXIII (2014) used Wiener
filtered maps to quantify the alignment through the dot product,
|n̂2 · n̂3|, and determined the fraction of realizations with at least
this level of alignment in �CDM from 1000 realizations. The results
reported by Planck are summarized in Table 4; we have roughly esti-
mated the uncertainty in these p-values for the Planck analysis based

Table 4. Maximum angular momentum dispersion direction
alignments reported by Planck. The Planck results and p-values
are from table 17 of Planck Collaboration XXIII (2014) and
are based on Wiener filtered maps. The uncertainties in these
p-values are calculated based on their use of 1000 realizations.
The values from this work are based on 5 × 105 realizations. See
the text for details.

p-value (per cent)
Map |n̂2 · n̂3| Planck This work

Planck NILC 0.974 3.3,0.6 2.59
Planck SEVEM 0.988 1.6,0.4 1.17
Planck SMICA 0.977 3.2,0.6 2.28

Table 5. Maximum angular momentum dispersion direction alignments for
maps with and without DQ correction. See the text for details.

Uncorrected DQ corrected
Map |n̂2 · n̂3| p-value |n̂2 · n̂3| p-value

(per cent) (per cent)

WMAP ILC 7yr 0.9999 0.006 0.9966 0.327
WMAP ILC 9yr 0.9985 0.150 0.9948 0.511
Planck NILC 0.9902 0.955 0.9988 0.118
Planck SEVEM 0.9915 0.825 0.9995 0.055
Planck SMICA 0.9809 1.883 0.9965 0.338

on the simplifying assumption of Poisson statistics. For comparison,
using the |n̂2 · n̂3| values provided by Planck we have recalculated
the p-values based on 5 × 105 realizations of �CDM. These values
are also included in Table 4 and are consistently a little more than
one-sigma lower than those provided by Planck. While the num-
ber of simulations used by the Planck collaboration is significantly
smaller than our sample, their simulations also include instrumental
effects and ours do not. The small difference in p-values suggests
that instrumental effects are not dominant and add at most a small
correction of the order of the statistical uncertainty of the Planck
simulation itself.

To study the effect of the extra cleaning provided by the Wiener
filtering we have calculated the maximum angular momentum dis-
persion axes from the full-sky maps provided by Planck. For the
SMICA and NILC maps the Planck inpainted maps were analysed.
The results are given in Table 5 as the ‘Uncorrected’ values. These
p-values should be compared to our p-values from Table 4 (last
column). We see that the provided maps exhibit somewhat more
alignment than the Wiener filtered maps. So something has been
removed by the Wiener filtering. Whether it is noise or CMB signal
is unclear.

Also included in Table 5 are the results from the WMAP data
releases. The ‘Uncorrected’ values are consistent with discussions in
the WMAP seven-year (Bennett et al. 2011) and nine-year (Bennett
et al. 2013) analyses. The alignment in the seven-year data is quite
remarkable for being almost perfect (|n̂2 · n̂3| � 1). The change in
alignment in the nine-year data is largely attributed to improvements
in the asymmetric beam deconvolution (Bennett et al. 2013) and is
one example of how analysis improvements affect the alignments.
Even so, the WMAP maps show more alignment than the Planck
maps.

The effect of the DQ correction as discussed in Section 3.3 is also
included in Table 5. Interestingly, the DQ correction has the oppo-
site effect on the WMAP and Planck alignments. Since the WMAP
alignments are so precise, this correction lessens the significance
as we would expect; however, for Planck we find the alignments
become more significant. More importantly, WMAP and Planck
are found to be in better agreement with each other after the DQ
correction has been applied.

5.2 Multipole vectors

The multipole vectors for the DQ-corrected SMICA map are listed in
Table 6 and shown in Fig. 5 plotted in Galactic coordinates. When
compared to fig. 3 from Copi et al. (2006), this figure shows that the
general features have not changed significantly since the first-year
WMAP data release. It also provides a visual summary of many of
the large-angle anomalies. In particular,
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Table 6. Average DQ-corrected multipole vectors from 5 × 105 harmonic
inpaintings of the SMICA map. The vector directions are given in Galactic
coordinates, (l, b), and their Cartesian equivalents, (x, y, z). These vectors
are plotted in Fig. 5.

Vector l (deg) b (deg) x y z Magnitude

v̂(2,1) 3.5 14.4 0.967 0.059 0.249 –
v̂(2,2) 126.5 13.3 − 0.579 0.783 0.229 –
w(2;1,2) 63.6 − 62.7 0.182 0.366 − 0.791 0.890
v̂(3,1) 90.5 42.0 − 0.007 0.744 0.669 –
v̂(3,2) 22.6 9.2 0.911 0.380 0.159 –
v̂(3,3) − 47.1 11.8 0.667 − 0.716 0.205 –
w(3;1,2) 102.5 − 47.4 − 0.136 0.610 − 0.680 0.924
w(3;2,3) − 22.8 − 77.0 0.192 − 0.081 − 0.906 0.930
w(3;3,1) 35.3 − 32.4 0.632 0.447 − 0.491 0.916

(i) the Ecliptic plane is seen to carefully thread itself between a
hot and cold spot and there is a clear power asymmetry across the
Ecliptic plane;

(ii) the planarity of the octopole and the alignment of the
quadrupole and octopole planes is clearly visible – note the re-
markable near-overlap of the quadrupole and octopole maximum
angular momentum dispersion axes;

(iii) the area vectors lie near each other, near the Ecliptic plane,
and also near the dipole direction.

To quantify the alignments, we consider the mutual alignment of
the quadrupole and octopole area vectors as well as alignments with
the Ecliptic plane, north Galactic pole (NGP), and the direction of
our motion with respect to the CMB (dipole). This is a subset of the
directions considered in Copi et al. (2006). The results based on the S
and T statistics from equation (25) are shown in Table 7, and indicate
that alignments persist at the 95 to 99.9 per cent level, with the
strongest alignment occurring with the dipole direction (≥99.6 per
cent). As we argued above, the spread of values between the different
maps gives an idea of the effect of the residual systematic errors
due to foregrounds.

As noted above, subsequent to our original analysis Planck Col-
laboration XXIII (2014) was updated to include estimates for DQ
correction factors based on the calibration techniques and weights
applied to the individual frequency band maps combined to create
the cleaned, full-sky maps. The correction factors were found to
be 1.7, 1.5, and 1.7 for the Planck NILC, SEVEM, and SMICA maps,
respectively. To determine the effect of using these correction fac-
tors, we have reanalysed the alignments of the multipole vectors
for these three maps. For the Planck SMICA map, the direction of
the oriented area vector for the quadrupole based on our simple DQ
correction (n̂2 and labelled ‘Qa’ in Fig. 5) moves about 3.◦2 when
calculated using the Planck DQ correction. This is a significantly
smaller change than that from the vector without any DQ correc-
tion applied (the ‘no DQ’ vector in Fig. 5. Of more importance, the
magnitude of the oriented area vector, w(2;1,2), has changed from
0.890 (see Table 6) to 0.948. In other words, with the Planck DQ

Figure 5. Quadrupole and octopole multipole vectors for the DQ correctedSMICAmap in Galactic coordinates. The background shows the quadrupole+octopole
pattern from the DQ corrected SMICA map. The multipole vectors are shown as circles, in red and labelled ‘Qv’ for the quadrupole and in black and labelled
‘Ov’ for the octopole. The direction of the area vectors defined in equation (23), ŵ(�;i,j ), is shown as squares. Again the quadrupole area vector is in red and
labelled ‘Qa’ and the octopole area vectors are in black and labelled ‘Oa’. Since the multipole vectors are only determined up to a sign each vector appears twice
in the figure. The area vectors have only been plotted in the Southern hemisphere to avoid cluttering the plot. The maximum angular momentum dispersion
direction for the octopole, n̂3, is shown as the black star. Since n̂2 = ŵ(2;1,2) it is also represented by the red square. The direction of n̂2 without the DQ
correction is shown as the red diamond. For reference also shown in the figure is the Ecliptic plane (black line), the locations of the north (NEP) and south
(SEP) Ecliptic poles, and the direction of our motion with respect to the CMB (dipole). The coordinates of the vectors are listed in Table 6.
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Table 7. The S and T alignment statistics from equation (25) for various directions. Listed are the p-values in per
cent of �CDM producing a value larger than that found in the given map based on 106 realizations of �CDM. The
directions tested are the quadrupole+octopole alignment (Q+O), the Ecliptic plane, the north Galactic pole (NGP),
and the direction of our motion with respect to the CMB (dipole). The results for the SMICA and NILC maps are based
on the average of the S statistic from 5 × 105 harmonic inpaintings of these maps. The results below the ’Planck DQ
Correction’ line were calculated using the Planck DQ correction factors as discussed in the text.

Q+O Ecliptic Plane NGP dipole
Map S T S T S T S T

WMAP ILC 7yr 0.22 0.10 2.66 2.70 0.82 0.90 0.18 0.20
WMAP ILC 9yr 0.18 0.08 1.96 1.82 0.79 0.76 0.14 0.15
Planck NILC 1.85 1.05 2.80 3.04 1.41 1.26 0.32 0.19
Planck SEVEM 0.41 0.22 2.52 2.94 0.79 0.92 0.09 0.05
Planck SMICA 1.62 0.93 3.74 4.16 1.56 1.52 0.37 0.30

Planck DQ Correction
Planck NILC 0.54 0.27 2.55 2.64 1.14 1.10 0.18 0.14
Planck SEVEM 0.16 0.08 2.31 2.58 0.73 0.89 0.06 0.05
Planck SMICA 0.54 0.28 3.37 3.60 1.32 1.39 0.23 0.23

correction of the Planck SMICA map the quadrupole multipole vec-
tors are even more nearly perpendicular. The effect this has on the
S and T statistics for the alignments we have studied is given in
Table 7 under the ‘Planck DQ Correction’ line. In all cases, we see
that the Planck DQ correction leads to alignments more unlikely in
�CDM.

To make the anomalous nature of the alignments more clear, the
results for the S and T statistics from equation (25) of the multipole
vectors with the direction of our motion with respect to the CMB (the
dipole direction) are shown in Fig. 6. In this figure, the histograms
are the expected values from �CDM and the vertical lines the range
of values found for the various maps. In all cases, the observed
alignments reside far in the tail of the expected distributions.

5.3 Interdependence of alignments

The alignments shown in Table 7 are peculiar, particularly the mu-
tual alignment of the quadrupole and octopole area vectors as well

Figure 6. The S and T statistics from equation (25) for the alignment of the
multipole vectors with the direction of our motion with respect to the CMB
(the dipole direction). The histograms represent the distribution of the S
(solid, black line) and T (dashed, red line) statistics from 106 realizations of
�CDM. The shaded regions between the vertical lines represent the range
of values found for the CMB maps studied in this work. See Table 7 for the
full results.

as that with the dipole direction. A remaining question is the inde-
pendence of these alignments.

As a first method of addressing this, we follow Copi et al. (2006)
and calculate the significance of alignments with various directions
given the observed relative orientation of the quadrupole and oc-
topole area vectors. That is, given the observed quadrupole and
octopole structure, the overall orientation of this pattern on the sky
is arbitrary. With this in mind we can address how likely it is for
a random orientation of this structure to have the quadrupole and
octopole area vectors at least as well aligned with a fixed direction
in the sky as observed. Though we think of this as rotating the map,
it is equivalent to comparing the alignments to random directions.
The result of such a comparison based on 106 random directions
using the S and T statistics (25) is given in Table 8. We find that the
residual p-value for alignment with the dipole and Ecliptic Plane
directions, given the mutual quadrupole+octopole alignment, is at
the 2 to 6 per cent level, while the alignment with the Galactic
pole is not significant. These results are in agreement with results
in Copi et al. (2006) (see table 4 in that paper), and indicate that
even given the relative location of the quadrupole and octopole area
vectors (i.e. their mutual alignment), the Ecliptic plane and dipole
alignments are unlikely at the 95 per cent level.

A related question is to ask in realizations of �CDM with at
least the observed alignment of the quadrupole and octopole, what
is the p-value for alignment with other directions? The difference
between this and the previous question is that the orientation of
the quadrupole and octopole is no longer a rigid structure. From
Table 7 we see that realizations of �CDM with the quadrupole and
octopole aligned as closely as in the data are rare. The most fre-
quent alignment occurs for the Planck NILC map with p-values of

Table 8. The alignment p-value based on the S and T statistics from
equation (25) given the observed quadrupole+octopole alignment.
The values are quoted in per cent and are based on 106 randomly
rotated directions. See the text for details.

Ecliptic Plane NGP dipole
Map S T S T S T

WMAP ILC 7yr 3.27 3.33 12.26 12.74 6.47 6.55
WMAP ILC 9yr 1.30 1.38 12.56 12.35 6.02 6.30
Planck NILC 4.39 5.14 12.26 12.74 5.50 5.08
Planck SEVEM 4.93 6.37 11.75 12.74 3.98 3.17
Planck SMICA 5.17 6.10 12.66 13.15 5.94 6.05
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Table 9. The alignment p-values based on the S and T statistics
from equation (25) given at least the observed quadrupole+octopole
alignment. The values are quoted in per cent and based on 106 real-
izations of �CDM with at least the quadrupole+octopole alignment
observed in the Planck NILC map. See the text for details.

Ecliptic Plane NGP dipole
Map S T S T S T

WMAP ILC 7yr 20.9 18.9 14.3 17.4 8.7 10.8
WMAP ILC 9yr 18.6 16.5 14.3 16.8 7.9 10.0
Planck NILC 14.0 14.0 13.6 14.9 6.9 6.2
Planck SEVEM 18.8 18.2 13.5 16.6 5.9 5.5
Planck SMICA 17.4 17.1 14.4 16.3 7.8 8.1

1.85 and 1.05 per cent for the S and T statistics, respectively. Using
these values as cutoffs, we generate 106 realizations of �CDM with
at least this much alignment, that is, realizations with either a S or
T quadrupole+octopole statistic at least the value from the Planck
NILC map. Note that this means that the number of realizations vary
for each map. The ratio of the number of realizations between each
pair of maps is given by the ratio of p-values from the Q+O columns
in Table 7. For each map we then find the conditional probability
of alignment with some direction, such as the dipole, given at least
the observed alignment of the quadrupole+octopole. The resulting
p-values are given in Table 9. In comparison with Table 8 we see by
relaxing the rigid structure of the quadrupole and octopole orienta-
tions that the p-values have increased. Overall the p-values are now
roughly 5 to 21 per cent with the more unlikely alignment being
with the dipole direction, meaning that the quadrupole+octopole
and dipole alignments are the least correlated.

The results from Tables 7 and 9 can be combined using Bayes’
theorem to find the conditional probability for any two alignments.
Let d1 and d2 represent two different alignments, then, P(d1|d2) is
the conditional probability of alignment with d1 given the alignment
with d2 and similarly for P(d2|d1). These alignments are related as

P (d1|d2)P (d2) = P (d2|d1)P (d1). (26)

From the tables provided, we may immediately calculate the con-
ditional probability for the alignment of the quadrupole+octopole
given the alignment of any other direction. To do so let d2 ≡ qo
represent the quadrupole+octopole alignment, then

P (qo|d1) = P(d1|qo)
P(qo)

P(d1)
. (27)

Here both P (qo) and P(d1) may be read from Table 7 and P (d1|qo)
from Table 9. These conditional probabilities are shown in Table 10.
Conditional probabilities for other pairs of alignments can be cal-
culated from repeated application of Bayes’ theorem.

Table 10. The quadrupole+octopole alignment p-values based on
the S and T statistics from equation (25) given at least the observed
dipole, Ecliptic or Galactic alignment. The values are quoted in
per cent and are obtained using Bayes’ theorem and the data from
Tables 7 and 9.

Ecliptic Plane NGP dipole
Map S T S T S T

WMAP ILC 7yr 1.7 0.7 3.8 1.9 10.6 5.4
WMAP ILC 9yr 1.7 0.7 3.3 1.8 10.2 5.3
Planck NILC 9.3 4.8 17.8 12.4 39.9 34.3
Planck SEVEM 3.1 1.4 7.0 4.0 26.9 24.2
Planck SMICA 7.5 3.8 15.0 10.0 34.2 25.1

If we assume the observed levels of alignment with the Ecliptic
plane or the Galactic poles, the quadrupole+octopole alignment re-
mains anomalous at the 1 to 4 per cent level for WMAP. For Planck,
the conclusion is not clear, however all p-values remain below 20 per
cent. The situation is different for the dipole. We see that assuming
the observed level of dipole alignment, the quadrupole+octopole
alignment seems to be quite plausible. This suggests that the dipole
alignment (which is also the most significant and robust alignment
in Table 7) could be the reason for the other observed alignments.

6 C O N C L U S I O N S

The largest structures in the microwave sky, the quadrupole and
octopole, are aligned with one another and with physical directions
or planes – the dipole direction and the Ecliptic plane. These align-
ments, first observed and discussed in the one-year WMAP data,
have persisted throughout WMAP’s subsequent data releases, and
are now confirmed in the one-year Planck data. On the one hand,
this is to be expected: the largest scales are precisely measured and
the same CMB sky is observed by both satellites. On the other hand,
this is surprising: cleaned, full-sky maps are required to see these
alignments, and the removal of foregrounds, along with other sys-
tematic effects, makes it challenging to accurately produce full-sky
maps on large angular scales.

In this work, we have studied the ILC maps from the seven and
nine-year WMAP data releases and the NILC, SEVEM, and SMICA

cleaned maps from the first-year Planck data release. Qualitatively,
the main anomalies detected in earlier WMAP releases remain: the
quadrupole and octopole are aligned with each other; the normal to
their average plane is aligned with the dipole – the direction of our
motion through the Universe; that normal is also close to the Ecliptic
plane, so that the average plane of the quadrupole and octopole is
nearly perpendicular to the Ecliptic plane. Finally, as can be seen in
Fig. 5 which shows the sum of the quadrupole and octopole from
the SMICA map, the Ecliptic plane cleanly cuts between a hot and
cold spot, thereby separating weaker quadrupole+octopole power
in the north Ecliptic hemisphere from the stronger power in the
south Ecliptic hemisphere.

Quantitatively, statistics from the maximum angular momen-
tum dispersion (Table 5) and the multipole vectors (Table 7 and
Fig. 6) both show strong evidence for the mutual alignment of the
quadrupole and the octopole. The p-values for at least as much
alignment as observed occurring in realizations of �CDM are typ-
ically less than 0.5 per cent, once one has Doppler-corrected the
quadrupole. The exceptions are the NILC and SMICA multipole vec-
tor statistics, S and T, which have p-values of 1 to 2 per cent. These
results are strengthened when the Planck DQ corrections are applied
instead of our simple one.

The alignment of the quadrupole and octopole with the dipole
(Table 7) appears at first sight even more robust than their mutual
alignments, with p-values of less than 0.4 per cent (and as low as
0.05 per cent) in all maps and with both S and T statistics. The
interpretation however is not clear. The dipole includes contribu-
tions from several sources, but is almost certainly dominated by
the Doppler effect from the Sun’s motion through the Galaxy, the
Galaxy’s motion through the Local Group, and the Local Group’s
motion through the more distant large-scale structure; all giving
comparable contributions. (A dominant or even significant contri-
bution from a cosmological dipole seems remote.) Since these con-
tributions originate from gravity gradients on very different scales,
it is difficult to envision physics that would connect the dipole,
quadrupole, and octopole. A systematic error in the measurement
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or the analysis pipeline could connect them all, but the robustness of
the alignment across the two satellites argues against that explana-
tion. (A remote possibility does still remain since Planck calibrated
off the WMAP dipole in their first-year data release.)

As an attempt to disentangle correlation from causation between
and among the alignments, we have studied their interdependence
by calculating the conditional probability of alignment with a fixed
direction given the observed mutual quadrupole+octopole align-
ment and vice versa. Through application of Bayes’ theorem, the
conditional probability for any two alignments can be deduced
from these calculations. For example, the conditional p-values
for quadrupole+octopole+dipole alignment given either the ob-
served quadrupole+octopole alignment (Table 8) or at least the
observed quadrupole+octopole alignment (Table 9) are 3 to
10 per cent. These are consistent with the 4 to 6 per cent
found in Copi et al. (2006) for the conditional p-value of the
quadrupole+octopole+dipole alignment given the observed rel-
ative directions of the quadrupole and octopole area vectors.
In other words, the alignments with the dipole may well be
a distraction – a statistical accident – barring an unknown
common WMAP–Planck systematic which somehow causes the
dipole+quadrupole+octopole alignment.

A priori, less scepticism could be attached to a possible physical
explanation for the correlation between the quadrupole+octopole
and the Ecliptic plane. If the underlying cosmological quadrupole
and octopole were unexpectedly absent, then we could well imagine
a Solar system (or even nearby Solar-neighbourhood) source for
the quadrupole and octopole correlated with the plane of the Solar
system. Nevertheless, there are no proposed viable physical models
that correctly reproduce the observed arrangement of quadrupole
and octopole extrema lying on a plane perpendicular to the Ecliptic
and well separated by it. The statistics offer only weak, and even
confusing, guidance as to what is correlation and what, if anything,
is causation. The statistical situation is no clearer for correlation
with the Galactic pole.

Unfortunately, the fact that the dipole direction simply happens
to be just off the Ecliptic plane, which passes about 30◦ from the
Galactic poles, makes establishing the priority of one correlation
over another difficult just on the basis of statistics of CMB tem-
perature data. Some, or all, of these correlations are presumably
accidental. Solving this puzzle will require data other than just
CMB temperature maps, and probably a model that can be tested
against such data.

The lack of correlation on large angular scales from cut-sky maps
has been presented in a companion work (Copi et al. 2013). A natural
next step would be to also study the interdependence of the align-
ments of the full-sky low multipoles and the lack of correlations.
For the WMAP releases up to year seven, these were discussed in
Rakić & Schwarz (2007) and Sarkar et al. (2011). The correspond-
ing analysis for the final WMAP and first-year Planck releases will
be presented elsewhere, but we expect that the conclusion from
Sarkar et al. (2011), namely that the lack of angular correlation and
the alignments are uncorrelated anomalies, will remain valid.

In summary, the quadrupole and octopole alignments noted in
early WMAP full-sky maps persist in the WMAP seven-year and
final (nine-year) maps, and in the Planck first-year full-sky maps.
The correlation of the quadrupole and octopole with one another,
and their correlations with other physical directions or planes –
the dipole, the Ecliptic, the Galaxy – remain broadly unchanged
across all of these maps. Consequently, it is not sufficient to argue
that they are less significant than they appear merely by appealing
to the uncertainties in the full-sky maps – such uncertainties are

presumably captured in the range of foreground removal schemes
that went into the map making. It similarly seems contrived that the
primordial CMB at the last scattering surface is correlated with the
local structures imprinted via the Integrated Sachs–Wolfe (ISW)
effect in just such a way to generate the observed alignments, as
proposed elsewhere (Rakić, Räsänen & Schwarz 2006; Francis &
Peacock 2010; Dupé et al. 2011; Rassat & Starck 2013; Rassat,
Starck & Dupé 2013), even taking for granted the reliability of the
procedure to subtract the ISW signal from the map.

While it may be tempting to explain away the observed large-
angle alignments in the CMB by postulating additional, unspecified
corrections to the maps, such explanations so far have not been
compelling. Numerous corrections have been applied in the data
analysis pipelines, and they have also evolved between the initial
WMAP data releases and the Planck first-year release, yet the align-
ments remain. Furthermore, almost anything done to the maps will
lessen the significance of the observed alignments, so, just because
a new correction could affect the observed alignments, this does not
mean that an otherwise unspecified new correction must exist. We
think it is preferable to acknowledge that the existence of anoma-
lies seen in the WMAP and Planck maps at large angular scales may
point to residual contamination in the data or to interesting new
fundamental physics.
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merical simulations were performed on the facilities provided by
the Case ITS High Performance Computing Cluster.

R E F E R E N C E S

Abramo L. R., Bernui A., Ferreira I. S., Villela T., Wuensche C. A., 2006a,
Phys. Rev. D, 74, 063506
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